
ROBin: Known-Plaintext Attack Resistant

Orthogonal Blinding via Channel Randomization

Abstract—Orthogonal blinding based schemes for wireless phys-
ical layer security aim to achieve secure communication by
injecting noise into channels orthogonal to the main channel and
corrupting the eavesdropper’s signal reception. These methods,
albeit practical, have been proven vulnerable against multi-
antenna eavesdroppers who can filter the message from the noise.
The venerability is rooted in the fact that the main channel state
remains stasis in spite of the noise injection, which allows an
eavesdropper to estimate it promptly via known symbols and filter
out the noise. Our proposed scheme leverages a reconfigurable
antenna for Alice to rapidly change the channel state during
transmission and a compressive sensing based algorithm for her
to predict and cancel the changing effects for Bob. As a result,
the communication between Alice and Bob remains clear, whereas
randomized channel state prevents Eve from launching the known-
plaintext attack. We formally analyze the security of the scheme
against both single and multi-antenna eavesdroppers and identify
its unique anti-eavesdropping properties due to the artificially
created fast changing channel. We conduct extensive simulations
and real-world experiments to evaluate its performance. Empirical
results show that our scheme can suppress Eve’s attack success
rate to the level of random guessing, even if she knows all the
symbols transmitted through other antenna modes.

I. INTRODUCTION

The ever-expanding wireless technology is pushing the limit

of the network security infrastructure. Many wireless devices

need to secure the communication channels between each other

without pre-shared security context. Orthogonal blinding based

physical-layer security [1]–[3] has been widely considered

as a promising candidate to provide confidentiality during

wireless transmission without a priori key exchange. Instead

of relying on pre-shared secrets, orthogonal blinding achieves

secure communications by transmitting synthetic noise into the

null-space of the receiver’s channel and corrupting the eaves-

dropper’s reception. Its practicality supersedes other theoretical

physical-layer methods, such as zero-forcing beamforming,

which relies on knowledge about the eavesdropper’s channel.

Security analysis proves that it can asymptotically approach

the secrecy capacity of zero-force beamforming against single-

antenna eavesdroppers. However, further studies show that

orthogonal blinding is not effective against a multi-antenna

eavesdropper, who has sufficient spatial dimensions to separate

the message from the artificial noise. Schulz and Zheng et

al. [4]–[6] demonstrated that an eavesdropper may leverage

the known or low entropy symbols in the transmission to

quickly train a decoding filter and recovers the rest of the

transmission, an attack equivalent to the known-plaintext attack

in cryptanalysis.

The root of this vulnerability is due to the fact that the

synthetic noise only changes the quality of the receiving signal

but not the state of the channel. Specifically, the noise injected

by the transmitter (Alice) can lower the signal-to-noise ratio

(SNR) of the eavesdropper’s (Eve’s) channel. But it cannot

change the channel states between she and Eve or she and the

legitimate receiver (Bob). This limitation opens up a window

for the known-plaintext attack. Assuming the channel state

remains ergodic with its coherent time. Due to the increasingly

sophisticated digital modulation methods, Alice can transmit

a sequence of tens or hundreds of symbols within such a

short period. Although these symbols are buried deep under

the synthetic noise, a fraction of known symbols among them

would allow Eve with multiple antenna to compute the channel

state information (CSI), using a common MIMO technique

known as least square (LS) channel estimation, which is robust

against channel noise. Once Eve estimated the CSI, she may

use it to equalize the channel and remove the synthetic noise

during the rest of the coherent period.

Follow this line of reasoning, there are two ways to defend

against the known-plaintext attack, assuming Alice cannot

avoid transmitting known symbols. She can limit the number of

symbols to transmit within each coherent time period, which

limits the communication throughput. Or she can reduce the

coherent time to thwart the known-plaintext attack. However,

the coherent time is an intrinsic condition that depends on the

signal multipath and Doppler spread, both of which are not

subject to the manipulation of transmitting content. Therefore,

it would appear there are no cogent methods to defend against

the known-plaintext attack.

However, in this paper, we challenge this no-win scenario

and propose an orthogonal blinding based physical-layer se-

curity method immune to the known-plaintext attack: Channel-

Randomized Orthogonal Blinding (ROBin). ROBin leverages a

pattern reconfigurable antenna to vary the channel state at a per

symbol or per frame rate, resulting in an artificially created fast-

changing wireless channel unsuitable for the known-plaintext

attack. To prevent the antenna reconfiguration from affecting

Bob, we design a compressive sensing based algorithm for

Alice to estimate the angle-of-departure (AoD) distribution of

the multipath environment and predict the CSI for a given re-

configurable antenna pattern. Based on the predicted CSI, Alice

can equalize the channel for Bob via digital pre-coding before

transmitting. As a result, the main channel state appears stable

in Bob’s eye but randomly changing from Eve’s perspective.

We formally analyze the security of ROBin, by comparing



the mutual information between Alice’s transmission and Eve’s

reception, assuming the channel state has the Markov property

and Eve knows the symbols transmitted via historical antenna

modes but not the current one. The analysis shows that Eve

gains little advantage from knowing previous symbols (as

channel randomization reduces the channel correlation and

makes the current channel state more unpredictable), regardless

of the number of antennas she has. We implement the key

components of ROBin; validate our theoretical analysis with

extensive simulation and real-world experiments. Empirical

results show that our scheme can suppress Eve’s attack success

rate to the level of random guessing, even if she knows all the

symbols transmitted through other modes.

