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The dynamics and structure of nonequilibrium liquids, driven by nonconservative forces which can be
either external or internal, generically hold the signature of the net dissipation of energy in the thermostat.
Yet, disentangling precisely how dissipation changes collective effects remains challenging in many-body
systems due to the complex interplay between driving and particle interactions. First, we combine explicit
coarse-graining and stochastic calculus to obtain simple relations between diffusion, density correlations,
and dissipation in nonequilibrium liquids.Based on these results,we considerlarge-deviation biased
ensembles where trajectories mimic the effect of an external drive. The choice of the biasing function is
informed by the connection between dissipation and structure derived in the first part. Using analytical and
computationaltechniques,we show that biasing trajectories effectively renormalizes interactions in a
controlled manner,thus providing intuition on how driving forces can lead to spatialorganization and
collective dynamics.Altogether,our results show how tuning dissipation provides a route to alter the
structure and dynamics of liquids and softmaterials.
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I. INTRODUCTION

Nonequilibrium forces can drive novel and specific
pathways to modulate phase transitions and self-assembly
in materials. The close connection between the netdis-
sipation of energy, powered by these forces, internal
transport,and spatialorganization is especially apparent
in living systems [1–4]. As an example, the flagella motors
of Escherichia coli exhibit a unique phenomenology
combining ultrasensitive response,adaptation,and motor
restructuring as a function of the applied load [5–7].
Moreover,in vivo studies of the cellular cytoskeleton,as
well as in vitro experiments on reconstituted systems, also
show thatmotor-induced forces controla large variety of
functionality in the cell [8–12].

To elucidate the role of nonequilibrium forces in materi-
als, it is crucial to examine how dissipation affects the
emerging dynamics and structure. While equilibrium

features are well established, progress in controlling systems
with sustained dissipation is hampered by a lack of general
principles [13–19]. In this context, minimal models of active
and driven systems provide analytically and numerically
tractable test beds to investigate the interplay between
dissipation and materialproperties far from equilibrium
[20–24]. They illustrate, for instance, how nonequilibrium
driving can induce phase transitions and excite novel
collective responses in softmedia [15,21,25–27].Recent
theoretical work proposes extending equilibrium concepts
to active media, such as the definition of pressure [14,28], to
rationalize their phenomenology [29,30].Others strive to
obtain stationary properties of active matter through per-
turbation close to equilibrium [16,31,32], inspired by other
approaches on driven systems [33–36].

To investigate how dissipation controls emerging behav-
ior, yet another approach focuses on introducing a bias in
dynamical ensembles.Using large-deviation techniques,
trajectories are conditioned to promote atypical realizations
of the dynamics [37,38].Such techniques are used,for
instance, to investigate the role of dynamical hetero-
geneities in glassy systems [39–45] and soliton solutions
in high-dimensional chaotic chains [46,47]. More recently,
it has been shown thatchanging dissipation,through a
dynamical bias,strongly affects the internal transport and
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the density fluctuations of nonequilibrium liquids [48,49],
thus confirming that controlling dissipation is indeed a
fruitful route to tailoring material properties.In spite of
these advances,anticipating the emergentdynamics and
structure of biased nonequilibrium systems is stillchal-
lenging in the presence of many-body interactions [38,50],
so that precise control has remained elusive so far in this
context.Consequently,any generic principle rationalizing
spatial organization in terms of dissipation is still lacking.

In this paper, we explore how dissipation affects the
dynamics and structure of many-body diffusive systems.
First, we consider in Sec.II two types of assemblies of
Brownian particles: one in which only a subset is driven by
an external force and one in which a subset of the particles
experience an internal active force. We first focus on
instances where the fraction of driven particles is less than
the fraction of undriven particles, so that driven and
undriven particles are,respectively,referred to as tracer
and bath particles. Using the diffusion coefficient of a
tagged tracer particle and the density correlations between
tracer and bath particles,we connect dissipation to liquid
properties.In contrast to Ref. [23], our prediction for
diffusion follows from a systematic coarse graining with
explicit dependencein terms of microscopic details
[51–53].

Next, importantly, we put forward a generic relation
between density correlations and dissipation valid for an
arbitrary driving force: This relation is our first main result.
We demonstrate thatthis result holds both for fluids in
which a fraction of the particles are driven by a fixed
external drive and for fluids in which either a fraction of the
liquid or the entire liquid is driven by an internal noise,
analogousto the driving used in model active matter
systems.This result opens the door to estimating dissipa-
tion directly from the liquid structure, in contrast to
previous approaches based either on perturbing the system
[54–58] or on analyzing trajectories and currents in phase
space [3,59–62].We illustrate this resultwith numerical
simulations for which dissipation is quantified by the
deviation from equilibrium tracer-bath correlations.
Using these results as a basis,we also show how various
aspects of the pair correlation function of a nonequilibrium
liquid are effectively constrained by the energy dissipation.
Altogether, this set of results clarifies how nonequilibrium
forces affect the transport and structure of the liquid, thus
showing how liquid properties can be modified at the cost
of energy dissipation.

Motivated by these results, and to provide concrete
intuition for how particular configurations can be stabilized
by nonequilibrium forces, we next investigate in Sec. III the
emerging structureof Brownian particles subject to a
dynamicalbias.The explicit form of the bias is inspired
by the results of Sec.II connecting dissipation to many-
body interactions. Using analytical calculations and
numerical simulations based on the cloning algorithm

[46,63–68], we show that biased sampling trajectories
can be used to renormalize any specific interparticle
interaction in a multicomponent liquid. The rare noise
fluctuations sampled with dynamical bias effectively drive
the system away from typicalbehavior [38–45,50].Such
noise realizationscan then serve as proxies of how to
control the dynamics by applying an externalforce with
complex protocols. We also illustrate the generality of our
ideas by considering an assembly of aligning self-propelled
particles [69]. Specifically,we show how biased energy
flows can renormalize interactions between particles and
stabilize a flocking transition.Overall, our results lay the
groundwork for precise controlof the emerging structure
and collective dynamics in many-body diffusive nonequi-
librium systems.

II. DISSIPATION AND LIQUID PROPERTIES

In this section, we provide a series of relations between
energy dissipation and liquid properties in nonequilibrium
liquids. Specifically, we consider interacting Brownian
particles where a specific setof particles Ω is driven by
a nonconservative force Fd;i :

γ_r i ¼ δi∈Ω Fd;i − ∇ i
X

j
vðri − r j Þ þ ξi ; ð1Þ

where δi∈Ω ¼ 1 if i ∈ Ω and δ i∈Ω ¼ 0 otherwise. The
driven particles belonging to the setΩ are referred to as
tracers and others as bath particles. The fluctuating term ξi
is a zero-mean Gaussian white noise with correlations
hξiαðtÞξjβ ð0Þi ¼ 2γTδij δαβδðtÞ,where γ and T, respec-
tively, denote the damping coefficient and the bath temper-
ature,with the Boltzmann constant set to unity (kB ¼ 1).

A. Deterministic vs active drive
In what follows, we consider two types of drive: (i) an

external force following the same deterministic protocol for
all driven particles and (ii) an internal force given by a noise
term independentfor each driven particle. Building on
recent work [21,23],we take for drive (i) a time-periodic
protocol given in two dimensions by

FdðtÞ ¼ f½sinðωtÞêx þ cosðωtÞ̂ey; ð2Þ

where f and ω are, respectively,the amplitude and the
frequency of the drive,so that the drive persistence reads
τ ¼ 2π=ω. The relative strength of the drive is given by the
Péclet number Pe ¼ σf=T,where σ is the typical particle
size [21,23]. In the absence of interactions (v ¼ 0),the
average position of driven tracers follows a periodic orbit,
describing a circle in two dimensions.In contrast, drive
(ii) corresponds to a random self-propulsion as is often
considered in active liquids [70–72]. Specifically, we use a
set of zero-mean Gaussian noises with correlations
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hFd;iαðtÞFd;jβ ð0Þi ¼ δij δαβ
f 2

d
e−jtj=τ ; ð3Þ

where d is the spatial dimension. The parameters f and τ,
respectively,control the amplitude and the persistence of
fluctuations.

Interestingly, the active force with correlations (3) can be
obtained from a generalized version ofthe deterministic
force (2) where each particle i is now subjected to an
independent drive. The period of the orbit is determined by
a series of n oscillators with identicalfrequencies for all
particles yet independentamplitudes:

Fd;iðtÞ ¼
fffiffiffiffiffiffi
nd

p
Xn

a¼1
½Aai cosðωatÞ þ Bai sinðωatÞ: ð4Þ

The essential ingredient of the mapping into active force is
to implement disorder in the drive, which is done by taking
the oscillator amplitudes as uncorrelated zero-mean
Gaussian variables with unit variance:

hAaiαAbjβ i d ¼ δabδij δαβ ¼ hBaiαBbjβ i d; ð5Þ

where h·id denotes an average over the disorder. It follows
that Fd;i is also a Gaussian process with zero mean and
correlations given by

hFd;iαðtÞFd;jβ ð0Þid ¼ δij δαβ
f 2

nd
Xn

a¼1
cosðωatÞ: ð6Þ

In the limit of a large number of oscillators (n ≫ 1),we
express these correlations in terms of the density of driving
frequencies ϕ as

hFd;iαðtÞFd;jβ ð0Þid ¼
n≫1

δij δαβ
f 2

d

Z
ϕðω0Þeiω0jtj dω0

2π
: ð7Þ

This expression establishesthat, in the limit of many
oscillators, the deterministic drive (4) with disordered
amplitude is equivalentto a noise term with spectrum ϕ.
In particular, by choosing ϕðω0Þ ¼ 2τ=½1 þ ðω0τÞ2, the
drive correlations (7) reproduce exactly the ones ofthe
random force in Eq.(3).

