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a b s t r a c t

There is a growing interest in using robust control theory to analyze and design optimization
and machine learning algorithms. This paper studies a class of nonconvex optimization problems
whose cost functions satisfy the so-called Regularity Condition (RC). Empirical studies show that
accelerated gradient descent (AGD) algorithms (e.g. Nesterov’s acceleration and Heavy-ball) with
proper initializations often work well in practice. However, the convergence of such AGD algorithms is
largely unknown in the literature. The main contribution of this paper is the analytical characterization
of the convergence regions of AGD under RC via robust control tools. Since such optimization problems
arise frequently in many applications such as phase retrieval, training of neural networks and matrix
sensing, our result shows promise of robust control theory in these areas.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, control theoretic tools have gained popularity in ana-
lyzing optimization and machine learning algorithms (Cherukuri,
Mallada, Low, & Cortés, 2017; Fazlyab, Ribeiro, Morari, & Preciado,
2018; Hu & Lessard, 2017b; Hu, Seiler, & Lessard, 2017; Hu, Seiler,
& Rantzer, 2017; Hu, Wright, & Lessard, 2018; Lessard, Recht, &
Packard, 2016; Nishihara, Lessard, Recht, Packard, & Jordan, 2015;
Sundararajan, Hu, & Lessard, 2017; Wilson, Recht, & Jordan, 2016).
Typically, convergence analysis in optimization is performed in
a case-by-case manner and the corresponding techniques highly
depend on the structure of algorithms and assumptions of objec-
tive functions. However, by representing iterative algorithms and
prior information of objective functions as feedback dynamical
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systems, we can apply tools from control theory to carry out the
convergence analysis in a more systematic way.

Such a framework is pioneered by Lessard et al. (2016), where
the authors used semidefinite programming to analyze the con-
vergence of a class of optimization algorithms including gradient
descent (GD), Heavy-ball (HB) and Nesterov’s accelerated gradi-
ent (NAG), by assuming the gradient of the loss function satisfies
some integral quadratic constraints (IQCs). Indeed, the standard
smoothness and convexity assumptions can be well rephrased
as IQCs. Afterwards, similar approaches have been developed to
analyze various optimization algorithms such as ADMM (Nishi-
hara et al., 2015), distributed methods (Sundararajan et al., 2017),
proximal algorithms (Fazlyab et al., 2018), and stochastic finite-
sum methods (Hu, Seiler, & Rantzer, 2017; Hu et al., 2018).
Exploiting the connection between control and optimization also
provides new insights into momentum methods (Hu & Lessard,
2017a, 2017b; Wilson et al., 2016) and facilitates the design of
new algorithms (Cyrus, Hu, Van Scoy, & Lessard, 2018; Dhingra,
Khong, & Jovanovic, 2019; Kolarijani, Esfahani, & Keviczky, 2018;
Van Scoy, Freeman, & Lynch, 2018). Moreover, control tools are
also useful in analyzing the robustness of algorithms against com-
putation inexactness (Aybat, Fallah, Gurbuzbalaban, & Ozdaglar,
2018; Cherukuri et al., 2017; Hu, Seiler, & Lessard, 2017; Lessard
et al., 2016).

This paper considers a class of nonconvex optimization prob-
lems whose objective functions satisfy the so-called Regularity
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Condition (RC) (Candes, Li, & Soltanolkotabi, 2015; Chi, Lu, &
Chen, 2019), which is a geometric condition characterizing the
curvatures of nonconvex functions. Such a condition has appeared
in many important machine learning and signal processing ap-
plications, including phase retrieval (Candes et al., 2015; Chen
& Candès, 2017; Wang, Giannakis, & Eldar, 2017; Zhang, Chi,
& Liang, 2016; Zhang, Liang, & Chi, 2017), deep linear neural
networks (Zhou & Liang, 2017), shallow nonlinear neural net-
works (Li & Yuan, 2017), matrix sensing (Li, Chi, Zhang, & Liang,
2019; Tu, Boczar, Simchowitz, Soltanolkotabi, & Recht, 2016), to
name a few. While it is straightforward to show that GD con-
verges linearly for problems satisfying RC (Candes et al., 2015),
however, the behavior of AGD under RC remains poorly under-
stood in theory, despite its empirical success (Pauwels, Beck,
Eldar, & Sabach, 2017).

Our work aims to deepen the understanding of convergence
of AGD under RC. The main contribution of this paper lies in
the theoretical convergence guarantee of AGD algorithms under
RC. In particular, we provide an analytical characterization of
hyperparameter choices that ensure linear convergence of AGD
for all functions that satisfy RC. In addition, the framework and
tools developed herein may inspire more research on analyzing
the convergence of sophisticated algorithms under nonconvex
settings. Specifically, the analysis for momentum methods typi-
cally involves subtle constructions of Hamiltonians (or Lyapunov
functions). Our frequency domain approach can implicitly ensure
the existence of such Lyapunov functions without explicit con-
structions. This sheds new light on the analysis of momentum
methods for nonconvex optimization problems.

It is worth noting that, RC is essentially the same as the sector
bound condition in Lessard et al. (2016) when it holds globally.
In Lessard et al. (2016, Sections 4.5 and 4.6), LMI conditions
have been derived to analyze momentum methods under the
sector bound condition. The results, however, are numerical val-
idations of convergence for given hyperparameters by running
a small semidefinite program, and such validation needs to be
done whenever the hyperparameters are changed. Built on this
prior work, we focus on how to obtain analytical convergence
regions from these LMIs without solving semidefinite programs.
Our analytical results for momentum methods under RC provide
deeper understanding on the connection between control theory
and nonconvex optimization.

