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ABSTRACT

Provenance and intervention-based techniques have been
used to explain surprisingly high or low outcomes of aggrega-
tion queries. However, such techniques may miss interesting
explanations emerging from data that is not in the prove-
nance. For instance, an unusually low number of publications
of a prolific researcher in a certain venue and year can be
explained by an increased number of publications in another
venue in the same year. We present a novel approach for
explaining outliers in aggregation queries through counter-

balancing. That is, explanations are outliers in the opposite
direction of the outlier of interest. Outliers are defined w.r.t.
patterns that hold over the data in aggregate. We present
efficient methods for mining such aggregate regression pat-

terns (ARPs), discuss how to use ARPs to generate and rank
explanations, and experimentally demonstrate the efficiency
and effectiveness of our approach.
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1 INTRODUCTION

In today’s data-driven world, modern data analysis systems
provide a multitude of advanced tools for prediction and
association, multi-dimensional data aggregation, and sophis-
ticated visualization support. Typically, when users are try-
ing to understand trends or patterns by aggregating data,
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Pub

author pubid year venue

𝐴𝑋 P1 2005 SIGKDD
𝐴𝑋 P2 2004 SIGKDD
𝐴𝑌 P2 2004 SIGKDD
𝐴𝑍 P3 2004 SIGMOD

Table 1: Running example publications dataset

outliers may be revealed, or, the user may simply wonder
why an observed value is higher or lower than her expecta-
tion. The most obvious approach to explain query results of
interest is to output the tuples in the result’s provenance, i.e.,
the tuples that contributed to the generation of the query
answer. Provenance has been studied in database research
traditionally for non-aggregate queries [8, 10, 12, 17], but
also for aggregate queries [6, 7]. However, often data prove-
nance is not sufficient to explain the existence of outliers in
query answers as illustrated in the following example.

Example 1. We use a simplified version of the DBLP

(http://dblp.uni-trier.de/) publication dataset with schema

Pub(author, pubid, year, venue) as our running ex-

ample. An (anonymized) sample is shown in Table 1 (the full

DBLP dataset consists of several million records). The following

SQL query𝑄0 computes the number of publications per author,

year, and publication venue.

SELECT author , year , venue , count (*) AS pubcnt

FROM Pub

GROUP BY author , year , venue

Table 2 shows a subset of this query’s result for author 𝐴𝑋 .

Given such a result, a user may be interested in knowing why

certain rows have a higher/lower aggregation function value

than expected. For instance, a user who is aware that author

𝐴𝑋 is a prolific data mining researcher may wonder “why did

𝐴𝑋 publish only 1 paper in SIGKDD in 2007?”.

The provenance of the query result 𝑡0 = (𝐴𝑋 , SIGKDD, 2007,

1) in the above example would enumerate the input tuples

based on which the result was computed – in this case, the

one SIGKDD paper 𝐴𝑋 published in 2007. However, additional

details about this paper do not help us to understand why the

number of 𝐴𝑋 ’s publications in SIGKDD in this year is low.

The problem of explaining such “why high/low” questions
for aggregate query answers has been recently studied [35,
36, 47]. These approaches apply explanation by ‘intervention’
– if by removing a subset of the input tuples the answer

https://doi.org/10.1145/3299869.3300066
https://doi.org/10.1145/3299869.3300066
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http://dblp.uni-trier.de/


author venue year pubcnt

𝐴𝑋 SIGKDD 2006 4
𝐴𝑋 SIGKDD 2007 1
𝐴𝑋 SIGKDD 2008 4
𝐴𝑋 VLDB 2006 4
𝐴𝑋 VLDB 2007 4
𝐴𝑋 VLDB 2008 1
𝐴𝑋 ICDE 2006 6
𝐴𝑋 ICDE 2007 6
𝐴𝑋 ICDE 2008 4

Table 2: Partial result of query 𝑄0 from Example 1

Rank Explanation score

1 (𝐴𝑋 , ICDE, 2007, 6) 13.78
2 (𝐴𝑋 , ICDE, 2006, 6) 10.91
3 (𝐴𝑋 , ICDM, 2007, 5) 6.44
4 (𝐴𝑋 , VLDB, 2007, 4) 5.77
5 (𝐴𝑋 , SIGMOD, 2008, 4) 5.57
6 (𝐴𝑋 , TKDE, 2006, 4) 4.95
7 (𝐴𝑋 , ICDM, 2008, 5) 4.70
8 (𝐴𝑋 , VLDB, 2006, 4) 4.57
9 (𝐴𝑋 , ICDE, 2008, 4) 3.97
10 (𝐴𝑋 , 2010, 63) 3.20

Table 3: Top-10 explanations returned by Cape for the
question 𝜙0 = “why is the number of𝐴𝑋 ’s SIGKDD 2007
publications low?” based on 𝑄0 (𝑃𝑢𝑏) from Example 1

changes in the opposite direction, then those tuples provide
an explanation for the outcome. The goal is then to use
predicates (selection) to succinctly describe those tuples. For
instance, using the data from Example 1, explanations for
𝐴𝑋 ’s high count of ICDE publications in 2006 are predicates
describing tuples whose deletion would reduce the number
of 𝐴𝑋 ’s publications in ICDE 2006, e.g., papers published
with a specific co-author.

Although the frameworks in [35, 36, 47] provide insightful
explanations, they are ineffective for the example shown
above, because they only consider tuples appearing in the
provenance of the specified query answer(s). That is, these
methods cannot find explanations emerging from data that

does not belong to the provenance, which can only be found if

we look at the bigger context.