To illustrate the relevance of this mapping, we simulate
numerically the many-body dynamics (1) where every
particle is subjected to a disordered drive of the form
(4). We use the potential vðrÞ ¼ v0ð1 − jrj=σÞ2Θðσ − jrjÞ,
where Θ denotes the Heaviside step function,which sets
purely repulsive interactions. To implement numerically the
disorder in driving, it is sufficient to sample the amplitudes
fA ai ; Baig and frequencies fωi g at the initial time. In the
regime of high persistence τ and large average density ρ0,
we observe the spontaneous formation of clusters up to a
complete formation at a large time; see Fig. 1. This
formation is analogous to the motility-induced phase

separation commonly reported in standard models of active
particles [13,26]. Interestingly, it appears in our case even
in the absence of fluctuations (T ¼ 0), namely, for a purely
deterministic set of equations.

In short, we thus demonstrate that the disordered drive
alone reproduces the emerging physics of active systems.
This important result bridges the gap between two main
classes of nonequilibrium liquids, where the driving force
stems from either a deterministic protocolor a random
noise.In what follows, we obtain analytic and numerical
results for both drives to illustrate the broad applicability of
our framework, ranging from systems driven by determin-
istic fields to active matter systems.

B. Dissipation controls tracer diffusion
To connect tracer diffusion with dissipation, we first

describe the dynamics of undriven particles in terms of a
coarse-grained variable.Using standard techniques,the
dynamics of the density field ρðr; tÞ ¼

P
i∉Ω δ½r − ri ðtÞ

can be written as a nonlinear Langevin equation [51]. In the
regime of weak interactions, the density fluctuations
δρðr; tÞ ¼ ρðr; tÞ − ρ0 around the average density ρ0 are
Gaussian and captured by the following Hamiltonian
[53,74,75]:

H ¼
T
2

Z
δρðrÞKðr − r0Þδρðr0Þdrdr0

þ
Z X

i∈Ω
vðr − r i ÞρðrÞdr; ð8Þ

where KðrÞ ¼ δðrÞ=ρ0 þ vðrÞ=T. Note that density fluc-
tuations remain generally Gaussian even for a homo-
geneous active liquid [70]. The conserved density
dynamics reads

FIG. 1. Snapshot of particles subjected to a disordered drive. A
phase separation emerges which is analogous to the motility-
induced phase separation of active particles [13,26].Simulation
details are in the Appendix A and the movie in Ref.[73].
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∂δρðr; tÞ
∂t

¼ DG∇ 2
Z

Kðr − r0Þδρðr0; tÞdr0

þ
1
γG

∇ 2
X

i∈Ω
v½riðtÞ − rj ðtÞ þ ∇ · Λðr; tÞ; ð9Þ

where DG ¼ ρ0T=γ and γG ¼ γ=ρ0 are, respectively,the
field diffusion coefficient and the field damping coefficient.
The term Λ is a zero-mean Gaussian white noise with
correlations hΛαðr;tÞΛβðr0;t0Þi¼2DGδαβδðr−r 0Þδðt−t0Þ.

Owing to the linearity of the density dynamics (9),
it can be readily written in Fourier space δρðq; tÞ ¼R

ρðr; tÞe−iq·r dr as

∂δρðq; tÞ
∂t

¼ −jqj 2DGKðqÞδρðq; tÞ

− jqj 2 vðqÞ
γG

X

j∈Ω
e−iq·r j ðtÞþ iq · Λðq; tÞ; ð10Þ

so that the field dynamics can be directly solved as

δρðq; tÞ ¼
Z

t

−∞
dse−D Gjqj2KðqÞðt−sÞ

× iq · Λðq; sÞ − jqj2
vðqÞ
γG

X

j∈Ω
e−iq·r j ðsÞ : ð11Þ

Considering the limit of dilute driven tracers, where
interactionsamong them are negligible, their dynamics
reads

γ_r j ¼ Fd þ ξ j −
Z

q
iqvð−qÞeiq·r j ðtÞδρðq; tÞ; ð12Þ

with
R

q ¼
R

dq=ð2πÞd. As a result, Eqs. (11) and (12)
provide closed time-evolution equations for tracers only. It
should be valid only for weak interactions a priori, yet
previous works show that it remains qualitatively relevant
even beyond this regime in practice [76–78]. Indeed,
Gaussian field theories for density fluctuations provide a
very good description of simple liquids [74].

To characterize the transport properties of the liquid in
the presence of driving forces, our first goal is to obtain an
explicit expression, in terms of microscopic details, for the
tracer diffusion coefficient:

D ¼ lim
t→∞

1
2dt

h½hri ðtÞi − ri ðtÞ2i: ð13Þ

We aim to explore connections between D and dissipation,
which is defined from stochastic thermodynamics as the
power of the forces exerted by all tracerson solvent:
J ¼

P
i h_r i · ðγ_r i − ξi Þi, where · denotesa Stratonovich

product[79,80]. Dissipation is directly related to entropy
production,as a measure of irreversibility,both when the

drive is deterministic [79,80] and when itis a correlated
noise [81–84].Substituting the dynamics (1),the dissipa-
tion coincides with the power of driving forces:
J ¼

P
i∈Ω h_r i · Fd;i i. Besides,replacing_r i by its expres-

sion in Eq. (1) and using the fact that ξi and Fd;i are
uncorrelated, we deduce that the dissipation can be further
separated into free-motion and interaction contributions as
J ¼ Nf 2=γ − _w, where the rate of work reads

_w ¼
1
γ

X

i∈Ω;j
hFd;i · ∇ ivðri − r j Þi: ð14Þ

Given that _w is the only nontrivial contribution to dis-
sipation, connecting diffusion and dissipation simply
amounts to expressing D in terms of_w.

Deriving transport coefficients in nonequilibrium many-
body systems,whose collective effects result from the
complex interplay between interaction and driving forces,
is a notoriously difficult task [85–89]. We set up a proper
perturbation scheme by scaling the pair potential v with a
small dimensionless parameter h ≪ 1 which controls the
coupling between tracerand bath. In Appendix B, we
obtain some explicit expressions for D and_w to quadratic
order in h and in the scaled driving amplitude Pe.

First, we discuss the case of the deterministic drive (2),
and we focus on the limits of small and large driving
frequency,respectively,ωτr ≪ 1 and ωτr ≫ 1, where the
relaxation timescale τr ¼ ðDG=σ2ÞKðjqj ¼ 1=σÞ is setby
density diffusion over the tracer size σ. First, at high
frequencies ωτr ≫ 1, the rate of work per particle_w=N and
the deviation from equilibrium diffusion D − Deq, where
Deq is the diffusion coefficient for Pe ¼ 0, are given,
respectively,by

_w
N

¼
hPe
ω

2
·
ðT=σÞ2

dγ3

Z

q
jqj 4jvðqÞj2

1 þ ρ0KðqÞ
KðqÞ

;

D − Deq ¼
hPe
ω

2
·
T=σ2

dγ3

Z

q

jqj 2jvðqÞj2

KðqÞ½1 þ ρ0KðqÞ
: ð15Þ

In the opposite limit of low frequencies ωτr ≪ 1, we get

_w
N

¼
ðhPeÞ2

dγσ2

Z

q

jvðqÞj2

KðqÞ½1 þ ρ0KðqÞ
;

D − Deq ¼
5ðhPeÞ2

dγTσ2

Z

q

jvðqÞj2

jqj 2KðqÞ½1 þ ρ0KðqÞ3 : ð16Þ

Both _w=N and D − Deq are now independent of the driving
frequency ω. As a result, our perturbation theory shows that
the scalings of_w and D − Deq are identical, in terms both of
the drive amplitude Pe and of its frequency ω, in asymptotic
frequency regimes.Note that the scaled rate of work
γ_w=ðNf2Þ coincides with the reduced equilibrium diffusion
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γDeq=T − 1 to this order [52,53],as expected from linear
response.

The case of the active drive with correlations (3) follows
by using the mapping between the disordered drive and
active forcing in Sec.II A. In practice,we first derive the
diffusion coefficient D and the rate of work _w for the
driving force (4) at fixed disorder, as a straightforward
generalization ofthe deterministic driving case,and we
then average over the disorder. At small persistence τ ≪ τr ,
we get

_w
N

¼
τTðhPeÞ2

dðσγÞ2

Z

q

jqj 2jvðqÞj2

KðqÞ
;

D − Deq ¼
3τðhPeÞ2

dðσγÞ2

Z

q

jvðqÞj2

KðqÞ½1 þ ρ0KðqÞ2 : ð17Þ

In contrast, the large persistence limitτ ≫ τr yields the
same results as forthe low-frequencies regime ofdeter-
ministic drive, namely,the expressions (16).Indeed,the
force Fd;i has a constant direction in such a limit, and the
difference between deterministic and active drives, which,
respectively,correspond to independentor similar direc-
tions for each tracer,is irrelevant in the limit of dilute
tracers.

When the size a of the bath particles is significantly
smaller than the tracer size σ ≫ a, which amounts to setting
different pair potentials v for bath-bath and for bath-tracer
interactions, one can safely neglect the variation of KðqÞ in
Eqs. (15)–(17), so that KðqÞ ≃ Kðjqj ¼ 1=aÞ. Then, in both
regimes ωτr ≫ 1 (τ ≪ τ r ) and ωτ r ≪ 1 (τ ≫ τ r ), the
renormalization of the diffusion coefficient D − Deq can
be simply written in terms of the rate of work per particle
_w=N for Pe ≪ 1 as

D − Deq

σ2 ∼
_w

NT
: ð18Þ

Thus, the excess rate at which tracers move over their own
size compared to equilibrium, set by the lhs of Eq. (18), is
controlled by the rate at which work is applied on tracers by
nonequilibrium forces,set by the rhs of Eq. (18). The
proportionality factor depends on the details of interactions
and of density fluctuations. Interestingly, this result is valid
for both deterministic and active drives.It corroborates
numerical observations obtained previously in a system
where composition-dependent diffusion constants can lead
to phase transitions [23].

C. Dissipation sets density correlations
We now explore how dissipation relates to static density

correlations of the liquid.To this end, we treat undriven
bath particles without any approximation in what follows,
instead of relying on the Gaussian density field theory for
δρ as in Sec. II B, and we consider an arbitrary set of

driving forces Fd;i . In equilibrium, the liquid structure can
be derived from a hierarchy of equations for density
correlations,whose explicit form reflects the steady-state
condition on the many-body distribution function [90].In
our settings,steady-state conditions should now provide
modified equations for density correlations,which can
potentially make apparent the connection with dissipation.

