ROBin: Known-Plaintext Attack Resistant
Orthogonal Blinding via Channel Randomization

Abstract—Orthogonal blinding based schemes for wireless phys-
ical layer security aim to achieve secure communication by
injecting noise into channels orthogonal to the main channel and
corrupting the eavesdropper’s signal reception. These methods,
albeit practical, have been proven vulnerable against multi-
antenna eavesdroppers who can filter the message from the noise.
The venerability is rooted in the fact that the main channel state
remains stasis in spite of the noise injection, which allows an
eavesdropper to estimate it promptly via known symbols and filter
out the noise. Our proposed scheme leverages a reconfigurable
antenna for Alice to rapidly change the channel state during
transmission and a compressive sensing based algorithm for her
to predict and cancel the changing effects for Bob. As a result,
the communication between Alice and Bob remains clear, whereas
randomized channel state prevents Eve from launching the known-
plaintext attack. We formally analyze the security of the scheme
against both single and multi-antenna eavesdroppers and identify
its unique anti-eavesdropping properties due to the artificially
created fast changing channel. We conduct extensive simulations
and real-world experiments to evaluate its performance. Empirical
results show that our scheme can suppress Eve’s attack success
rate to the level of random guessing, even if she knows all the
symbols transmitted through other antenna modes.

I. INTRODUCTION

The ever-expanding wireless technology is pushing the limit
of the network security infrastructure. Many wireless devices
need to secure the communication channels between each other
without pre-shared security context. Orthogonal blinding based
physical-layer security [1]-[3] has been widely considered
as a promising candidate to provide confidentiality during
wireless transmission without a priori key exchange. Instead
of relying on pre-shared secrets, orthogonal blinding achieves
secure communications by transmitting synthetic noise into the
null-space of the receiver’s channel and corrupting the eaves-
dropper’s reception. Its practicality supersedes other theoretical
physical-layer methods, such as zero-forcing beamforming,
which relies on knowledge about the eavesdropper’s channel.
Security analysis proves that it can asymptotically approach
the secrecy capacity of zero-force beamforming against single-
antenna eavesdroppers. However, further studies show that
orthogonal blinding is not effective against a multi-antenna
eavesdropper, who has sufficient spatial dimensions to separate
the message from the artificial noise. Schulz and Zheng et
al. [4]-[6] demonstrated that an eavesdropper may leverage
the known or low entropy symbols in the transmission to
quickly train a decoding filter and recovers the rest of the
transmission, an attack equivalent to the known-plaintext attack
in cryptanalysis.

The root of this vulnerability is due to the fact that the
synthetic noise only changes the quality of the receiving signal
but not the state of the channel. Specifically, the noise injected
by the transmitter (Alice) can lower the signal-to-noise ratio
(SNR) of the eavesdropper’s (Eve’s) channel. But it cannot
change the channel states between she and Eve or she and the
legitimate receiver (Bob). This limitation opens up a window
for the known-plaintext attack. Assuming the channel state
remains ergodic with its coherent time. Due to the increasingly
sophisticated digital modulation methods, Alice can transmit
a sequence of tens or hundreds of symbols within such a
short period. Although these symbols are buried deep under
the synthetic noise, a fraction of known symbols among them
would allow Eve with multiple antenna to compute the channel
state information (CSI), using a common MIMO technique
known as least square (LS) channel estimation, which is robust
against channel noise. Once Eve estimated the CSI, she may
use it to equalize the channel and remove the synthetic noise
during the rest of the coherent period.

Follow this line of reasoning, there are two ways to defend
against the known-plaintext attack, assuming Alice cannot
avoid transmitting known symbols. She can limit the number of
symbols to transmit within each coherent time period, which
limits the communication throughput. Or she can reduce the
coherent time to thwart the known-plaintext attack. However,
the coherent time is an intrinsic condition that depends on the
signal multipath and Doppler spread, both of which are not
subject to the manipulation of transmitting content. Therefore,
it would appear there are no cogent methods to defend against
the known-plaintext attack.

However, in this paper, we challenge this no-win scenario
and propose an orthogonal blinding based physical-layer se-
curity method immune to the known-plaintext attack: Channel-
Randomized Orthogonal Blinding (ROBin). ROBin leverages a
pattern reconfigurable antenna to vary the channel state at a per
symbol or per frame rate, resulting in an artificially created fast-
changing wireless channel unsuitable for the known-plaintext
attack. To prevent the antenna reconfiguration from affecting
Bob, we design a compressive sensing based algorithm for
Alice to estimate the angle-of-departure (AoD) distribution of
the multipath environment and predict the CSI for a given re-
configurable antenna pattern. Based on the predicted CSI, Alice
can equalize the channel for Bob via digital pre-coding before
transmitting. As a result, the main channel state appears stable
in Bob’s eye but randomly changing from Eve’s perspective.

We formally analyze the security of ROBin, by comparing



the mutual information between Alice’s transmission and Eve’s
reception, assuming the channel state has the Markov property
and Eve knows the symbols transmitted via historical antenna
modes but not the current one. The analysis shows that Eve
gains little advantage from knowing previous symbols (as
channel randomization reduces the channel correlation and
makes the current channel state more unpredictable), regardless
of the number of antennas she has. We implement the key
components of ROBin; validate our theoretical analysis with
extensive simulation and real-world experiments. Empirical
results show that our scheme can suppress Eve’s attack success
rate to the level of random guessing, even if she knows all the
symbols transmitted through other modes.

II. RELATED WORK

Physical-layer security was pioneered by Wyner’s work on
the wiretap channel [7], which leverages the channel advantage
for legitimate receivers over eavesdroppers (e.g. less noisy) to
guarantee secure transmission over wireless channels. The rate
of secret communications is characterized by secrecy capacity,
which is shown to be the difference in the capacity of the
receiver and the eavesdropper. Following Wyner’s work, numer-
ous studies based on various channel models ranging from basic
Gaussian channels to complex MIMO wiretap channels have
been proposed later [8]-[14]. In particular, Khisti et al. [12],
[14] showed the secrecy capacity bounds in the large antenna
limit with full channel state information (CSI) assumption.
Their works reveal an important result that the achievable
secrecy capacity can be significantly affected by the number
of antennas of the eavesdropper. For instance, to block secret
communication, Eve only needs three times as many antennas
as transceivers have. However, since those theoretical works
often make unrealistic assumptions such as channel advantage,
full channel knowledge, or independent and identically channel
distribution, they are rarely adopted to evaluate the secrecy of
real-world schemes.