We propose a new approach for explaining aggre-
gate query answers and present a system called Cape
(Counterbalancing with Aggregate Patterns for

Explanations) that finds explanations beyond provenance
with the help of patterns that hold on the data. For instance,
in Example 1, by asking the question 𝜙0 = “why is the

number of 𝐴𝑋 ’s SIGKDD 2007 publications only 1”?, we
make an implicit assumption that there is some underlying
pattern, i.e., 𝐴𝑋 typically publishes roughly 3-5 SIGKDD

papers per year, which holds on the data in general, but
is violated by the result of interest. We refer to this type
of patterns as aggregate regression patterns (ARPs),
because they describe a trend observed in the result of a

group-by aggregation query. We mine such ARPs and use
them to provide explanations counterbalancing the user’s
observation. That is, we find data points which are outliers
in the opposite direction with respect to a pattern related to
the user question.
Table 3 shows the top-10 explanations produced by our

framework for question 𝜙0 ranked according to their scores
(we will introduce the scoring function in Section 3.3). The
top explanations include ICDE 2007 and ICDE 2006 publica-
tions by𝐴𝑋 , suggesting that he might have sent more papers
to ICDE in these years instead of to SIGKDD in 2007. The
ranking of the explanations illustrate their relative impor-
tance in explaining the user question. A large number of
ICDE publications by 𝐴𝑋 is more ‘surprising’ than ICDM
publications since the primary research of 𝐴𝑋 is in the area
of data mining. The higher numbers of publications in other
venues in 2007 are more relevant explanations to the user
question involving SIGKDD 2007 compared to publications
in the adjacent years 2006 or 2008, which in turn are ranked
higher than the publications in years that are farther apart
like 2010. The top-10 explanations also include 63 publica-
tions by 𝐴𝑋 in year 2010, suggesting he had fewer SIGKDD
2007 papers possibly because he published a much higher
number of papers than usual in 2010, albeit with a low score
since 2010 is not adjacent to 2007. This also illustrates that
the explanations returned by Cape not only emanate from
the answers of query 𝑄0, and in general, can have coarser
(or finer) schema depending on the originating ARP (see
Section 3). Years/venues not appearing in top explanations
suggest that they are possibly ‘as expected’. Note that none
of the explanations appearing in Table 3 would be returned by

the approaches from [35, 36, 47] since they are disjoint from

the provenance of SIGKDD publications of 𝐴𝑋 in 2007.

We make the following contributions in this paper.
(1) ARPs: We formalize aggregate regression patterns

(ARPs), which model trends that hold in the result of aggrega-
tion queries using regression techniques [32]. These patterns
provide the critical context needed to find explanations be-
yond tuples in the provenance of answers of interest. An
ARP partitions the output of an aggregation using a subset of
the group-by attributes, and within each partition models the
relationship between the remaining group-by attributes and
the aggregation function result using regression (Section 2).
(2) Counterbalancing explanations using ARPs: We

discuss how explanations counterbalancing the observation
of interest can be obtained using ARPs. To find explana-
tions that are related to the user question with respect to
the patterns, we introduce two operations: refinement and
drill-down. We develop a scoring function for ranking expla-
nations which incorporates outlierness (the deviation from



expected values) and similarity (distance from the observa-
tion specified in the user question). Moreover, we discuss
how to output top-𝑘 explanations efficiently by pruning the
search space based on an upper bound for the scoring func-
tion (Section 3).
(3) Mining ARPs: We present an algorithm for mining

ARPs and discuss optimizations that include using functional
dependencies to omit spurious patterns and reusing query
results during pattern mining (Section 4).
(4) Experimental evaluation: We implement our ap-

proach as a system called Cape and demonstrate its effective-
ness and efficiency through experiments and a user study
(Section 5 and Appendix B).

2 AGGREGATE REGRESSION PATTERNS

We now introduce the type of user questions supported by
our approach and define aggregate regression patterns. Let 𝑅
be a relation with schema 𝑅 = (𝐴1, . . . , 𝐴𝑛) over a universal
domain of values U. Given a tuple 𝑡 with attributes 𝑇 , for
a subset of attributes 𝑆 ⊆ 𝑇 we use 𝑡 [𝑆] to denote the pro-
jection of 𝑡 on attributes 𝑆 . Let Q be an aggregate query of
the form 𝛾G,agg(A) (𝑅), where 𝐺 is a set of group by attributes
(𝐺 ⊆ 𝑅), 𝐴 ∈ 𝑅, and 𝑎𝑔𝑔 is an aggregate function (e.g., sum).
In SQL such a query can be written as:

SELECT G, agg(A) FROM R GROUP BY G

Given such a query, a user may consider a particular aggre-
gation result to be unusually low or high and may wonder
why this is the case. We call such types of requests user
questions in this work, which we formally define below.

Definition 1 (userqestion). Let 𝑅 be a relation. A user
question (UQ) is a quadruple 𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) where 𝑄 is

an aggregate query; 𝑡 ∈ 𝑄 (𝑅); and 𝑑𝑖𝑟 ∈ {ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤} is a

direction specifying whether the aggregation result 𝑡 [𝑎𝑔𝑔(𝐴)]
is higher or lower than expected.

For instance, reconsider Example 1. If the user asks “Why

did 𝐴𝑋 publish only 1 paper in SIGKDD in 2007?” based
on the answer of 𝑄0, then the corresponding user ques-
tion will be 𝜙0 = (𝑄0, 𝑃𝑢𝑏, 𝑡0, 𝑙𝑜𝑤), where 𝑡0 is the tuple
(𝐴𝑋 , 𝑆𝐼𝐺𝐾𝐷𝐷, 2007, 1) from Table 2.
The Cape framework we present in this paper explains

such user questions using aggregate regression patterns
(ARPs). We first briefly review regression models (Sec-
tion 2.1), then introduce ARPs explaining when a pattern
holds locally and globally (Sections 2.2 and 2.3), and finally
define the ARP-mining problem.