The rest of the paper is organized as follows. In Section 2, we
state the problem and introduce the AGD methods of interest.
Section 3 presents how to incorporate the algorithms and RC into
a dynamical system and transfer the convergence analysis into
the stability analysis. Section 4 derives the analytical convergence
conditions of AGD methods under RC via a frequency domain
approach by applying the KYP lemma. In Section 5, we discuss
how to extend the results to the general case where RC only holds
locally.

2. Problem background

A general optimization problem can be described as

minimize
z∈Rn

f (z), (1)

where f (z) may be both nonconvex and nonsmooth.

2.1. Regularity condition

This paper focuses on a special yet important case of noncon-
vex optimization, where the objective function f (·) satisfies the
Regularity Condition (RC) (Candes et al., 2015), defined as follows.

Definition 1 (Regularity Condition). A function f (·) is said to satisfy
the Regularity Condition RC(µ, λ, ϵ) with positive constants µ, λ
and ϵ, if

⟨∇f (z), z − x⋆⟩ ≥
µ

2
∥∇f (z)∥2 +

λ

2



z − x⋆




2
(2)

for all z ∈ Nϵ(x
⋆) := {z : ∥z − x⋆∥ ≤ ϵ∥x⋆∥}, where x⋆ is a local

minimizer of f (z).

It is straightforward to check that one must have µλ ≤ 1 by
Cauchy–Schwartz inequality. RC can be regarded as a combina-
tion of one-point strong convexity and smoothness (Chi et al.,
2019), and does not require the function f (·) to be convex. RC
has appeared in a wide range of applications, a partial list of
which includes phase retrieval (Candes et al., 2015), deep linear
neural networks (Zhou & Liang, 2017), shallow nonlinear neural
networks (Li & Yuan, 2017) and matrix sensing (Li et al., 2019; Tu
et al., 2016).

Our framework can handle the general case where RC only
holds locally as defined. To simplify the presentation, we will
first assume RC holds globally, i.e. ϵ = ∞ in Definition 1, in
which case x⋆ becomes the global minimizer correspondingly. It
turns out that our main results can be directly applied to the case
when RC holds locally, using proper initializations, which will
be explained in detail in Section 5. Without ambiguity, we will
omit the neighborhood radius ϵ and use the notation RC(µ, λ) to
denote the global RC in the derivation of the main results.

2.2. Accelerated gradient descent methods

In practice, AGD methods are widely adopted for its abil-
ity to accelerate the convergence. Two widely-used acceleration
schemes include Nesterov’s accelerated gradient (NAG) method
(Nesterov, 2003), given as

yk = (1 + β)zk − βzk−1,

zk+1 = yk − α∇f (yk), k = 0, 1, . . . , (3)

where α > 0 is the step size, 0 ≤ β < 1 is the momentum
parameter; and Heavy-Ball (HB) method (Polyak, 1964), given as

yk = (1 + β)zk − βzk−1,

zk+1 = yk − α∇f (zk), k = 0, 1, . . . , (4)

where α > 0 is the step size, 0 ≤ β < 1 is the momentum
parameter. In fact, we can describe a general AGD method that
subsumes HB and NAG as special cases:

yk = (1 + β2)zk − β2zk−1,

zk+1 = (1 + β1)zk − β1zk−1 − α∇f (yk).
(5)

Despite the empirical success, the convergence of AGD in the
nonconvex setting remains unclear to a large extent. For example,
it is not known whether AGD converges under RC, whether it
converges linearly if it does and how to set the step size and
the momentum parameters to guarantee its convergence. These
challenging questions motivate us to look for new tools to better
understand AGD for nonconvex optimization.

3. A control view on the convergence analysis of AGD under

RC

Robust control theory has been tailored to the convergence
analysis of optimization methods (Hu & Lessard, 2017b; Hu,
Seiler, & Rantzer, 2017; Lessard et al., 2016; Nishihara et al.,
2015). The proofs of our main theorems also rely on such tech-
niques. In this section, we will discuss how to transform the
convergence analysis of AGD under RC to the robust stability anal-
ysis of dynamical systems and derive LMI conditions to guarantee
the convergence.
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Fig. 1. The dynamical system representation of first-order methods.

3.1. AGD as feedback dynamical system

Observe that a general AGD method (5) can be viewed as a
linear dynamical system subject to nonlinear feedback:

z
(1)
k+1 = (1 + β1)z

(1)
k − β1z

(2)
k − αuk,

z
(2)
k+1 = z

(1)
k ,

yk = (1 + β2)z
(1)
k − β2z

(2)
k ,

uk = ∇f (yk).

(6)

To see this, let z
(1)
k = zk, and z

(2)
k = zk−1. Then it can be easily

verified that (6) represents HB when (β1, β2) = (β, 0), and NAG
when (β1, β2) = (β, β).

Let ⊗ denote the Kronecker product. We use the notation
G(A, B, C,D) to denote a dynamical system G governed by the
following iterative state-space model:

φk+1 = (A ⊗ In)φk + (B ⊗ In)uk,

yk = (C ⊗ In)φk + (D ⊗ In)uk,

where In is the identity matrix of size n. If we define φk =
[

z
(1)
k

z
(2)
k

]

as the state, uk as the input and yk as the output, then

(6) can be regarded as a dynamical system shown in Fig. 1, where
the feedback ∇f (yk) is a static nonlinearity that depends on the
gradient of the loss function, and G(A, B, C,D) is a linear system
specified by

[

A B

C D

]

=
[

1 + β1 −β1 −α

1 0 0

1 + β2 −β2 0

]

. (7)

3.2. Convergence analysis of AGD under RC via stability analysis of

a feedback system

In the following, we will illustrate how to show the conver-

gence of AGD. First, define φ∗ =
[

x⋆

x⋆

]

as the equilibrium of the

dynamical system (6). If the system is (globally) asymptotically

stable, then φk
k→∞−−−→ φ∗. It further implies zk

k→∞−−−→ x⋆. In
other words, the asymptotic stability of the dynamical system can
indicate the convergence of the iterates to a fixed point. From
now on, we focus on the stability analysis of the feedback control
system (6).