II. RELATED WORK

Physical-layer security was pioneered by Wyner’s work on

the wiretap channel [7], which leverages the channel advantage

for legitimate receivers over eavesdroppers (e.g. less noisy) to

guarantee secure transmission over wireless channels. The rate

of secret communications is characterized by secrecy capacity,

which is shown to be the difference in the capacity of the

receiver and the eavesdropper. Following Wyner’s work, numer-

ous studies based on various channel models ranging from basic

Gaussian channels to complex MIMO wiretap channels have

been proposed later [8]–[14]. In particular, Khisti et al. [12],

[14] showed the secrecy capacity bounds in the large antenna

limit with full channel state information (CSI) assumption.

Their works reveal an important result that the achievable

secrecy capacity can be significantly affected by the number

of antennas of the eavesdropper. For instance, to block secret

communication, Eve only needs three times as many antennas

as transceivers have. However, since those theoretical works

often make unrealistic assumptions such as channel advantage,

full channel knowledge, or independent and identically channel

distribution, they are rarely adopted to evaluate the secrecy of

real-world schemes.

On the other hand, various practical physical-layer secret

communication schemes have been proposed. One example

is the friendly jamming approach. Gollakota et al. prevented

unauthorized commands from being transmitted to implantable

medical devices (IMDs) with a friendly jamming scheme in [1].

The security of their scheme relies on the assumption that the

attacker equipped with MIMO is unable to separate the legiti-

mate and jamming signal, due to the close proximity between

the jammer and the data source. Similarly, Shen et al. [15]

designed another jamming technique where jamming signals

are controlled with secret keys, so that they are recoverable to

authorized devices but unpredictably interfering to unauthorized

ones. The jammer and the authorized device are very close

to each other in both schemes, and this design is found as

vulnerable by Tippenhauer et al. in [16]. When an attacker tact-

fully places her antenna array, the transmitted data signal can

be recovered by exploiting the phase offsets between received

signal components. Orthogonal blinding [3] proposed by Anand

et al. is another example of physical-layer security schemes. To

defend against a single-antenna eavesdropper, the transmitter

injects artificial noise into channels orthogonal to the legitimate

receiver’s channel so that the original signal intended for the

receiver cannot be recovered from the signal and noise mixture.

However, when the eavesdropper has multiple antennas, by

exploiting the known parts of the transmitted signal such as

frame preambles, Schulz et al. [17] successfully implemented

a known-plaintext attack against orthogonal blinding. With

normalized least mean square algorithms, an adaptive filter was

trained to separate transmitted messages from artificial noise.

The root cause of the vulnerability in orthogonal blinding

is that the channel is assumed to be stable during the whole

transmission period, so that the attacker is able to gather enough

plaintexts for filter training, and this flaw can be amended

with channel randomization approach. In the literature, the

channel randomization approach has been used for key gen-

eration, message confidentiality, and integrity protection. Aono

et al. [18] proposed a key generation and agreement scheme

that blocks the eavesdropper from generating the same key

as transceivers by increasing the fluctuation of the wireless

channel with a smart antenna. Hassanieh et al. [19] presented

a secret transmission scheme for RFIDs randomizing both

modulation and channel by rotating several directional antennas

at the transmitter. Different from this work, their scheme is

only applicable to single-antenna transmitters and does not

use pre-coding. To defend against active man-in-the-middle

attacks, Hou el al. [20] and Pan et al. [21] randomized the

wireless channel with a fan and a reconfigurable antenna

respectively to prevent online signal cancellation. All these

works show that channel randomization approach can be a

powerful tool to enhance physical-layer security. However, the

studies are still preliminary and a comprehensive scheme that is

MIMO-compatible and secure against multi-antenna attackers

is lacking.

III. SYSTEM AND THREAT MODELS

Consider a MIMO-OFDM system shown in Fig. 1, where the

transmitter Alice aims at confidentially communicating with

the receiver Bob through a wireless channel HAB , with the

existence of a passive eavesdropper Eve. Denote the number of

antennas for Alice, Bob and Eve as na, nb and ne respectively.

The legitimate receiver Bob is equipped with regular omnidirec-

tional antenna(s) (OAs) while the eavesdropper Eve can possess

any types of antennas, including OAs, reconfigurable antenna(s)

(RAs) and etc.. In particular, the transmitter Alice is equipped

with RAs for channel randomization purpose, where an RA is

an antenna capable of dynamically reconfiguring its antenna

currents or radiating edges in a controlled and reversible

manner [22]. Typically, an RA can swiftly reconfigurable its

antenna profile including radiation pattern, polarization, fre-

quency, and combinations of them. For example, Rodrigo et

al. [23] presented an RA that has thousand of antenna modes

and can be electronically switched within microseconds. From

the receiver’s perspective, the effect of the antenna profile is

part of the CSI. Hence we can incorporate the impact of RA

on the wireless into the channel model.





and randomly generates a complex uniform matrix H′

AN with

dimension (na − nb)× na. Alice then computes the difference

between H′

AN and the projection of H′

AN :

H
′′

AN = H′

AN −H′

AN ·Hp (6)

by normalizing this difference, we can obtain HAN :

HAN =
H

′′

AN

‖H
′′

AN‖
(7)

where each row in HAN is orthogonal to any other row in itself

and to every row in HAB .

Next, Alice precodes the message (DB) and artificial noise

(AN) with the pseudo-inverse of the matrix composed by HAB

and HAN , and obtain the transmitted signal D as:

D = FA

(

DB

AN

)

(8)

where FA is the transmit filter represented as:

FA =

(

HAB

HAN

)H
(

(

HAB

HAN

)(

HAB

HAN

)H
)

−1

(9)

Correspondingly, the received signal for Bob and Eve is:
(

RB

RE

)

=

(

HAB

HAE

)

·D+N (10)

where

RE = HAE · FA ·

(

DB

AN

)

+N (11)

B. Known-Plaintext Attack

Anand et al. [3] showed that single antenna eavesdroppers

cannot recover the message with her reception, however, Schulz

et al. [17] and Zheng et al. [6] showed that by exploiting the

known parts or low entropy parts of the transmitted signal, the

known-plaintext or ciphertext-only attack is possible in prac-

tice. Specifically, Schulz et al. introduced a practical known-

plaintext attack for the orthogonal blinding scheme in [17].