2.1 Regression Analysis

We use regression analysis to model trends in data. In ma-
chine learning, regression is used to estimate the relationship
between a dependent variable and one or more independent

variables. A regression model estimates the dependent vari-
able as a function of the independent variables. Such a pre-
diction function 𝑔 : X → Y is learned from a training dataset
containing samples consisting of a value for the dependent
variable (whose domain is Y) and values for all independent
variables (whose domain isX). Many regression models have
been proposed in the literature [13]. We use linear regression
(denoted by Lin, where 𝑔 is a linear function) and constant

regression (denoted by Const, where 𝑔 is a constant function).
However, most of our results are independent of what type
of regression is used. The choice of linear and constant re-
gression was informed by the fact that these models are easy
to explain to users.1

The goodness-of-fit of a regression model describes how
well it fits a dataset, and it is measured based on the discrep-
ancy between observed values and the values predicted under
the regression model. Given a training dataset D ⊆ X ×Y,
a goodness-of-fit measure is a function

𝐺𝑜𝐹D : D𝑀𝑜𝑑𝑒𝑙 → [0, 1]

that takes a regression model 𝑔, and returns a value from
[0, 1], where D𝑀𝑜𝑑𝑒𝑙 denotes the set of all possible regres-
sion models. We require that 𝐺𝑜𝐹 (𝑔) = 1 if and only if
∀𝑥 ∈ X : 𝑔(𝑥) is equal to the observed value in D. For
simplicity, we will use𝐺𝑜𝐹 instead of𝐺𝑜𝐹D whenD is clear
from the context. We use standard goodness-of-fit measures:
Pearson’s chi-square test [34] for constant regression, and the
R-squared (𝑅2) statistic [13] for linear regression. In contrast
to the common use of regression for classification, we use
regression to determine whether a trend in the data can be
described using a particular type of regression model. Hence,
we fit the regression model over the full dataset.

2.2 Local Patterns

We now introduce aggregate regression patterns (or ARPs
for short) that model trends in the result of an aggregation
query and are used to explain user questions. Consider the
relation Pub(author, pubid, year, venue). Informally,
aggregate regression patterns capture patterns such as:
𝑃1 :=“for each author, the number of publications is constant

over the years”

This pattern states that if we partition the rows in the
output of the query 𝛾author,year,count(pubid) (𝑃𝑢𝑏) based on
their author names, then within each fragment the rela-
tionship between the year values and the aggregate output
count(pubid) (number of publications) can be described
approximately though a constant function.

1While linear regression models with multiple independent variables are
hard to visualize, they can still be described quantitatively by explaining
which inputs affect the output positively or negatively and to what degree.



As illustrated in the example above, an ARP is a tuple
𝑃 = (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀) that partitions the query result based
on a subset 𝐹 ⊆ 𝐺 of the group-by attributes and within
each fragment describes correlations (using a regression
model of type𝑀) between the remaining group-by attributes
𝑉 = (𝐺 − 𝐹 ) and the results of the aggregation function
(𝑎𝑔𝑔(𝐴)). The partition attributes 𝐹 are the attributes on
which we partition the output of the query. In 𝑃1, there is a
single partition attribute 𝐹 = {author}. The predictor at-
tributes𝑉 are the attributes that we use as the predictor (or,
independent) variables in the regression. In 𝑃1, 𝑉 = {year}.
In addition to the partition and predictor attributes, an ARP
also specifies an aggregate function to be used (count in 𝑃1),
which attribute we are aggregating over (in 𝑃1 this is not
applicable, since count is used), and what regression model
type to use (Const, i.e., constant regression in 𝑃1).

Definition 2 (ARP). Given a relation 𝑅, an aggregate

regression pattern (ARP) is a tuple

𝑃 = (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀)
where (i) 𝐹,𝑉 ⊂ 𝑅, 𝐹 ≠ ∅,𝑉 ≠ ∅, 𝐹 ∩ 𝑉 = ∅, (ii) 𝑎𝑔𝑔 is an

aggregate function (one of count, sum, min, max); (iii) 𝐴 ∈ 𝑅
and𝐴 ∉ 𝐹∪𝑉 (𝐴 is ∗when 𝑎𝑔𝑔 is count); (iv)𝑀 is a regression

model type.

For convenience we also use an alternative notation for
patterns (leaving out 𝑀 if it is clear from the context or
irrelevant to the discussion):

[𝐹 ] : 𝑉 𝑀
〜 𝑎𝑔𝑔(𝐴)

Using this notation the example pattern is written as:

𝑃1 = [author] : year Const
〜 count(∗)

For an ARP 𝑃 = [𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴) and relation 𝑅, we use
𝑓 𝑟𝑎𝑔(𝑅, 𝑃) to denote the fragments of 𝑅 according to 𝑃 , i.e.,
the set of distinct partition attribute values appearing in 𝑅:

𝑓 𝑟𝑎𝑔(𝑅, 𝑃) = 𝜋𝐹 (𝑅) .

In the following, we will use the term fragment to either
mean a partition attribute value 𝑓 or the corresponding sub-
set of the query result where 𝐹 = 𝑓 . The meaning will be
clear from the context. Given 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃), we define the
retrieval query 𝑄𝑃,𝑓 which computes the fragment 𝑓 :

𝑄𝑃,𝑓 :=𝛾F∪V,agg(A) (𝜎𝐹=𝑓 (𝑅))

The result of the retrieval query 𝑄𝑃,𝑓 for 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃)
is used to train a regression model for this fragment map-
ping 𝑉 to 𝑎𝑔𝑔(𝐴). Using the instance of table Pub shown in
Figure 1, we have 𝑓 𝑟𝑎𝑔(𝑃𝑢𝑏, 𝑃1) = {𝐴𝑋 , 𝐴𝑌 , 𝐴𝑍 }. Retrieval
query results are shown on the right in this figure. We use
colors to indicate which fragments of the input and output
correspond to which partition attribute value.