The stability analysis of the feedback control system (6) can be
carried out using robust control theory. The main challenge is on
the nonlinear feedback term uk = ∇f (yk). Our key observation is
that RC can be rewritten as the following quadratic constraint:
[

yk − y∗
uk − u∗

]T [

−λIn In
In −µIn

][

yk − y∗
uk − u∗

]

≥ 0, (8)

where y∗ = x⋆ and u∗ = ∇f (y∗) = 0. Applying the quadratic
constraint framework in Lessard et al. (2016), we can derive an
LMI as a sufficient stability condition as stated in the following
proposition. A formal proof of this result can be found in the
Appendix.

Proposition 2. Let x⋆ ∈ R
n be the global minimizer of the loss

function f (·) which satisfies RC(µ, λ). For a given first-order method

characterized by G(A, B, C,D), if there exist a matrix P ≻ 0 and

ρ ∈ (0, 1) such that the following linear matrix inequality (LMI)

(9) holds,
[

ATPA − ρ2P ATPB

BTPA BTPB

]

+
[

C D

01×2 1

]T [

−λ 1
1 −µ

][

C D

01×2 1

]

⪯ 0,

(9)

then the state φk generated by the first-order algorithm G(A, B, C,D)
converges to the fixed point φ∗ linearly, i.e.,

∥φk − φ∗∥ ≤
√

cond(P)ρk∥φ0 − φ∗∥ for all k, (10)

where cond(P) is the condition number of P.

Remark 3. For fixed (A, B, C,D) and ρ, the LMI (9) is linear in P

and hence an LMI. The size of this LMI is 3 × 3, and the decision
variable P is a 2 × 2 matrix. The size of the LMI (9) is independent
of the state dimension n.

Remark 4. The LMI (9) is similar to the one derived in Lessard
et al. (2016) under the so-called sector bound condition. The rela-
tionship between RC and the sector bound is discussed in detail
in the Appendix. Different from Lessard et al. (2016), we focus
on deriving analytical convergence regions (see Section 4), in
contrast to verifying convergence numerically for specific param-
eters, offering deeper insight regarding the convergence behavior
of AGD methods under RC. In addition, we also extend the results
to the case where RC holds only locally around the fixed point
(see Section 5).

4. Convergence conditions of AGD

In this section, we focus on how to obtain analytical conver-
gence conditions of AGD under RC based on (9).

Analytically solving (9) is challenging since one typically needs
to express P explicitly as a function of (A, B, C,D) and (λ, µ).
Our main idea is to transform the LMI (9) to equivalent fre-
quency domain inequalities (FDIs) which can reduce unknown
parameters using the classical KYP lemma (Rantzer, 1996). Then
we can derive the main convergence results by solving the FDIs
analytically.

4.1. The Kalman–Yakubovich–Popov (KYP) lemma

We first introduce the KYP lemma and the reader is referred
to Rantzer (1996) for an elegant proof.

Lemma 5 (Rantzer, 1996, Theorem 2). Given A, B, M, with det(ejωI−
A) ̸= 0 for ω ∈ R, the following two statements are equivalent:

(1) ∀ω ∈ R,
[

(ejωI − A)−1B

I

]∗
M

[

(ejωI − A)−1B

I

]

≺0. (11)

(2) There exists a matrix P ∈R
n×n such that P=PT and

M +
[

ATPA − P ATPB

BTPA BTPB

]

≺ 0. (12)

The general KYP lemma only asks P to be symmetric instead
of being positive definite (PD) as in our problem. To ensure that
the KYP lemma can be applied to solve (9), some adjustments
of the lemma are necessary. In fact, we observe that if A of the
dynamical system is Schur stable and the upper left corner of M ,
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denoted as M11, is positive semidefinite (PSD), then by checking
the principal minor M11 + ATPA − P ≺ 0, we know P satisfying
(12) must be PD. We define these conditions on A and M as KYP
Conditions, which are restrictions to make sure that all solutions
of symmetric P for (12) are PD.

Definition 6 (KYP Conditions). The KYPC(A,M) are listed as:

(1) det(ejωI − A) ̸= 0 for ω ∈ R;

(2) A is Schur stable;

(3) The left upper corner of M in (12) is PSD.

Thus we can conclude the following corollary.

Corollary 7. Under KYPC(A,M), the following two statements are
equivalent:

(1) ∀ω ∈ R,
[

(ejωI − A)−1B

I

]∗
M

[

(ejωI − A)−1B

I

]

≺0. (13)

(2) There exists a matrix P ∈ R
n×n such that P ≻ 0 and

M +
[

ATPA − P ATPB

BTPA BTPB

]

≺ 0. (14)

One can easily check, however, that A and M of a general
AGD in (9) do not satisfy the KYPC(A,M). Therefore, we need to
rewrite the dynamical system (6) in a different way to satisfy
the KYPC(A,M), so that its stability analysis can be done by
combining Proposition 2 and Corollary 7. In the following, we first
introduce a way to rewrite the dynamical system to satisfy the
KYPC(A,M).

4.2. How to satisfy the KYP conditions?

Recall that a general AGD can be written as (5). Here we
introduce a slack variable δ to rewrite the algorithm:

zk+1 = (1 + δ + β1 + δβ2) zk−(β1 + δβ2)zk−1

− α∇f (yk) − δyk,

yk =(1 + β2)zk − β2zk−1.