On the other hand, various practical physical-layer secret
communication schemes have been proposed. One example
is the friendly jamming approach. Gollakota et al. prevented
unauthorized commands from being transmitted to implantable
medical devices (IMDs) with a friendly jamming scheme in [1].
The security of their scheme relies on the assumption that the
attacker equipped with MIMO is unable to separate the legiti-
mate and jamming signal, due to the close proximity between
the jammer and the data source. Similarly, Shen et al. [15]
designed another jamming technique where jamming signals
are controlled with secret keys, so that they are recoverable to
authorized devices but unpredictably interfering to unauthorized
ones. The jammer and the authorized device are very close
to each other in both schemes, and this design is found as
vulnerable by Tippenhauer et al. in [16]. When an attacker tact-
fully places her antenna array, the transmitted data signal can
be recovered by exploiting the phase offsets between received
signal components. Orthogonal blinding [3] proposed by Anand
et al. is another example of physical-layer security schemes. To
defend against a single-antenna eavesdropper, the transmitter

injects artificial noise into channels orthogonal to the legitimate
receiver’s channel so that the original signal intended for the
receiver cannot be recovered from the signal and noise mixture.
However, when the eavesdropper has multiple antennas, by
exploiting the known parts of the transmitted signal such as
frame preambles, Schulz et al. [17] successfully implemented
a known-plaintext attack against orthogonal blinding. With
normalized least mean square algorithms, an adaptive filter was
trained to separate transmitted messages from artificial noise.

The root cause of the vulnerability in orthogonal blinding
is that the channel is assumed to be stable during the whole
transmission period, so that the attacker is able to gather enough
plaintexts for filter training, and this flaw can be amended
with channel randomization approach. In the literature, the
channel randomization approach has been used for key gen-
eration, message confidentiality, and integrity protection. Aono
et al. [18] proposed a key generation and agreement scheme
that blocks the eavesdropper from generating the same key
as transceivers by increasing the fluctuation of the wireless
channel with a smart antenna. Hassanieh et al. [19] presented
a secret transmission scheme for RFIDs randomizing both
modulation and channel by rotating several directional antennas
at the transmitter. Different from this work, their scheme is
only applicable to single-antenna transmitters and does not
use pre-coding. To defend against active man-in-the-middle
attacks, Hou el al. [20] and Pan et al. [21] randomized the
wireless channel with a fan and a reconfigurable antenna
respectively to prevent online signal cancellation. All these
works show that channel randomization approach can be a
powerful tool to enhance physical-layer security. However, the
studies are still preliminary and a comprehensive scheme that is
MIMO-compatible and secure against multi-antenna attackers
is lacking.

III. SYSTEM AND THREAT MODELS

Consider a MIMO-OFDM system shown in Fig. 1, where the
transmitter Alice aims at confidentially communicating with
the receiver Bob through a wireless channel H 45, with the
existence of a passive eavesdropper Eve. Denote the number of
antennas for Alice, Bob and Eve as n,, n;, and n. respectively.
The legitimate receiver Bob is equipped with regular omnidirec-
tional antenna(s) (OAs) while the eavesdropper Eve can possess
any types of antennas, including OAs, reconfigurable antenna(s)
(RAs) and etc.. In particular, the transmitter Alice is equipped
with RAs for channel randomization purpose, where an RA is
an antenna capable of dynamically reconfiguring its antenna
currents or radiating edges in a controlled and reversible
manner [22]. Typically, an RA can swiftly reconfigurable its
antenna profile including radiation pattern, polarization, fre-
quency, and combinations of them. For example, Rodrigo et
al. [23] presented an RA that has thousand of antenna modes
and can be electronically switched within microseconds. From
the receiver’s perspective, the effect of the antenna profile is
part of the CSI. Hence we can incorporate the impact of RA
on the wireless into the channel model.
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Fig. 1: Our system model illustrating the transmitter Alice, the legitimate receiver Bob and the passive eavesdropper Eve, where

Alice is equipped with RA(s).

The wireless channel from Alice’s j-th antenna to a receiver’s
i-th antenna ((4, j)-th receive-transmit pair) can be captured by
a single complex number in the frequency domain, i.e. h; j,
and the full CSI of transceivers can be represented by an array
H with dimension ny X n,. Then the received signal R with
dimension n; X * can be expressed as:

R=H-D+N (D

where D and N represents the transmitted data and the additive
white Gaussian noise (AWGN), with dimension n, X * and ny X
* respectively. For the channel model, we consider a multipath
channel. Recall that the effect of the antenna profile is also
part of the CSI, to distinguish, we separate the CSI into the
channel coefficient decided by the physical channel itself and
the antenna part. Assuming that the channel is composed with
P multipaths, denote the physical channel coefficient part of
h; j as hZ(-ijhy), then

(ph v)

ZLl(xle i )

where L; is the path loss of the [-th path, and a;e™ % is
its fading parameter, here «; and ¢; are the amplitude and
phase of the fading respectively. Similar to exmtln% works
[3], [6], [17], the physical channel coefficient h(p Y in our
model is fixed during the channel coherent tlme Then the
multipath channel can be expressed with the distribution of
angle-of-departure (AoD). According to the multipath model, a
single transmission from the antenna propagates along multiple
paths before reaching the receiver. Each signal that travels
at a particular AoD along with different paths experiences
a different amount of attenuation and phase shifts. Then the
physical channel coefficient part expressed as (2) can be further
extended as the summation of the CSI over all the departure
directions, and only the CSI that in the direction of multipaths
is non-trivial. The distribution of CSI over all possible AoDs
is defined as the AoD distribution. Then,
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where the angular space is discretized into D unique, equally
spaced angles {61,02,...,0p}, and a; ; is the AoD distribution
of (i, 7)-th receive-transmit channel.