Pub

author pubid year venue

𝐴𝑋

𝐴𝑋 P1 2004 SIGKDD
𝐴𝑋 P2 2004 SIGKDD
𝐴𝑋 P3 2005 SIGKDD
𝐴𝑋 P4 2005 SIGKDD
𝐴𝑋 P5 2005 ICDE

𝐴𝑌

𝐴𝑌 P2 2004 SIGKDD
𝐴𝑌 P6 2004 ICDE
𝐴𝑌 P7 2004 ICDM
𝐴𝑌 P8 2005 ICDE

𝐴𝑍 𝐴𝑍 P9 2004 SIGMOD

𝑄𝑃1,𝐴𝑋

year cnt 𝑔𝑃1,𝐴𝑋

2004 2 2.5
2005 3 2.5
𝑄𝑃1,𝐴𝑌

year cnt 𝑔𝑃1,𝐴𝑌

2004 3 2
2005 1 2
𝑄𝑃1,𝐴𝑍

year cnt |𝑄𝑃1,𝐴𝑍
(𝑅) |

< 𝛿2004 2

Figure 1: Evaluating whether pattern 𝑃1 holds

Given an ARP 𝑃 , we want to check whether 𝑃 correctly
describes the behavior of the data within a fragment 𝑓 of the
query result. If that is the case then we consider the pattern
to “hold locally” for 𝑓 . In particular, we deem a pattern to
hold locally if (1) there is sufficient evidence in the data, i.e.,
if there are sufficiently many distinct values for the predictor
attributes (above a local support threshold 𝛿) in fragment
𝑓 ; and (2) we can fit a regression model with a sufficiently
high goodness-of-fit (called local model quality) which
within the fragment predicts the aggregate value based on
the values of𝑉 . Assume that we set the local support thresh-
old 𝛿 = 2. Then for the example shown in Figure 1 this
disqualifies 𝑎𝑢𝑡ℎ𝑜𝑟 = 𝐴𝑍 , because there is only one distinct
value (2004) for the predictor attribute (year).

Definition 3. Given a relation 𝑅, a pattern 𝑃 =

[𝐹 ] : 𝑉 𝑀
〜 𝑎𝑔𝑔(𝐴) holds locally on 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃) with

goodness-of-fit threshold 𝜃 and local support threshold 𝛿 (writ-

ten as 𝑓 |=𝜃,𝛿 𝑃 ) if there exists a regression model 𝑔 of type𝑀

such that

𝐺𝑜𝐹 (𝑔) ≥ 𝜃 (local model quality)

|𝑄𝑃,𝑓 (𝑅) | ≥ 𝛿 (local support)

We will use 𝑔𝑃,𝑓 to denote the regression model based on
which 𝑃 was determined to hold locally on 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃)
(denoted by𝑔 the definition above). We assume that𝑔 is deter-
mined though a fitting algorithm that identifies a particular
model, ideally one with a maximal achievable GoF value. We
now further illustrate this concept by example.

Example 2. Continuing with the example shown in Figure 1,

we obtain a regression model 𝑔 for each fragment whose predic-

tion function is of the form 𝑔(𝑥) = 𝛽 for some constant 𝛽 (the

model chosen in 𝑃1 is Const). Let us assume that 𝜃 = 0.2 and
that the constant regression models we have trained over the

fragments for 𝐴𝑋 and 𝐴𝑌 have goodness-of-fit higher than 0.2
and, thus, that the pattern 𝑃1 holds locally for these fragments.

Recall that 𝑔𝑃,𝑓 denotes the model based on which pattern 𝑃

holds locally for 𝑓 . We show the values predicted by these mod-

els on the right of the fragments in Figure 1. That is, the models

predict that author 𝐴𝑋 publishes 2.5 papers each year while

author 𝐴𝑌 publishes about 2 papers per year.



2.3 Global Patterns

As shown in the example above, a pattern may only hold lo-
cally for some fragments. For instance, for many authors the
number of publications per year increases roughly linearly
over the years, but this is certainly not true for all authors,
e.g., an author may leave academia. We introduce the notion
of a pattern holding globally to model the descriptiveness
of the pattern for the whole dataset.
To validate the universality of a pattern, we take into

account the fraction of fragments from 𝑓 𝑟𝑎𝑔(𝑅, 𝑃) for which
the pattern 𝑃 holds locally. We refer to this measure as the
global confidence. We discard patterns for which the global
confidence is below a threshold 𝜆. To calculate the global
confidence of a pattern we only consider 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃)
for which the support is high enough (|𝑄𝑃,𝑓 (𝑅) | ≥ 𝛿). The
rationale behind excluding fragments with support less than
𝛿 from the calculation is that for such a fragment we do not
have sufficient information to determine with confidence
whether the pattern holds locally. To limit the search space,
and to only retrieve patterns that hold for a sufficiently large
number of fragments, we consider an additional minimum
global support threshold Δ; the global support is the
number of fragments for which the pattern holds locally.

Definition 4. Given local model quality threshold 𝜃 ∈
[0, 1], local support threshold 𝛿 ∈ N, global confidence

threshold 𝜆 ∈ [0, 1], and global support threshold Δ ∈
N, a pattern 𝑃 = [𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴) holds globally

over a relation 𝑅 for local thresholds 𝜃, 𝛿 and global

thresholds 𝜆,Δ, which we denote by 𝑅 |=(𝜃,𝛿),(𝜆,Δ) 𝑃 , if:

|𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 |
|𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 |

≥ 𝜆
global

confidence
|𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 | ≥ Δ

global

support

where

𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 = {𝑓 | 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃) ∧ 𝑓 |=𝜃,𝛿 𝑃}
𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 = {𝑓 | 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃) ∧ |𝑄𝑃,𝑓 (𝑅) | ≥ 𝛿}