(15)

Observe that for any value of δ, (15) provides the same update
rule as (5). It can be viewed as a generalized representation of the
dynamical systems corresponding to the targeted AGD. Similar to
(6), we rewrite (15) as a dynamical system G(A′, B′, C ′,D′):

z
(1)
k+1 =(1+β1+δ+δβ2) z

(1)
k −(β1+δβ2)z

(2)
k +uk,

z
(2)
k+1 =z

(1)
k ,

yk = (1 + β2)z
(1)
k − β2z

(2)
k ,

uk =−α∇f (yk) − δyk.

(16)

Correspondingly,

[

A′ B′

C ′ D′

]

=
[

1 + β1 + δ + δβ2 −(β1 + δβ2) 1
1 0 0

1 + β2 −β2 0

]

.

In addition to the adjustment of the dynamics, the feedback
of G(A′, B′, C ′,D′) also differs from that in (6). As a consequence,
the quadratic bound for the new feedback uk = −α∇f (yk) − δyk
is shifted as stated in the following lemma.

Lemma 8. Let f be a loss function which satisfies RC(µ, λ) and
y∗ = x⋆ be a minimizer. If uk = −α∇f (yk) − δyk, then yk and uk

can be quadratically bounded as
[

yk − y∗
uk − u∗

]T

M ′
[

yk − y∗
uk − u∗

]

≥ 0. (17)

where M ′ =
[

−
(

2αδ + λα2 + µδ2
)

−α − µδ

−α − µδ −µ

]

.

Now we have general representations of A′, M ′ with one
unknown parameter δ. We need to certify the region of (α, β1, β2)
such that its corresponding (A′,M ′) has at least one δ satisfying
the KYPC(A′,M ′).

Lemma 9. Let f be a loss function which satisfies RC(µ, λ). There is

at least one representation of the dynamical system (16) satisfying
KYPC(A′,M ′), if and only if the step size α and the momentum

parameters β1, β2 obey the following restriction:

0 < α <
2(1 + β1)(1 +

√
1 − µλ)

λ(1 + 2β2)
. (18)

By Lemma 9, if the parameters of a fixed AGD with (α, β1, β2)
satisfy (18), then all feasible symmetric P ’s for (14) can be guar-
anteed to be PD. Now we are ready to use the KYP lemma to
complete the convergence analysis of an accelerated algorithm.

4.3. Stability region of AGD under RC

By Proposition 2, we can solve the stability of the new system
(16) by finding some feasible P ≻ 0 to the key LMI (9) with
respect to the corresponding (A′, B′, C ′,D′,M ′) for some rate 0 <

ρ < 1. We are interested in obtaining the analytical region of
(α, β1, β2) that guarantees the linear convergence of AGD under
RC. We use the following strict matrix inequality without caring
about a specific rate ρ,
[

A′TPA′ − P A′TPB′

B′TPA′ B′TPB′

]

+
[

C ′ 0
01×2 1

]T

M ′
[

C ′ 0
01×2 1

]

≺ 0.

(19)

Remark 10. Our arguments can also be modified to derive the
parameter region which guarantees the convergence with a fixed
rate ρ. For such an analysis, we can modify the LMI (19) by
rescaling the matrices(A′, B′) as Ã = A′/ρ and B̃ = B′/ρ. Then the
resultant LMI can be converted to an FDI by the KYP lemma, and
a similar analysis can be carried forward. Such analytical analysis
of the convergence rate is even more difficult to interpret due to
the presence of ρ in (Ã, B̃). For simplicity, this paper focuses on
the derivation of stability regions.

Observe that now (19) is of the same form as (14). By the KYP
lemma (Corollary 7), under KYPC(A′,M ′) (19) can be equivalently
solved by studying the following FDI:
[

(ejωI − A′)−1B′

I

]∗ [

C ′ 0
01×2 1

]T

M ′

[

C ′ 0
01×2 1

][

(ejωI − A′)−1B′

I

]

< 0, ∀ω ∈ R.

(20)

By simplifying (20) we observe that all uncertain terms can be
canceled out and then conclude the following lemma.

Lemma 11. To find the stability region of a general AGD method

under RC(µ, λ), or equivalently, to find the region of (α, β1, β2) such
that there exists a feasible P ≻ 0 satisfying (19), it is equivalent to

find (α, β1, β2) which simultaneously obeys (18) and guarantees the

following FDI:

4(αβ2−µβ1) cos
2 ω+2

[

µ(1+β1)
2+λα2β2(1+β2)

−α(1+β1)(1+2β2)] cosω+2α(1+β1+2β1β2)

− 2µ(1+β2
1 )−λα2

[

β2
2 +(1+β2)

2
]

< 0, ∀ω ∈ R.

(21)
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Fig. 2. Visualization of the convergence regions of HB when perturbing the RC parameters.

We omit the proof of Lemma 11 since it follows easily from
Corollary 7 and some simple calculations to simplify (20).

By setting different β1, β2 in (21), we can obtain the conver-
gence condition of a general AGD method using the KYP lemma.
In the following, we focus on the two most important cases: HB
and NAG and other cases can be discussed in a similar way. The
stability regions of HB and NAG can be obtained by letting β2 = 0
and β1 = β2 = β in (21), respectively. Then we can obtain
Theorems 12 and 13.

Theorem 12. Let x⋆ ∈ R
n be the global minimizer of the loss

function f (·) which satisfies RC(µ, λ). For any step size α > 0 and
momentum parameter β ∈ (0, 1) lying in the region:

{

(α, β) : H1(β) ≤ α ≤
2(β + 1)(1 −

√
1 − µλ)

λ

}

∪
{

(α, β) : 0 < α ≤ min{H1(β),H2(β)}
}

.

where H1(β) = µβ2+6µβ+µ

β+1
and

H2(β) =
P2(β)−

√

P2(β)2−4P1(β)P3(β)

2P1(β)

with P1(β) = 4µλβ −β2 −1−2β , P2(β) = 2µβ +2µβ2 −2µβ3 −
2µ, and P3(β) = 4µ2β3 +4µ2β −6µ2β2 −µ2β4 −µ2, the iterates
zk generated by HB (4) converge linearly to x⋆ as k → ∞.