Unlike the typical assumption in the literature which assumes

that the transmitted signal is fully unknown to the eavesdropper,

Schulz argued that Eve can utilize the well-known protocols or

addresses fields to guess part of the transmitted signal, so that

some plaintext-ciphertext pairs are known to the eavesdropper,

which is similar to the known-plaintext attack in cryptography.

Then the eavesdropper can use the known plaintexts to train

an adaptive filter for AN suppression. Ideally, the receive filter

FE is:

FE = F−1
A ·H−1

AE (12)

In practice, Eve estimates FE as F̂E with some known

plaintexts DB through iterative process. More specifically, Eve

minimizes the mean square error between the estimated data

and the known plaintexts:

min
F̂E

E|DB − F̂E ·RE |
2 (13)

There are several iterative training algorithms for this problem

[17], but in general, for a fixed transmit filter FA, multiple

symbols are required to obtain a good adaptive filter at Eve’s

side due to the iterative training procedure. In [17], even with

good training technique and parameter setting, 20−30 training

symbols are required when the ratio of transmitted AN to data

is fairly low.

V. ROBIN: CHANNEL-RANDOMIZED ORTHOGONAL

BLINDING

The vulnerability of preliminary orthogonal blinding results

from the unchanged main channel, which allows the eaves-

dropper to estimate it via known symbols and filter the AN

out. Actually, this flaw can be amended with the channel

randomization approach, which is to actively randomize the

wireless channel by introducing special antennas [18], [21],

antenna motions [19] or artificial disturbance [20] to the

wireless channel. Intuitively, as long as the wireless channel

is randomized fast enough, we can block Eve from gathering

enough symbols for filter training, so that the message cannot

be extracted from Eve’s received signal. Besides, except for

filter training, Eve may also explore the correlation between

her channels and the main channel to estimate Bob’s channel

directly for message recovering. Results in [21], [24] showed

that there is a strong correlation between two channels when

the attacker is delicately positioned, and this correlation can

be reduced with channel randomization [21]. We show the

benefits of reducing channel correlation to system security with

the proposed metric in Sec. VI, which further supports our

channel randomization approach. In this section, we present

the challenges in our scheme design and the corresponding

solutions.

A. Channel Prediction

When the physical wireless channel remains unchanged, we

randomize the wireless channel through rapid antenna mode

switching, however, when the main channel changes, a new

transmit filter is needed by Alice to guarantee the orthogonality

between the message and noise subspaces. Traditionally, the

main channel information HAB is measured at Bob’s side and

sent back to Alice through an OOB channel or relying on

implicit feedback. However, when the channel is randomized

frequently, it is to costly for the transceivers to measure

channels and get feedback every time, which makes the channel

measurement a major challenge for orthogonal blinding based

schemes. To solve this problem, we introduce a compressive

sensing based channel prediction algorithm for Alice to cancel

the channel changing effect to Bob.

1) AoD Estimation: As the physical channel coefficient part

is assumed as unchanged within the channel coherent time, it

implies a stable AoD distribution correspondingly. To predict

the CSI under different antenna modes, the distribution of AoD

is estimated first to capture the physical wireless channel, and

the effect of the antenna is added as in (4) for CSI prediction.

2) Conventional AoD Estimation: Traditionally, the distri-

bution of AoD is estimated via MUSIC algorithm [25]. To

simplify, we describe it with a uniform linear array (ULA),

where identical antenna elements are arranged along a line with



uniform spacing. Assume that there are M antenna elements

on the ULA, and there are L multipath signals S1, S2, ..., SL

arriving. The matrix representation of the received signal at the

array can be represented as:

J = AS+N (14)

where J is the M × 1 received signal, S is the L × 1 signal

source and A is the M × L steering vector matrix.

The basic idea of MUSIC algorithm is to implement eigen-

value decomposition of the received signal covariance matrix:

ΦJ = E[JJH ] (15)

= AΦSA
H +ΦN (16)

= QS

∑

QS
H +QN

∑

QN
H (17)

where ΦS and ΦN are the correlation matrix for the signal

and noise respectively. Decomposing (16) results in M eigen

values out of which the larger L eigenvalues correspond to

the multipath signals, where QS and QN are the basis of

signal and noise subspaces respectively. Then by exploiting

the orthogonality between the signal and noise subspaces, the

direction of the arrived angles can be represented as:

θMUSIC = argmin βH(θ)QNQN
Hβ(θ) (18)

which is equivalent to obtain peaks in the spectral estimation:

PMUSIC =
1

βH(θ)QNQN
Hβ(θ)

(19)

We need to point out that as the MUSIC algorithm was mainly

proposed for radio direction finding, the distribution obtained

from it is only about the magnitude of CSI, which is not

the AoD distribution we need. Hence the traditional MUSIC

algorithm is not applicable to our problem.

3) Compressive AoD Estimation with RA: Intuitively, the

easiest way to estimate the AoD distribution for a given channel

is to transmit with D different antenna modes, so that we

can solve (4) directly. However, it is not practical to estimate

through this linear algebra approach due to large D (e.g. in our

case D = 360). Fortunately, by exploiting the sparsity of AoD

distribution, the problem is solvable even with a small number

of training modes.