With RA, various antenna modes are associated with differ-
ent radiation patterns. When the antenna gain under antenna
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mode u and angle-of-departure 6; is denoted as G(u, 6,), then
the CSI h; ; under antenna mode u can written as:

D
hij(u) = Z G(u,0q)a; ;(64) 4)

d=1

Similarly, the channel from Alice to Bob (H 4p) is measured
at Bob’s side and can be sent back to Alice through an out-
of-band (OOB) channel or rely on implicit feedback, but H4p
is unknown to Eve. And Eve’s can measure the channel from
Alice to her (Hsg), and it is unknown to neither Alice nor
Bob [3], [6], [17].

IV. REVIEW OF ORTHOGONAL BLINDING

Orthogonal blinding is designed to achieve secure commu-
nication by injecting noise into channels orthogonal to the
main channel and corrupt the eavesdropper’s signal reception.
However, it has been proven vulnerable against multi-antenna
eavesdropper capable of discerning the message from the noise.
In this section, we provide a brief review of orthogonal blinding
scheme and cause of its vulnerabilities.

A. Transmitter-Side Precoding

The core technique behind orthogonal blinding is known
as transmitter-side precoding. To achieve secure transmission,
Alice stirs both message and artificial noise (AN) via precoding.
So Bob receives the pure message, and Eve receives the
mixture of the noise and message. Zero-forcing and orthogonal
blinding are two physical layer security schemes to achieved
by transmitter-side precoding.

In zero-forcing, Alice aims to transmit within the null-
space of Eve’s channel, which requires the full knowledge of
Eve’s channel. Such condition is not practical for a passive
eavesdropper. In orthogonal blinding, Alice needs only to know
Bob’s channel and transmits the AN in the null-space of Bob’s
channel to prevent eavesdroppers from extracting the data. Due
to the orthogonality, Bob is not affected by the AN. But any
receiver, whose channel is different from Bob’s, receives a
mixture of the message and AN. If the AN is strong enough in
the mixture, the receiver cannot recover the message.

The channels orthogonal to Bob’s can be computed with the
Gram-Schmidt algorithm as mentioned in [3], [6], [17]. First,
Alice computes the projection matrix:

H, = Hip(H pHYp) 'Hap )



and randomly generates a complex uniform matrix H', ,, with
dimension (n, — np) X n,. Alice then computes the difference
between H', 5, and the projection of H', 5

Hyy= H/AN - H/AN -H, (©6)
by normalizing this difference, we can obtain H 4 :
H//
Hyy = —2& (7
Hoanll

where each row in H 45 is orthogonal to any other row in itself
and to every row in Hyp.

Next, Alice precodes the message (D p) and artificial noise
(AN) with the pseudo-inverse of the matrix composed by H4p
and H 4, and obtain the transmitted signal D as:

D-F, (fﬁ) ®)

where F 4 is the transmit filter represented as:

—1
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Correspondingly, the received signal for Bob and Eve is:
Rp Hagp
= D+ N
(k7) - (32)

D
Rp=Hap Fa- (A§)+N

(10)

where

(1)

B. Known-Plaintext Attack

Anand et al. [3] showed that single antenna eavesdroppers
cannot recover the message with her reception, however, Schulz
et al. [17] and Zheng et al. [6] showed that by exploiting the
known parts or low entropy parts of the transmitted signal, the
known-plaintext or ciphertext-only attack is possible in prac-
tice. Specifically, Schulz et al. introduced a practical known-
plaintext attack for the orthogonal blinding scheme in [17].
Unlike the typical assumption in the literature which assumes
that the transmitted signal is fully unknown to the eavesdropper,
Schulz argued that Eve can utilize the well-known protocols or
addresses fields to guess part of the transmitted signal, so that
some plaintext-ciphertext pairs are known to the eavesdropper,
which is similar to the known-plaintext attack in cryptography.
Then the eavesdropper can use the known plaintexts to train
an adaptive filter for AN suppression. Ideally, the receive filter
Fpg is:

Fp=F,' ‘H,} (12)

In practice, Eve estimates Fp as F g Wwith some known
plaintexts D p through iterative process. More specifically, Eve
minimizes the mean square error between the estimated data
and the known plaintexts:

min EIDB - ﬁ‘E RE|2
Fg

13)

There are several iterative training algorithms for this problem
[17], but in general, for a fixed transmit filter F 4, multiple

symbols are required to obtain a good adaptive filter at Eve’s
side due to the iterative training procedure. In [17], even with
good training technique and parameter setting, 20 — 30 training
symbols are required when the ratio of transmitted AN to data
is fairly low.

V. ROBIN: CHANNEL-RANDOMIZED ORTHOGONAL
BLINDING

The vulnerability of preliminary orthogonal blinding results
from the unchanged main channel, which allows the eaves-
dropper to estimate it via known symbols and filter the AN
out. Actually, this flaw can be amended with the channel
randomization approach, which is to actively randomize the
wireless channel by introducing special antennas [18], [21],
antenna motions [19] or artificial disturbance [20] to the
wireless channel. Intuitively, as long as the wireless channel
is randomized fast enough, we can block Eve from gathering
enough symbols for filter training, so that the message cannot
be extracted from Eve’s received signal. Besides, except for
filter training, Eve may also explore the correlation between
her channels and the main channel to estimate Bob’s channel
directly for message recovering. Results in [21], [24] showed
that there is a strong correlation between two channels when
the attacker is delicately positioned, and this correlation can
be reduced with channel randomization [21]. We show the
benefits of reducing channel correlation to system security with
the proposed metric in Sec. VI, which further supports our
channel randomization approach. In this section, we present
the challenges in our scheme design and the corresponding
solutions.

