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The dynamics and structure of nonequilibrium liquids, driven by nonconservative forces which can be
either external or internal, generically hold the signature of the net dissipation of energy in the thermostat.
Yet, disentangling precisely how dissipation changes collective effects remains challenging in many-body
systems due to the complex interplay between driving and particle interactions. First, we combine explicit
coarse-graining and stochastic calculus to obtain simple relations between diffusion, density correlations,
and dissipation in nonequilibrium liquidsBased on these resultsye considerlarge-deviation biased
ensembles where trajectories mimic the effect of an external drive. The choice of the biasing function is
informed by the connection between dissipation and structure derived in the first part. Using analytical and
computationaltechniqueswe show that biasing trajectories effectively renormalizes interactions in a
controlled mannerthus providing intuition on how driving forces can lead to spatiarganization and
collective dynamicsAltogether,our results show how tuning dissipation provides a route to alter the
structure and dynamics of liquids and saftaterials.
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StatisticalPhysics
[. INTRODUCTION features are well established, progress in controlling systems

Nonequilibrium forces can drive novel and specific with sustained dissipation is hampered by a lack of general
s rinciples [13-19]. In this context, minimal models of active
P athwayg to modulate phase tr§n3|t|ons and self—as'sembl nd driven systems provide analytically and numerically
in materials. The close connection between the nedlis- 5 apje testbeds to investigate the interplay between
sipation of energy, powered by these forces, internal dissipation and materialproperties far from equilibrium
transport,and spatial organization is especially apparent [20_24]. They illustrate, for instance, how nonequilibrium
in living systems [1-4]. As an example, the flagella motoryriying can induce phase transitions and excite novel
of Escherichia coli exhibit a unique phenomenology cojlective responses in sofinedia [15,21,25-27]Recent
combining ultrasensitive responseadaptation,and motor  theoretical work proposes extending equilibrium concepts
restructuring as a function of the applied load [5-7].  to active media, such as the definition of pressure [14,28], to
Moreover,in vivo studies of the cellular cytoskeletonas  rationalize their phenomenology [29,30Dthers strive to
well as in vitro experiments on reconstituted systems, als@ptain stationary properties of active matter through per-
show thatmotor-induced forces contrad large variety of  turbation close to equilibrium [16,31,32], inspired by other
functionality in the cell [8-12]. approaches on driven systems [33-36].

To elucidate the role of nonequilibrium forces in materi- To investigate how dissipation controls emerging behav-
als, it is crucial to examine how dissipation affects the ior, yet another approach focuses on introducing a bias in
emerging dynamics and structure. While equilibrium  dynamical ensemblesUsing large-deviation techniques,

trajectories are conditioned to promote atypical realizations

of the dynamics [37,38]. Such techniques are usedfor

instance, to investigate the role of dynamical hetero-
Published by the American Physical Society under the terms Obeneities in glassy systems [39-45] and soliton solutions
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the density fluctuations of nonequilibrium liquids [48,49], [46,63-68], we show that biased sampling trajectories
thus confirming that controlling dissipation is indeed a  can be used to renormalize any specific interparticle
fruitful route to tailoring material properties.In spite of interaction in a multicomponent liquid. The rare noise
these advancesanticipating the emergentlynamics and  fluctuations sampled with dynamical bias effectively drive
structure of biased nonequilibrium systems is stilichal-  the system away from typicabehavior [38-45,50].Such
lenging in the presence of many-body interactions [38,50]noise realizationscan then serve as proxies of how to
so that precise control has remained elusive so far in this control the dynamics by applying an externaforce with
context.Consequentlyany generic principle rationalizing complex protocols. We also illustrate the generality of our
spatial organization in terms of dissipation is still lacking. ideas by considering an assembly of aligning self-propelled
In this paper, we explore how dissipation affects the particles [69]. Specifically, we show how biased energy
dynamics and structure of many-body diffusive systems. flows can renormalize interactions between particles and
First, we consider in Sec.ll two types of assemblies of stabilize a flocking transitionOverall, our results lay the
Brownian particles: one in which only a subset is driven bgroundwork for precise controbf the emerging structure
an external force and one in which a subset of the particlesnd collective dynamics in many-body diffusive nonequi-
experience an internal active force. We first focus on  librium systems.
instances where the fraction of driven particles is less than

the fraction of undriven particles, so that driven and II. DISSIPATION AND LIQUID PROPERTIES
undriven particles arerespectivelyreferred to as tracer
and bath par‘tic]es_ Using the diffusion coefficient of a In this section, we provide a series of relations between

tagged tracer particle and the density correlations betweefinergy dissipation and liquid properties in nonequilibrium

tracer and bath particlesye connect dissipation to liquid liquids. Specifically, we consider interacting Brownian

properties. In contrast to Ref. [23], our prediction for ~ particles where a specific sedf particles Q is driven by

diffusion follows from a systematic coarse graining with @ nonconservative force f;:

explicit dependencein terms of microscopic details X

[51—53] Y& %GEQ Fd;i —Vi V6ri - er pga o1b
Next, importantly, we put forward a generic relation j

between density correlations and dissipation valid for an . )

arbitrary driving force: This relation is our first main resultWheré 8eq % 1if icQandd o % 0 otherwise. The

We demonstrate thathis result holds both for fluidsin  driven particles belonging to the se€) are referred to as

which a fraction of the particles are driven by a fixed fcracers and others as b_ath pa_rtlcles_. The_: ﬂuctuatlng term ¢

external drive and for fluids in which either a fraction of th&_ @ 2ero-mean Gaussian white noise with correlations

liquid or the entire liquid is driven by an internal noise, ~1Ga0tPfp 0PI % 2yTH5,d0tP, where y and T, respec-

analogousto the driving used in model active matter tively, d_enote the damping coefficient and th_e bath temper-

systemsThis result opens the door to estimating dissipa- ature,with the Boltzmann constant set to unity g% 1).

tion directly from the  liquid structure, in contrast to

previous approaches based either on perturbing the system A. Deterministic vs active drive

[54-58] or on analyzing trajectories and currents in phase |n what follows, we consider two types of drive: (i) an

space [3,59-62].We illustrate this resultwith numerical  external force following the same deterministic protocol for

simulations for which dissipation is quantified by the || driven particles and (ii) an internal force given by a noise

deviation from equilibrium tracer-bath correlations. term independentfor each driven particle. Building on

Using these results as a basis'e also show how various  recent work [21,23],we take for drive (i) a time-periodic

aspects of the pair correlation function of a nonequilibriunprotocol given in two dimensions by

liquid are effectively constrained by the energy dissipation.

Altogether, this set of results clarifies how nonequilibrium Fq0tP % f/2sindudFp cosdwtl,; a2b

forces affect the transport and structure of the liquid, thus

showing how liquid properties can be modified at the costwhere f and w are, respectivelythe amplitude and the

of energy dissipation. frequency of the driveso that the drive persistence reads
Motivated by these results, and to provide concrete 1% 2m=w. The relative strength of the drive is given by the

intuition for how particular configurations can be stabilizedPéclet number Pe 72 af=Twhere o is the typical particle

by nonequilibrium forces, we next investigate in Sec. Il thaize [21,23]. In the absence of interactions (v % 0),the

emerging structureof Brownian particles subject to a average position of driven tracers follows a periodic orbit,

dynamicalbias. The explicit form of the bias is inspired  describing a circle in two dimensions.In contrast, drive

by the results of Sec.Il connecting dissipation to many- (ii) corresponds to a random self-propulsion as is often

body interactions. Using analytical calculations and considered in active liquids [70-72]. Specifically, we use a

numerical simulations based on the cloning algorithm  set of zero-mean Gaussian noises with correlations
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where d is the spatial dimension. The parameters f and T,
respectivelycontrol the amplitude and the persistence of
fluctuations.