This observation motivates us to consider the average
rate at which the potential U ¼

P
i∈Ω;j vðri − r j Þ changes,

which can be written using Itô calculus as

γh_Ui ¼
X

i∈Ω;j
h½γð_r i − _r j Þ þ 2T∇i  · ∇ ivðri − r j Þi: ð19Þ

Substituting the dynamics (1) and using hξi · ∇ i vi ¼ 0
within the Itô convention,we get

γh_Ui ¼
X

i∈Ω;j
ð1 þ δj∈Ω ÞhFd;i · ∇i vðri − r j Þi

þ
X

i∈Ω;j;k
h½∇i vðri − r j Þ · ∇k½vðri − rkÞ − vðrj − rkÞi

þ
X

i∈Ω;j
2Th∇2

i vðri − r j Þi: ð20Þ

In the first line of Eq. (20), we recognize the rate of work_w
as defined in Eq. (14) and the term γ_wact ¼

P
fi;jg∈Ω hFd;i ·

∇ i vðri − r j Þi which quantifies the contribution of inter-
actions among driven particles to dissipation.The latter
vanishes exactly when the drive is identical for all particles,
since

P
fi;jg∈Ω ∇ i vðri − r j Þ ¼ 0 by symmetry, and it can be

neglected for an active drive when the fraction of driven
particles is small.Then, using the steady-state condition
h_Ui ¼ 0, we deduce

_w þ _wact ¼
2ρ0
γ

Z
gðrÞf½∇vðrÞ2 − T∇ 2vðrÞgdr

þ
ρ2

0
γ

ZZ
½g3aðr; r0Þ þ g3bðr; r0Þ

× ½∇vðrÞ · ½∇vðr0Þdrdr 0; ð21Þ

where

gðrÞ ¼
1
N

X 0

i∈Ω;j
hδðr − ri þr j Þi;

g3aðr; r0Þ ¼
1

N2

X 0

i∈Ω;j;k
hδðr − ri þr j Þδðr0−r i þr kÞi;

g3bðr; r0Þ ¼
1

N2

X 0

i∈Ω;j;k
hδðr − ri þr j Þδðr0−r j þr kÞi; ð22Þ

and
P 0denotes a sum without the overlap of indices: i ≠ j,

k ≠ i, and k ≠ j. The power balance (21),valid for an
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arbitrary driving, either deterministic or active, is our first
main result. Importantly,it holds for generic interactions
and for any number of driven particles, namely, not only in
the limit of dilute tracers, in contrast with the results in
Sec.II B.

In practice, it reflects how density correlations adapt to
the presence of nonequilibrium forces. For a vanishing rate
of work ( _w ¼ 0 ¼ _wact), one recovers the first order of the
equilibrium Yvon-Born-Green (YBG) hierarchy, in its
integral form, for two-componentfluids [90]. At a finite
rate of work ( _w ≠ 0), the relation between the two-body
correlation g and the three-body terms fg3a; g3bg is now
implicitly constrained by dissipation. A direct implication
is that the rate of work can now be inferred simply by
measuring static density correlations,provided that the
pairwise interaction potential is known, for a given driven
liquid. Importantly, such an approach does not require any
invasive methodsbased on comparing fluctuationsand
response [54–58], and it does not rely on a detailed analysis
of particle trajectories [60,61] or currents in phase space
[59,62], whose experimentalimplementation can require
elaborate techniques [3,4].

However, the power balance (21) is not straightforward
to test, either numerically or experimentally,due to the
three-body correlations.In equilibrium, where tracer and
bath particles are indistinguishable,we get g3a ¼ g3b.
Assuming thatthis result remains approximately valid in
the driven case for a smallfraction of tracers,the rate of
work can simply be written in terms of the force exerted on
a tracer Fi ¼ −

P
j ∇ i vðri − r j Þ as

_w ≃
2
γ

X

i∈Ω
½hF2i i þ Th∇ i · Fi i: ð23Þ

To probe the validity of this result, we simulate the
dynamics (1) where 10% of particles are subjectto the
driving force, considering either the deterministic periodic
drive (2) or the active noise drive (3). Interactionsare
set by the Weeks-Chandler-Andersen potentialvðrÞ ¼
4v0½ðσ=jrjÞ12 − ðσ=jrjÞ6Θð21=6σ − jrjÞ [91]. Our measure-
ments in Fig. 2 show that Eq. (23) is indeed a good
approximation at small Pe and small τ,namely,when the
drive only weakly perturbs the liquid.The discrepancy is
higher for the active case compared with the deterministic
one, since_wact ¼ 0 in the latter without any approximation.
In contrast to previous approaches [3,54,92], which rely on
prospecting the whole system, our results demonstrate that
the rate of work can actually be evaluated with only a small
error by considering solely forces acting on tracer:The
contribution of forces on other particles is negligible for a
small fraction of driven tracers.

To evaluate further the change in liquid structure induced
by dissipation, we measure the deviation from equilibrium
pair correlationsg − geq due to the driving forces (left
column in Fig. 3). In particular,inspired by the two-body

contribution in the power balance (21),we focus on the
observable I ¼ ½ð∇vÞ2 − T∇ 2vðg − geqÞ. At a given τ,
scaling I by Pe2 reveals that all curves almost collapse into
a master curve for our numericalrange Pe ∈ ½12; 36,as
reported in the middle column in Fig. 3. In practice,
particles overlap more for a stronger drive, so that g departs
from zero at a smaller interparticle distance. To correct for
this aspect,we introduce a shift of the curves I ðjrjÞ as
jrj → jrj þ a, where aðPeÞ is a fitting parameter. Given that
the rate of work also scales like Pe2, it suggeststhe
existenceof an underlying relation between

R
I ðrÞdr

and _w. In practice,a linear fitting provides a satisfactory

(a)

(b)

FIG. 2. Parametric plotof the rate of work _w=T and of the
statistics of bath-tracerforces

P
i∈Ω ½hF2i i þ Th∇ i · Fi i=ðγTÞ

when 10% of particles are driven by either (a) a deterministic
force or (b) an active force. The solid line with slope 2 refers to
the approximate relation (23).The satisfying agreementwith
numerical data indicates that the rate of work can be estimated by
only measuring bath-tracer forces. The simulations are performed
with N ¼ 4500 particles using the proceduredescribed in
Appendix A. Parameters:Pe ¼ 12 (hexagons),18 (square),
24 (triangle), 30 (circle), and 36 (diamond); (a) τT=ðγσ2Þ ¼
2 × 10−1 (black), 3 × 10−1 (brown), 4 × 10−1 (red), and 5 × 10−1

(orange);(b) τT=ðγσ2Þ ¼ 2 × 10−2 (black), 3 × 10−2 (brown),
4 × 10−2 (red), and 5 × 10−2 (orange).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 3. Connecting dissipation and structure for a liquid where 10% of particles are driven by either deterministic or active forces.
(Left) Bath-tracer density correlation g as a function of interparticle distance r=σ. The blue solid line corresponds to the equilibrium
correlation function geq for Pe ¼ 0. (Middle) Deviation from equilibrium correlations I ¼ ½ð∇vÞ2 − T∇ 2vðg − geqÞ scaled by Pe2 as a
function of ðr þ aÞ=σ, where aðPeÞ is a fitting parameter. The data almost collapse into a master curve for each row, namely, at a given τ.
(Right) Parametric plot of the rate of work_w=T and the integrated deviation from equilibrium correlations ρ0

R
IðrÞdr=ðγTÞ showing a

linear relation. The black solid line with slope α is the best linear fit, and the marker colors refer to the same P´eclet values as in the
left and right columns. Simulation details are in Appendix A. Parameters: fτT=ðγσ2Þ; αg ¼ f2 × 10−1; 1.50g (a)–(c), f5 × 10−1; 1.41g
(d)–(f), f2 × 10−2; 1.38g (g)–(i),and f5 × 10−2; 1.33g (j)–(l).
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agreement between them, as shown in the right column in
Fig. 3:

_w ¼
αρ0

γ

Z
½gðrÞ − geqðrÞf½∇vðrÞ2 − T∇ 2vðrÞgdr; ð24Þ

where α is a fitting parameter independentof the Péclet
number.This empirical relation demonstrates that,in the
limit of dilute tracers,the rate of work can actually be
directly estimated by comparing driven and equilibrium
pair correlations for both deterministic and active drives.
Comparing Eqs.(21) and (24), we deduce the following
integral relation between density correlations:
Z

½ð2 − αÞgðrÞ þ αgeqðrÞfT∇ 2vðrÞ − ½∇vðrÞ2gdr

¼ ρ0

ZZ
½g3aðr; r0Þ þ g3bðr; r0Þ½∇vðrÞ · ½∇vðr0Þdrdr 0:

ð25Þ

Interestingly, it is reminiscentagain of the connection
between density correlations provided by the YBG hier-
archy at equilibrium [90]. Similarly, the relation (25)
amounts to a constraint on density correlations, now valid
for nonequilibrium liquids,which could guide the search

for explicit predictions on the emerging structure.
Importantly, it does not rely on any equilibrium mapping,
in contrast to previous works [93–95], since it remains valid
for non-negligible dissipation.