Theorem 13. Let x⋆ ∈ R
n be bluethe global minimizer of the loss

function f (·) which satisfies RC(µ, λ). For any step size α > 0 and
momentum parameter β ∈ (0, 1) lying in the region:
{

(α, β) : N1(β) ≤ α <
2(β + 1)(1 −

√
1 − µλ)

λ(1 + 2β)

}

∪
{

(α, β) : 0 < α ≤ min {N1(β),N2(β)}
}

.

where

N1(β) =
Q1(β) −

√

Q1(β)2 − (1 + 6β + β2)Q2(β)

2λβ(β + 1)
,

N2(β) =
{

β :
Q3(β)−

√

Q3(β)2−(1 − β)2Q2(β)

2λβ(β + 1)
≤ α,

g

(

(µ − α)(1 + β)2 + (λα2 − α)(β + β2)

4µβ − 4αβ

)

=0

}

,

Q1(β) = 1+7β+2β2, Q2(β) = 4µλβ(1+β), Q3(β) = 1−β+2β2,
the iterates zk generated by NAG (3) converge linearly to x⋆ as
k → ∞.

Remark 14. The bound N2(β) is an implicit function of β . It is

hard to derive an explicit expression since g(·) = 0 is a 4th-order

equation of β . The function g(η) is:

g(η) :=4µβη2 − 2(2µβ + µβ2 − αβ + µ − α)η

+ 2µ + 2µβ2 − 2α − 2αβ + λα2.

The analytical results stated in the above theorems can provide

rich insights on the convergence behaviors of AGD. Take the

convergence region of HB as an example. In Fig. 2(a), we fix the

RC parameter λ = 0.5 and vary µ within [0.01, 1.9], while in

Fig. 2(b), we fix µ = 0.5 and vary the value of λ within [0.01, 1.9].
Observe that when we fix one of the RC parameters and increase

the other, the stability region of (α, β) gets larger.

Notice that µ plays a role similar to the inverse of the smooth-

ness parameter, and therefore, it dominantly determines the step

size, which is clearly demonstrated in Fig. 2(a). In addition, when

we fix the values of a pair of (µ, λ) (e.g. Fig. 3), we can see that

even when α exceeds the value of the bound of GD (the maximal

feasible α when β = 0), the Heavy-ball method can still ensure

convergence when we choose β properly. This property has not

been discussed in the literature.

We emphasize that our theoretic analysis is a complement

rather than a replacement for the numerical LMI approach in

Lessard et al. (2016). Our closed-form expressions for the stability

region do provide some complementary benefits to the numerical

approach in Lessard et al. (2016). First, from our closed-form for-

mulas, one can tell that the stability region of HB is well described

by the feasible set of some relatively simple quadratic inequalities

while the characterization of the stability region boundary of NAG

partially involves a fourth-order polynomial. Such a difference is

not directly reflected by the numerical LMI approach in Lessard

et al. (2016). Actually our closed-form expression for the stability

region of HB is quite simple. Our study on HB and NAG just illus-

trates that the interpretability of the analytical formulas for the

stability region depends on the specific momentummethod being

analyzed. Second, the stability region is easier and faster to visu-

alize from analytical forms than numerical results. When given a

pair of (µ, λ), one needs to make a small grid of (α, β1, β2) and

solve an LMI for each single pair, which is computationally com-

plex but can be avoided if we have closed-form analytical results.

More importantly, the LMI conditions in Lessard et al. (2016) can

only certify convergence numerically for fixed (α, β1, β2) under a

given pair of RC parameter (µ, λ). However, our analytical results

provide continuous stability regions with respect to (µ, λ), which

is hard to achieve using numerical results.
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Fig. 3. Visualization of the convergence regions of two AGD methods taking RC parameters as µ = 0.5, λ = 0.5.

4.4. Numerical example

In this subsection, we will use a simple example satisfying RC
globally to show how our results help to choose parameters of
different first-order methods in practice.

Consider a loss function as shown in Fig. 4(a) with an expres-
sion as

f (x) =
{

x2, x ∈ [−6, 6]
x2 + 1.5|x| (cos(|x| − 6) − 1) , otherwise.

This nonconvex loss function was also discussed in Chen and
Candès (2017) and Chi et al. (2019). One can check that f satisfies
RC(0.5, 0.5).

We initialize at x0 = x1 = 24 and choose α = 0.1. By
Theorem 12, HB can converge when β < 0.5942. For NAG, we
choose β < 0.6950 according to Theorem 13. Furthermore, it is
common to choose the hyper-parameter β as large as possible to
obtain a better performance. Therefore, the corresponding β ’s to
HB and NAG are chosen as 0.59 and 0.69, respectively. In Fig. 4(b),
we see that all the three algorithms can converge and the two
accelerated methods HB and NAG obviously outperform GD.

5. Local regularity condition

So far, all the above derivations assume RC holds globally. In
addition, the existing control framework for optimization meth-
ods (Cyrus et al., 2018; Dhingra et al., 2019; Fazlyab et al., 2018;
Hu & Lessard, 2017b; Hu, Seiler, & Rantzer, 2017; Lessard et al.,
2016; Van Scoy et al., 2018) all require global constraints. In
certain problems, however, RC may only hold locally around the
fixed point. In this section, we explain how our framework can
accommodate such cases, as long as the algorithms are initialized
properly as stated in the following theorem whose proof can be
found in the Appendix.

Theorem 15. Let x⋆ ∈ R
n be a local minimizer of the loss function

f (·) which satisfies RC(µ, λ, ϵ) with some positive constants µ, λ, ϵ.