Interestingly, the active force with correlations (3) can be
obtained from a generalized version ofhe deterministic
force (2) where each particle i is now subjected to an
independent drive. The period of the orbit is determined by
a series of n oscillators with identicalfrequencies for all
particles yet independeramplitudes:

Xn
Fq,0th %pifﬁffiffifﬁfﬁ/;fbosé(gtb b B,; sindwtb:  84b
n EVAL

Lo . o . _FIG. 1. Snapshot of particles subjected to a disordered drive. A
The essential ingredient of the mapping into active force ighase separation emerges which is analogous to the motility-
to implement disorder in the drive, which is done by takingnduced phase separation of active particles [13,3&hulation
the oscillator amplitudes as uncorrelated zero-mean details are in the Appendix A and the movie in Ref73].
Gaussian variables with unit variance:

o \ . separation commonly reported in standard models of active
hAsiaApjpi g V2 Qapd; Oup V4 NBia Bojgio; 05p particles [13,26]. Interestingly, it appears in our case even

) ) in the absence of fluctuations (T 7 0), namely, for a purely
where h+j denotes an average over the disorder. It folloWsyaterministic set of equations.

that Fy; is also a Gaussian process with zero mean and

) ) In short, we thus demonstrate that the disordered drive
correlations given by

alone reproduces the emerging physics of active systems.

2 X This important result bridges the gap between two main
hF .0 6tPR 5 60P) ¥4 §; 5asf_ cosdytb: a6p  classes of nonequilibrium liquids, where the driving force
’ ' L nd Ly stems from either a deterministic protocolor a random

noise.In what follows, we obtain analytic and numerical
In the limit of a large number of oscillators (n > 1)we  results for both drives to illustrate the broad applicability of
express these correlations in terms of the density of drivingur framework, ranging from systems driven by determin-
frequencies ¢ as istic fields to active matter systems.
f2 z .o Ao
hFd;iqétblﬁ;jﬁéobgnl/:gj BQBE dOupeé o a7b B. Dissipation controls tracer diffusion
To connect tracer diffusion with dissipation, we first

This expression establisheghat, in the limit of many describe the dynamics of undriven particles in terms of a
oscillators, the deterministic drive (4) with disordered ~ coarse-grained variableUsing standargtechniquesthe
amplitude is equivalento a noise term with spectrum ¢.  dynamics of the density field por; tb % .o 8%r — ot
In particular, by choosing ¢pdufb % 21="%1p &P, the can be written as a nonlinear Langevin equation [51]. In the
drive correlations (7) reproduce exactly the ones ofthe  regime of weak interactions, the density fluctuations
random force in Eq.(3). dpdr; tb V4 pdr; tb 5 @round the average density p are

To illustrate the relevance of this mapping, we simulateGaussian and captured by the following Hamiltonian
numerically the many-body dynamics (1) where every  [53,74,75]:

particle is subjected to a disordered drive of the form TZ

(4). We use the potential vorb 4d1 - jri=aBOdag - jrjb, H'%—~ &pdrbKar - dpddrdr®

where © denotes the Heaviside step functiowhich sets 2 b X

purely repulsive interactions. To implement numerically the . )

disorder in driving, it is sufficient to sample the amplitudes b o vor - ribpdrbdr; o8P

fA 4i; B4ig and frequencies fug at the initial time. In the

regime of high persistence 1 and large average density p where Korb " ddrbzf vorb=T. Note that density fluc-
we observe the spontaneous formation of clusters up to atuations remain generally Gaussian even for a homo-
complete formation at a large time; see Fig. 1. This  geneous active liquid [70]. The conserved density
formation is analogousto the motility-induced phase dynamics reads
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z
aapa?r B Dev?  Kor - ribpdt thdf
1 X
b —VZ Vit - [6tb bV - Adr; tb; 69b
Yo i

where Dg %2 pyT=y and yg 4 y=g are, respectivelythe

field diffusion coefficient and the field damping coefficient.

The term A is a zero-mean Gaussian white noise with
correlations hAdr;tb/A8r%t Pi%42D 5 8,00r-r Pd6t-th.
Owing to the linearity of the density dynamics (9),
can be readily written in Fourier space 6pdq; tb %4
pOr; tbgd" dr as

MID/ ~jqj 2D cKBqPSPdG; th
—jqu\lé—q':X e7a7i%%Ph iq - Adq; tb;  610P
G j€Q

so that the field dynamics can be directly solved as
Z t
Opdq; th 4

-0

dse D cidi?Kagpot-sb

x iq-/\éq;sb-jqﬁm—jﬁ( gliar 0P §11p
jeQ

Considering the limit of dilute driven tracers, where
interactionsamong them are negligible, their dynamics
reads

Z
vr; % Fab g - iquo—qbeiTi®%Bpaq; tb; 612p
q

R R
q /4 dq=02mt As aresult, Egs. (11) and (12)

drive is deterministic [79,80] and when itis a correlated
noise [81-84].Substituting the dynamics (1}he dissipa-
tion oincides with the power of driving forces:

J% ol Fyii. Besidesreplacingr; by its expres-
sion in Eq. (1) and using the fact that §; and Fy; are
uncorrelated, we deduce that the dissipation can be further
separated into free-motion and interaction contributions as
J Va4 Nf 2=y —w, where the rate of work reads

wil®
ieQ;j

hFd;i : ViV6ri - pi: 014p

Given that w is the only nontrivial contribution to dis-
sipation, connecting diffusion and dissipation simply
amounts to expressing D in terms of.

Deriving transport coefficients in nonequilibrium many-
body systems, whose collective effectsresult from the
complex interplay between interaction and driving forces,
is a notoriously difficult task [85-89]. We set up a proper
perturbation scheme by scaling the pair potential v with a
small dimensionless parameter h << 1 which controls the
coupling between tracerand bath. In Appendix B, we
obtain some explicit expressions for D amdto quadratic
order in h and in the scaled driving amplitude Pe.

First, we discuss the case of the deterministic drive (2),
and we focus on the limits of small and large driving
frequencyrespectivelywt, < 1 and wt > 1, where the
relaxation timescale, 14 6D;=c?PKdjqj ¥4 1=0b is sdiy
density diffusion over the tracer size o. First, at high
frequencies wt>> 1, the rate of work per particle=N and
the deviation from equilibrium diffusion D - D, where
D¢q is the diffusion coefficient for Pe % 0, are given,
respectivelypy

with Z
provide closed time-evolution equations for tracers only. It w Y hPe 2 0T=0 qu ivé qbf1 p pOKéqb’
should be valid only for weak interactions a priori, yet N W dy3 Kdgb
previous works show that it remains qualitatively relevant hPe 2 -|- o2 jqi2jveqb}

. C o X _ 1, NPFe
even beyond this regime in practice [76-78]. Indeed, D = Deq% " aF ., KBGPYa1 pooap" 615p

Gaussian field theories for density fluctuations provide a

very good description of simple liquids [74].

In the opposite limitof low frequencies wy << 1, we get

To characterize the transport properties of the liquid in
the presence of driving forces, our first goal is to obtain an

explicit expression, in terms of microscopic details, for the w, éhpeg’ jvoqPf :
tracer diffusion coefficient: Ay 4 KogP¥a1 pogh
D - D, v 2oNPeP jvoqbf 316b

D Ilm thzh’ﬁtbi - [OtPi: A7 dyT 4 jgj?Kogbiat botiéqb3:

too 20t

We aim to explore connections between D and dissipatioffothw=N and D = R, are now independent of the driving
which is defined from stochastic thermodynamics as the frequency w. As a result, our perturbation theory shows that

013pb

powgp of the forces exerted by all tracerson solvent:
J% - Oy — & Pi, where - denotesa Stratonovich
product[79,80]. Dissipation is directly related to entropy
production,as a measure of irreversibilithoth when the

the scalings ol and D - Q4 are identical, in terms both of
the drive amplitude Pe and of its frequency w, in asymptotic
frequency regimes.Note that the scaled rate of work
yw=08Nf?P coincides with the reduced equilibrium diffusion
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YDeo=T — 1 to this order [52,53],as expected from linear driving forces Fy;. In equilibrium, the liquid structure can
response. be derived from a hierarchy of equationsfor density
The case of the active drive with correlations (3) followsorrelations whose explicitform reflects the steady-state
by using the mapping between the disordered drive and condition on the many-body distribution function [90In
active forcing in Secll A. In practice,we first derive the  our settings,steady-state conditions should now provide
diffusion coefficient D and the rate of work w for the = modified equations for density correlations,which can
driving force (4) at fixed disorder, as a straightforward  potentially make apparent the connection with dissipation.

generalization ofthe deterministic driving case,and we This observation motivatesglis to consider the average
then average over the disorder. At small persistence, 1 << rate at which the potential U % o, vOr; — r;P changes,
we get which can be written using 1td calculus as
Z . X
w,, TTohPeB™ jqi%voqPf. yHi%  h¥%yp-r,p b 2TV, - V vér, —r;bi: 319
N~ dooyp /9 Kogp i
D - Deg % 316hPep J;véqbi : 317p Substituting the dynamics (1) and using hg; - V;vi ¥4 0
ddoyp o Kagp¥21 podqh? within the It6 convention,we get

. - . X
In contrast, the large persistence limittr > 1, yields the yHUi % 81 b §.q Ph; - V,vér, - r; bi

same results as forthe low-frequencies regime ofdeter-

ministic drive, namely,the expressions (16)Indeed,the IEQX

force Fy; has a constant direction in such a limit, and the b h2Wor; = r; P - Vi Javor-ri b — vor—rypi
difference between deterministic and active drives, which, ‘%’?i?k

respectively correspond to independendr similar direc- b 2ThVi2v6ri - rbi: 820b
tions for each tracer,is irrelevant in the limit of dilute ieQ;j

tracers.