A. Channel Prediction

When the physical wireless channel remains unchanged, we
randomize the wireless channel through rapid antenna mode
switching, however, when the main channel changes, a new
transmit filter is needed by Alice to guarantee the orthogonality
between the message and noise subspaces. Traditionally, the
main channel information H 4 5 is measured at Bob’s side and
sent back to Alice through an OOB channel or relying on
implicit feedback. However, when the channel is randomized
frequently, it is to costly for the transceivers to measure
channels and get feedback every time, which makes the channel
measurement a major challenge for orthogonal blinding based
schemes. To solve this problem, we introduce a compressive
sensing based channel prediction algorithm for Alice to cancel
the channel changing effect to Bob.

1) AoD Estimation: As the physical channel coefficient part
is assumed as unchanged within the channel coherent time, it
implies a stable AoD distribution correspondingly. To predict
the CSI under different antenna modes, the distribution of AoD
is estimated first to capture the physical wireless channel, and
the effect of the antenna is added as in (4) for CSI prediction.

2) Conventional AoD Estimation: Traditionally, the distri-
bution of AoD is estimated via MUSIC algorithm [25]. To
simplify, we describe it with a uniform linear array (ULA),
where identical antenna elements are arranged along a line with



uniform spacing. Assume that there are M antenna elements
on the ULA, and there are L multipath signals Si, So,...,SL
arriving. The matrix representation of the received signal at the
array can be represented as:

J=AS+N (14)

where J is the M x 1 received signal, S is the L x 1 signal
source and A is the M x L steering vector matrix.

The basic idea of MUSIC algorithm is to implement eigen-
value decomposition of the received signal covariance matrix:

®; = E[JI1] (15)
= AP AT + By (16)
=Qs Y Qs"+Qn ) Qn” (17)

where ®g and ®, are the correlation matrix for the signal
and noise respectively. Decomposing (16) results in M eigen
values out of which the larger L eigenvalues correspond to
the multipath signals, where Qg and Qp are the basis of
signal and noise subspaces respectively. Then by exploiting
the orthogonality between the signal and noise subspaces, the
direction of the arrived angles can be represented as:

Orvusic = argmin B (0)Qn QN B(6)
which is equivalent to obtain peaks in the spectral estimation:

1
BT (0)QnQN"B(0)
We need to point out that as the MUSIC algorithm was mainly
proposed for radio direction finding, the distribution obtained
from it is only about the magnitude of CSI, which is not
the AoD distribution we need. Hence the traditional MUSIC
algorithm is not applicable to our problem.

3) Compressive AoD Estimation with RA: Intuitively, the
easiest way to estimate the AoD distribution for a given channel
is to transmit with D different antenna modes, so that we
can solve (4) directly. However, it is not practical to estimate
through this linear algebra approach due to large D (e.g. in our
case D = 360). Fortunately, by exploiting the sparsity of AoD
distribution, the problem is solvable even with a small number
of training modes.

Previous works [26], [27] have shown that for a typical
multipath environment, there are only 3-5 distinct directions
are dominant components. In other words, when we look into
the AoD distribution, only a small number of them contribute
significantly to the CSI. With this sparsity property, we can
recover the AoD distribution from only a small number of mea-
surements. Specifically, we use compressive sensing technique
[28] to estimate AoD distribution.

Compressive sensing is a sampling algorithm that capable
of recovering sparse signals with much fewer samples than
traditional sampling approaches. One of the basic problems is
to recover a signal x from a M x 1 observation y, with a given
M x N sensing basis ®, where M < N and the signal x has
a sparse representation with a N x N representation basis ¥
and N x 1 weighting coefficients s: x = Ws. Mathematically

(18)

Pyusic = (19)

speaking, the problem is to get x/s from y = &x = ®Ws.
The problem is solvable when the largest correlation between
any two elements of ® and W is small, which is refereed as
incoherence [28].

For our problem, since the AoD distribution a(-) is sparse
itself, our presentation basis degrades to an identity matrix, but
we can still use the compressive sensing formulation to solve
our problem. When training modes are randomly selected, the
incoherence condition is roughly satisfied and the AoD distri-
bution of (i, 7)-th receive-transmit channel can be recovered
from the following compressive sensing formulation:

a; ; = argmin |[a; ;(6)|x

. (20)
S.t. hi,j(u) = ZG(Uaed)ai,j(9d>7 1<u<U
d=1
where || - ||; represents the L1 norm and U < D are the

total number of antenna modes needed for AoD distribution
recovery. Note that, Xie et al. presented an estimation algorithm
of AoA distribution based on compressive sensing in [29].
However, since they use antenna array, the CSI they use for
estimation is the composite CSI instead of the one between
each receive-transmit antenna pair. Besides, similar to MUSIC,
their AoA distribution only computes the magnitude of the CSI.

4) Channel Prediction: Once the AoD distribution of A{"/"*)
is estimated with the above compressive sensing formulation,
the CSI h; ; under any given antenna mode can be predicted
with (4). When the AoD distribution of every CSI element
in the main channel is estimated, the whole matrix H4p can
be predicted correspondingly. Note that, the physical wireless
channel is stable only within the channel coherent time, once
the physical channel changes, a new round of AoD distribution
estimation is required. In practice, since carrier frequency offset
or accurate external clocks such as GPS clocks can eliminate
the impact of frequency and phase offset, the channel coherent
time can be long. Then the channel prediction is applicable,
and it reduces the overhead for channel sounding comparing
with the orthogonal blinding scheme.

B. Secure Transmission Scheme

In short, our RA based secure transmission scheme comprises
two phases that we summarize hereunder, and for clarification,
we denote the set of whole antenna modes, training modes,
transmitting modes as S, S1, S respectively.

1. Training phase: (a) Alice selects a certain number of
antenna modes as training modes (S7). For each training mode
u € 81, several pilots are sent for each receive-transmit antenna
pair (4, j) with time-division multiplexing;

(b) Bob measures the corresponding CSI h; ;(u) and shares
it with Alice through OOB or implicit feedback;

(c) Alice estimates the corresponding AoD distribution fol-
lowing (20) and gets a; ;.