The power balance (21) can actually be extended to the
case where allparticles in the liquid are driven as

_w ¼
ρ0
γ

Z
gðrÞf½∇vðrÞ2 − T∇ 2vðrÞgdr;

þ
ρ2

0
γ

ZZ
g3ðr; r0Þ½∇vðrÞ · ½∇vðr0Þdrdr 0; ð26Þ

where g and g3 now refer, respectively, to the two-body and
three-body density correlations among allparticles.This
extension leads to an exactrelation between the rate of
work and the forces applied to particles Fi as

_w ¼
1
γ

X

i
½hF2i i þ Th∇ i · Fi i; ð27Þ

which differs from the relation (23) for driven tracers by an
overall factor of 2. A result analogous to Eq. (27) was found
previously for a deterministic drive [36,96]. The main
difference is that Eq. (27) features interaction forces Fi only
in the rhs, thus allowing one to evaluate the rate of work

(b) (c)

(d) (e) (f)

FIG. 4. Connecting dissipation and structure for a liquid where 100% of particles are driven by an active force.(Left) Density
correlation g as a function of interparticle distance r=σ. The blue solid line corresponds to the equilibrium correlation function geq for
Pe ¼ 0.(Middle) Deviation from equilibrium correlations I ¼ ½ð∇vÞ2 − T∇ 2vðg − geqÞ scaled by Pe2 as a function of ðr þ aÞ=σ,
where aðPeÞ is a fitting parameter. The data almost collapse into a master curve for each row, namely, at a given τ. (Right) Parametric
plot of the rate of work_w=T and the integrated deviation from equilibrium correlations ρ0

R
I ðrÞdr=ð2γTÞ showing a linear relation. The

black solid line with slope α is the best linear fit, and the marker colors refer to the same P´eclet values as in the left and right columns.
Simulation details are in Appendix A.Parameters:fτT=ðγσ2Þ; αg ¼ f2 × 10−2; 1.22g (a)–(c) and f5 × 10−2; 1.14g (d)–(f).
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without any prior knowledge on the driving force. Besides,
it is valid for both deterministic and active drives.
Moreover,conducting the same analysis of density corre-
lations as for driven tracers, I exhibits again a scaling with
Pe2, as reported in Fig. 4. We show that_w and

R
I ðrÞdr are

also linearly related.Introducing the linear coefficientas
αρ0=ð2γÞis consistentwith substituting Eq. (25) into
Eq. (26), where g3;a þ g3;b is now replaced by 2g3.
Hence, it demonstratesthat the rate of work is also
accessiblefrom the nonequilibrium deviation of pair
correlations in fully driven liquids.

Overall, the results of this section illustrate how dis-
sipation affects the transportand structuralproperties of
driven liquids, measured in terms ofthe diffusion coef-
ficient and density fluctuations. These findings motivate the
following question: Can nonequilibrium forces be tuned to
reliably stabilize target configurations? To explore this
question,we rely in what follows on the framework of
large-deviation theory. In practice, our strategy amounts to
biasing trajectories in terms of dissipation, related to many-
body interactions by Eq.(21), to mimic the effect of an
external drive. Following this route, our analytical and
numerical results provide some concrete intuition for how
interactions in a multicomponentsystem can be control-
lably renormalized by nonequilibrium forces.Hence,we
demonstrate the ability to nucleate structures different from
those characteristic of the equilibrium Boltzmann distribu-
tion to help guide self-assembly [97] and collective motion
[25] far from equilibrium. These results further illustrate the
interplay between energy dissipation and organization in
nonequilibrium many-body settings.

III. INTERACTIONS IN BIASED ENSEMBLES

To investigate how target structures and dynamics can be
promoted by means of a dynamical bias, we begin by
considering a system of interacting Brownian particles
without any driving force:

γ_r i ¼ −∇ i
X

j
vðri − r j Þ þ ξi ; ð28Þ

where the statistics of the noise term ξi is the same as the
one in Eq. (1). The rate of work _w defined in Eq.(14) is
zero because of the absence of driving. In Sec. II, to obtain
a nonzero rate of energy flow through the system, we
consider an explicit driving force Fd;i , and we explore its
effects on the transport and structuralproperties of the
liquid. In practice, different types of driving can lead to the
same dissipation.In this section,using the framework of
the large-deviation theory, we take an alternative approach
where the dynamics is now conditioned by enforcing a
required energy flow withoutany explicit driving. Thus,
exploring how the system adapts to this requirement
provides a new insight into the relation between dissipation

and organization in driven systems, which is distinct from
yet complements the approach in Sec.II.

To this end, we focus on the subset of noise realizations
that are conditioned on a nonzero rate of work. In
particular, these realizations no longer have a zero average,
so that one can redefine the noise term in Eq. (28) as ξi →
ξi þ F aux;i by introducing an auxiliary force Faux;i [38,50].
Hence,the stochastic dynamics given by Eq.(28) with
added force Faux;i provides an explicit case which ensures a
nonzero energy flow rate. In practice, this dynamics can be
drastically different from the original one, thus opening the
door to stabilizing unexpected structure and to promoting
novel collective effects. Interestingly, such a dynamics can
actually be regarded as the optimal strategy to effectively
enforce a targetcondition on the rate of work [98].

Formally, to study the dynamics conditioned by dis-
sipation, we bias the probability of trajectories. This biasing
is done by introducing an exponential weighting factor
exp½κ

Rt
0 EðsÞds,where E is the observable which con-

ditions the dynamics,e.g., energy flow rate, and κ is a
conjugate field. In practice, the relative importance of
biasing in the dynamics is controlled by κ, which, in turn,
controls the average value of E [37].Before deriving the
central results of this section,namely,relations between
biased energy flow rates and organization,we first intro-
duce a simple example in which the connection between
auxiliary forces and an exponentially biased ensemble can
be clearly seen.

A. Dynamical bias and external forces
To introduce pedagogically our methods, we first show

how biasing trajectories can lead to effectively introducing
a driving force. Inspired by the role of dissipation in
emerging liquid properties,as discussed in Sec.II, we
bias the equilibrium dynamics (28)with the sum of the
dissipation and the rate of work, scaled by T, that would be
produced by applying a constant force Fd to a subset Ω of
particles:

E ¼
1

γT
X

i∈Ω
Fd · ½γ_r i þ ∇ i V; ð29Þ

where V ¼ ð1=2Þ
P

i;j vðri − r j Þ. The path probability P ∼
exp½−

P
i
Rt

0 A i ðsÞds corresponding to this biased ensem-
ble is obtained with standard methods [99,100]:

A i ¼
1

4γT
½γ_r i þ∇ i V 2 −

1
2γ

∇ 2
i V −

κ
γT

δi∈Ω Fd · ½γ_r i þ∇ i V;

ð30Þ

where the first two terms correspond to the unbiased
dynamics (28) and the third one to the bias in Eq.(29).
It can also be written as
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A i ¼
1

4γT
½γ_r i − 2κδi∈Ω Fd þ ∇ iV 2 −

1
2γ

∇ 2
i V −

κ2

γT
δi∈Ω F2

d:

ð31Þ

As a result, given that the last term in Eq. (31) can be
absorbed in a normalization factor,we deduce that the
trajectories biased by Eq. (29) can be generated, at leading
order, in a physical dynamics where the external force 2κFd
is applied to every particle in Ω.In particular,it does not
feature any long-range interactions which are usually found
in auxiliary dynamics [101].

B. Dynamical bias and modified interactions
To go beyond the case of applying a constant force, we

now seek for a dynamical bias which regulates particle
interactions in a controlled manner. In particular, we
examine cases where the control parameters κij are specific
to particle pairs fi; jg, so that the biasing factor in path
probability now reads exp½

P
i;j κij

Rt
0 Eij ðsÞds.Now, our

choice for the biasing function Eij is informed by the
connection between the rate of work and many-body
interactionsin driven liquids, as detailed in Sec. II C.
Specifically, we observe that the power balance (21) for a
deterministic drive ( _wact ¼ 0) can be written as _w ¼
−

P
i∈Ω;j hLvðri − r j Þi in terms of the evolution operator

of the equilibrium dynamics (28) defined by γL ¼P
i ½T∇i − ∇ i V · ∇ i . This observation motivatesus to

consider the following bias:

Eij ¼
1

4T
Lvðr i − r j Þ: ð32Þ

In the unbiased ensembles in Sec.II C, hEij i provides a
measure of the rate atwhich driving forces pump energy
into or extract energy from the specific interaction between
the ith and jth particles. Here, instead of driving the system
with a specific driving force, trajectories are driven by
atypical realizationsof the noise generated by biased
sampling.

To explore how this bias modifies interactions,we first
employ a derivation different from the path integral
approach in Sec. III A. Based on the procedure in
Refs. [38,50], the auxiliary physical dynamics, which
has the same statistical properties as in the biased ensemble,
can be constructed by solving the eigenvalue equation

L þ
X

i;j
κij Eij Gðfrkg; κÞ ¼ λðκÞGðfrkg; κÞ; ð33Þ

where the eigenvalue λ,parametrized by κij , is the scaled
cumulant-generating function appropriate to Eij . The aux-
iliary dynamics is then defined by replacing the interaction
potential in Eq.(28) by the following auxiliary potential:

Ṽ ¼
1
2

X

i;j
vðri − r j Þ − 2T ln G: ð34Þ

In practice,computing G is a highly nontrivialprocedure
for many-body systems. The explicit solutions considered
so far concern either exclusion processes [66,102,103] or
particle-based diffusive systems restricted to smallnoise
regimes [104,105] and noninteracting cases in some spe-
cific potentials [106–108].

In our case, a simple expression can be obtained for the
auxiliary potentialṼi by solving Eq. (33) perturbatively at
small bias parameter κ.Specifically,we expand

λðκÞ ¼
X

ij
κij hEij i þ Oðκ2Þ;

Gðfrkg; κÞ ¼ Gð0Þþ
X

ij
κij Gð1Þ

ij ðfr kgÞ þ Oðκ2Þ; ð35Þ

where G0 is the uniform eigenvector associated with the
zero eigenvalue.Given thathEij i ¼ 0 in the steady state,
which follows from the vanishing current condition in the
unbiased dynamics (h_vi ¼ 0), the leading nontrivial order
of Eq. (33) reads

X

ij
κij ½LGð1Þ

ij þ Gð0ÞEij  þ Oðκ 2Þ ¼ 0: ð36Þ

Substituting the explicitexpressions for the biasing func-
tion in Eq. (32), we then deduce that 4TGð1Þ

ij ¼−G0vðri −r j Þ
is a solution of the eigenvalue problem to the order of κ.
The auxiliary potential follows as

Ṽ ¼
1
2

X

i;j
ð1 þ κij Þvðri − r j Þ þ Oðκ2Þ: ð37Þ

Therefore, biasing with Eq. (32) amounts to changing the
strength of particle interaction by a factor κij specifically
for any pair fi; jg, which is the main result of this section.