In the above definition, 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 is the subset of 𝑓 𝑟𝑎𝑔(𝑅, 𝑃)
for which the pattern holds locally and 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 is the subset
of 𝑓 𝑟𝑎𝑔(𝑅, 𝑃) for which the local support is high enough.
Note that instead of |𝑓 𝑟𝑎𝑔(𝑅, 𝑃) |, the denominator in the
definition of global confidence is |𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 |, because we only
include fragments for which we have enough evidence so
that fitting a regression model is meaningful.
In Example 2, we evaluated whether Pattern 𝑃1 holds lo-

cally for all fragments with a local support above the thresh-
old. We decide whether the pattern “for every author, the

number of publications is constant over the years” holds glob-
ally based on its global confidence and global support. For
example, if we set 𝜆 = 0.5 and Δ = 2 then the pattern holds,
because there are 2 ≥ Δ fragments (𝐴𝑋 and 𝐴𝑌 ) for which
there is sufficient support (≥ 𝛿 = 2) and for both of these au-
thors the pattern holds locally, i.e., |𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 |

|𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 | = 1 ≥ 𝜆 = 0.5.

The ARPmining problem: Below we state the problem
of detecting all patterns that globally hold over a relation 𝑅;
these patterns are used as an input for finding explanations
using counterbalances as discussed in the next section.

The ARP mining problem is defined as follows:

• Input: Relation 𝑅, local thresholds 𝜃, 𝛿 , global thresh-
olds 𝜆,Δ

• Output: P = {𝑃 | 𝑅 |=(𝜃,𝛿),(𝜆,Δ) 𝑃}
As we discuss in Section 4, this problem is solvable in

PTIME in data complexity [45] (a fixed schema), whereas the
number of patterns can be exponential in the size of the
schema (e.g., when the thresholds are trivial such that all
possible subsets 𝐹,𝑉 of 𝑅 satisfy the constraints). Thus, sim-
ply listing the answers may need exponential time in the size
of the schema of 𝑅. In spite of the polynomial data complex-
ity, a naive algorithm is not efficient for practical purposes.
In Section 4 we discuss efficient ARP-mining algorithms.

3 EXPLANATIONS

In response to a user question 𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) (Definition 1),
our approach returns a list of candidate explanations based
on ARPs. In this section, we assume that the parameters
(𝜃, 𝛿), (𝜆,Δ), and a set P of ARPs that hold globally on the
given relation 𝑅 w.r.t. these parameters are given as input. As
discussed in Section 2, we assume that the regression models
based on which the patterns were determined to hold locally
are made available. We will focus on explanations by coun-

terbalance as introduced in the introduction. Our approach
consists of finding relevant patterns that generalize the user
question in the sense that 𝐹 ∪𝑉 is a subset of the group-by
attributes from the question. Starting from such a pattern,
we find refinements that are patterns specializing a relevant
pattern by subdividing its fragments, and use pairs of rele-
vant patterns and their refinements to drill down into parts
of fragments that explain the unusual outcome by providing
counterbalance. For instance, 𝐴𝑋 ’s publication count in 2007
was low (user question), possibly because his publication
counts in 2006 and 2008 were high (counterbalance).

3.1 Relevant Patterns

A pattern 𝑃 may be relevant for a user question 𝜙 =

(𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) where 𝑄 = 𝛾G,agg(A) (𝑅) if it describes a trend
that holds over the part of relation 𝑅 (rows and attributes)
corresponding to the user question. For example, if the group-
by attributes in the user question are 𝐺 = {author, year},
then patterns that describe trends over a subset of these at-
tributes (a superset of the data in the provenance of the tuple
𝑡 in 𝜙) may be considered relevant.

Definition 5. A pattern 𝑃 with partition attributes 𝐹 and

predictor attributes 𝑉 is called relevant for a user question



Input Relation Pub

author pubid year venue

𝐴𝑋 P1 2006 SIGKDD
𝐴𝑋 P2 2006 SIGKDD
𝐴𝑋 P3 2006 SIGKDD
𝐴𝑋 P4 2006 ICDE
𝐴𝑋 P5 2007 SIGKDD
𝐴𝑋 P6 2007 ICDE
𝐴𝑋 P7 2007 ICDE
. . . . . . . . . . . .

(1) User Query Result and Tuple

author year venue cnt

𝐴𝑋 2006 SIGKDD 4
𝐴𝑋 2006 ICDE 1

𝑡0 → 𝐴𝑋 2007 SIGKDD 1
𝐴𝑋 2007 ICDE 2
. . . . . . . . . . . .

(2) Relevant Pattern and User

Question Fragment

[author] : year Const
〜 count(∗)

author year cnt

𝐴𝑋 2006 4
𝐴𝑋 2007 3
. . . . . . . . .

(3) Refined Pattern and

Counterbalance

[author, venue] : year Const
〜 count(∗)

author year venue cnt

𝐴𝑋 2006 SIGKDD 4
𝐴𝑋 2006 ICDE 1
𝐴𝑋 2007 SIGKDD 1
𝐴𝑋 2007 ICDE 2
. . . . . . . . . . . .

Figure 2: Finding an explanation. The user question

tuple is highlighted in dark grey and the explanation

(counterbalance) w.r.t. the refined pattern in light grey

𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) with group-by attributes 𝐺 if:

(𝐹 ∪𝑉 ) ⊆ 𝐺 (Generalizes 𝜙)
𝑡 [𝐹 ] |=𝜃,𝛿 𝑃 (Holds locally for 𝜙)

Intuitively, (i) if 𝐹 ∪ 𝑉 ⊆ 𝐺 , then the pattern describes
a trend that holds over some user question attributes, and
(ii) if 𝑡 [𝐹 ] |=𝜃,𝛿 𝑃 , then the trend described by the pattern
is confirmed by the fragment containing the user question
tuple. The following example further illustrates this concept.