Assume that P ≻ 0 is a feasible solution of the LMI (9). If the first two

iterates initialized properly according to z−1, z0 ∈ Nϵ/
√
10cond(P)(x

⋆),
then yk ∈ Nϵ(x

⋆), ∀k.

Theorem 15 ensures all the following iterates will not exceed
the local neighborhood satisfying RC since yk ∈ Nϵ(x

⋆) for all k, so
that we can still transfer RC to a quadratic bound at each iteration,
and thus all the previous results still hold for the convergence
analysis of AGD under a general setting where RC only holds
locally.

In practice, spectral methods can be used as an initialization
scheme to locate an initial estimate in a desired neighborhood
of the fixed point. For example, we consider a popular inverse
problem in signal processing called phase retrieval, where the
goal is to recover a signal x⋆ ∈ R

n from the magnitudes of its

linear measurements, yr = |aTr x⋆|2, r = 1, . . . ,m, where ar ∈ R
n

is the rth sampling vector, and m is the number of samples. If
ar ’s are drawn with i.i.d. standard Gaussian entries, it is shown

that the loss function f (z) = 1
2m

∑m

r=1

(

yr − |aTr z|
2
)2

satisfies

RC locally in Nϵ(x
⋆) (ignoring the sign ambiguity in identifying

x⋆), where ϵ is a small constant (e.g. 1/10) (Candes et al., 2015).
On the other end, the spectral method proposed in Chen and
Candès (2017) returns an initial estimate Nϵ(x

⋆) as soon as the
sample complexity m is above the order of O(n/ϵ). Therefore, as
long as m = O(n), the spectral method can successfully land an
initialization in the region satisfying RC. In addition, the quality
of the initialization also impacts the iteration complexity loga-
rithmically as suggested by (10). We refer the readers to Candes
et al. (2015) and Keshavan, Montanari, and Oh (2010) for more
details of initialization techniques.

6. Conclusions

In this paper, we apply control tools to analyze the con-
vergence of AGD (including HB and NAG) under the Regularity
Condition. Our main contribution lies in the analytical charac-
terization of the convergence regions in terms of the algorithm
parameters (α, β) and the RC parameters (µ, λ). Such conver-
gence results do not exist in the current literature and offer useful
insights in the analysis and design of AGD for a class of nonconvex
optimization problems.

Appendix A. RC vs sector bound

Recall the quadratic bound for RC(µ, λ) has the following
form:
[

yk − y∗
uk − u∗

]T [

−λIn In
In −µIn

][

yk − y∗
uk − u∗

]

≥ 0. (A.1)

The sector bound condition in Lessard et al. (2016, Lemma 6) is
described by the following quadratic constraint:
[

yk − y∗
uk − u∗

]T [

−2mLIn (L + m)In
(L + m)In −2In

][

yk − y∗
uk − u∗

]

≥ 0, (A.2)

where m and L are the slopes of the lines forming the sector. For
simplicity, assume m ≤ L. By comparing (A.1) and (A.2), we can
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Fig. 4. An example satisfying RC and numerical experiments.

find that the quadratic bounds corresponding to RC and the sector
bound are essentially the same. Specifically, given the sector
bound (A.2), we can set λ = 2mL

m+L
and µ = 2

m+L
, which leads to RC

in (A.1). Similarly, given RC in (A.1), we can immediately obtain an

equivalent sector bound condition by setting m = 1−
√
1−λµ

µ
and

L = 1+
√
1−λµ

µ
. One special situation is when RC holds only locally,

as is the case in most applications, which is handled carefully in
this paper.

Appendix B. Proof details

B.1. Proof of Proposition 2

Assume the key LMI holds with some P ≻ 0, i.e.,
[

ATPA − ρ2P ATPB

BTPA BTPB

]

+
[

C D

01×2 1

]T [

−λ 1
1 −µ

][

C D

01×2 1

]

⪯ 0.

(B.1)

Multiplying (B.1) by

[

φk − φ∗
uk − u∗

]T

from the left and

[

φk − φ∗
uk − u∗

]

from the right respectively, and inserting the Kronecker product,
we obtain
[

φk − φ∗
uk − u∗

]T ([

ATPA − ρ2P ATPB

BTPA BTPB

]

⊗ In

)[

φk − φ∗
uk − u∗

]

+
[

yk − y∗
uk − u∗

]T [

−λIn In
In −µIn

][

yk − y∗
uk − u∗

]

≤ 0.

We have that RC can be equivalently represented as a
quadratic bound of the feedback term uk = ∇f (yk) as:
[

yk − y∗
uk − u∗

]T [

−λIn In
In −µIn

][

yk − y∗
uk − u∗

]

≥ 0, (B.2)

which further implies that
[

φk − φ∗
uk − u∗

]T ([

ATPA − ρ2P ATPB

BTPA BTPB

]

⊗ In

)

·
[

φk − φ∗
uk − u∗

]

≤ 0.

(B.3)

Observe φk+1 = (A ⊗ In)φk + (B ⊗ In)uk. Hence we can further
rearrange and simplify (B.3) as

(φk+1 − φ∗)
T (P ⊗ In) (φk+1 − φ∗)

≤ ρ2(φk − φ∗)
T (P ⊗ In) (φk − φ∗).

Such exponential decay with P ≻ 0 for all k can conclude
Proposition 2.

B.2. Proof of Lemma 8

We check the inner product of the input uk and output yk
(recall that y∗ = x⋆) of the dynamical system (16):

⟨uk − u∗, yk − y∗⟩
=⟨−α∇f (yk) − δ(yk − y∗), yk − y∗⟩
= − δ∥yk − y∗∥2 − α⟨∇f (yk), yk − y∗⟩

≤ − δ∥yk − y∗∥2 −
αµ

2
∥∇f (yk)∥2 −

αλ

2
∥yk − y∗∥2

= −
µ

2α
∥uk − u∗∥2 −

δµ

α
⟨uk − u∗, yk − y∗⟩

−
(

δ +
αλ

2
+

δ2µ

2α

)

∥yk − y∗∥2.