Previous works [26], [27] have shown that for a typical

multipath environment, there are only 3-5 distinct directions

are dominant components. In other words, when we look into

the AoD distribution, only a small number of them contribute

significantly to the CSI. With this sparsity property, we can

recover the AoD distribution from only a small number of mea-

surements. Specifically, we use compressive sensing technique

[28] to estimate AoD distribution.

Compressive sensing is a sampling algorithm that capable

of recovering sparse signals with much fewer samples than

traditional sampling approaches. One of the basic problems is

to recover a signal x from a M×1 observation y, with a given

M ×N sensing basis Φ, where M < N and the signal x has

a sparse representation with a N × N representation basis Ψ

and N × 1 weighting coefficients s: x = Ψs. Mathematically

speaking, the problem is to get x/s from y = Φx = ΦΨs.

The problem is solvable when the largest correlation between

any two elements of Φ and Ψ is small, which is refereed as

incoherence [28].

For our problem, since the AoD distribution a(·) is sparse

itself, our presentation basis degrades to an identity matrix, but

we can still use the compressive sensing formulation to solve

our problem. When training modes are randomly selected, the

incoherence condition is roughly satisfied and the AoD distri-

bution of (i, j)-th receive-transmit channel can be recovered

from the following compressive sensing formulation:

ai,j = argmin ||ai,j(θ)||1

s.t. hi,j(u) =

D
∑

d=1

G(u, θd)ai,j(θd), 1 ≤ u ≤ U
(20)

where ‖ · ‖1 represents the L1 norm and U ≪ D are the

total number of antenna modes needed for AoD distribution

recovery. Note that, Xie et al. presented an estimation algorithm

of AoA distribution based on compressive sensing in [29].

However, since they use antenna array, the CSI they use for

estimation is the composite CSI instead of the one between

each receive-transmit antenna pair. Besides, similar to MUSIC,

their AoA distribution only computes the magnitude of the CSI.

4) Channel Prediction: Once the AoD distribution of h
(phy)
i,j

is estimated with the above compressive sensing formulation,

the CSI hi,j under any given antenna mode can be predicted

with (4). When the AoD distribution of every CSI element

in the main channel is estimated, the whole matrix HAB can

be predicted correspondingly. Note that, the physical wireless

channel is stable only within the channel coherent time, once

the physical channel changes, a new round of AoD distribution

estimation is required. In practice, since carrier frequency offset

or accurate external clocks such as GPS clocks can eliminate

the impact of frequency and phase offset, the channel coherent

time can be long. Then the channel prediction is applicable,

and it reduces the overhead for channel sounding comparing

with the orthogonal blinding scheme.

B. Secure Transmission Scheme

In short, our RA based secure transmission scheme comprises

two phases that we summarize hereunder, and for clarification,

we denote the set of whole antenna modes, training modes,

transmitting modes as S , S1, S2 respectively.

1. Training phase: (a) Alice selects a certain number of

antenna modes as training modes (S1). For each training mode

u ∈ S1, several pilots are sent for each receive-transmit antenna

pair (i, j) with time-division multiplexing;

(b) Bob measures the corresponding CSI hi,j(u) and shares

it with Alice through OOB or implicit feedback;

(c) Alice estimates the corresponding AoD distribution fol-

lowing (20) and gets ai,j .

2. Secure transmission phase: (a) Alice randomly selects a

set of antenna modes from the complement of S1 as transmit-

ting modes (S2 ⊆ S\S1);



(b) For each transmitting mode v ∈ S2, Alice predicts the

corresponding channel matrix to Bob as ĤAB(v) following (4),

then the transmit filter FA is computed based on the predicted

ĤAB(v) following (9);

(c) Alice transmits the message DB and AN as in (8). For

each packet, Alice uses a different mode randomly chosen from

above, and Bob demodulates/decodes the received signal to get

the messages from the packets directly.

Note that, the training phase needs to be executed once

for every channel coherent time period (which is inversely

proportional to the maximum Doppler spread of the physical

channel). During the secure transmission phase, Alice does not

need to include any pilots/preamble in the packets due to the

transmit filter that cancels the channel effect to Bob.

VI. SECURITY ANALYSIS

In this section, we formally analyze the security properties

of ROBin. To model ROBin, we define the CSI of a wireless

channel, H(·) as a function of discrete-time t and antenna

mode u. Under this definition, the CSI in ROBin behaves as

a function H (t, u(t)), where u changes for each time step.

We further assume that a sequence of H (t, u(t))s, forms a

Markov chain [30], such that H (T, u(T )) is independent of

past CSIs, {H (t, u(t)) | t < T − 1}, given H (T−1, u(T−1)).
To quantify the security of ROBin, we derive the conditional

mutual information between Eve’s receiving signal at time

T , RE(T ), and the pre-blinding message, DB(T ), assum-

ing Eve knows all previous CSIs between Alice and Bob,

{HAB (t, u(t)) | t = 0, ..., T−1}, and all CSIs between Alice

and herself, {HAE (t, u(t)) | t = 0, ..., T} (Sec. VI-A). Finally,

we verify the correctness of the proposed metric and explain

the insights gained from the analytical results (Sec. VI-B).

A. Secrecy Leakage as Conditional Mutual Information

To quantify eavesdropper’s capacity under known-plaintext

attacks in a way congruence with cryptanalysis, we consider

the secrecy leakage as the conditional mutual information be-

tween the Eve’s receiving signal and the pre-blinding message,

given Eve has full knowledge of all previous CSIs via known

symbols. That is, we assume that, as t = T , all the previously

transmitted symbols, D(t), t = 0, ..., T−1, are known to Eve,

which allows Eve to compute HAB(t, u(t)), t = 0, ..., T−1.