Example 3. Consider a modified version of our running

example shown in Figure 2 and the user question 𝜙0 =

(𝑄0, 𝑃𝑢𝑏, 𝑡0, 𝑙𝑜𝑤) for 𝑄0 = 𝛾author,venue,year,count(∗) and 𝑡0 =

(𝐴𝑋 , SIGKDD, 2007, 1). To explain why𝐴𝑋 published only one

paper in SIGKDD in 2007, we consider patterns that describe

trends over a subset of the question’s group-by attributes. One

such pattern is 𝑃1 = [author] : year Const
〜 count(∗) from

Section 2. To test whether this pattern is a viable candidate

for creating explanations for 𝜙0, we first test whether 𝑃1 holds

locally for 𝑓 = 𝑡0 [𝑎𝑢𝑡ℎ𝑜𝑟 ] = (𝐴𝑋 ) using the fragment for 𝐴𝑋

which is shown on the top right in Figure 2. Assuming that this

is the case, we consider 𝑃1 relevant for 𝜙0.

3.2 Pattern Refinement and Explanations

A pattern 𝑃 that is relevant to a user question may be used to
explain the question. We already know that 𝑃 holds locally
for the fragment corresponding to the user question. That
is, the data corresponding to the question conforms to the
trend described by the pattern, e.g., 𝐴𝑋 publishes roughly a
constant number of papers every year. To explain why the
aggregation value of the user question is unusually high or
low, we then drill down into 𝑃 to find related observations
from the input data, which according to 𝑃 or a more specific
pattern 𝑃 ′ (a refinement of 𝑃 ) deviate in the opposite direc-
tion (i.e., provide a counterbalance). For instance, if the user
question is asking for explanations for a high outcome, then
we find low outcomes according to a refined pattern.

Definition 6 (Pattern refinement). Given a pat-

tern 𝑃 = [𝐹 ] : 𝑉 𝑀
〜 𝑎𝑔𝑔(𝐴) and user question 𝜙 =

(𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) with group-by attributes 𝐺 , we call a pattern

𝑃 ′ = [𝐹 ′] : 𝑉 𝑀′
〜 𝑎𝑔𝑔(𝐴) a refinement of 𝑃 w.r.t. 𝜙 if 𝐹 ′ ⊇ 𝐹 .

In other words, a refinement is a pattern that describes
a more specific trend, i.e., it subdivides each fragment 𝑓 ∈
𝑓 𝑟𝑎𝑔(𝑅, 𝑃) into one or more subsets based on the values of
𝐹 ′ − 𝐹 . Specifically, we are interested in drilling down into
fragment 𝑓 = 𝑡 [𝐹 ] by exploring the data for 𝑓 ′ ∈ 𝑓 𝑟𝑎𝑔(𝑅, 𝑃 ′)
where 𝑓 ′[𝐹 ] = 𝑡 [𝐹 ]. Notice that 𝐹 ′ does not have to be a
subset of 𝐺 , since more detailed aggregate results may also
explain the user question. Besides, 𝑀 ′ does not have to be
the same as𝑀 , e.g. the number of papers an author publishes
per year may increase linearly (Lin) over the years while at
the same time he/she may also publish roughly same number
of paper in SIGKDD every year (Const).

Example 4. Continuing with Example 3 consider:

𝑃2 = [author, venue] : year Const
〜 count(∗)

This pattern is a refinement of the relevant pattern 𝑃1 w.r.t.𝜙𝐴𝑋

since 𝐹2 = {𝑎𝑢𝑡ℎ𝑜𝑟, 𝑣𝑒𝑛𝑢𝑒} ⊇ {𝑎𝑢𝑡ℎ𝑜𝑟 } = 𝐹1. This refinement

corresponds to a drill-down from total publications per year

for 𝐴𝑋 to number of publications per venue and year.

Explanations. Given a refinement 𝑃 ′ for a pattern 𝑃 w.r.t.
a user question 𝜙 , we “drill-down” by considering refined

fragments 𝑓 ′ ∈ 𝑓 𝑟𝑎𝑔(𝑃 ′, 𝑅) where 𝑡 [𝐹 ] = 𝑓 ′[𝐹 ], i.e., local
versions of the pattern 𝑃 ′, which agree with the question’s
tuple 𝑡 on the partition attributes of the pattern 𝑃 . For such
𝑓 ′ we then search for prediction attribute assignments for
which the aggregation function result deviates in the oppo-
site direction (as predicted by the regression function) with
respect to the question. For instance, we search for unusually
high values to explain an atypically low value.
Having introduced pattern relevance, deviation, refine-

ments, and drill-down based on refinements, we are ready
to formally define explanations. Recall that 𝑔𝑃,𝑓 denotes the
regression model based on which 𝑃 is determined to hold
locally on fragment 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑃, 𝑅).

Definition 7 (Explanation). Given a relation 𝑅, a user

question 𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) where 𝑄 = 𝛾G,agg(A) (𝑅), and a set of
ARPs P that globally hold for local thresholds 𝜃, 𝛿 and global

thresholds 𝜆,Δ, a candidate explanation for 𝜙 is a triple

𝐸 = (𝑃, 𝑃 ′, 𝑡 ′)
where 𝑃 = [𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴) and 𝑃 ′ = [𝐹 ′] : 𝑉 〜 𝑎𝑔𝑔(𝐴)
are two patterns, and 𝑡 ′ ∈ 𝛾F′∪V,agg(A) (𝑅) is a tuple, such that

all of the following conditions hold:

(1) 𝑃 ∈ P is relevant for 𝜙 ,

(2) 𝑃 ′ ∈ P is a refinement of 𝑃 w.r.t. 𝜙 ,



(3) 𝑡 ′[𝐹 ′] |=𝜃,𝛿 𝑃 ′
,

(4) 𝑡 ′[𝐹 ] = 𝑡 [𝐹 ] and 𝑡 ′ ≠ 𝑡 (if from the same schema)

(5) 𝑑𝑖𝑟 = 𝑙𝑜𝑤 ⇒ 𝑡 ′[𝑎𝑔𝑔(𝐴)] > 𝑔𝑃 ′,𝑡 ′ [𝐹 ′ ] (𝑡 ′[𝑉 ])
𝑑𝑖𝑟 = ℎ𝑖𝑔ℎ ⇒ 𝑡 ′[𝑎𝑔𝑔(𝐴)] < 𝑔𝑃 ′,𝑡 ′ [𝐹 ′ ] (𝑡 ′[𝑉 ])

Note that we only require that 𝑃 ′ holds locally for the
counterbalance tuple 𝑡 ′, but not the user question tuple 𝑡 .