By rearrangement, we have

−
(

2αδ + λα2 + µδ2
)

∥yk − y∗∥2

− 2(α + µδ)⟨uk − u∗, yk − y∗⟩ − µ∥uk − u∗∥2 ≥ 0,

and thus conclude (17).

B.3. Proof of Lemma 9

We check the KYPC(A′,M ′) as listed for AGD (16) characterized
by α, β1, β2:

(1) det(ejωI − A′) ̸= 0 for ω ∈ R;

(2) A′ is Schur stable;

(3) The left upper corner of M ′ in (17) is PSD.

Condition 1. Write

det(ejωI−A′)=
⏐

⏐

⏐

⏐

ejω−(1 + β1 + δ(1 + β2)) β1 + δβ2

−1 ejω

⏐

⏐

⏐

⏐

= cos2 ω − sin2 ω − (1 + β1 + δ(1 + β2)) cosω + β1

+ δβ2 + j(2 sinω cosω − (1 + β1 + δ(1 + β2)) sinω).

By means of the opposite direction, let det(ejωI−A′) = 0. Then
we have
⎧

⎪

⎨

⎪

⎩

cos2 ω − sin2 ω− (1 + β1 + δ(1 + β2)) cosω

+ β1 + δβ2 = 0,

2 sinω cosω − (1 + β1 + δ(1 + β2)) sinω = 0.

From the second equality, we have sinω = 0 or (1 + β1+
δ(1 + β2)) = 2 cosω, which we discuss separately. (a) If sinω
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= 0, cosω = ±1. Then the first equality becomes (1 + β1 + δ

(1 + β2)) = ±(1 + β1 + δβ2); (b) if (1 + β1 + δ(1 + β2)) =
2 cosω, then from the first equality we need cos2 ω − sin2 ω −
(1 + β1 + δ(1 + β2)) cosω + β1 + δβ2 = −1 + β1 + δβ2 = 0.

To conclude, Condition 1 is satisfied if and only if:

(1+β1+δ(1+β2)) ̸=±(1+β1+δβ2),β1+δβ2 ̸= 1. (B.4)

Condition 2. We want

A′ =
[

(1 + β1 + δ(1 + β2)) −(β1 + δβ2)
1 0

]

to be Schur stable, for which it suffices to check its eigenvalues
are bounded by 1 in magnitude. We start by writing out the
characteristic equation of A′:

|λI − A′| =
⏐

⏐

⏐

⏐

λ − (1 + β1 + δ(1 + β2)) β1 + δβ2

−1 λ

⏐

⏐

⏐

⏐

= λ2 − λ (1 + β1 + δ(1 + β2)) + β1 + δβ2 = 0.

The eigenvalues of A′ are given as the two roots of the above
polynomial:

λ1,2 = (1 + β1 + δ(1 + β2))

2

±
√

(1 + β1 + δ(1 + β2))
2 − 4(β1 + δβ2)

2
.

We need to make sure |λ1,2| < 1. When the eigenvalues are
complex-valued, i.e. (1 + β1 + δ(1 + β2))

2 < 4(β1 + δβ2), |λ1| =
|λ2| = β1+δβ2, and thus we need β1+δβ2 < 1 in this case. When
the eigenvalues are real-valued, i.e. (1 + β1 + δ(1 + β2))

2 ≥
4(β1 + δβ2), we have

4(β1 + δβ2) ≤ (1 + β1 + δ(1 + β2))
2 < (1 + β1 + δβ2)

2.

To conclude, Condition 2 is satisfied if and only if

−
2(1 + β1)

1 + 2β2

< δ < 0. (B.5)

Condition 3. We want the left upper corner of M ′ in (17) to be
PSD, which means

−
(

2αδ + λα2 + µδ2
)

≥ 0.

Then Condition 3 is satisfied if and only if

−δ − |δ|
√
1 − µλ

λ
≤ α ≤

−δ + |δ|
√
1 − µλ

λ
. (B.6)

To conclude, by unifying all conditions (B.4) (B.5) (B.6), we
conclude that the parameters of AGD need to satisfy

0 < α <
2(1 + β1)(1 +

√
1 − µλ)

λ(1 + 2β2)
. (B.7)

B.4. Proof of Theorem 12

For HB, we set β1 = β , β2 = 0 and denote u := cosω, then
(21) can be rewritten as:

h(u) :=4µβu2−2(2µβ+µβ2−αβ+µ−α)u

+2µ+2µβ2−2α−2αβ+λα2 ≥0, ∀u ∈ [−1, 1].
(B.8)

Observe that h(u) is a quadratic function depending on u. We can
check the minimal value of h(·) on [−1, 1] by discussing its axis

of symmetry denoted as S = 2µβ+µβ2−αβ+µ−α

4µβ
.

(1) When S ≥ 1, α ≤ µ(1−β)2

1+β
. Then

h(u)min = h(1) = λα2 > 0.

Thus the feasible region in this case is:
{

(α, β) : α ≤
µ(β − 1)2

β + 1
, 0 < β < 1

}

. (B.9)

(2) When S ≤ −1, α ≥ µβ2+6µβ+µ

1+β
. We need

h(u)min = h(−1) = λα2 − 4(1 + β)α + 4µ(1 + β)2 ≥ 0.

Thus the feasible region in this case is:
{

(α, β) :α ≥
2(β+1)(1+

√
1−µλ)

λ
, 0<β <1

}

∪
{

(α, β) :
µβ2 + 6µβ + µ

β + 1
≤ α

≤
2(β + 1)(1 −

√
1 − µλ)

λ
, 0 < β < 1

}

.