When the size a of the bath particles is significantly  In the first line of Eq. (20), we recognize ghe rate of work
smaller than the tracer size o > a, which amounts to settiag defined in Eq. (14) and the termvy, % g 9cq hFg; -
different pair potentials v for bath-bath and for bath-tracery . var, - r; bi which quantifies the contribution of inter-
interactions, one can safely neglect the variation of KAaP jitions among driven particles to dissipationThe latter
Egs. (15)-(17), so that K8qP = Kdjqj ¥4 1=ab. Then, in bo%nisbes exactly when the drive is identical for all particles,
regimes wr, > 1 (1 <1 ,) and wr, <1 (1>71,), the  ginge (. V;var - r;P % 0 by symmetry, and it can be
reno.rmallzatllon ofthe diffusion coefficient D = Deq can neglected for an active drive when the fraction of driven
be simply written in terms of the rate of work per particle harticles is small. Then, using the steady-state condition

w=N for Pe << 1 as hJi % 0, we deduce

D7Deg_w, 618p 200°
a2 NT® Wb Wy ¥4 %0 gorbfavverb- TV 2vérbgdr

Thus, the excess rate at which tracers move over their own pg r24 \ _ .
size compared to equilibrium, set by the |hs of Eq. (18), is p v VegiOr; 1P b gyp0r; 1P
controlled by the rate at which work is applied on tracers by
nonequilibrium forces, set by the rhs of Eq. (18). The X YaVvor - 1VVrdrdr 621p
proportionality factor depends on the details of interactions
and of density fluctuations. Interestingly, this result is valid"here
for both deterministic and active drives.It corroborates 1 X
numerical observations obtained previously in a system gérb % hosr - rpr ; bi;
where composition-dependent diffusion constants can lead N ieQ;j

to phase transitions [23]. 1 X

3201; 1P VW hddr - rbr ;PSS ; pr Pi;

L . . . ieQ;j;k

C. Dissipation sets density correlations 1 X
We now explore how dissipation relates to static densitgs,0r; P VT@ ®h&or - rpr ; Pd&-r | br bi; 022p

correlations of the liquid. To this end, we treat undriven ieQ;j;k

bath particles without any approximation in what follows, 0

instead of relying on the Gaussian density field theory forand ~denotes a sum without the overlap of indices: i # j,

0p as in Sec. Il B, and we consideran arbitrary setof  k #i, and k #j. The power balance (21),valid for an
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arbitrary driving, either deterministic or active, is our first (@) 10% deterministic drive

main result. Importantly,it holds for generic interactions
and for any number of driven particles, namely, not only in
the limit of dilute tracers, in contrast with the results in 4 >
Sec.ll B.

In practice, it reflects how density correlations adapt to
the presence of nonequilibrium forces. For a vanishing rate (@)
of work (w % 0 Yaw,), one recovers the first order of the 2
equilibrium Yvon-Born-Green (YBG) hierarchy, in its
integral form, for two-componentfluids [90]. At a finite 1 - 4 (F2) + T(V; - Fy)
rate of work (w # 0), the relation between the two-body ,ZQ T
correlation g and the three-body terms fg,; g,g is now 0 | | S | 7 |
implicitly constrained by dissipation. A direct implication
is that the rate of work can now be inferred simply by 0-0 0-5 1.0 15 2.0 25
measuring static density correlations provided that the (b) 10% active drive
pairwise interaction potential is known, for a given driven 12

w
|
%

liquid. Importantly, such an approach does not require any w

invasive methodsbased on comparing fluctuationsand 10 4 7

response [54-58], and it does not rely on a detailed analysis &

of particle trajectories [60,61] or currents in phase space I o %

[59,62], whose experimentaimplementation can require 6

elaborate techniques [3,4]. o©

However, the power balance (21) is not straightforward 4 _| ©

to test, either numerically or experimentally,due to the AAA )

three-body correlationsin equilibrium, where tracer and 2 - 9 > (F7) + T(Vi - Fy)

bath particles are indistinguishable,we get gz, 4 Gp. r=xe} ~T

Assuming thatthis resultremains approximately valid in 0 | | | | |

the driven case for a smalfraction of tracers the rate of 0 1 2 3 4 5 6

work can simply be written in terms of the force exerted on _

atracer F v - [ Vivor, - ;b as FIG_. 2 Parametric plotof the gate of work w=T anq of the

statistics of bath-tracerforces o ¥%h# p ThV ; - Fi=0yTP
2X when 10% of particles are driven by either (a) a deterministic
w==  %hipThv,-Fi 023b force or (b) an active force. The solid line with slope 2 refers to

Vi the approximate relation (23).The satisfying agreementvith

numerical data indicates that the rate of work can be estimated by
To probe the validity of this result, we simulate the  only measuring bath-tracer forces. The simulations are performed
dynamics (1) where 10% of particles are subjectio the  with N % 4500 particles using the procedure describedin
driving force, considering either the deterministic periodicAppendix A. ParametersPe % 12 (hexagons),18 (square),
drive (2) or the active noise drive (3). Interactionsare 24 (triangle), 30 (circle), and 36 (diamond); (a) TT=08yGP %
set by the Weeks-Chandler-Andersen potentialdrp 7 2 * 107" (black), 3 x 1011 (brown), 4 x 10" (red), agd 5x 10
vy 1480=iB- 80=jr8O621=6 - jrjb [91]. Our measure- (°r@nge):(b) TT=0yGP % 2 x 10% (black), 3 x 102 (brown),
oo o 4 x 102 (red),and 5 x 102 (orange).

mentsin Fig. 2 show that Eq. (23) is indeed a good
approximation at small Pe and small namely,when the
drive only weakly perturbs the liquidThe discrepancy is o
higher for the active case compared with the deterministiccontribution in the power ba2lance (21)we focus on the
one, sincav,. % 0 in the latter without any approximation. Observable | % Va0V~ TV 2v8g — geP. At agivenT,
In contrast to previous approaches [3,54,92], which rely ogcaling | by P& reveals that all curves almost collapse into
prospecting the whole system, our results demonstrate thatmaster curve for our numericarange Pe € 7212; 3@s
the rate of work can actually be evaluated with only a smdgported in the middle column in Fig. 3. In practice,
error by considering solely forces acting on tracer;The  particles overlap more for a stronger drive, so that g departs
contribution of forces on other particles is negligible for a from zero at a smaller interparticle distance. To correct for
small fraction of driven tracers. this aspect,we introduce a shift of the curves | djrjb as

To evaluate further the change in liquid structure inducédd — jrj p a, where adPePp is a fitting parameter. Given that
by dissipation, we measure the deviation from equilibriumthe rate of work also scales like Pe?, it suggeststhe
pair correlationsg — g, due to the driving forces (left ~ existenceof an underlying relation between | drbdr
column in Fig. 3).In particular,inspired by the two-body andw. In practice,a linear fitting provides a satisfactory
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10% deterministic drive