2. Secure transmission phase: (a) Alice randomly selects a
set of antenna modes from the complement of S; as transmit-
ting modes (Sy C S\S1);



(b) For each transmitting mode v € Sy, Alice predicts the
corresponding channel matrix to Bob as H 45 (v) following (4),
then the transmit filter F 4 is computed based on the predicted
H 4 5(v) following (9);

(c) Alice transmits the message Dp and AN as in (8). For
each packet, Alice uses a different mode randomly chosen from
above, and Bob demodulates/decodes the received signal to get
the messages from the packets directly.

Note that, the training phase needs to be executed once
for every channel coherent time period (which is inversely
proportional to the maximum Doppler spread of the physical
channel). During the secure transmission phase, Alice does not
need to include any pilots/preamble in the packets due to the
transmit filter that cancels the channel effect to Bob.

VI. SECURITY ANALYSIS

In this section, we formally analyze the security properties
of ROBin. To model ROBin, we define the CSI of a wireless
channel, H(-) as a function of discrete-time ¢ and antenna
mode w. Under this definition, the CSI in ROBin behaves as
a function H (¢,u(t)), where u changes for each time step.
We further assume that a sequence of H (¢, u(t))s, forms a
Markov chain [30], such that H (7, «(T)) is independent of
past CSIs, {H (¢, u(t)) | t < T — 1}, given H (T'—1, u(T-1)).
To quantify the security of ROBin, we derive the conditional
mutual information between Eve’s receiving signal at time
T, Rg(T), and the pre-blinding message, Dp(T), assum-
ing Eve knows all previous CSIs between Alice and Bob,
{Hap (t,u(t)) |t =0,...,7—1}, and all CSIs between Alice
and herself, {H g (t,u(t)) | t = 0,...,T} (Sec. VI-A). Finally,
we verify the correctness of the proposed metric and explain
the insights gained from the analytical results (Sec. VI-B).

A. Secrecy Leakage as Conditional Mutual Information

To quantify eavesdropper’s capacity under known-plaintext
attacks in a way congruence with cryptanalysis, we consider
the secrecy leakage as the conditional mutual information be-
tween the Eve’s receiving signal and the pre-blinding message,
given Eve has full knowledge of all previous CSIs via known
symbols. That is, we assume that, as ¢ = T, all the previously
transmitted symbols, D(t), ¢t =0, ...,7—1, are known to Eve,
which allows Eve to compute Hp (¢, u(t)), t =0,...,T—1.

Let H(T') defines a set of previous CSIs up to time T:

H(T) ={H (t,u(t)) | t=0,..,T}. (21)

Assuming H g (T) and H ap(T —1) are known to Eve. The

secrecy leakage is defined as a conditional mutual information:

I(Dp(T);Re(T) | Hap(T —1),Hae(T))  (22)

For simplicity, we first consider a single antenna system, in
which H (¢, u(t)) reduces to a scalar function h((¢,u(t)). and
the pre-coding filter becomes the inverse of the main channel,
e.g., Fa(T) = h 5 ((T,u(T)). Note that all derivations below

also apply to MIMO system, which we will discuss later. The
received signal at Eve’s side is:
Rp(T) = hap (T,u(T) hip((T,u(T) Dp(T) + N
= hap (T, u(T) Dp(T) + N,

after Eve equalizes hag (T,u(T)). Omitting N, Eq. (22)

expands to
I(D(T); hyp((T,u(T)) Dp(T) | Hap(T — 1), Har(T))
To simplify the equation above, consider the conditional proba-
bility of hap (T,u(T)) given Hap(T —1). Due to the Markov
property,

Prlhap (T,u(T)) | Hap(T —1)] =

Pr[hap (T, u(T)) | hap (T —1,u(T — 1)].

As for the conditional probability of hap (T,u(T)) given
Hap(T). Although hap (t,u(t)) and hag (t,u(t)) are mostly

independent, they are correlated at the same time step, since the
antenna pattern is the same for hap(u) and hag(u), resulting

Prihap (T,u(T)) | Har(T)] =
Prihag (T,u(T)) | har (T,u(T))].
Based on these conditions, we have the following Theorem:

Theorem VI.1. Assuming the wireless channel has the Markov
property, the secrecy leakage of ROBin can be simplified as':
I(Dp(T);Re(T) | Hap(T —1),Har(T)) =
I(Dp(T);Re(T) | hap (T —1,u(T - 1)),
hap (T —1Lu(T -1)),
hap (T, uw(T))) =
I(Dp(T);Re(T) | 6Hape(T)),

where

(23)

6HABE(T) = { hAB (T— I,U(T — 1)),
hap (T —1,u(T - 1)),
hap (T,u(T)) }

This simplification allows us to calculate the numerical
secrecy leakage when all the possible values of discretize CSI
are in a small range. Next we use numerical results to show the
relationship between channel correlation and privacy leakage.

B. Correctness and Insights

1) Single-Antenna Eavesdropper: Alice can apply a reduced
ROBin scheme without orthogonal blinding in a single-input
and single-output (SISO) system, with Bob and Eve hav-
ing one regular antenna and Alice having one reconfigurable
antenna. To calculate the secrecy leakage, we first generate
the CSI with the truncated Gaussian distribution in the range
of (—2,2), then we normalize its real (imaginary) part into
four values, i.e. Re[0Happ(T)] € {£1.5,£0.5}. And for

'The proof of this Theorem can be found in our technical report at
https://tinyurl.com/y2t4njcx
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the message we consider 4QAM, namely that Dg(T) =
x € {£1 4+ j,£1 — j}, then the entropy of the message is
H(Dpg(T)) = 2. and Re[Rg(T)] € {£1.5,£0.5}, |Re(T)| =
16, |(D(T),Re(T),dHape(T))| = 256 x 210 correspond-
ingly. Hence we set the number of the samples to 30 million,
which is about 100 times of |(Dg(T), Re(T),Hape(T))|.
The calculated Eq. 23 versus correlation coefficient between
H,p and H 4 p is shown in Fig. 2.