While energy flows are sustained by explicit nonequili-
brium forces in Sec. II, we now maintain a nonzero average
for Eij by a biased sampling of trajectories.The corre-
sponding noise realizations can be thought of as an external
protocol,which leads to modifying the energy landscape
sampled by the biased system as given in Eq.(37). Note
that the tuning interaction strength between targeted pairs is
qualitatively consistent with the effect of external driving.
Indeed, phase separation in mixtures of driven and undriven
particles, reported both experimentally and numerically,
can be rationalized in terms of an effective decrease of
specific interactions between these particles [21,23].

Moreover, the techniquesin Sec. III A allow one to
anticipate the trajectories generated athigher order when
now biasing with Eq. (32). To this end, we consider the
ensemble where the first-orderdynamics,given by the
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potential (37), is biased with exp½
Rt

0 εðsÞds defined in
terms of

ε ¼
1

4γT
X

k

X

i;j
κij ∇ kv½riðsÞ − rj ðsÞ

2
: ð38Þ

As detailed in Appendix C, this ensemble is equivalent to
biasing the original dynamics (28) with Eq. (32). Thus, the
effect of higher-order bias on trajectories amounts to
maximizing the squared forces in the integrand of
Eq. (38), which effectively tends to clusterparticles for
both signs of κij .

Finally, the decomposition between the first-order aux-
iliary potential and higher-ordersymmetric bias can be
extended to a generic class of biases of the form TEij ¼
LAðr i − r j Þ for an arbitrary observable A: The correspond-
ing first-order auxiliary potentialV þ 2

P
i;j κij Aðri − r j Þ

is now complemented with the higher-order bias (38),
where A replaces v. Such a bias is reminiscent of, yet

qualitatively different from, the escape rate used to promote
dynamical heterogeneity in glassy systems [41,109]. In our
case,clustering is favored for both positive and negative
bias parameters κij . In particular,this result is in contrast
with the emergence of a hyperuniform phase, where large-
scale fluctuations are suppressed,reported when biasing
some hydrodynamic theories of diffusive systems [110].

C. Numerical sampling of biased structures
To illustrate the potentialof our bias to control liquid

properties,we focus in what follows on the specific case
κij ¼ κδi∈Ω δj∉Ω , where all pairs between a subsetΩ and
other particles are biased with the same strength κ. Here, the
set Ω could, for instance,refer to some tracer particles
immersed in the liquid, to connect with the settings
in Sec. II.

To confirm numerically the validity of our approach, we
first probe the range of the first-order auxiliary dynamics

(a) (b)

(d)(c)

FIG. 5. (a),(b) Average biasing observable
P

i∈Ω;j∉Ω hEij i κ ¼
P

i∈Ω;j∉Ω hLvðri − r j Þiκ=T as a function of bias parameter κ, where L
and v, respectively, denote the evolution operator and the pair potential of the equilibrium dynamics (28). Results from the first-order
auxiliary dynamics (solid lines) and from a direct sampling of the biased ensemble (circles) coincide for a finite range of κ. (c),(d) Biased
density correlation gκ as a function of interparticle distance r=σ obtained from auxiliary dynamics (solid lines) and direct sampling
(dotted lines). At leading order, our dynamical bias effectively renormalizes the potential v by a factor κ for specific pairs of particles
fi ∈ Ω; j ∉ Ωg, in satisfying agreement with direct sampling. This renormalization illustrates the control of liquid structure at small  κ
and weak interactions.Simulation details are in Appendix A.
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where interactions are predicted to be simply renormalized.
We compare measurements of

P
i∈Ω;j∉Ω hEij i κ, where h·iκ

denotes an average in the biased ensemble, obtained from
simulations with the renormalized potentials in Eq.(37)
and from a direct sampling of the biased ensemble.The
latter is implemented with a cloning algorithm which
regularly selects and multiplies rare realizations foreffi-
cient sampling [46,63–68].For convenience,interactions
are now given by the soft-core potential vðrÞ ¼
v0 expf−1=½1 − ðjrj=σÞ2gΘðσ − jrjÞ. For weak inter-
actions (v0 ¼ 4T), we observe a very satisfying agreement
between the two measurements for a finite range of κ,as
reported in Fig. 5(a), which supports the validity of our
perturbation up to an interaction change between −20%
and þ40%. The range of validity decreasesas v0=T
increases,as shown in Fig.5(b), and we expect a similar
trend when also increasing the number of biased pairs.

To explore further the features of this biased ensemble,
we now compare the density correlations of biased pairs
gκðrÞ ∼

P
i∈Ω;j∉Ω hδðr − ri þ r j Þiκ obtained from both

direct sampling and first-order auxiliary dynamics. For
κ ¼ 0.1, we observe that the structural modification
induced by the bias becomesmore dramatic as v0=T
increases. The agreement between the cloning and auxiliary
dynamics is good for the whole curve when v0=T ¼ 4,
whereas a deviation appears beyond r ≃ σ when
v0=T ¼ 12, as shown in Figs. 5(c) and 5(d). In both cases,
the region of particle overlap r < σ is well reproduced.
These results corroboratethe ability of the first-order
auxiliary dynamics to capture interaction changesas a
simple renormalization ofthe potential strength.In con-
trast, the tendency for particles to cluster, manifest numeri-
cally in the increased peak value at r ≃ σ, is a higher-order
effect missed by this auxiliary dynamics when v0=T ¼ 12.

Yet, note that the peak value is comparable for κ ¼ 0.1, in
agreement with Eq. (38) being symmetric in κ. Altogether,
these results demonstrate that our bias modulates the liquid
structure in a controlled manner for a small bias and weak
interactions as predicted by Eq.(37).

Finally, we probe numerically the effect of a large bias
(jκj > 1) using direct sampling,to explore configurations
significantly distinct from the one of the equilibrium
dynamics (28). The particles spontaneously tend to cluster
for both positive and negative κ,as shown in Fig.6 and
movies in Ref. [73]. This result confirms the propensity of
trajectories to maximize interaction forces at a high bias, as
captured by Eq. (38). Importantly, the shape of clusters
differs depending on the sign of κ: A micellelike structure
featuring the particles in Ω at the core (blue) surrounded by
others (red) appears for κ ¼ −3,whereas clusters have a
random composition forκ ¼ 3. Again, this result agrees
with the renormalized interactions being either increased
(κ > 0) or decreased (κ < 0).In practice, the interaction
strength changes sign when κ < −1 according to Eq. (37),
so that the red-blue pairs are effectively attractive for
κ ¼ −3. To optimize the overall energy, the most favorable
configuration then consists in maximizing (minimizing) the
overlap of particles in Ω (not in Ω), which, in turn,
stabilizes a cluster of blues surrounded by reds. In general,
two types of configuration should generically be stabilized
for a given interaction potential v, depending on the sign of
the bias. Overall, this result establishes a reliable proof of
principle for the design of tailored self-assembled struc-
tures with our specific choice of biased ensembles.

D. Bias-induced collective motion
As a final illustration of how collective effects can

be controlled by dynamicalbias,we consider a modelof

FIG. 6. Configurations obtained from a directsampling of the biased ensemble where the pair interactions between red and blue
particles are selectively modified. In the unbiased dynamics (κ ¼ 0), interactions are purely repulsive with a soft core which has a similar
strength for all particles, either red or blue, so that the system is homogeneous. The dynamical bias promotes clustering for both signs of
κ, yet it changes interaction selectively for either sign. The repulsion is increased between red and blue particles for κ ¼ 3, and their
interactions become effectively attractive for κ ¼ −3. As a result, the clusters which emerge spontaneously have different structures:
either a random composition of mixed reds and blues (κ ¼ 3) or a micellelike structure with a blue core (κ ¼ −3). This result illustrates
how biasing specific pairs leads to supervised spatialorganization.Simulation details are in Appendix A and movies in Ref.[73].
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self-propelled particles where interactions are now medi-
ated only via the angular dynamics [69]:

_r i ¼ V0uðθi Þ; _θi ¼ μr
X

j
T ðθj − θi ; ri − r j Þ þ ηiðtÞ;

ð39Þ

where V0 denotesthe self-propulsion velocity, uðθÞ ¼
ðcos θ; sin θÞ is the unitvector, and μr is the rotational
mobility. The term ηi is a zero-mean Gaussian white noise
with correlations hηi ðtÞηj ð0Þi ¼ 2Dr δij δðtÞ given in terms
of the rotational diffusion coefficient Dr . To promote
alignmentbetween neighboring particles,we choose the
pairwise torque as T ðθ; rÞ ¼ Θðσ − jrjÞ sin θ=ðπσ2Þ.This
dynamics was originally introduced as a generalization of
the Vicsek model to continuous time [25]. Thus, it exhibits
a transition between a isotropic state for smalldensity ρ0
and large noise Dr and a polar state for large density ρ0 and
small noise Dr . In practice,the linear stability analysis of

the corresponding hydrodynamic equationspredicts the
transition to occur when 2Dr ¼ μr ρ0 [69]. In what
follows, our aim is to show that such a transition can
also be mediated by tuning interactions with a dynami-
cal bias.

To this end, we take the biasing factor in path proba-
bility as exp½κ

Rt
0 EθðsÞds, where the biasing observable Eθ

reads

Eθ ¼ −
1
2

X

i;j

∂
∂θi

þ
μr

Dr

X

k
T ðθi − θk; ri − r kÞ

× T ðθi − θj ; ri − r j Þ: ð40Þ

The average value hEθi is proportional to ðd=dtÞ
P

i;j ×
hcosðθi − θj ÞΘðσ − jri − r j jÞi, which vanishes in the
steady state.Then, following the procedure detailed in
Sec. III B, we deduce that biasing the dynamics (39) with
Eθ amounts to considering renormalized interactions of the
form

Isotropic state Polar state

 = - 0.2  = 0  = 0.2

(e)

(a) (b) (c)

(d) (e) (f)

FIG. 7. Configurations obtained from a direct sampling of the biased ensemble for aligning self-propelled particles. The color code
refers to the orientation of particles. In the unbiased dynamics (κ ¼ 0), we observe isotropic and polar states, respectively, at large noise
(Dr > D r ) and small noise (Dr < D r ). Here, the critical noise is Dr ¼ 8, and we take the noise values Dr ¼ f7; 9g for, respectively, the
polar and isotropic regimes. The dynamical bias leads to renormalizing interactions in a controlled manner, which effectively changes
the transition threshold as Dr → D r ð1 þ κÞ at leading order. As a result, one can stabilize either isotropic or polar states, respectively, for
κ < 0 and κ > 0, thus illustrating the ability to trigger or inhibit collective effects in nonequilibrium systems. Simulation details are in
Appendix A and movies in Ref.[73].
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T̃ ¼ ð1 þ κÞT þ Oðκ2Þ: ð41Þ

Thus, by promoting a nonzero average forEθ, aligning
interactions can be tuned in a controlled mannerat first
order in κ. A higher-order bias leads to maximizing the
squared torque,as presented in Appendix C.