5 4
9 (a) T (b) w (c)
Pe 3 7 pe2 27
24— 12 | 9 |
— 18 R
L] 1 1
720 e - PO 14
(6} o T —_— r
ol e (r+a)e] 2T
T T T - T T T T
0.9 1 1.1 0.9 1 1.1 0 1 2
5 4
(d) (e) 4 ()
3 —
2 R 2 37
1 - /N >
1 y \
- e N -
ol
T T T -1 T T T 0 T T T
0.9 1 1.1 0.9 1 1.1 0 1 2 3
10% active drive
3 4 8
(9) (h) (i)
3 6
2 — \\ 2 A
) / 1 4
p— s} J - 2 -
0 —]
T T T -1 T T T 0 T T
0.9 1 1.1 0.9 1 1.1 0 2 4 6
5 _ 4 10
0} (k) 0
2 " 2 6 -
/ ' 4
1 —
— 0 / § L 2
97_7
T T T -1 T T T 0 T T T
0.9 1 1.1 0.9 1 1.1 0 2 4 6 8

FIG. 3. Connecting dissipation and structure for a liquid where 10% of particles are driven by either deterministic or active forces.
(Left) Bath-tracer density correlation g as a function of interparticle distance r=0. The blue solid line corresponds to the equilibrium
correlation function g for Pe 7 0. (Middle) Deviation from equilibrium correlations | 12OWBY 2vag - QeqP scaled by Pas a

function of dr b aP=0, where adPePp is a fitting parameter. The data almost collapse into a master gurve for each row, namely, at a giv
(Right) Parametric plot of the rate of warkT and the integrated deviation from equilibrium correlatipndépbdr=8yTP showing a

linear relation. The black solid line with slope a is the best linear fit, and the marker colors refer to the smteé\Rilues as in the

left and right columns. Simulation details are in Appendix A. Parameters: fridyg ¥ 2 x 10'; 1.50g (a)-(c), f5 x 10'; 1.41g

(d)=(f), f2 x 1072; 1.38g (g)-(i),and f5 x 1072; 1.33g (j)-(I).
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agreement between them, as shown in the right column irffor explicit predictions on the emerging structure.
Fig. 3: Importantly, it does not rely on any equilibrium mapping,
7 in contrast to previous works [93-95], since it remains valid
app ) for non-negligible dissipation.
w %T 7eg0rP ~@rbf/2Vvort - TV 2vorbgdr; 624p The power balance (21) can actually be extended to the
case where alparticles in the liquid are driven as
where a is a fitting parameter independentf the Péclet 7
r_1ur_nber.T_h|s empirical relation demonstrates thain the W %@ gorbfvavverb- TV 2vérbgdr:
limit of dilute tracers,the rate of work can actually be %
directly estimated by comparing driven and equilibrium 2z
pair correlations for both deterministic and active drives. b2 gsdr; PY%VVerP - V8drdr®  326P
Comparing Eqgs.(21) and (24), we deduce the following v

integral relation between density correlations: where g and.ghow refer, respectively, to the two-body and

z three-body density correlations among aparticles. This
7202 — abgdrb p.glyPfTV 2vérb - VaVvorkydr extension leads to an exactelation between the rate of
77 work and the forces applied to particles;Fas
YVapy  v200r; P b g,or; paVvoerb - VeV \drdr & 1X
N Thv; - Fi; 627b
525b -y Hfip TV, -F

Interestingly, it is reminiscentagain of the connection which differs from the relation (23) for driven tracers by an
between density correlations provided by the YBG hier- overall factor of 2. A result analogous to Eq. (27) was found
archy at equilibrium [90]. Similarly, the relation (25)  previously for a deterministic drive [36,96]. The main
amounts to a constraint on density correlations, now validdifference is that Eq. (27) features interaction forcesl{¥

for nonequilibrium liquids, which could guide the search in the rhs, thus allowing one to evaluate the rate of work

100% active drive

g b h .
pe (a) g - T (b) 8 w ()
39— 12 6 — Pe? 6 — T
— 18
21— 24 R4 \ 4 -
— 30 / 5 |
1 - 36 —
) e N L zar
/O
O === T T -2 T G a)/|a 0 T W|
0.9 1 1.1 0.9 1 1.1 0 5 10 15
4 10 10
(d) s (e) . )
3 - \
6 — /
6 —
- / N4
/ 4
2 4
- /\
— 0 A | 2 -
ol -
T T T 2 T T T 0 T T
0.9 1 1.1 0.9 1 1.1 0 6 12 18

FIG. 4. Connecting dissipation and structure for a liquid where 100% of particles are driven by an active for{ieeft) Density

correlation g as a function of interparticle distance r=g. The blue solid line corresponds to the equilibrium correlation fyfiction g

Pe % 0.(Middle) Deviation from equilibrium correlations | % %204k TV 2v3g - geqP scaled by Peas a function of ér p ab=,

where adPeP is a fitting parameter. The data almost collapse into a master curvg for each row, namely, at a given T1. (Right) Parametr
plot of the rate of wok=T and the integrated deviation from equilibrium correlatjonsépbdr=82yTP showing a linear relation. The

black solid line with slope a is the best linear fit, and the marker colors refer to theesdeb@dties as in the left and right columns.
Simulation details are in Appendix AParametersirT=0ya?b; ag % f2 x 10%; 1.22g (a)-(c) and 5 x 10%; 1.14g (d)—(f).
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without any prior knowledge on the driving force. Besidesand organization in driven systems, which is distinct from
it is valid for both deterministic and active drives. yet complements the approach in Sek.
Moreover,conducting the same analysis of density corre-  To this end, we focus on the subset of noise realizations
lations as for driven tracers, | exhibits agajg a scaling witithat are conditioned on a nonzero rate of work. In
P&, as reported in Fig. 4. We show tvadnd | drbdr are  particular, these realizations no longer have a zero average,
also linearly related.Introducing the linear coefficientas S0 that one can redefine the noise term in Eq. (28) as ¢
appy=062ybis consistentwith substituting Eq. (25) into & b F aux; by introducing an auxiliary force [, [38,50].
Eq. (26), where g3, b g3 is now replaced by 2g;.  Hence,the stochastic dynamics given by Eq.(28) with
Hence, it demonstratesthat the rate of workis also added force . provides an explicit case which ensures a
accessiblefrom the nonequilibrium deviation of pair  nonzero energy flow rate. In practice, this dynamics can be
correlations in fully driven liquids. drastically different from the original one, thus opening the
Overall, the results of this section illustrate how dis-  door to stabilizing unexpected structure and to promoting
sipation affects the transporind structuralproperties of  novel collective effects. Interestingly, such a dynamics can
driven liquids, measured in terms ofthe diffusion coef-  actually be regarded as the optimal strategy to effectively
ficient and density fluctuations. These findings motivate thenforce a targetondition on the rate of work [98].
following question: Can nonequilibrium forces be tuned to Formally, to study the dynamics conditioned by dis-
reliably stabilize target configurations? To explore this  sipation, we bias the probability of trajectories. This biasing
question,we rely in what follows on the framework of  is dongg by introducing an exponential weighting factor
large-deviation theory. In practice, our strategy amounts texp’zk; EdsbPds,where E is the observable which con-
biasing trajectories in terms of dissipation, related to manylitions the dynamics,e.g., energy flow rate, and K is a
body interactions by Eq.(21), to mimic the effect of an  conjugate field. In practice, the relative importance of
external drive. Following this route, our analyticaland  biasing in the dynamics is controlled by k, which, in turn,
numerical results provide some concrete intuition for how controls the average value of E [37Before deriving the
interactions in a multicomponensystem can be control- centralresults of this section, namely,relations between
lably renormalized by nonequilibrium forcesHence,we  biased energy flow rates and organizatiowg first intro-
demonstrate the ability to nucleate structures different fromuce a simple example in which the connection between
those characteristic of the equilibrium Boltzmann distribu-auxiliary forces and an exponentially biased ensemble can
tion to help guide self-assembly [97] and collective motiorbe clearly seen.
[25] far from equilibrium. These results further illustrate the
interplay between energy dissipation and organization in

s ; A. Dynamical bias and external forces
nonequilibrium many-body settings.