Example 5. Continuing with Example 4, we will explain

how to drill down to find explanations using the refinement

𝑃2 of 𝑃1 (author and venue as partition attributes refine au-

thor as partition attribute). For that, we first run the aggre-

gate query𝑄∗ = 𝜎𝑎𝑢𝑡ℎ𝑜𝑟=𝐴𝑋
(𝛾 {author,venue}∪{year},count(∗) (𝑅));

then we enumerate result tuples from this query to look for all

combinations of author 𝐴𝑋 with a venue (these are the refine-

ments of 𝑓 = 𝑡 [{𝑎𝑢𝑡ℎ𝑜𝑟 }] = 𝐴𝑋 to 𝑓 ′ ∈ 𝑓 𝑟𝑎𝑔(𝑃2, 𝑃𝑢𝑏)), and
a year in the domain of the year attribute. For instance, using

the data from Figure 2 for 𝑣 ′ = 2007 and 𝑓 ′ = (𝐴𝑋 , 𝐼𝐶𝐷𝐸),
we compare the number of publications for the group 2007
(𝑡 ′ = (𝐴𝑋 , 𝐼𝐶𝐷𝐸, 2007) ∈ 𝑄∗ (𝑅), 𝑡 ′[𝐹2] = 𝑓 ′, 𝑡 ′[𝑉2] = 𝑣 ′)
with the number of publications predicted using the regression

model (𝑔𝑃2,𝑓 ′ (2007)) that was fitted to determine that 𝑃2 holds

locally for 𝑓 ′. Assume that we obtained 𝑔𝑃2,𝑓 ′ (2007) = 1.2,
whereas 𝑡 ′[𝑎𝑔𝑔(𝐴)] = 2. In this case the number of 𝐴𝑋 ’s

publications in ICDE in 2007 is higher than predicted (it de-

viates in the opposite direction of the user question). Thus,

𝐸 = (𝑃1, 𝑃2, 𝑡 ′) is one possible explanation for the user ques-

tion. Intuitively, it can be interpreted as follows:

Even though𝐴𝑋 like many other authors publishes roughly

the same number of publications every year (pattern 𝑃1
holds locally for 𝐴𝑋 ), his number of SIGKDD publications

in 2007 is low which may be explained by his higher than

usual number of ICDE publications in 2007 (𝑃2 holds locally

for (𝐴𝑋 ,ICDE), but 𝑦𝑒𝑎𝑟 = 2007 is higher than predicted).

Given this explanation, a user may infer that in 2007 𝐴𝑋

possibly submitted some papers to ICDE instead of SIGKDD,

and this might be a reason why the number of his SIGKDD

publications is lower than other years.

To understandwhy both relevant patterns and refinements
are needed to generate explanations, consider how our ap-
proach would be affected if we would only consider one of
the two. If only relevant patterns are used, then counter-
balances would have to be at least as coarse-grained as the
user question which may exclude useful more specialized
explanations. If we would only use refinements then there is
no guarantee that the explanation has a connection with a
pattern (trend) that holds for the user question.

3.3 Scoring Explanations

For an input dataset of realistic size and for a reasonably large
number of patterns, the number of candidate explanations

may be very large. Thus, showing all valid explanations to
the user would be overwhelming. Furthermore, explanations
that involve small deviations or where 𝑡 ′ is quite dissimilar
to the user question may not be meaningful. Therefore, we
define a scoring function for explanations that determines
an explanation’s score based on (i) the similarity between
the user question tuple 𝑡 and the tuple 𝑡 ′, and (ii) the amount
𝑡 ′[𝑎𝑔𝑔(𝐴)] deviates from the predicted value𝑔𝑃 ′,𝑡 ′ [𝐹 ′ ] (𝑡 ′[𝑉 ]).
The rationale of (i) is that, explanations that are more simi-
lar to the user question are more likely to have caused the
unusual result. For instance, a high number of publications
in 2006 (or, a high number of publications in ICDE 2007) is
more likely to be the cause of 𝐴𝑋 ’s low number of SIGKDD
publications in 2007 than a high number of publications in
2000 (or, in a systems conference, say SSDBM 2004). The
motivation for (ii) is that a higher deviation from a predicted
value indicates how unusual an event is and, intuitively, the
more atypical an outcome is, the more likely it is to lead to
other atypical events. For instance, if𝐴𝑋 published 35 papers
instead of our predicted number of 35.47 in 2006, then this
small deviation is not likely to affect his SIGKDD publica-
tions in 2007. Note that the scoring function we introduce
here is only one possible option. Our approach is agnostic
to what scoring function is used and new scoring functions
can be added with ease. We give the formal definition of
deviation below.
Definition 8 (Deviation). Given a pattern 𝑃 =

[𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴), and a tuple 𝑡 ∈ 𝛾F∪V,agg(A) (𝑅) where 𝑃
holds locally on t[F], the deviation of t w.r.t. 𝑷 is defined as:

𝑑𝑒𝑣𝑃 (𝑡) = 𝑡 [𝑎𝑔𝑔(𝐴)] − 𝑔𝑃,𝑡 [𝐹 ] (𝑡 [𝑉 ])
If 𝑑𝑒𝑣𝑃 (𝑡) > 0 (resp. 𝑑𝑒𝑣𝑃 (𝑡) < 0) then we say tuple t deviates
positively (resp. negatively) w.r.t. 𝑃 .