Let H(T ) defines a set of previous CSIs up to time T:

H(T ) = {H (t, u(t)) | t = 0, ..., T} . (21)

Assuming HAE(T ) and HAB(T −1) are known to Eve. The

secrecy leakage is defined as a conditional mutual information:

I (DB(T );RE(T ) | HAB(T − 1),HAE(T )) (22)

For simplicity, we first consider a single antenna system, in

which H (t, u(t)) reduces to a scalar function h((t, u(t)). and

the pre-coding filter becomes the inverse of the main channel,

e.g., FA(T ) = h−1
AB((T, u(T )). Note that all derivations below

also apply to MIMO system, which we will discuss later. The

received signal at Eve’s side is:

RE(T ) = hAE (T, u(T ))h−1
AB((T, u(T ))DB(T ) +N

= h−1
AB (T, u(T ))DB(T ) +N,

after Eve equalizes hAE (T, u(T )). Omitting N, Eq. (22)

expands to

I
(

DB(T );h
−1
AB((T, u(T ))DB(T ) | HAB(T − 1),HAE(T )

)

To simplify the equation above, consider the conditional proba-

bility of hAB (T, u(T )) given HAB(T −1). Due to the Markov

property,

Pr [hAB (T, u(T )) | HAB(T − 1)] =

Pr [hAB (T, u(T )) | hAB (T − 1, u(T − 1))] .

As for the conditional probability of hAB (T, u(T )) given

HAE(T ). Although hAB (t, u(t)) and hAE (t, u(t)) are mostly

independent, they are correlated at the same time step, since the

antenna pattern is the same for hAB(u) and hAE(u), resulting

Pr [hAB (T, u(T )) | HAE(T )] =

Pr [hAB (T, u(T )) | hAE (T, u(T ))] .

Based on these conditions, we have the following Theorem:

Theorem VI.1. Assuming the wireless channel has the Markov

property, the secrecy leakage of ROBin can be simplified as1:

I (DB(T );RE(T ) | HAB(T − 1),HAE(T )) =

I (DB(T );RE(T ) | hAB (T − 1, u(T − 1)) ,

hAE (T − 1, u(T − 1)) ,

hAE (T, u(T ))) =

I (DB(T );RE(T ) | δHABE(T )) , (23)

where

δHABE(T ) = { hAB (T − 1, u(T − 1)) ,

hAE (T − 1, u(T − 1)) ,

hAE (T, u(T )) }

This simplification allows us to calculate the numerical

secrecy leakage when all the possible values of discretize CSI

are in a small range. Next we use numerical results to show the

relationship between channel correlation and privacy leakage.

B. Correctness and Insights

1) Single-Antenna Eavesdropper: Alice can apply a reduced

ROBin scheme without orthogonal blinding in a single-input

and single-output (SISO) system, with Bob and Eve hav-

ing one regular antenna and Alice having one reconfigurable

antenna. To calculate the secrecy leakage, we first generate

the CSI with the truncated Gaussian distribution in the range

of (−2, 2), then we normalize its real (imaginary) part into

four values, i.e. Re[δHABE(T )] ∈ {±1.5,±0.5}. And for

1The proof of this Theorem can be found in our technical report at
https://tinyurl.com/y2t4njcx
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Fig. 2: Secrecy leakage over the channel correlation coefficient

between HAB and HAB .

the message we consider 4QAM, namely that DB(T ) =
x ∈ {±1 + j,±1 − j}, then the entropy of the message is

H(DB(T )) = 2. and Re[RE(T )] ∈ {±1.5,±0.5}, |RE(T )| =
16, |(DB(T ),RE(T ), δHABE(T ))| = 256 × 210 correspond-

ingly. Hence we set the number of the samples to 30 million,

which is about 100 times of |(DB(T ),RE(T ), δHABE(T ))|.
The calculated Eq. 23 versus correlation coefficient between

HAB and HAB is shown in Fig. 2.

We can observe that the leakage increases with the increase

of the correlation coefficient between HAB and HAB , in other

words, the information the eavesdropper gained decreases with

the decrease of the correlation between HAB and HAB . This

result quantitatively verifies the motivation of our channel

randomization strategy: the system becomes more secure after

reducing the correlation between the two channels to the

receiver and the eavesdropper. And results in [21] shown that a

reconfigurable antenna is capable of decreasing the correlation

of two channels. Hence introducing a reconfigurable antenna to

the system brings us two benefits: actively randomizing wireless

channel and reducing correlations among channels.

2) Multi-Antenna Eavesdropper: Alice can apply the full

ROBin scheme with orthogonal blinding in a multi-input and

single-output (MISO) or multi-input and multi-output (MIMO)

system. Assume Eve has multiple antennas. For a given antenna

mode, if the number of known symbols is less than the number

of Alice’s antennas, na, Eve cannot find a unique decoding

filter. This is because that the least square problem for the LS

channel estimation is underdetermined. When the number of

known symbols is greater than na, the least square problem

becomes overdetermined and allows Eve to identify the correct

decoding filter. Note that the number of known symbols do

not accumulate when Alice reuses the same antenna model

at different channel coherent periods. Therefore, as long as

Alice switches the antenna mode faster than the duration of na

symbols, the secrecy leakage of our scheme is low regardless

of the number of antennas Eve has.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme

under the practical known-plaintext attack with both simulation

and real-world experiments. We start with the overview of

simulation setup, and investigate the effects of various pa-

rameters. With simulation, we can cover a wide parameter

range and establish the operating environment for the known-

plaintext attack with a MIMO eavesdropper. Then with an

implementation using USRP platform and a rotating RA, we

validate the simulation results via experiments.