To introduce pedagogically our methods, we first show

how biasing trajectories can lead to effectively introducing
IIl. INTERACTIONS IN BIASED ENSEMBLES a driving force. Inspired by the role of dissipation in

To investigate how target structures and dynamics can ®@erging liquid properties, as discussed in Sec.ll, we
promoted by means of a dynamical bias, we begin by ~ bias the equilibrium dynamics (28)with the sum of the
Considering a System of interacting Brownian par‘“c'es dISSIpatIOI‘\ and the rate Of Work, scaled by T, that WOU|d be

without any driving force: produced by applying a constant forcg t a subset Q of
X particles:
v %=V, vor-rpp§; 628p 1 X
J E%— Fq aypV,V; 829p
YT iq

where the statistics of the noise termi§ the same as the P

one in Eq. (1). The rate of workw defined in Eq.(14)is  where_\ %4 61=2b .. vor, - r;b. The path probability P ~
zero because of the absence of driving. In Sec. I, to obta . J
a nonzero rate of energy flow through the system, we
consider an explicit driving force [;, and we explore its
effects on the transportand structural properties of the 1 K
liquid. In practice, different types of driving can lead to theA; %4 T%m bV VvV 2—2—V?V ——TQEQ Fq- Y8ypV ;V;
same dissipationln this section, using the framework of Y v Y

the large-deviation theory, we take an alternative approach 630pP
where the dynamics is now conditioned by enforcing a

required energy flow withoutany explicit driving. Thus,  where the first two terms correspond to the unbiased
exploring how the system adaptsto this requirement dynamics (28) and the third one to the bias in Eq.(29).
provides a new insight into the relation between dissipatioih can also be written as

@(p‘/z— i oAi0Gsbds corresponding to this biased ensem-
ble is obtained with standard methods [99,100]:
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1 1 2 - 1X
Yy - 2K3q deViVZ——V?V—:—TGeoF?,: VYg vor-rp-2TnG: 834b

A Vi
' 44\(T 2y i

031b
In practice,computing G is a highly nontrivialprocedure

As a result, given that the last term in Eq. (31) can be for many-body systems. Th(_a explicit solutions considered
absorbed in a normalization factor,we deduce thatthe SO far concern either exclusion processes [66,102,103] or
trajectories biased by Eq. (29) can be generated, at leadif@rticle-based diffusive systems restricted to smalbise
order, in a physical dynamics where the external forge 2xFe9imes [104,105] and noninteracting cases in some spe-
is applied to every particle in QIn particular,it does not ~ Cific potentials [106-108]. _ _

feature any long-range interactions which are usually found N 0ur case, a simple expression can be obtained for the

in auxiliary dynamics [101]. auxiliary potentialV/; by solving Eq. (33) perturbatively at
small bias parameter Specifically,we expand

B. Dynamical bias and modified interactions AOKP %X k; hE; i b OBk 2b:

To go beyond the case of applying a constant force, we ij X
now seek for a dynamical bias which regulates particle b 1/ g8b 1 )
interactionsin a controlled manner. In particular, we Gofrg; kb % & ) i G‘? BfrigP p OORP;  035P
examine cases where the control paramejeasecspecific :
to particle pairs fi; jg, so that theﬁiasing factorin path  \yhere G is the uniform eigenvector associated with the
probability now reads exp’z; kj oE;dsbds.Now, our  zero eigenvalueGiven thathE; i % 0 in the steady state,
choice for the biasing function E;; is informed by the  which follows from the vanishing current condition in the
connection between the rate of work and many-body  unbiased dynamics yh% 0), the leading nontrivial order
interactionsin driven liquids, as detailed in Sec. IIC.  of Eq. (33) reads
Specifically, we observe that the power balance (21) for a X
d%erministic drive (W, 72 0) can be written as w % Ki 1/2L¢1pb GOUE; b OOk 2b Y O: 836b
ica;j hLVOr, = r;Pi in terms of the evolution operator ij
the equilibrium dynamics (28) defined by yL % o o _ o
%TY-V,V-V,. This observation motivatesus to Substituting the explicitexpressions for the biasing func-

consider the following bias: tion in Eq. (32), we then deduce that %’f’@—Govéri -r;p
is a solution of the eigenvalue problem to the order of k.
E; % l Lvor; = r;b: 532p The auxiliary potential follows as
47 ' '
. 1X
In the unbiased ensembles in Sed! C, hE;i provides a V%5 01pbkbvor-rbp OoKkp:  837p

measure of the rate atvhich driving forces pump energy .
into or extract energy from the specific interaction betwee
the ith and jth particles. Here, instead of driving the syste
with a specific driving force, trajectories are driven by
atypical realizationsof the noise generated by biased
sampling.

To explore how this bias modifies interactionsg first
employ a derivation different from the path integral
approachin Sec. IIl A. Based on the procedurein

ﬁlherefore, biasing with Eq. (32) amounts to changing the

rQ‘[rength of particle interaction by a factor;k specifically

for any pair fi; jg, which is the main result of this section.
While energy flows are sustained by explicit nonequili-

brium forces in Sec. Il, we now maintain a nonzero average

for E; by a biased sampling of trajectories.The corre-

sponding noise realizations can be thought of as an external

Refs. [38,50], the auxiliary physical dynamics, which protocol, which leads to modifying the energy landscape

has the same statistical properties as in the biased ensemn) qm’pled by. thg b|ased_ system as given in E§7). Note .
. . . that’the tuning interaction strength between targeted pairs is
can be constructed by solving the eigenvalue equation o . . o
qualitatively consistent with the effect of external driving.

X Indeed, phase separation in mixtures of driven and undriven
Lp Kj E; GOofryg; kP ¥4 AOkPGRg; kb;  633b  particles, reported both experimentally and numerically,
i can be rationalized in terms of an effective decrease of
specific interactions between these particles [21,23].
where the eigenvalue arametrized by K, is the scaled Moreover, the techniquesin Sec. Il A allow one to
cumulant-generating function appropriate tp.EHhe aux-  anticipate the trajectories generated ligher order when
iliary dynamics is then defined by replacing the interactiomow biasing with Eq. (32). To this end, we consider the
potential in Eq. (28) by the following auxiliary potential:  ensemble where the first-orderdynamics, given by the
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R

potential (37), is biased with exp’z £dsbds defined in

terms of
X

1
eVa
4yT "

ij

As detailed in Appendix C, this ensemble is equivalent to
biasing the original dynamics (28) with Eq. (32). Thus, the

2

Kij VV/5i0sP — rdsb -

038b

effect of higher-order bias on trajectories amounts to
maximizing the squared forces in the integrand of
Eq. (38), which effectively tends to clusterparticles for

both signs of K; .

iliary potential and higher-ordersymmetric bias can be
extended to a generic class of biases of the form TEx4

qualitatively different from, the escape rate used to promote
dynamical heterogeneity in glassy systems [41,109]. In our
case,clustering is favored for both positive and negative
bias parameters;k In particular, this resultis in contrast

with the emergence of a hyperuniform phase, where large-
scale fluctuations are suppressedgported when biasing

some hydrodynamic theories of diffusive systems [110].

C. Numerical sampling of biased structures

To illustrate the potentialof our bias to control liquid
properties,we focus in whatfollows on the specific case
Finally, the decomposition between the first-order aux- k; % k§.q 8.q , where all pairs between a subsed and
other particles are biased with the same strength k. Here, the
set Q could, for instance,refer to some tracer particles

LAGr; - r; b for an arbitrary observablg, A: The correspondmmersed in the liquid, to connect with the settings
ing first-order auxiliary potentialV p 2 ;; k;j Adr = r;P  in Sec.ll.

is now complemented with the higher-order bias (38), To confirm numerically the validity of our approach, we
where A replaces v. Such a bias is reminiscentof, yet first probe the range of the first-order auxiliary dynamics

vo/T =4 vo /T = 12
50 4 » (Eij)w — Auxiliary dyn. (a) 50
SY) O Biased ens.
JEQ
0 _W 0
— [©)
o ©
—50 4 —50
Reduced pair Increased pair
interactions interactions
—100 —+ —100
K
I I I I I
—0.4 —0.2 0.0 0.2 0.4 0.6
vo/T =4
(c)
) 10° E E
x  Aux.dyn. Bias. ens. : r ]
—0.1 _ . - 4
0.1 1 107t 4 i
0 — — i E._ ;
r/o 10—2 4. i
T T T T T i T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