We can observe that the leakage increases with the increase
of the correlation coefficient between H 45 and H 4, in other
words, the information the eavesdropper gained decreases with
the decrease of the correlation between H p and H 4 5. This
result quantitatively verifies the motivation of our channel
randomization strategy: the system becomes more secure after
reducing the correlation between the two channels to the
receiver and the eavesdropper. And results in [21] shown that a
reconfigurable antenna is capable of decreasing the correlation
of two channels. Hence introducing a reconfigurable antenna to
the system brings us two benefits: actively randomizing wireless
channel and reducing correlations among channels.

2) Multi-Antenna Eavesdropper: Alice can apply the full
ROBin scheme with orthogonal blinding in a multi-input and
single-output (MISO) or multi-input and multi-output (MIMO)
system. Assume Eve has multiple antennas. For a given antenna
mode, if the number of known symbols is less than the number
of Alice’s antennas, n,, Eve cannot find a unique decoding
filter. This is because that the least square problem for the LS
channel estimation is underdetermined. When the number of
known symbols is greater than n,, the least square problem
becomes overdetermined and allows Eve to identify the correct
decoding filter. Note that the number of known symbols do
not accumulate when Alice reuses the same antenna model
at different channel coherent periods. Therefore, as long as
Alice switches the antenna mode faster than the duration of n,
symbols, the secrecy leakage of our scheme is low regardless
of the number of antennas Eve has.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
under the practical known-plaintext attack with both simulation
and real-world experiments. We start with the overview of
simulation setup, and investigate the effects of various pa-
rameters. With simulation, we can cover a wide parameter

range and establish the operating environment for the known-
plaintext attack with a MIMO eavesdropper. Then with an
implementation using USRP platform and a rotating RA, we
validate the simulation results via experiments.

A. Customized Reconfigurable Antenna

For the channel randomization purpose, we prefer RAs with
distinct radiation patterns across different antenna modes. There
are different types of RAs in the literature [31], however, most
of them are designed for communication purpose so that they
only steer to several directions. Hence the resulted radiation
patterns are similar for different antenna modes, which make
them unsuitable for channel randomization. To better evaluate
our ROBin scheme, we build our own RA by rotating two
log periodic antennas manufactured by Ettus Research [32].
We first measure all the design parameters for the given log
periodic antenna, including arm width, arm spacing and etc.,
then its radiation pattern is simulated using the antenna toolbox
provided by MATLAB, which is illustrated in Fig. 3i. In the
simulation, we rotate the antenna every one degree, so that
we have 360 antennas modes in total. And in practice, the
rotator is constructed with a motor and a microcontroller, in
order to rotate the antenna agilely to an arbitrary angle in the
azimuth plane. The rotator is illustrated in Fig. 3j, putting with
two antennas configured with two RF chains. Note that, we
can have various antenna configurations at Alice’s side, e.g.
Alice can enrich antenna patterns by varying the gain level
of each antenna, which can be achieved with power allocation
among RF chains. Also, Alice can have more antennas than
use and randomly selects one among them for transmission,
or randomize the power ratio among antennas to introduce
additional randomness to wireless channels as in [19].

B. Simulation Setup

As described in the system model, Alice, Bob and Eve are
multi-antenna users with OFDM transmitters. W.1.0.g, we focus
our simulation on a setup where Alice has two given log peri-
odic antennas, Bob and Eve have one and two omnidirectional
antenna(s) respectively. For data transmission, the 30MHz wide
AWGN channel is split into 48 equally spaced sub-channels,
and the OFDM frames contain 192 symbols for each sub-
channel. To evaluate the effect of Alice’s AN, we vary the
ratio of AN to the transmitted data signal, namely that Noise
to Data Ratio (NDR). With fixed transmit power, the power for
data signal is:

1 Dpg
D=pr+1 (NDR . AN) 24
We simulation 100 different environment settings, where five
scatters are put for each of them and the data signal are
transmitted as 4-QAM symbols. The distance from Eve to Bob
is set as 150cm, which is 12 times of the signal wavelength.
Most importantly, for all the simulations, we consider the
eavesdropper in a more practical sense, instead of the attacker
as in theoretical analysis. In particular, the symbols known
by attackers are from the well-known protocols in the WiFi
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Fig. 3: From top to bottom, left to right: (a) SER of Bob and Eve over the number of training modes. SNR = 25dB; NDR = 1;

Number of Iterations

No. of training modes

Eve’s SER is obtained after 240 iterations. (b) SER of Bob over Alice’s NDR for different SNRs. The number of training modes
is 20. (c¢) Eve’s SER over the number of iterations; SNR = 25dB; various NDR. (d) Eve’s SER over the number of iterations.
NDR = 1; various SNR. (f) Eve’s SER over the number of iterations; SNR = 25dB; NDR = 1; various antenna switching period.
(g) SER of Bob and Eve over the number of training mode based on the real-world channel data. (h) Platform for RA rotating.
(i) Radiation pattern of RA. (j) Real-world rotator. (k) Real-world experiment setup.

frame, though no pilots are needed in transmission phase of
ROBIn, the attacker is still able to guess parts of symbols from
information like addresses. However, the attacker is not able to
obtain all the historical data signal in practice. Besides, since
AN is not intended for the receiver, it is random data in general,
which makes it hard for the attacker to get enough plaintext and
identify the correct decoding filter. Correspondingly, we define
the switching period 7' of RA based on an OFDM frame, and
120 frames are sent during the channel coherent time, hence
we have T' € [1,120]. For each frame, the attacker is assumed
to obtain two symbols. Then if 7' = 10, it means that the
transmission mode changes every ten packets, hence for a given

transmit filter (computed from the given transmission mode),
the attacker has 20 known symbols for filter training.