A. Customized Reconfigurable Antenna

For the channel randomization purpose, we prefer RAs with

distinct radiation patterns across different antenna modes. There

are different types of RAs in the literature [31], however, most

of them are designed for communication purpose so that they

only steer to several directions. Hence the resulted radiation

patterns are similar for different antenna modes, which make

them unsuitable for channel randomization. To better evaluate

our ROBin scheme, we build our own RA by rotating two

log periodic antennas manufactured by Ettus Research [32].

We first measure all the design parameters for the given log

periodic antenna, including arm width, arm spacing and etc.,

then its radiation pattern is simulated using the antenna toolbox

provided by MATLAB, which is illustrated in Fig. 3i. In the

simulation, we rotate the antenna every one degree, so that

we have 360 antennas modes in total. And in practice, the

rotator is constructed with a motor and a microcontroller, in

order to rotate the antenna agilely to an arbitrary angle in the

azimuth plane. The rotator is illustrated in Fig. 3j, putting with

two antennas configured with two RF chains. Note that, we

can have various antenna configurations at Alice’s side, e.g.

Alice can enrich antenna patterns by varying the gain level

of each antenna, which can be achieved with power allocation

among RF chains. Also, Alice can have more antennas than

use and randomly selects one among them for transmission,

or randomize the power ratio among antennas to introduce

additional randomness to wireless channels as in [19].

B. Simulation Setup

As described in the system model, Alice, Bob and Eve are

multi-antenna users with OFDM transmitters. W.l.o.g, we focus

our simulation on a setup where Alice has two given log peri-

odic antennas, Bob and Eve have one and two omnidirectional

antenna(s) respectively. For data transmission, the 30MHz wide

AWGN channel is split into 48 equally spaced sub-channels,

and the OFDM frames contain 192 symbols for each sub-

channel. To evaluate the effect of Alice’s AN, we vary the

ratio of AN to the transmitted data signal, namely that Noise

to Data Ratio (NDR). With fixed transmit power, the power for

data signal is:

D =
1

NDR + 1

(

DB

NDR · AN

)

(24)

We simulation 100 different environment settings, where five

scatters are put for each of them and the data signal are

transmitted as 4-QAM symbols. The distance from Eve to Bob

is set as 150cm, which is 12 times of the signal wavelength.

Most importantly, for all the simulations, we consider the

eavesdropper in a more practical sense, instead of the attacker

as in theoretical analysis. In particular, the symbols known

by attackers are from the well-known protocols in the WiFi
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Fig. 3: From top to bottom, left to right: (a) SER of Bob and Eve over the number of training modes. SNR = 25dB; NDR = 1;

Eve’s SER is obtained after 240 iterations. (b) SER of Bob over Alice’s NDR for different SNRs. The number of training modes

is 20. (c) Eve’s SER over the number of iterations; SNR = 25dB; various NDR. (d) Eve’s SER over the number of iterations.

NDR = 1; various SNR. (f) Eve’s SER over the number of iterations; SNR = 25dB; NDR = 1; various antenna switching period.

(g) SER of Bob and Eve over the number of training mode based on the real-world channel data. (h) Platform for RA rotating.

(i) Radiation pattern of RA. (j) Real-world rotator. (k) Real-world experiment setup.

frame, though no pilots are needed in transmission phase of

ROBin, the attacker is still able to guess parts of symbols from

information like addresses. However, the attacker is not able to

obtain all the historical data signal in practice. Besides, since

AN is not intended for the receiver, it is random data in general,

which makes it hard for the attacker to get enough plaintext and

identify the correct decoding filter. Correspondingly, we define

the switching period T of RA based on an OFDM frame, and

120 frames are sent during the channel coherent time, hence

we have T ∈ [1, 120]. For each frame, the attacker is assumed

to obtain two symbols. Then if T = 10, it means that the

transmission mode changes every ten packets, hence for a given

transmit filter (computed from the given transmission mode),

the attacker has 20 known symbols for filter training.

C. Effect of the number of training modes

Since the estimation of the AoD distribution is based on

compressive sensing in ROBin, theoretically, the more training

modes we use, the more precise the estimation will be. Fig. 3a

illustrates the SER of Bob and Eve over the number of training

modes, obtained under ROBin and orthogonal blinding. Here to

better show the impact of channel prediction to Bob’s SER, we

do not change the antenna mode during transmission which is

to set T = 120, then the only difference of these two schemes is



that ROBin computes the transmit filter based on the predicted

channel, while orthogonal blinding uses the measured channel

matrix obtained from channel sounding. From Fig. 3a we can

see that there is a gap between Bob’s SER obtained from two

schemes, which is caused by the imperfect channel prediction

and the missing channel sounding. However, it decreases with

the number of training modes as expected, and when 20 training

modes are used, Bob’s SER is small enough for communication.

On the other hand, Eve’s SER obtained after 240 iterations is

quite stable under the different number of training modes, this

is because the effect of the transmit filter and artificial noise

are both filtered out by Eve’s receive filter.

D. Effect of artificial noise and channel noise to Bob

Fig. 3b shows Bob’s SER with orthogonal blinding and

ROBin, at this time the antenna switching period is set as

T = 6, hence 20 transmission modes are used under a given

environmental setting. From Fig. 3b, we can see that Bob’s SER

decreases as SNR increases under both schemes. Especially,

both SNR and NDR have significant impacts on Bob’s SER

for orthogonal blinding. In contrast, the increase of SNR does

not bring much benefit to Bob’s SER for ROBin, since Bob’s

SER is dominated by the precise of channel prediction. Due

to the imperfect channel prediction, part of the artificial noise

is leaked to Bob’s channel, which increases Bob’s SER. Fortu-

nately, as long as the NDR is not too large, the communication

quality is still guaranteed. For instance, when SNR = 25dB and

NDR = 2, Bob can still achieve an average SER of 1.1×10−3.