P
FIG.5. (a),(b) Average biasing observable_q.q hEji, %  icqjeq hLVOR = 1 P{=T as a function of bias parameter k, where L
and v, respectively, denote the evolution operator and the pair potential of the equilibrium dynamics (28). Results from the first-order

auxiliary dynamics (solid lines) and from a direct sampling of the biased ensemble (circles) coincide for a finite range of k. (c),(d) Bias

density correlation gas a function of interparticle distance r=o obtained from auxiliary dynamics (solid lines) and direct sampling
(dotted lines). At leading order, our dynamical bias effectively renormalizes the potential v by a factor « for specific pairs of particles
fie Q; j ¢ Qg, in satisfying agreement with direct sampling. This renormalization illustrates the control of liquid structure at small k
and weak interactionsSimulation details are in Appendix A.
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where interactions are predigted to be simply renormalize¥et, note that the peak value is comparable for k % 0.1, in
We compare measurements of ..o hE;i,, where h-p  agreement with Eq. (38) being symmetric in k. Altogether,
denotes an average in the biased ensemble, obtained frotihese results demonstrate that our bias modulates the liquid
simulations with the renormalized potentials in Eq(37)  structure in a controlled manner for a small bias and weak
and from a direct sampling of the biased ensemblelhe interactions as predicted by E¢37).
latter is implemented with a cloning algorithm which Finally, we probe numerically the effect of a large bias
regularly selects and multiplies rare realizations foeffi-  (jkj > 1) using direct sampling,to explore configurations
cient sampling [46,63-68].For convenienceijnteractions  significantly distinct from the one of the equilibrium
are now given by the soft-core potential vérb %  dynamics (28). The particles spontaneously tend to cluster
Vo expf-1=%1 - djrj=dg0do - jrjb. For weak inter- for both positive and negative kas shown in Fig.6 and
actions (y ¥ 4T), we observe a very satisfying agreementmovies in Ref. [73]. This result confirms the propensity of
between the two measurements for a finite range ofas trajectories to maximize interaction forces at a high bias, as
reported in Fig. 5(a), which supports the validity of our ~ captured by Eq. (38). Importantly, the shape of clusters
perturbation up to an interaction Change between —20% differs depending on the sign of k: A micellelike structure
and p40%. The range of validity decreasesas v,=T featuring the particles in Q at the core (blue) surrounded by
increasesas shown in Fig.5(b), and we expect a similar  others (red) appears for k 72 —3whereas clusters have a
trend when also increasing the number of biased pairs. random composition fork % 3. Again, this result agrees

To explore further the features of this biased ensemble With the renormalized interactions being either increased
we nowcompare the density correlations of biased pairs (K > 0) or decreased (k < 0).In practice, the interaction
GOrP ~ i gjuq NBOr — g pr;Pj obtained fromboth  strength changes sign when k < —1 according to Eq. (37),
direct sampling and first-order auxiliary dynamics. For SO that the red-blue pairs are effectively attractive for
k% 0.1, we observethat the structural modification K 74 ~3. To optimize the overall energy, the most favorable
induced by the bias becomesmore dramatic as vo=T configuration th.en cgnsists in maximizing .(min!mizing) the
increases. The agreement between the cloning and auxilig¥grap of particlesin Q (not in Q), which, in turn,
dynamics is good for the whole curve when vo=T Y 4, stabilizes a cluster of blues surrounded by reds. In general,

whereas a deviation appears beyond r=g when two types of configuration should generically be stabilized

Vo=T ¥ 12, as shown in Figs. 5(c) and 5(d). In both casesf,or a given interaction potential v, depending on the sign of

the region of particle overlap r < o is well reproduced. th(_a b_ias. Overall, thi_s result _establishes a reliable proof of
These results corroboratethe ability of the first-order ~ Principle for the design of tailored self-assembled struc-
auxiliary dynamics to capture interaction changesas a  tures with our specific choice of biased ensembles.
simple renormalization ofthe potential strength.In con-

trast, the tendency for particles to cluster, manifest numeri- D. Bias-induced collective motion

cally in the increased peak value at r = g, is a higher-order As a final illustration of how collective effects can
effect missed by this auxiliary dynamics whey¥V % 12.  be controlled by dynamicabias, we consider a modebf

(o) Dad LWlaan vniaanlls () v ccornoniia otat o (N NMirnd aliacotarin e
U N (S} 2 (S}
Lo TN
-

@ [ ] oap | | ’9.
| e o | W
n® o

K=-3 e L A k=3

FIG. 6. Configurations obtained from a direstampling of the biased ensemble where the pair interactions between red and blue
particles are selectively modified. In the unbiased dynamics (k %4 0), interactions are purely repulsive with a soft core which has a simi
strength for all particles, either red or blue, so that the system is homogeneous. The dynamical bias promotes clustering for both signs
K, yet it changes interaction selectively for either sign. The repulsion is increased between red and blue particles for k %4 3, and their
interactions become effectively attractive for k %2 —3. As a result, the clusters which emerge spontaneously have different structures:
either a random composition of mixed reds and blues (k % 3) or a micellelike structure with a blue core (k ¥4 —3). This result illustrates
how biasing specific pairs leads to supervised spabi@anization Simulation details are in Appendix A and movies in R€¥3].
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self-propelled particles where interactions are now medi- the corresponding hydrodynamic equationgredicts the
ated only via the angular dynamics [69]: transition to occur when 2D, % p.py [69]. In what
X follows, our aimis to show that such a transition can
r; vaVoud8b; 6 %up  TOQ-6;r-r;ppndth; alsobe mediated by tuning interactions with a dynami-
j cal bias.
539b To this endpwe take the biasing factor in path proba-
bility as exp’zi Eg0sbds, where the biasing observahje E

where V, denotesthe self-propulsion velocity, usep % €ads

dcos 0; sin b is the unitector, and i, is the rotational 1X 5 u X

mobility. The term pjis a zero-mean Gaussian white noiseEg 2 — 5 0 D—r TOR-B;r—rp
i r ok

with correlations higtPpd0Pi 2 2D, 56tb given in terms i
of the rotational diffusion coefficient D,. To promote xToQ-6;r-rb: 840b
alignmentbetween neighboring particleswe choose the P

pairwise torque as T 80; rb % @80 - jrjb sin 62Brikhis  1he average value hft is proportional to dd=dtb ;; x
dynamics was originally introduced as a generalization ofhcosd6- 8;POda - jr—r;jPi, which vanishes in the

the Vicsek model to continuous time [25]. Thus, it exhibitssteady state.Then, following the procedure detailed in

a transition between a isotropic state for smalensity =~ Sec. Il B, we deduce that biasing the dynamics (39) with
and large noise [Dand a polar state for large densifyapd  Eg amounts to considering renormalized interactions of the
small noise D). In practice,the linear stability analysis of form

Isotropic state Polar state
T 2L =
e B B e D) NN O
\ y - >r ~ i e i \ N
2 e (S v o
Q) SN \ = VT
A |t T > e e i o x \\\\««7\1\\ N
= P = \ \:’_> \ il
= 2 W \\,\g&‘:\\
/ = T l 4 < J < l\\\:_’)&\\ \\
Vi \ / ~N > / / p \\\/\
‘¢ l» = \T i 4 - —f \ : \\/
~ Sapa /T
e R *"Zﬁ;»’/ (@) 5
\ /
E Pl I —# 4 ﬁ«/—‘_/{; //%/ ! T
> / B g - = Atﬂ ! -
*QH <\ \ )/ \ T/7‘ // f/ e
ey A 7
v _3 : v 7 - 0 /
\\ \ \/\2 J \ ” ¥,
Y s - t
N
f \/\ % P i i
. A i aaesn il & =
k=-02 k=0 k=02

FIG. 7. Configurations obtained from a direct sampling of the biased ensemble for aligning self-propelled particles. The color code
refers to the orientation of particles. In the unbiased dynamics (k %4 0), we observe isotropic and polar states, respectively, at large no

(D, > D) and small noise (B< D ,). Here, the critical noise is s 8, and we take the noise values/X7; 9g for, respectively, the

polar and isotropic regimes. The dynamical bias leads to renormalizing interactions in a controlled manner, which effectively changes
the transition threshold as B D .61 b kb at leading order. As a result, one can stabilize either isotropic or polar states, respectively, for
K <0 and k > 0, thus illustrating the ability to trigger or inhibit collective effects in nonequilibrium systems. Simulation details are in