We test this prediction numerically using a direct
sampling of biased trajectories.We consider values of
fD r ; μr ; ρ0g above and below the threshold Dr ¼ μr ρ0=2,
where the system exhibits either isotropic or polar states in
the unbiased dynamics (κ ¼ 0), as shown in Fig. 7.
Specifically, when the original system is isotropic
(Dr > D r ), we observe a transition to polar for κ > 0,
and, conversely, when it is polar (Dr < D r ), a transition to
isotropic for κ < 0. This observation confirms our result
(41), where the bias amountsto changing the angular
mobility as μ̃r ¼ ð1 þ κÞμr þ Oðκ2Þ for weak κ, so that the
linear instability is either triggered or suppressed by solely
tuning κ, all other parameters being held the same.Thus,
these results demonstrate how biasing the dynamics with an
appropriate observable leads to control of the emergence of
spontaneous organization,with potential interest for other
nonequilibrium dynamics.

IV. CONCLUSION

Developing techniques to characterize and controlthe
behavior of systems operating far from equilibrium remains
a central and outstanding problem. Despite the apparently
complex interplay between internal dissipation and emerg-
ing properties,we demonstrate thattracer diffusion and
density correlations can simply be connected to dissipation
in driven liquids. We also constructa mapping between
deterministic and active drives for a specific active matter
model, thus showing how our approach can potentially be
extended to a broad classof systems.Importantly, our
results open promising perspectives to evaluate dissipation
simply from the structure of the system. Inspired by recent
works [18,111], one could also introduce a map of
dissipation,directly related to the statistics of interaction
forces, to resolve spatially where energy is released in the
thermostat.Though the correspondingintegrated map
would not cover the total dissipation,it would already
provide insightful information about locations of low and
high dissipation with respect to a constant background set
by the squared driving amplitude.

In practice,monitoring dissipation with a well-defined
parameterremains an open challenge for many-body
systems.To this end, biased ensemblesenable one to
specify the statistics of dissipation by introducing an
additional control parameter,analogously to the change
from a microcanonicalto a canonical ensemble in equi-
librium thermodynamics [38,50], which is done by select-
ing rare noise realizations which drive the system away
from typical behavior, without introducing any driving
force. Pioneering works were focused on favoring

dynamical heterogeneities,without affecting the structure,
of kinetically constrained models [39–43]. Yet, more recent
studies show the potential to also modify density correla-
tions in diffusive systems [48,49,112].

Using these large-deviation techniques, we put forward a
particular set of biased ensembles which allows one to
regulate the liquid structure in a controlled manner.The
explicit form of the bias is motivated by the relations
between dissipation and structure that we derive for driven
liquids. At leading order, any bias in this class simply leads
to introducing additional interactions in the dynamics.
Furthermore, a higher-order bias systematically constrains
the trajectories to favor the formation of clusters. Based on
minimal case studies, we sample the biased configurations,
using state-of-the-art numerics [46,63–68], to illustrate the
ability to stabilize specific structures and collective effects
in a controlled manner.

Since dynamicalbias consistsin favoring rare noise
fluctuations, the corresponding dynamics effectively
provides useful insights on how to promote atypical
configurationswith an external drive. In practice, the
driving protocol should simply mimic the biased noise
realizations. This line of thought has already been
exploited for efficient sampling of the biased ensemble
[45,65,113,114],where control forces make rare events
become typical.Moreover,since our analytic framework
encompasses the case of a specific bias for each pair of
particle, it could potentially be regarded as a fruitful route
to promote the spontaneousself-assembly of complex
structures atthe costof energy dissipation.For instance,
inspired by recentworks [115,116], one might consider
our approach to design energetic landscapes,in terms of
the pair-specific bias parameters,which selectively stabi-
lize some targetmolecules.

Overall, these results illustrate how specifying the
amount of energy dissipated by nonequilibrium forces
allows one to constrain the dynamics and structure of
driven liquids. This constraint paves the way towards
controlling the emerging properties of such systems by
tuning dissipation accurately. It remains to investigate
whether similar results can be obtained in more complex
systemswhich could, for instance,potentially include
anisotropic building blocks,such as driven chiralobjects
or active liquid crystals [27,117,118].
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APPENDIX A: NUMERICAL SIMULATIONS

In Sec. II A, a custom code of molecular dynamics, based
on the finite time difference, is used to perform the
simulations in a two-dimensionalbox 102σ × 102σ with
periodic boundary conditions. The time step is δt ¼ 10−4,
and the initial condition is homogeneous. Parameter values
are ρ0 ¼ 0.7, T ¼ 0, γ ¼ 1, f ¼ 3 × 10−2, τ ¼ 103,
v0 ¼ 5, n ¼ 102, and σ ¼ 1.

In Secs. II B and II C, numerical simulations of the
dynamics (1) are performed using the LAMMPS simula-
tion package in a two-dimensional box 102σ × 102σ, where
σ is the particle diameter, with periodic boundary con-
ditions at average density ρ0 ¼ 0.45. Our custom code
actually implements overdamped Langevin equations of
motion with the finite time difference. It simply utilizes the
efficient force computation routines that are built as a part
of the moleculardynamics package.The system is first
relaxed for 103 conjugate gradient descent steps and later
equilibrated during 50τ.We evaluate average values over
ten independent trajectories with duration 150τ. The
density pair correlations are constructed using ten inde-
pendenttrajectories,each with duration 50τ.We perform
error analysis from the independent simulations and obtain
negligible errors for all the data in Figs. 2–4. The time step
is 5 × 10−4, and the bin size for computing the pair
correlationsis 0.01σ. We perform simulations at other
values of the time step f10−4; 10−5g and of the bin size
f5 × 10−3σ; 2 × 10−2σg to confirm that our calculations of
the α coefficients are well converged. Parameter values are
T ¼ 1, γ ¼ 102, v0 ¼ 1, and σ ¼ 1.

In Sec. III C, a custom code of moleculardynamics,
based on the finite time difference, is used to perform the
simulations in a two-dimensionalbox 10σ × 10σ with
periodic boundary conditions.We bias the pair potential
between eight blue particles and 16 red particles. To
sample the biased ensemble, we use the cloning algorithm
described in Appendix A in Ref. [65]. The time interval
for cloning is Δt ¼ 10δt, and the number of clones is
1600. The time step is δt ¼ 10−4, the initial relaxation
time is 104Δt, and the total simulation time is 106Δt.
Parametervalues are T ¼ 1, γ ¼ 1, v0 ¼ 4 (Fig. 6),
and σ ¼ 1.

In Sec. III D, a custom code of molecular dynamics
based on the finite time difference is used to perform the
simulations.N ¼ 128 particles are simulated in a two-
dimensionalbox of size 4σ × 4σ with periodic boundary
conditions.To sample the biased ensemble,we use the
cloning algorithm described in Appendix A in Ref.[65].
The time interval for cloning is Δt ¼ 10δt, and the number
of clones is 200. The time step is δt ¼ 10−3, and the total
simulation time is 500Δt. Parametervalues are V0 ¼ 2,
μr ¼ 2, ρ0 ¼ 8, and σ ¼ 1.

APPENDIX B: DISSIPATION AND DIFFUSION

This Appendix is devoted to the derivation of the
dissipation rate J and the diffusion coefficient D of a
driven tracer, as defined in Sec. II. We employ a perturba-
tive treatmentat weak interactions,originally introduced
for a particle driven at constant force in Refs.[52,53]. To
this aim, the tracer-bath interaction potential v is scaled by a
small dimensionlessparameterh ≪ 1 in what follows.
Besides,we focus on the regime of dilute tracers,so that
interactions among them,either direct or mediated by the
bath,can be safely neglected.

The dynamic action associated with the tracer dynamics
(11) and (12) follows from standard path integral methods
[99,100]. It can be separated into contributions from the
free tracer motion and from interactions, respectively,
denoted by A0 and Aint:

A 0 ¼
Z

r̄0 · ½ið_r0 − Fd=γÞ þ D0r̄0dt;

A int ¼
h2

γ

Z
dq

ð2πÞd
jqj 2jvðqÞj2

Z
∞

−∞
ds

Z
s

−∞
du

× e−D Gjqj2KðqÞðs−uÞþiq·½r0ðsÞ−r0ðuÞ

× r̄0ðsÞ ·
r̄0ðuÞ
γKðqÞ

−
q
γG

; ðB1Þ

where D0 ¼ T=γ is the tracer diffusion coefficientin the
absenceof interactions (v ¼ 0) and r̄0 is the process
conjugated with the tracer position r0. For weak inter-
actions h ≪ 1, any average value can be then expanded in
terms of h as h·i ¼ h·i0 − h2hAint·i 0 þ Oðh4Þ, where h·i0 is
the average taken with respectto A 0 only. As a result,
determining the first correction from interactions in any
observable amounts to computing the corresponding aver-
age hAint·i 0.