C. Effect of the number of training modes

Since the estimation of the AoD distribution is based on
compressive sensing in ROBin, theoretically, the more training
modes we use, the more precise the estimation will be. Fig. 3a
illustrates the SER of Bob and Eve over the number of training
modes, obtained under ROBin and orthogonal blinding. Here to
better show the impact of channel prediction to Bob’s SER, we
do not change the antenna mode during transmission which is
to set T' = 120, then the only difference of these two schemes is



that ROBin computes the transmit filter based on the predicted
channel, while orthogonal blinding uses the measured channel
matrix obtained from channel sounding. From Fig. 3a we can
see that there is a gap between Bob’s SER obtained from two
schemes, which is caused by the imperfect channel prediction
and the missing channel sounding. However, it decreases with
the number of training modes as expected, and when 20 training
modes are used, Bob’s SER is small enough for communication.
On the other hand, Eve’s SER obtained after 240 iterations is
quite stable under the different number of training modes, this
is because the effect of the transmit filter and artificial noise
are both filtered out by Eve’s receive filter.

D. Effect of artificial noise and channel noise to Bob

Fig. 3b shows Bob’s SER with orthogonal blinding and
ROBin, at this time the antenna switching period is set as
T = 6, hence 20 transmission modes are used under a given
environmental setting. From Fig. 3b, we can see that Bob’s SER
decreases as SNR increases under both schemes. Especially,
both SNR and NDR have significant impacts on Bob’s SER
for orthogonal blinding. In contrast, the increase of SNR does
not bring much benefit to Bob’s SER for ROBin, since Bob’s
SER is dominated by the precise of channel prediction. Due
to the imperfect channel prediction, part of the artificial noise
is leaked to Bob’s channel, which increases Bob’s SER. Fortu-
nately, as long as the NDR is not too large, the communication
quality is still guaranteed. For instance, when SNR = 25dB and
NDR = 2, Bob can still achieve an average SER of 1.1 x 1073,

E. Effect of artificial noise and channel noise to Eve

Theoretically, the higher the NDR is, the higher is the SER
on Eve’s side. Here we set the antenna switching period as
T = 60 to provide Eve some advantages. In Fig. 3c, we
illustrate how Alice’s NDR affects Eve’s performance. As we
expected, Eve’s SER decreases with the increase of NDR.
It is worth noticing that, when the power of artificial noise
is not too strong, NDR < 4 for instance, we can see that
Eve’s SER has an obvious reduction with the iterative process;
whereas, as the artificial noise becomes stronger, even if the
number of iterations increases, the decrease of Eve’s SER is
not significant. Besides, in Fig. 3d we illustrate how SNR
affects Eve’s SER. The effect of channel noise to Eve’s SER is
much weaker than that to Bob’s SER, no significant variation
for Eve’s SER with the increase of SNR. Hence we can
conclude that Eve’s attack performance is mainly constrained
by the power of artificial noise that Alice sent. And there is
a tradeoff between the system secrecy (Eve’s SER) and the
communication quality (Bob’s SER) when injecting artificial
noise to the channel.

FE. Effect of switching period to Eve

Intuitively, the faster the antenna switches, the higher is Eve’s
SER. In Fig. 3e, we show Eve’s SER over the antenna switching
period. As we expect, Eve’s SER decreases as 7' increases.
When T = 60, it is the best case for Eve under ROBin scheme
in Fig. 3e, we can see that Eve’s SER is still fairly high,

which is 0.4047. To quantify ROBin’s security improvement,
we compute the difference between Eve’s SER in ROBin and
in orthogonal blinding and normalize it with Eve’s SER in the
worst case, e.g., the SER of random guessing. For instance,
when Alice transmits QPSK (4QAM) symbols, we compute:
(SEROB+ESEROBE)/0.75. The result shows we can elevate
the eavesdropper’s SER by 46% under 4-QAM modulation.
When the antenna mode changes rapidly, especially for 7' = 1,
we suppress Eve’s attack success rate to the level of random
guessing. Finally, we vary the number of known symbols in
each frame from 2 to 20. And the result shows that Eve’s
SER does not fluctuate much due to the convergence of the
algorithm.

G. Effect of real-world channels

We rotate the RA with the platform in Fig. 3g for the real-
world CSI collection. In the experiment, each of our OFDM
frames contains 320 symbols and lasts for 0.08s. We collect
the CSI data for about 17 seconds and rotate 1 antenna degree
every 1/30 seconds, which means the antenna switching period
is less than the duration of a frame. To facilitate our simulation
process, we set the antenna switching period to 7' = 1 while
simulating. Based on the data collected, we studied the effects
of all the parameters as the previous simulation results present.
However, due to the page limitation, we only show the SER of
Bob and Eve over the number of training modes. This result is
more important than others because it shows the effectiveness
of our channel prediction algorithm. From Fig. 3f we can see
that it has a similar trend as in Fig. 3a, which validates the
consistency of our simulation and implementation.

VIII. CONCLUSIONS

In this paper, we propose an orthogonal-blinding based secret
transmission scheme, which is resistant to known-plaintext
attack by leveraging reconfigurable antennas to rapidly ran-
domize the channel state during transmission. To enable reliable
decoding at the receiver end, we propose a compressive sensing
based AoD estimation algorithm to predict Alice-Bob channel
and cancel out channel effects at Bob by pre-coding, while still
blinding Eve. We formally analyze the security of the scheme
using conditional mutual information, which is applicable to
both single and multi-antenna eavesdroppers. We show that the
secrecy leakage decreases with less channel correlation created
by artificial channel randomization, and the leakage is indepen-
dent of Eve’s number of antennas if channel state is switched
fast enough. We conduct extensive simulations and real-world
experiments to evaluate its performance. Results show that,
the communication quality between Alice and Bob remains
acceptable, whereas the randomized channel can successfully
prevent Eve from launching the known-plaintext attack even
if all the historical symbols are known. In the future, we will
study other better practical alternatives to OB and analyze the
security from the secure degree-of-freedom perspective.
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PROOF OF THEOREM VI.1.