(B.10)

(3) When −1 < S < 1,
µβ2+6µβ+µ

1+β
< α <

µ(1−β)2

1+β
. We want

h(u)min = h

(

2µβ+µβ2−αβ+µ−α

4µβ

)

≥ 0. It is equivalent to

solve

(4µλβ − β2 − 1 − 2β)α2 −
(

2µβ + 2µβ2 − 2µβ3

−2µ) α + 4µ2β3 + 4µ2β − 6µ2β2 − µ2β4 − µ2 ≥ 0.

Since 4µλβ − β2 − 1 − 2β < 4β − β2 − 1 − 2β ≤ 0, Thus
the feasible region in this case is:
{

(α, β) :
µ(β − 1)2

β + 1
≤α≤R, 0<β <1

}

∩
{

(α, β) :α≤
µβ2+6µβ+µ

β + 1
, 0<β <1

}

,

(B.11)

where R =
P2−

√

P2
2
−4P1P3

2P1
, P1 = 4µλβ − β2 − 1 − 2β, P2 =

2µβ + 2µβ2 − 2µβ3 − 2µ, P3 = 4µ2β3 + 4µ2β − 6µ2β2 −
µ2β4 − µ2.

Taking the union of (B.9) (B.10) (B.11) gives the result of the
FDI (B.8). Further intersecting with the condition (18) obtained
in Lemma 9 leads to the final region.

B.5. Proof of Theorem 13

Similar with the proof of Theorem 12, for NAG, we set β1 =
β2 = β and denote u := cosω, then (21) can be rewritten as:

h(u) := (−4µβ + 4αβ)u2

+
[

2(µ − α)(1 + β)2 + 2(λα − 1)α(1 + β)β
]

u

− 2µ(1 + β2) + 2α(1 + β)2 − λα2β2

− 2α(1 − β)β − λα2(1 + β)2 ≤ 0, ∀u ∈ [−1, 1].

(B.12)

We check the maximal value of the quadratic function h(·) on
[−1, 1].

(1) When α = µ, h(u)max = f (−1) ≤ 0. Thus the feasible
region in this case is:
{

(α, β) : α=µ, 0<β ≤
−1+µλ+

√
1−µλ

2(1 − µλ)

}

. (B.13)

(2) When α > µ, we need to let h(1) ≤ 0, h(−1) ≤ 0. Since
h(1) = −λα2 < 0, we only need to check h(−1). Thus the
feasible region in this case is:

{(α, β) : α ≥ L1, 0 < β < 1} ∪
{(α, β) : µ < α ≤ R1, 0 < β < 1} ,

(B.14)

where L1 = 2(β+1)(1+
√
1−µλ)

λ(1+2β)
, R1 = 2(β+1)(1−

√
1−µλ)

λ(1+2β)
.
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(3) When α < µ, we can check the maximal value of the
quadratic function h(u) by discussing the axis of symmetry

S = (µ−α)(1+β)2+(λα−1)α(1+β)β

4µβ−4αβ
.

(a) When S ≥ 1, h(u)max = −λα2 < 0. Thus the feasible
region in this case is:
⎧

⎨

⎩

(α, β) : α≤
B1−

√

B2
1−C1

2λβ(β + 1)
, 0<β <1

⎫

⎬

⎭

, (B.15)

where B1 = 1−β + 2β2, C1 = 4µλβ(1+β)(1−β)2.

(b) When S ≤ −1, h(u)max = h(−1) ≤ 0. Thus the
feasible region in this case is:
⎧

⎨

⎩

(α, β) :
B2 −

√

B2
2−C2

2λβ(β + 1)
≤α<µ, 0<β <1

⎫

⎬

⎭

, (B.16)

where B2 = 1+7β+2β2, C2 = 4µλβ(1+β)(1+6β +
β2).

(c) When −1 < S < 1, h(u)max = h(S) ≤ 0. Thus the
feasible region in this case is:

{(α, β) : L<α<R, 0<β <1, g(S)≤0} , (B.17)

where L = 1−β+2β2−
√

(1−β+2β2)2−4µλβ(1+β)(1−β)2

2λβ(β+1)
, R =

1+7β+2β2−
√

(1+7β+2β2)2−4µλβ(1+β)(1+6β+β2)

2λβ(β+1)
. and g(S) is

noted in Remark 14, that is,

g(S) :=4µβS2 − 2(2µβ + µβ2 − αβ + µ − α)S

+ 2µ + 2µβ2 − 2α − 2αβ + λα2.

The result of the FDI (B.12) is the union of all the above regions
(B.13) (B.14) (B.15) (B.16) (B.17).

Further intersecting with the condition (18) obtained in
Lemma 9 leads to the final region.

B.6. Proof of Theorem 15

Since z−1, z0 ∈ Nϵ/
√
10cond(P)(x

⋆), we have ∥φ0−φ∗∥ < ϵ√
5cond(P)

.

The exponential decay with P ≻ 0: (φk+1 − φ∗)
TP(φk+1 − φ∗) ≤

ρ2(φk−φ∗)
TP(φk−φ∗) implies that ∥φk−φ∗∥ ≤

√
cond(P)ρk∥φ0−

φ∗∥, which we have argued in Section 3.2. Therefore,

∥φk − φ∗∥ ≤
√

cond(P)ρk∥φ0 − φ∗∥
<

√

cond(P) · ∥φ0 − φ∗∥

<
√

cond(P) ·
ϵ

√
5cond(P)

< ϵ/
√
5.

As a consequence,

∥yk − x⋆∥ =





(1 + β2)z

(1)
k − β2z

(2)
k − x⋆







= ∥C(φk − φ∗)∥
≤



CT


 ∥φk − φ∗∥

<

√

(1 + β2)2 + β2
2 ·

(

ϵ/
√
5
)

< ϵ,

where we recall C = [1+β2, −β2], and the last line used β2 < 1.
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