Considering the dissipation rate per particle J =N ¼
h_r0i · Fd, the leading order is h_r0i 0 · Fd ¼ jFdj2=γ ¼ f2=γ,
and the first correction reads −h2hAint_r0i 0 · Fd. Given
the explicit form of A int in Eq. (B1), the correlations of
interest are
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h_r0ðtÞ½q ·r̄0ðsÞeiq·½r0ðsÞ−r0ðuÞi 0

¼ iqδðt − sÞe−D 0jqj2ðt−uÞþðiq=γÞ·
R

t
u

FdðwÞdw;

h_r0ðtÞ½̄r0ðuÞ ·̄r0ðsÞeiq·½r0ðsÞ−r0ðuÞi 0

¼ −iqδðt − sÞe−D 0jqj2ðt−uÞþðiq=γÞ·
R

t
u

FdðwÞdw; ðB2Þ

where we use thatthe tracer statistics is Gaussian in the
absence of interactions, following Refs. [52,53]. From this
result,we get

J −f 2=γ ¼
Nh2

dγ2

Z
dq

ð2πÞd
iq · FdðtÞjqj2jvðqÞj2

D0 þD GKðqÞ
D0KðqÞ

×
Z

t

−∞
due−jqj 2½D0þD GKðqÞðt−uÞþðiq=γÞ·

R
t

u
FdðwÞdw

þOðh 4Þ; ðB3Þ

where we use γG ¼ γ=ρ0 and DG ¼ ρ0D0. Expanding at
small f, we deduce

J −f 2=γ ¼ −
Nh2

dγ3

Z
dq

ð2πÞd
jqj 4jvðqÞj2

D0 þD GKðqÞ
D0KðqÞ

×
Z

t

−∞
due−jqj 2½D0þD GKðqÞðt−uÞ

Z
t

u
dwFdðtÞ · FdðwÞ

þOðh 4; f4Þ: ðB4Þ

Substituting the explicit expression of the deterministic
drive (2) in Eq. (B4) and then integrating over u and w, we
obtain

J −f 2=γ ¼ −
NðhfÞ2

dγ3

Z
dq

ð2πÞd
jqj 4jvðqÞj2

jqj 4½D0 þD GKðqÞ2 þω 2

×
D0 þD GKðqÞ

D0KðqÞ
þOðh 4; f4Þ: ðB5Þ

For the case of active drive with correlations (3), we exploit
the equivalencewith a disordered drive detailed in
Sec. II A. Substituting the explicitdrive (4) in Eq. (B4)
and then averaging overdisorder in the limit of many
oscillators (n ≫ 1),we get

J −f 2=γ ¼−
NðhfÞ2

dγ3

Z
dqdω0

ð2πÞdþ1
jqj 4jvðqÞj2ϕðω0Þ

jqj 4½D0þD GKðqÞ2þðω0Þ2

×
D0þD GKðqÞ

D0KðqÞ
þOðh 4;f 4Þ; ðB6Þ

where ϕðω0Þ ¼ 2τ=½1 þ ðω0τÞ2, yielding

J −f 2=γ ¼ −
NτðhfÞ2

dγ3

Z
dq

ð2πÞd
jqj 2jvðqÞj2

D0KðqÞ

×
1

τjqj 2½D0 þD GKðqÞ þ 1
þOðh 4; f4Þ: ðB7Þ

The asymptotic results for the rate of work_w ¼ f 2=γ − J ,
presented in Sec.II B for both deterministic and active
drives,follow directly.

We now turn to deriving the diffusion coefficient D. It is
defined in terms of the mean-squared displacement (MSD)
hΔr2

0ðtÞi¼h½hr0ðtÞi−r0ðtÞ2i as D ¼ lim t→∞ hΔr2
0ðtÞi=2dt.

At leading order,the MSD reads hΔr20ðtÞi0 ¼ 2dD0t. To
obtain the first order,we need to compute the following
correlations:

hΔr2
0ðtÞ½q ·r̄0ðsÞeiq·½r0ðsÞ−r0ðuÞi 0 ¼ −4ðD0=γÞjqj2ðs − uÞΘðt − sÞ e−D 0jqj2ðt−uÞþðiq=γÞ·

R
t

u
FdðwÞdw;

hΔr2
0ðtÞ½̄r0ðuÞ ·̄r0ðsÞeiq·½r0ðsÞ−r0ðuÞi 0 ¼ ð2=γ2ÞΘðt − sÞ½2D0jqj 2ðs − uÞ − 1 e−D 0jqj2ðt−uÞþðiq=γÞ·

R
t

u
FdðwÞdw; ðB8Þ

where we use again that A0 is Gaussian in terms of̄r0, yielding

hΔr2
0ðtÞi − 2dD0t ¼

2h2

γ2

Z
dq

ð2πÞd
jqj 2jvðqÞj2

KðqÞ

Z
t

−∞
ds

Z
s

−∞
duf2jqj 2½D0 þ D GKðqÞðs − uÞ − 1g

× e−jqj 2½D0þD GKðqÞðs−uÞþðiq=γÞ·
R

s
u

FdðwÞdwþ Oðh4Þ: ðB9Þ

Expanding at smallf, we get

hΔr2
0ðtÞi − 2dDeqt ¼ −

2h2

γ4

Z
dq

ð2πÞd
jqj 4jvðqÞj2

KðqÞ

Z
t

−∞
ds

Z
s

−∞
duf2jqj 2½D0 þ D GKðqÞðs − uÞ − 1g

× e−jqj 2½D0þD GKðqÞðs−uÞ
Z

s

u
dw1dw2Fdðw1Þ · Fdðw2Þ þ Oðh4; f 4Þ; ðB10Þ
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where Deq refers to the diffusion coefficient in the absence
of driving force (f ¼ 0). For the deterministic drive (2), the
explicit time integrations give

D − Deq ¼
ðhfÞ2

dγ4

Z
dq

ð2πÞd
jqj 2jvðqÞj2

KðqÞ½D0 þ D GKðqÞ

×
5jqj4½D0 þ D GKðqÞ2 þ ω2

fjqj 4½D0 þ D GKðqÞ2 þ ω2g2

þ Oðh4; f 4Þ: ðB11Þ

Using the mapping in Sec. II A for the case of active drive
with correlations (3),we deduce

D − Deq ¼
ðhfÞ2

dγ4

Z
dqdω0

ð2πÞdþ1
jqj 2jvðqÞj2ϕðω0Þ

KðqÞ½D0 þ D GKðqÞ

×
5jqj4½D0 þ D GKðqÞ2 þ ðω0Þ2

fjqj 4½D0 þ D GKðqÞ2 þ ðω0Þ2g2

þ Oðh4; f 4Þ; ðB12Þ

where again ϕðω0Þ ¼ 2τ=½1 þ ðω0τÞ2, yielding

D − Deq ¼
τðhfÞ2

dγ4

Z
dq

ð2πÞd
jvðqÞj2

KðqÞ½D0 þ D GKðqÞ2

×
5τjqj 2½D0 þ D GKðqÞ þ 3

fτjqj 2½D0 þ D GKðqÞ þ 1g2

þ Oðh4; f 4Þ: ðB13Þ

Finally, we obtain the expressionsin the asymptotic
regimes,as reported in Sec. II B for both deterministic
and active drives.

APPENDIX C: EQUIVALENCE OF BIASED
ENSEMBLES

In this Appendix, we demonstratethe equivalence
between specific dynamicalbiased ensembles.First, we
considerensembles related to the equilibrium dynamics
(28). Ensemble (a) corresponds to biasing with the factor
exp½

P
i;j κij

Rt
0 Eij ðsÞds in the path probability,where

Eij ¼
1

γT
X

k
½T∇k − ∇ kV · ∇ kAðri − r j Þ: ðC1Þ

Ensemble (b)is associated with the first-orderauxiliary
dynamics,whose potential reads V þ 2

P
i;j κij Aðri − r j Þ,

biased with exp½
Rt

0 ε0ðsÞds,where

ε0 ¼
1

γT
X

k

X

i;j
κij ∇ kA½riðsÞ − rj ðsÞ

2
: ðC2Þ

Obtaining the equivalence between (a) and (b) amounts to
showing that their path probabilities are similar. The
corresponding dynamicactions, denoted by A ðσÞðtÞ ¼
P

k
Rt

0 AðσÞ
k ðsÞds for σ ¼ fa; bg,are given by

AðaÞ
k ¼

1
4γT

½γ_r k þ ∇ kV 2 −
1
2γ

∇ 2
kV

−
1

γT
X

i;j
κij ½T∇k − ∇ kV · ∇ kAðri − r j Þ ðC3Þ

and

AðbÞ
k ¼

1
4γT

γ_r k þ ∇ kV þ 2
X

i;j
κij ∇ kAðri − r j Þ

2

−
1
2γ

∇ 2
k V þ 2

X

i;j
κij Aðri − r j Þ

−
1

γT
X

i;j
κij ∇ kAðri − r j Þ

2
: ðC4Þ

Expanding AðbÞ
k in Eq. (C4) and comparing with AðbÞ

k in
Eq. (C3), it appears that AðaÞand AðbÞare indeed equal up
to a boundary term proportional to

P
i;j κij fAð½riðtÞ −

r j ðtÞ − A½ri ð0Þ − rj ð0Þg which can be neglected at large
t: This resultestablishes the equivalence between ensem-
bles (a) and (b).

We now turn to demonstrate the equivalence between
two ensembles related to the Vicsek-like dynamics (39).
Ensemble (c) is biased with the factor exp½κ

Rt
0 EθðsÞds,

where Eθ is defined in Eq. (40). Ensemble (d) corresponds
to the first-order auxiliary dynamics, with the torque given
by ð1 þ κÞT ,biased with exp½

Rt
0 εθðsÞds,where

εθ ¼
ðκμr Þ2

4Dr

X

i;j;k
T ðθi −θ k; ri −r kÞT ðθi −θ j ; ri −r j Þ: ðC5Þ

The dynamic actions for each ensemble,denoted by
BðσÞðtÞ ¼

P
i
Rt

0 BðσÞ
i ðsÞds for σ ¼ fc; dg,are given by

BðcÞ
i ¼

1
4Dr

_θi − μr
X

j
T ðθi − θj ; ri − r j Þ

2
þ

μr

2
∂

∂θi

X

j
T ðθi − θj ; ri − r j Þ

þ
κμr
2

X

j

∂
∂θi

þ
μr
Dr

X

k
T ðθi − θk; ri − r kÞ T ðθi − θj ; ri − r j Þ ðC6Þ
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and

BðdÞ
i ¼

1
4Dr

_θi − ð1 þ κÞμr
X

j
T ðθi − θj ; ri − r j Þ

2
þ

ð1 þ κÞμr
2

∂
∂θi

X

j
T ðθi − θj ; ri − r j Þ

−
ðκμr Þ2

4Dr

X

j;k
T ðθi − θk; ri − r kÞT ðθi − θj ; ri − r j Þ: ðC7Þ

Expanding BðdÞ
i in Eq. (C6) and comparing with BðcÞ

i in
Eq. (C7), it appears that BðcÞand BðdÞdiffer only by a term
proportional to

P
i;j

_θi T ðθi − θj ; ri − r j Þ which can safely
be neglected at large t, thus proving the equivalence
between ensembles (c) and (d).
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[53] V. Démery,O. Bénichou,and H. Jacquin,Generalized
Langevin Equations for a Driven Tracer in Dense Soft
Colloids: Construction and Applications, New J. Phys. 16,
053032 (2014).