Appendix A and movies in Ref[73].
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T v 61 b kPT p O6K2b: 041 dynamical heterogeneitiesithout affecting the structure,
of kinetically constrained models [39-43]. Yet, more recent

Thus, by promoting a nonzero average forEg, aligning  studies show the potential to also modify density correla-
interactions can be tuned in a controlled manneat first  tions in diffusive systems [48,49,112].
orderin k. A higher-order bias leads to maximizing the Using these large-deviation techniques, we put forward a
squared torqueas presented in Appendix C. particular set of biased ensembles which allows one to

We test this prediction numerically using a direct regulate the liquid structure in a controlled mannerThe
sampling of biased trajectories We consider valuesof ~ explicit form of the bias is motivated by the relations
fD ,; 4; @Y above and below the threshold, D4 . p,=2, between dissipation and structure that we derive for driven
where the system exhibits either isotropic or polar states iiquids. At leading order, any bias in this class simply leads
the unbiased dynamics (k % 0), as shown in Fig. 7.  tointroducing additional interactionsin the dynamics.
Specifically, when the original systemis isotropic Furthermore, a higher-order bias systematically constrains
(D, > D,), we observe a transition to polar for k>0, the trajectories to favor the formation of clusters. Based on
and, conversely, when it is polar (B D ,), a transition to  minimal case studies, we sample the biased configurations,
isotropic for k < 0. This observation confirms our result using state-of-the-art numerics [46,63-68], to illustrate the
(41), where the bias amountsto changing the angular  ability to stabilize specific structures and collective effects
mobility aspi. % 61 p kPpp O8k2b for weak k, so that the in a controlled manner.
linear instability is either triggered or suppressed by solely Since dynamicalbias consistsin favoring rare noise
tuning k, all other parameters being held the sankhus, fluctuations, the corresponding dynamics effectively
these results demonstrate how biasing the dynamics withpiievides useful insights on how to promote atypical
appropriate observable leads to control of the emergenceasinfigurations with an external drive. In practice, the
spontaneous organizatiowjth potential interest for other ~ driving protocol should simply mimic the biased noise

nonequilibrium dynamics. realizations. This line of thought has already been
exploited for efficient sampling of the biased ensemble
V. CONCLUSION [45,65,113,114],where control forces make rare events

) ] ] become typical.Moreover,since our analytic framework
Developing techniques to characterize and contrle ocompasses the case of a specific bias for each pair of

behavior of systems operating far from equilibrium remains,icie it could potentially be regarded as a fruitful route
a central and outstanding problem. Despite the apparently promote the spontaneousself-assembly of complex

complex interplay between internal dissipation and emergsiqctyres athe costof energy dissipationFor instance,
ing properties, we demonstrate thatiracer diffusion and inspired by recentworks [115,116], one might consider

density correlations can simply be connected to dissipatiog approach to design energetic landscapésterms of

in driven liquids. We also constructa mapping between o hair_specific bias parameterashich selectively stabi-
deterministic and active drives for a specific active matter”Ze some targetmolecules.

model, thus showing how our approach can potentially be Overall, these results illustrate how specifying the
extended to a broad class of systems.Importantly, our  ,m6unt of energy dissipated by nonequilibrium forces
rgsults open promising perspectives to evalu_ate d|33|pat|05]|ows one to constrain the dynamics and structure of
simply from the structure of the system. Inspired by recenfyiyen liquids. This constraint paves the way towards
works [18,111], one could also introduce @ map of  ,ngling the emerging properties of such systems by
dissipation,directly related to the statistics of interaction tuning dissipation accurately. It remains to investigate
forces, to resolve spatially where energy is released in thgpether similar results can be obtained in more complex
thermostat. Though the correspondingintegratedmap gy stemswhich could, for instance, potentially include

would not cover the total dissipation,it would already — jhistropic building blockssuch as driven chirabbjects
provide insightful information about locations of low and or active liquid crystals [27,117,118].
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by the University of Chicago Materials Research Science |n Sec. Ill D, a custom code of molecular dynamics
and Engineering Center, which is funded by National  based on the finite time difference is used to perform the
Science Foundation under Grant No. DMR-1420709. simulations.N % 128 particles are simulated in a two-

S. V. acknowledges supporfrom the Sloan Foundation  dimensionalbox of size 40 x 4g with periodic boundary
and startup funds from the University of Chicago. S. V. angbnditions. To sample the biased ensemblewe use the

L. T. acknowledgesupport from the National Science  cloning algorithm described in Appendix A in Ref[65].
Foundation under Grant No. DMR-1848306. E. F. is  The time interval for cloning is At % 103t, and the number
supported by an Oppenheimer Research Fellowship fromof clones is 200. The time step is 8t % 1) and the total

the University of Cambridge and a Junior Research simulation time is 500At. Parametenalues are \j, % 2,
Fellowship from St.Catherine’s College. b %2, p0 %8 and g % 1.

APPENDIX A: NUMERICAL SIMULATIONS APPENDIX B: DISSIPATION AND DIFFUSION

In Sec. Il A, a custom code of molecular dynamics, basedThis Appendix is devoted to the derivation of the
on the _finite_ time dif_ferenc_e, is used to perform the dissipation rate J and the diffusion coefficient D of a
simulations in a two-dimensionalbox 10?0 x 1o with  griven tracer, as defined in Sec. II. We employ a perturba-
periodic boundary conditions. The time step is 5t %410 tive treatmentat weak interactionspriginally introduced
and the initial condition is homogeneous. Parameter valugg, 5 particle driven at constant force in Reff52,53]. To
are p %4 0.7, T%0, y%1, £%3x1072, 1%10°,  this aim, the tracer-bath interaction potential v is scaled by a
Vo % 5,n % 1, and g % 1. small dimensionlessparameterh << 1 in what follows.

In Sgcs. IBandllC, nume_rical simulations Of_ the Besides,we focus on the regime of dilute tracerso that
dynamics (1) are performed using the LAMMPS simula- jteractions among thereither direct or mediated by the
tion package in a two-dimensional boXd & 1(a, where bath, can be safely neglected

g is the particle diameter, with periodic boundary con- The dynamic action associated with the tracer dynamics

" . p
ditions a.t average density g % 0.45. Our 'custom pode (11) and (12) follows from standard path integral methods
actually implements overdamped Langevin equations of [99,100]. It can be separated into contributions from the

motion with the finite time difference. It simply utilizes thef ¢ " dqf it f tvel
efficient force computation routines that are built as a part ree tracer motion and from interactions, - respectively,

of the moleculardynamics packageThe system is first ~denoted by A and Ain:

relaxed for 1§ conjugate gradient descent steps and later 7

equilibrated during 501.We evaluate average values over 1 S s - =

ten independentt?ajectories with durationg150T. The Ao Tor 72 = F=yP b Dyrodt;
density pair correlations are constructed using ten inde- hzz q Z Z s
pendenttrajectories gach with duration 501.We perform Aint 7a— mjcﬂ jvogbf  ds  du
error analysis from the independent simulations and obtain v m - "”
negligible errors for all the data in Figs. 2—4. The time step
is 5x10*, and the bin size for computing the pair _ rdubP  q
correlationsis 0.01a0. We perform simulations at other X ro0sp - KOGb Vo : oB1p
values of the time step f10#; 10°g and of the bin size Y Yo

f5 x 10730; 2 x 10%ag to confirm that our calculations of R e .
the a coefficients are well converged. Parameter values ad1ere Do 2 T=y is the tracer diffusion coefficienin the

T% A,y %1% vo % 1,and 0 % 1. absenceof interactions (v % 0) and r,, is the process