E. Effect of artificial noise and channel noise to Eve

Theoretically, the higher the NDR is, the higher is the SER

on Eve’s side. Here we set the antenna switching period as

T = 60 to provide Eve some advantages. In Fig. 3c, we

illustrate how Alice’s NDR affects Eve’s performance. As we

expected, Eve’s SER decreases with the increase of NDR.

It is worth noticing that, when the power of artificial noise

is not too strong, NDR ≤ 4 for instance, we can see that

Eve’s SER has an obvious reduction with the iterative process;

whereas, as the artificial noise becomes stronger, even if the

number of iterations increases, the decrease of Eve’s SER is

not significant. Besides, in Fig. 3d we illustrate how SNR

affects Eve’s SER. The effect of channel noise to Eve’s SER is

much weaker than that to Bob’s SER, no significant variation

for Eve’s SER with the increase of SNR. Hence we can

conclude that Eve’s attack performance is mainly constrained

by the power of artificial noise that Alice sent. And there is

a tradeoff between the system secrecy (Eve’s SER) and the

communication quality (Bob’s SER) when injecting artificial

noise to the channel.

F. Effect of switching period to Eve

Intuitively, the faster the antenna switches, the higher is Eve’s

SER. In Fig. 3e, we show Eve’s SER over the antenna switching

period. As we expect, Eve’s SER decreases as T increases.

When T = 60, it is the best case for Eve under ROBin scheme

in Fig. 3e, we can see that Eve’s SER is still fairly high,

which is 0.4047. To quantify ROBin’s security improvement,

we compute the difference between Eve’s SER in ROBin and

in orthogonal blinding and normalize it with Eve’s SER in the

worst case, e.g., the SER of random guessing. For instance,

when Alice transmits QPSK (4QAM) symbols, we compute:

(SEROB+ESEROBE)/0.75. The result shows we can elevate

the eavesdropper’s SER by 46% under 4-QAM modulation.

When the antenna mode changes rapidly, especially for T = 1,

we suppress Eve’s attack success rate to the level of random

guessing. Finally, we vary the number of known symbols in

each frame from 2 to 20. And the result shows that Eve’s

SER does not fluctuate much due to the convergence of the

algorithm.

G. Effect of real-world channels

We rotate the RA with the platform in Fig. 3g for the real-

world CSI collection. In the experiment, each of our OFDM

frames contains 320 symbols and lasts for 0.08s. We collect

the CSI data for about 17 seconds and rotate 1 antenna degree

every 1/30 seconds, which means the antenna switching period

is less than the duration of a frame. To facilitate our simulation

process, we set the antenna switching period to T = 1 while

simulating. Based on the data collected, we studied the effects

of all the parameters as the previous simulation results present.

However, due to the page limitation, we only show the SER of

Bob and Eve over the number of training modes. This result is

more important than others because it shows the effectiveness

of our channel prediction algorithm. From Fig. 3f we can see

that it has a similar trend as in Fig. 3a, which validates the

consistency of our simulation and implementation.

VIII. CONCLUSIONS

In this paper, we propose an orthogonal-blinding based secret

transmission scheme, which is resistant to known-plaintext

attack by leveraging reconfigurable antennas to rapidly ran-

domize the channel state during transmission. To enable reliable

decoding at the receiver end, we propose a compressive sensing

based AoD estimation algorithm to predict Alice-Bob channel

and cancel out channel effects at Bob by pre-coding, while still

blinding Eve. We formally analyze the security of the scheme

using conditional mutual information, which is applicable to

both single and multi-antenna eavesdroppers. We show that the

secrecy leakage decreases with less channel correlation created

by artificial channel randomization, and the leakage is indepen-

dent of Eve’s number of antennas if channel state is switched

fast enough. We conduct extensive simulations and real-world

experiments to evaluate its performance. Results show that,

the communication quality between Alice and Bob remains

acceptable, whereas the randomized channel can successfully

prevent Eve from launching the known-plaintext attack even

if all the historical symbols are known. In the future, we will

study other better practical alternatives to OB and analyze the

security from the secure degree-of-freedom perspective.
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PROOF OF THEOREM VI.1.

Proof. To prove Theorem VI.1., which states

I (DB(T );RE(T ) | HAB(T − 1),HAE(T )) =

I (DB(T );RE(T ) | HABE (T − 2) , δHABE(T )) =

I (DB(T );RE(T ) | δHABE(T )) ,

where

HABE(T − 2) = { HAB (T − 2) , HAE (T − 2)}

δHABE(T ) = { hAB (T − 1, u(T − 1)) ,

hAE (T − 1, u(T − 1)) ,

hAE (T, u(T )) }

itis equivalent to prove that given δHABE(T ), HABE(T − 2)
and (DB(T ),RE(T )) are conditionally independent. Since the

messages DB are independent from all the CSI information,

and RE(T ) is a function of DB(T ) and h−1
AB (T, u(T )) plus

some independent additive white Gaussian noise (AWGN),

it is similar to prove that given δHABE(T ), HABE(T − 2)
and h−1

AB(T, u(T )) are conditionally independent, based on the

Markov property.