[54] T. Harada and S.-i. Sasa,Equality Connecting Energy
Dissipation with a Violation of the Fluctuation-Response
Relation,Phys.Rev.Lett. 95, 130602 (2005).

[55] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C.
MacKintosh,Nonequilibrium Mechanics of Active Cytos-
keletalNetworks,Science 315,370 (2007).

[56] É. Fodor, M. Guo, N. S. Gov, P. Visco, D. A. Weitz, and F.
van Wijland, Activity-Driven Fluctuations in Living Cells,
Europhys.Lett. 110, 48005 (2015).

[57] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov,
C. Sykes,J.-F.Joanny,G. Gompper,and T. Betz, Equi-
librium Physics Breakdown Reveals the Active Nature of
Red Blood CellFlickering, Nat. Phys.12, 513 (2016).

[58] W. W.Ahmed,É. Fodor,M. Almonacid,M. Bussonnier,
M.-H. Verlhac, N. S. Gov, P. Visco, F. van Wijland, and T.
Betz, Active MechanicsRevealMolecular-Scale Force
Kinetics in Living Oocytes, Biophys. J. 114, 1667 (2018).

[59] T. R. Gingrich, G. M. Rotskoff, and J. M. Horowitz, In-
ferring Dissipation from Current Fluctuations, J. Phys. A
50, 184004 (2017).

[60] É. Roldán,J. Barral,P.Martin, J. M. R.Parrondo,and F.
Jülicher, Arrow of Time in Active Fluctuations,
arXiv:1803.04743.

[61] I. A. Martínez, G. Bisker, J. M. Horowitz, and J. M. R.
Parrondo, Inferring Broken Detailed Balance in the
Absenceof ObservableCurrents, Nat. Commun. 10,
3542 (2019).

[62] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri,
Quantifying Dissipation Using Fluctuating Currents,
Nat. Commun.10, 1666 (2019).
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[78] V. Démery and É.Fodor,Driven Probe under Harmonic
Confinementin a Colloidal Bath, J. Stat. Mech. 2019,
033202 (2019).

[79] K. Sekimoto,Langevin Equation and Thermodynamics,
Prog.Theor.Phys.Suppl.130, 17 (1998).

[80] U. Seifert, Stochastic Thermodynamics,Fluctuation
Theoremsand Molecular Machines,Rep. Prog. Phys.
75, 126001 (2012).

[81] D. Mandal, K. Klymko, and M. R. DeWeese,Entropy
Production and Fluctuation Theorems for Active Matter,
Phys.Rev.Lett. 119, 258001 (2017).

[82] P. Pietzonka and U. Seifert, Entropy Production of Active
Particles and for Particles in Active Baths, J. Phys. A 51,
01LT01 (2018).

[83] S. Shankar and M. C. Marchetti, Hidden Entropy Produc-
tion and Work Fluctuations in an Ideal Active Gas, Phys.
Rev.E 98, 020604(R) (2018).

[84] L. Dabelow,S. Bo, and R. Eichhorn, Irreversibility in
Active Matter Systems: Fluctuation Theorem and Mutual
Information,Phys.Rev.X 9, 021009 (2019).

[85] O. Bénichou,P. Illien, G. Oshanin,A. Sarracino,and R.
Voituriez,Nonlinear Response and Emerging Nonequili-
brium Microstructures for Biased Diffusion in Confined
Crowded Environments, Phys. Rev. E 93, 032128 (2016).

[86] E. W. Burkholder and J. F. Brady, Tracer Diffusion in
Active Suspensions,Phys.Rev.E 95, 052605 (2017).

[87] J. Stenhammar,C. Nardini, R. W.Nash,D. Marenduzzo,
and A. Morozov, Role of Correlations in the Collective
Behavior of Microswimmer Suspensions, Phys. Rev. Lett.
119, 028005 (2017).

[88] T. Bertrand,Y. Zhao, O. Bénichou,J. Tailleur, and R.
Voituriez, Optimized Diffusion of Run-and-Tumble
Particles in Crowded Environments, Phys. Rev. Lett.
120, 198103 (2018).

[89] P. Illien, O. Bénichou,G. Oshanin,A. Sarracino,and R.
Voituriez, Nonequilibrium Fluctuations and Enhanced
Diffusion of a Driven Particle in a Dense Environment,
Phys.Rev.Lett. 120, 200606 (2018).

[90] J.-P. Hansen and I. R. McDonald, Theory of Simple
Liquids,4th ed.(Academic Press,Oxford, 2013).

[91] J. D. Weeks,D. Chandler,and H. C. Andersen,Role of
Repulsive Forces in Determining the Equilibrium Struc-
ture of Simple Liquids,J. Chem.Phys.54, 5237 (1971).

[92] B. Lander, J. Mehl, V. Blickle, C. Bechinger,and U.
Seifert, Noninvasive Measurementof Dissipation in
Colloidal Systems,Phys.Rev.E 86, 030401(R) (2012).

[93] U. M. B. Marconi and C. Maggi, Towards a Statistical
Mechanical Theory of Active Fluids, Soft Matter 11, 8768
(2015).

[94] M. Rein and T. Speck, Applicability of Effective Pair
Potentials for Active Brownian Particles,Eur. Phys.J. E
39, 84 (2016).

[95] R. Wittmann, C. Maggi, A. Sharma,A. Scacchi,J. M.
Brader, and U. M. B. Marconi, Effective Equilibrium
States in the Colored-Noise Modelfor Active Matter I.
Pairwise Forces in the Fox and Unified Colored Noise
Approximations,J. Stat.Mech. 2017,113207 (2017).

[96] U. Basu, C. Maes, and K. Netočný, Statistical Forces from
Close-to-Equilibrium Media,New J. Phys. 17, 115006
(2015).

[97] G. Bisker and J. L.England,Nonequilibrium Associative
Retrieval of Multiple Stored Self-Assembly Targets,Proc.
Natl. Acad.Sci. U.S.A. 115, E10531 (2018).

[98] R. M. L. Evans,Rules for Transition Rates in Nonequili-
brium Steady States,Phys.Rev.Lett. 92, 150601 (2004).

[99] P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical
Dynamics of Classical Systems,Phys. Rev. A 8, 423
(1973).

[100] C. De Dominicis, A Lagrangian Version of Halperin-
Hohenberg-Ma Models for the Dynamics of Critical
Phenomena,Lett. Nuovo Cimento 12,567 (1975).

[101] R. L. Jack and P. Sollich, Effective Interactions and Large
Deviations in Stochastic Processes,Eur. Phys. J. Spec.
Top. 224, 2351 (2015).

[102] V. Popkov, G. M. Schütz, and D. Simon, ASEP on a Ring
Conditioned on Enhanced Flux, J. Stat. Mech. 2010,
P10007 (2010).

[103] V. Popkov and G. M. Schütz, Transition Probabilities and
Dynamic Structure Function in the ASEP Conditioned on
Strong Flux,J. Stat.Phys.142, 627 (2011).

TOCIU, FODOR,NEMOTO, and VAIKUNTANATHAN PHYS. REV. X 9, 041026 (2019)

041026-20



[104] N. Tizón-Escamilla,V. Lecomte,and E.Bertin, Effective
Driven Dynamics for One-Dimensional Conditioned
Langevin Processesin the Weak-NoiseLimit, J. Stat.
Mech.2019,013201 (2019).

[105] K. Proesmans and B. Derrida, Large-Deviation Theory for
a Brownian Particle on a Ring: A WKB Approach, J. Stat.
Mech.2019,023201 (2019).

[106] S. N. Majumdar and A. J. Bray, Large-Deviation Func-
tions for Nonlinear Functionals of a Gaussian Stationary
Markov Process,Phys.Rev.E 65, 051112 (2002).

[107] P. T.Nyawo and H. Touchette,Large Deviations of the
Current for Driven Periodic Diffusions, Phys.Rev. E 94,
032101 (2016).

[108] P. T.Nyawo and H. Touchette,DynamicalPhase Tran-
sition in Drifted Brownian Motion, Phys. Rev. E 98,
052103 (2018).

[109] C. J.Fullerton and R. L.Jack,DynamicalPhase Transi-
tions in Supercooled Liquids: Interpreting Measurements
of Dynamical Activity, J. Chem. Phys. 138, 224506 (2013).

[110] R. L. Jack, I. R. Thompson, and P. Sollich, Hyperuniform-
ity and Phase Separation in Biased Ensembles of Trajec-
tories for Diffusive Systems, Phys. Rev. Lett. 114, 060601
(2015).

[111] E. Crosato,M. Prokopenko,and R. E.Spinney,Thermo-
dynamics ofEmergentStructure in Active Matter,arXiv:
1812.08527.

[112] R. L. Jack and P. Sollich, Large Deviations of the
Dynamical Activity in the East Model: Analysing
Structure in Biased Trajectories,J. Phys.A 47, 015003
(2014).

[113] T. Brewer, S. R. Clark, R. Bradford, and R. L. Jack,
Efficient Characterisation of Large Deviations Using
Population Dynamics, J. Stat. Mech. 2018, 053204
(2018).
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