In Sec. Il C, a custom code of molecular dynamics, coqjugated with the tracer position ry. For weak inter- .
based on the finite time difference, is used to perform the actions h << 1, any average value can be then expanded in
simulationsin a two-dimensionalbox 100 x 100 with ~ terms of h as h-i 4 hyi= h?hA-ig b Oh*P, where hyiis
periodic boundary conditionsWe bias the pair potential  the average taken with respecto A ; only. As a result,
between eight blue particles and 16 red particles. To  determining the first correction from interactions in any
sample the biased ensemble, we use the cloning algorithrabservable amounts to computing the corresponding aver-
described in Appendix A in Ref. [65]. The time interval — age hA.i,.
for cloning is At %4 108t, and the number of clones is Considering the dissipation rate per particle J =N %4
1600. The time step is &t % 1074, the initial relaxation hryi - Fy, the leading order isthi, - Fy Y4 jFqj?=y V4 f2=y,
time is 10*At, and the total simulation time is 1(PALt. and the first correction reads —h2hA,rgi, - Fg. Given
Parametervalues are T 41, y %41, vg Y24 (Fig. 6), the explicit form of A ; in Eq. (B1), the correlations of
and o % 1. interest are

x @D 6idj2Kaqbds-ubpiq-¥@sb-goub
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br oOtbY4q o Osb A 7460sP=50uR} | For the case of active drive with correlations (3), we exploit
_ D i 28t-ubbBiqeyb-  F(owbd the equivalencewith a disordered drive detailed in
%4 iqd6t — spe” Y ATV, Tatubal Sec. |l A. Substituting the explicitdrive (4) in Eq. (B4)
e BthiGOUD s 7250sP-50up and then averaging overdisorderin the limit of many

oscillators (n > 1),we get

where we use thatthe tracer statistics is Gaussian in the pzz o
absence of interactions, following Refs. [52,53]. From this; _¢ 22y %_Néhf dgduwy’ jaj *jvéqpfdoui
result,we get dy*  o2mP! jqj*2QpbD cKogh?pow ¥

z DobD cKégb
h? dq . s DobD Kogb x %pOéﬁh“'f 4p; 6B6pb
_f 2\, 1 . 0 G ’ i
J v /4’;? SomE Fdétqufjvéqb?—RDOKéqp DKagp
x| queai2BpD GKeqpot-uppsig=yP:, Fydwbdw
bOf;\ 4p- 533p Where @b % 21=151p &%, yielding

where we use y 72 y=@ and Dg 72 pyDo. Expanding at

small f, we dedu;e Jot ey NTéhbeZ dq jqj2voqBt

—f 2=y 1 =

Nh?™ dq . ., DopD gKégbk dy? a2k DyKagb

= —EJQJ jvoqpf ————=—— 1

Zd\P o2 PoKdqP x bOsh*4; f4b:  8B7b
Tjqj *%2[pD cKdqb b 1 ’

J-f 2=y %

x dueTiai *@pD cKoaPdt-ub tddec’ﬁtID - fowb

—0 u
pOBh4; f4p: oB4b
The asymptotic results for the rate of wavki f2=y - J ,

Substituting the explicit expression of the deterministic presented in Sec.ll B for both deterministic and active
drive (2) in Eq. (B4) and then integrating over u and w, Weyrives.follow directly.

obtain We now turn to deriving the diffusion coefficient D. It is
4 e defined in terms of the mean-squared displacement (MSD)
J=f 22y 3 NOfEET dq 1 jvoqPf i hAr26tbivahVaBtbi-rodtHi as D % lim,.. hAr2atbi=2dt.
dy*  62mRigj*%RbD cKqP?pw At leading order,the MSD reads hARStbj % 2dDgt. To
N DopD GKéqbboéh 4. fp: 5B5b obtain the first order, we need to compute the following

DKdgb correlations:

R
hArRBtD4q oOSPd ¥4595P-10uP; | 1/, —43 D =ybjqfds — upOBt — sp R *ot-uPbdia=v:, Fdéwlzdvy

hArBthRgOUD FoOsbét 0sP-0ub | v, 52=7bO3t - sbY4gdj20s — up — 1 §Pold0-uPboia=y>:, Fudwidy s,

where we use again that Ais Gaussian in terms of , yielding
z z z
. 20" dq jgjZjvoqbf Tt S
hArcz)étbl - 2dD)t Ya 7 WTCID B :S . de2Jq_] 2%@b D GKéqbéS -ub - 1g

" e_jqj21/z|abD GKéqbés—ubpéiq=yb-jFdéwdep 08h%b: 5B9b
Expanding at smalf, we get

z z  z
2h2 . -4- t
hargotei - 200 % = 1o %% ds  duf2igj 2%Bp D oKogbds — ub — 1g
Z —0 —0

x "I 48D cKoaPos-uP Gy dwoF ,ow b - Edweb p OBH: F4P; 3B10p

u
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where D4 refers to the diffusion coefficient in the absence
of driving force (f ¥4 0). For the deterministic drive (2), the

explicit time integrations give
ohfE? z dq jaj2jvoqbf
dy*  82mBKagb ¥ D gKdgP
5jqj*72@ b D gK8qP* b w?
X
fiaj *72@b D cK8qP? b w?g?
b Odh*; f4b:

D-Deg%

oB11p

2
80 Ya i Kij VkA’%‘bsb - Jr63b . oC2pb

vT ki

Obtaining the equivalence between (a) and (b) amounts to
showing that their path probabilities are similar. The

corresponding dynamicactions, denoted by A %°®tb Y4
« SAX®sbds for o % fa; bgare given by

1 1
Using the mapping in Sec. Il A for the case of active drive Ay % myzﬁk bVV2- Z/VEV

with correlations (3),we deduce
ohf2 % dgdu®  jgj3veqbidause
D-Deg% 1
dy* 32T KaqbY4fb D gKoqp
5i0j*4B p D gKEqb? p 6w
X
fiaj *%2 b D cKdqP? b uFg?

b Odh*; f4b;

where again ¢80 4 21="21 p &, yielding

ehi2Z dg jvéqbt

dy¥  62mPKagPYAb D gKagh?
. 5Tiaj2%@b D gKagb b 3

friqj 2%l b D gKdqb p 1g?
b O8h*; f4p:

oB12pb

D-Deg%

0B13pb

Finally, we obtain the expressionsin the asymptotic
regimes,as reported in Sec. |l B for both deterministic
and active drives.

APPENDIX C: EQUIVALENCE OF BIASED
ENSEMBLES

In this Appendix, we demonstratethe equivalence
between specific dynamicabiased ensemblesFirst, we
considerensembles related to the equilibrium dynamics

1 X
YT 2TY = ViV -V Ad; —rjp  6C3P
1)
and
AP, 1 V.V 2X — p2
k 44YTYr_kb VP2 Ky ViAdr T
[N
1, X
_ka Vb2 - Kij AGK = r; P
1)
1 X 2
_Y_T B Kj ViKASE =P 8C4b
N
Expanding A°in Eq. (C4) and comparing with A”"in

Eq. (C3), it appears that ®°and A’*"gse indeed equal up
toa boundary term proportional to ~ ;; k; fAG’210tP —
rj6tp — A%00P — r60Pg which can be neglected at large
t: This resultestablishes the equivalence between ensem-
bles (a) and (b).

We now turn to demonstrate the equivalence between
two ensembles related to the Vicsek-like dyspiamics (39).
Ensemble (c) is biased with the factor exp2kEq0sbds,
where F is defined in Eq. (40). Ensemble (d) corresponds

(28)PEnse le (a) corresponds to biasing with the factor to the first-order auxiliary dygamics, with the torque given

exp”z i; Kj o Ej 0sPds in the path probabilitywhere

X
%TY‘VKV -V kAér, - rjb:
k

1
E Y 6C1P

Ensemble (b)is associated with the figst-orderauxiliary
dynamics,whosg, potential reads V p 2 ;; k; Adr, —r; b,
biased with expte®Bsbds,where

|

By | g - XT(’:S —8ir-rb
i 44—Drei Ur. 8-6,r-r p
J

ur X

2 . % °"D,

T("SQ—GK, ri—rka("S@—G-;ri—rjb

by 61 b kPT biased with exp’teqdsbds,where

X
89146}(”!:?

6C5p
4D ik

TOQ—6y; r—rPT 08-6;;r-r;b:

The dyn%ni actions for each ensemble, denoted by
BO®Btb Y4 BX*®sbds for o Y fc; dgare given by

b o X

Za_el J Té@—e,r,—rjb

oCep
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and
odp,, 1 X
B 6 -61pKkPy To-6:r-rb b
4D, J.
X
L T 8§~ 61— rbT 86~ 61— r;b:
4D,

Jik

Expanding E’?dbin Eq. (C6) and comparing with E’fc':in
Eq. (C7), it appgars that’Band B?"differ only by a term
proportional to  ; §T 6@ - 6;; r; — r;P which can safely
be neglected at large t, thus proving the equivalence
between ensembles (c) and (d).
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