Recall the Markov property of the channels:

Pr [hAB (T, u(T )) | HAB(T − 1)] =

Pr [hAB (T, u(T )) | hAB (T − 1, u(T − 1))] .

and

Pr [hAB (T, u(T )) | HAE(T )] =

Pr [hAB (T, u(T )) | hAE (T, u(T ))]

To simplify, we denote X1 = HAB(T − 2), X2 = hAB(T −
1, u(T − 1)), X3 = hAB(T, u(T )), and similarly define Y for

channel A-E. Then the Markov property can be rewritten as:

Pr(X3|X1, X2) = Pr(X3|X2)

Pr(X3|Y1, Y2, Y3) = Pr(X3|Y3)

which is illustrated below:

X1 −→ X2 −→ X3

l l l
Y1 −→ Y2 −→ Y3

And the CSI can be represented with X and Y in a simpler

way as:

HABE(T − 2) = { X1, Y1 }

δHABE(T ) = { X2, Y2, Y3 }

h−1
AB (T, u(T )) = X−1

3

Hence our problem is equivalent to prove that given

(X2, Y2, Y3), (X1, Y1) and X3 (which is equivalent to X−1
3 )

are conditionally independent. Then we begin with

Pr(X1, Y1, X3|X2, Y2, Y3)

=Pr(X3|X2, Y2, Y3) Pr(X1, Y1|X2, Y2, X3, Y3) (25a)

(25a) is obtained by expressing the joint probability with the

conditional probability, then we focus on simplifying its last

term, for which we look at:

Pr(X3, Y3|X1, X2, Y1, Y2)

=Pr(X3|X1, X2, Y1, Y2) Pr(Y3|X1, X2, Y1, Y2, X3) (26a)

=Pr(X3|X2) Pr(Y3|Y2, X3) (26b)

=Pr(X3|X2, Y2) Pr(Y3|X2, Y2, X3) (26c)

=Pr(X3, Y3|X2, Y2) (26d)

Similarly, (26a) is obtained by expressing the joint probability

with the conditional probability. With Markov property of the

channels, it is further simplified to (26b). Then we can add more

conditional independent variables to it and get (26c), which

equals to (26d). (26d) implies that given (X2, Y2), (X1, Y1) and

(X3, Y3) are conditionally independent. Then back to (25a), we

have

Pr(X1, Y1, X3|X2, Y2, Y3)

=Pr(X3|X2, Y2, Y3) Pr(X1, Y1|X2, Y2, X3, Y3) (27a)

=Pr(X3|X2, Y2, Y3) Pr(X1, Y1|X2, Y2) (27b)

=Pr(X3|X2, Y2, Y3) Pr(X1, Y1|X2, Y2, Y3) (27c)

which means given (X2, Y2, Y3), X3 and (X1, Y1) are condi-

tionally independent. Since X−1
3 is a function of X3, then this

conditional independence still holds when we replace X3 with

X−1
3 , which implies:

Pr(X−1
3 |X1, Y1, X2, Y2, Y3) = Pr(X−1

3 |X2, Y2, Y3) (28)

Then we reverse X , Y in (28) back to the CSI, which gives

us:

Pr
[

h−1
AB (T, u(T )) |HABE(T − 2), δHABE(T )

]

=

Pr
[

h−1
AB (T, u(T )) |HAB(T − 1),HAE(T )

]

=

Pr
[

h−1
AB (T, u(T )) |δHABE(T )

]

(29)

To compute I (DB(T );RE(T ) | HAB(T − 1),HAE(T )),
we ignore the AWGN and consider

Pr
(

DB(T ); R̂E(T ) | HAB(T − 1),HAE(T )
)

first, where

R̂E(T ) = h−1
AB((T, u(T ))DB(T ).



Pr
(

DB(T ), R̂E(T ) | HAB(T − 1),HAE(T )
)

=Pr

(

DB(T ), h
−1
AB (T, u(T )) =

R̂E(T )

DB(T )
| HAB(T − 1),HAE(T )

)

(30a)

=Pr (DB(T ) | HAB(T − 1),HAE(T ))

× Pr

(

h−1
AB (T, u(T )) =

R̂E(T )

DB(T )
| HAB(T − 1),HAE(T )

)

(30b)

=Pr (DB(T ) | HABE(T ))

× Pr

(

h−1
AB (T, u(T )) =

R̂E(T )

DB(T )
| δHABE(T )

)

(30c)

=Pr
(

DB(T ), R̂E(T ) | δHABE(T )
)

(30d)

With the fact that messages are independent from all the

CSI information, we can get (30b), and meanwhile get rid of

HABE(T − 2) from DB’s condition, which gives us the first

term of (30c), and with (29) we get the second term of (30c).

Then by converting conditional probability to joint probability,

we get (30d). Since the AWGN is independent from every term

of above equations, we can add it into R̂E and get RE while

above results still holds.

So far, we have proved that

I (DB(T );RE(T ) | HAB(T − 1),HAE(T )) =

I (DB(T );RE(T ) | δHABE(T ))

for single antenna system. Next, we present the approach to

extend it to MIMO. Note that, for the MIMO system, each

element in the Markov chain becomes the channel matrix.

Similarly,

Pr
(

DB(T ), R̂E(T ) | HAB(T − 1),HAE(T )
)

=Pr
(

DB(T ),H
−1
AB (T, u(T )) ∈ Γ | HAB(T − 1),HAE(T )

)

(31a)

where

Γ = {H−1
AB (T, u(T )) ∈ Γ, s.t. R̂E(T ) = H−1

AB(T, u(T ))DB(T )}

and represents a set of matrices where its element is a possible

solution for H−1
AB (T, u(T )). Then we can eliminate HABE(T−

2) with similar procedures from Eq. (30b) to Eq. (30d).