Proof. To prove Theorem VI.1., which states

I(Dp(T);Re(T) | Hap(T —1),Har(T)) =
I(DB(T),RE(T) | HABE (T — 2),5HABE(T)) =
I(Dp(T);Re(T) | dHape(T)),

where

Hape(T —2)={ Hap (T —-2), Hag (T —2)}
0Hape(T) =4 hap (T — 1,u(T —1)),
hap (T — 1L, u(T —1)),
hap (T, u(T)) }
itis equivalent to prove that given 0H apgr(T), Hape(T — 2)
and (Dg(T),Rg(T)) are conditionally independent. Since the
messages Dp are independent from all the CSI information,
and Rp(7T) is a function of Dp(T) and hk (T,u(T)) plus
some independent additive white Gaussian noise (AWGN),
it is similar to prove that given dHapgr(T), Hape(T — 2)
and h (T, u(T)) are conditionally independent, based on the
Markov property.
Recall the Markov property of the channels:
Prihap (T,u(T)) | Hap(T —1)] =
Prihap (T, u(T)) | hap (T —1,u(T —1))].

and
Prihap (T, u(T)) | Har(T)] =

Prihap (T,u(T)) | hae (T,u(T))]
To simplify, we denote X1 = Hap(T — 2), Xo = hap(T —
Lw(T — 1)), X3 = hap(T,u(T)), and similarly define Y for
channel A-E. Then the Markov property can be rewritten as:

PI‘(X3|X1,X2) = PI‘(X3|X2)
Pr(X3[Y1, Y2, Y3) = Pr(X;|Ys)

which is illustrated below:

X1 — X2 — X3
! ! !
YT — Y5 — Y3

And the CSI can be represented with X and Y in a simpler
way as:

Hape(T —-2)={ X1, 1}
Hape(T)={ Xz, Yo, Y3}
hap (T,u(T) = X!
Hence our problem is equivalent to prove that given
(X2,Y2,Y3), (X1,Y1) and X5 (which is equivalent to X?jl)
are conditionally independent. Then we begin with
PI‘(Xl, Yl, X3|X2, Yi, Yg)

=Pr(X3| Xy, Ys, Y3) Pr(Xy, Y1| Xy, Ya, X3,Y3) (25a)

(25a) is obtained by expressing the joint probability with the
conditional probability, then we focus on simplifying its last
term, for which we look at:

Pr(Xs, Y3 X1, X»,Y1,Y2)
— Pr(X3| X1, Xa, Y1, Ya) Pr(Ya| X1, Xo, V1, Ya, X3)  (260)
— Pr(Xs|X2) Pr(Y|Ya, X3) (26b)
=Pr(X3|Xo, Ys) Pr(Y3| X2, Vs, X3) (26¢)
— Pr(Xs,Ys|Xa, Ya) (26d)

Similarly, (26a) is obtained by expressing the joint probability
with the conditional probability. With Markov property of the
channels, it is further simplified to (26b). Then we can add more
conditional independent variables to it and get (26c), which
equals to (26d). (26d) implies that given (X5, ¥2), (X1,Y7) and
(X3,Ys) are conditionally independent. Then back to (25a), we
have

Pr(X1, Y1, X3/ X2, Y5, Y3)
— Pr(X3| X, Yo, Y3) Pr(X1, i | Xa, Vo, Xa, V) (272)
=Pr(X3|Xs, Y2, Y3) Pr(Xy, 1] X2, Y2) (27b)
— Pr(X3| Xa, Ya, Ya) Pr(X1, i | Xo, Yo, Ya) 27¢)

which means given (X, Y5,Y3), X3 and (X1,Y]) are condi-
tionally independent. Since X5 !is a function of X3, then this
conditional independence still holds when we replace X3 with
X5 !, which implies:

Pr(X; X1, Y1, Xo, Yo, Y3) = Pr(X5 !Xy, Ya,Y3)  (28)

Then we reverse X, Y in (28) back to the CSI, which gives
us:

Pr [hyp (T, u(D)) [Happ(T —2),6Happ(T)] =
Pr [l (T.u(T)) [Hap(T = 1), Hap(T)] =
Pr [hyp (T, w(T)) [(Hape(T)]

r T, u
r T, u

(29)

To compute I (Dg(T);Re(T)| Hag(T —1),Har(T)),
we ignore the AWGN and consider
Pr (DB(T); Rp(T) | Hap(T — 1),HAE(T)) first, where

Ri(T) = hyp((T,uw(T)) Dp(T).



Pr (DB(T), Rp(T) | Hap(T — 1),’HAE(T)>

:Pr<DBamhAga:MT»::§§g§|HABaf—1xHAan
(30a)
=Pr(Dp(T) | Hap(T — 1), Har(T))
x Pr (h;g (T,u(T)) = gié?; | Hap(T — 1), Har(T)
(30b)

=Pr (D(T) | Hapre(T))

X Pr (h;}B (T,u(T)) = gig; | 5HABE(T)> (30c)

=Pr (Dp(T), Rp(T) | Hanp(T)) (30d)

With the fact that messages are independent from all the
CSI information, we can get (30b), and meanwhile get rid of
Hapr(T — 2) from Dp’s condition, which gives us the first
term of (30c), and with (29) we get the second term of (30c).
Then by converting conditional probability to joint probability,
we get (30d). Since the AWGN is independent from every term
of above equations, we can add it into RE and get R while
above results still holds.
So far, we have proved that

I(Dp(T);Re(T) | Hap(T = 1), Har(T)) =
I(Dp(T);Re(T) | 6HApe(T))
for single antenna system. Next, we present the approach to
extend it to MIMO. Note that, for the MIMO system, each

element in the Markov chain becomes the channel matrix.
Similarly,

Pr (DB(T), R (T) | Hap(T — 1),HAE(T))

= Pr (D (T), Hyh (T.u(T)) € T | Hap(T — 1), Hap(T))
(31a)

where
[ ={H,, (T,u(T)) € T,s.t. Rp(T) = H, 5(T,u(T))Dp(T)}

and represents a set of matrices where its element is a possible
solution for H 3, (T, w(T')). Then we can eliminate H ap g (T —
2) with similar procedures from Eq. (30b) to Eq. (30d).

O