We compute the distance of two tuples as the 𝐿2-norm of
the weighted distances of their attribute values. We assume
that weights for individual attributes and appropriate dis-
tance functions are given. We provide sensible defaults for
distance functions (an attribute’s domain is partitioned into
classes – two values within the same class have low distance,
values from different classes have higher distance, and the
distance is 0 if the values are the same) and weights (equal
weights for all attributes) as part of the implementation of
explanation generation in our Cape system. Note that for
the sake of generating a score, we will have to compare the
tuple in the user question with an explanation tuple. How-
ever, the schemas of these tuples may not be the same. We
address the problem by setting the attribute distance to 1
(maximal possible distance) for attributes that only appear in
one of the two tuples. It is easy to incorporate other possible
distance and weight functions in our framework.

Definition 9 (Distance). Let Dom(𝐴) denote the domain

of attribute 𝐴,𝑤𝐴 ∈ [0, 1] be the weight for attribute 𝐴 such



that

∑︁
𝐴∈𝑅𝑤𝐴 = 1, and 𝑑𝐴 : Dom(𝐴) → [0, 1] denote a dis-

tance function (symmetric, and indiscernible values are identi-

cal with distance 0). Consider two tuples 𝑡1 and 𝑡2 with schemas

𝑇1 and 𝑇2. The distance of 𝑡1 and 𝑡2 is defined as:

𝑑 (𝑡1, 𝑡2) =
⌜⎷

1
𝑊

∑︂
𝐴∈(𝑇1∪𝑇2 )

𝑤𝐴 · 𝑑𝑒𝑥𝑖𝑠𝑡𝑠
𝐴

(𝑡1 [𝐴], 𝑡2 [𝐴])2

𝑑𝑒𝑥𝑖𝑠𝑡𝑠𝐴 (𝑡1, 𝑡2) =
{︃
𝑑𝐴 (𝑡1 [𝐴], 𝑡2 [𝐴]) if𝐴 ∈ 𝑇1 ∩𝑇2
1 otherwise

𝑊 =
∑︂

𝐴∈(𝑇1∪𝑇2 )
𝑤𝐴

Recall that we require that the weights for attributes in 𝑅
sum up to 1. Since𝑇1∪𝑇2 may not contain all attributes from
𝑅, we introduce a normalization factor𝑊 =

∑︁
𝐴∈(𝑇1∪𝑇2) 𝑤𝐴

to make distances of tuples with different schemas (subsets
of 𝑅) comparable.

The score we assign to an explanation is computed as the
deviation divided by the distance and further normalized
using the value of the predictor attribute of the relevant
pattern fromwhere we initiated the drill-down. The rationale
for this method is that higher deviation is desirable as is lower
distance. Furthermore, the motivation for the normalization
factor is that the relative value of the deviation has to be put
into context. For instance, if 𝐴𝑋 had published a total of 10
papers in 2007, then if the actual number of publications in
ICDE 2007 were 3 higher than expected, it would have had
a much higher impact than the actual scenario where 𝐴𝑋

published 48 papers in 2007.

Definition 10 (Score). Let 𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ) be a user

question where 𝑄 = 𝛾G,agg(A) (𝑅), and 𝐸 = (𝑃, 𝑃 ′, 𝑡 ′) for

𝑃 = [𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴) and 𝑃 ′ = [𝐹 ′] : 𝑉 〜 𝑎𝑔𝑔(𝐴) be a
candidate explanation for 𝜙 . The score 𝑠𝑐𝑜𝑟𝑒 (𝐸) is computed

as:

𝑠𝑐𝑜𝑟𝑒 (𝐸) = 𝑑𝑒𝑣𝑃 ′ (𝑡 ′) · 𝑖𝑠𝐿𝑜𝑤
𝑑 (𝑡 [𝐺], 𝑡 ′[𝐹 ′,𝑉 ]) · norm (1)

where norm = 𝜋𝑎𝑔𝑔 (𝐴) (𝜎𝐹=𝑡 [𝐹 ]∧𝑉=𝑡 [𝑉 ] (𝛾F∪V,agg(A) (𝑅))) and
𝑖𝑠𝐿𝑜𝑤 = 1 if 𝑑𝑖𝑟 = 𝑙𝑜𝑤 and −1 otherwise2.

For 𝑃 ′, 𝑡 ′ originating from the refinement of multiple
original patterns 𝑃 , we keep the 𝐸 = (𝑃, 𝑃 ′, 𝑡 ′) with the
highest score. The normalization factor helps to remove
non-influential candidate explanations by assigning them a
very low score. For instance, assume that SIGKDD accepts
about the same number of papers every year and a pattern
𝑃3 = [𝑣𝑒𝑛𝑢𝑒] : 𝑦𝑒𝑎𝑟 Const

〜 𝑐𝑜𝑢𝑛𝑡 (∗) with 𝐹 = {𝑣𝑒𝑛𝑢𝑒} and
𝑉 = {𝑦𝑒𝑎𝑟 } holds globally and also locally for 𝑓 = 𝑆𝐼𝐺𝐾𝐷𝐷 .
The refinement of pattern 𝑃3 will also generate the pattern
𝑃2 with 𝐹 = {𝑎𝑢𝑡ℎ𝑜𝑟, 𝑣𝑒𝑛𝑢𝑒} and 𝑉 = {𝑦𝑒𝑎𝑟 }. The candidate
explanations originating from this refinement will involve
SIGKDD publications of other authors (≠ 𝐴𝑋 ) in different
years. However, the normalization factor in the denominator,
norm, will be the total number of papers accepted in SIGKDD
2A small 𝜖 is added to the denominator to avoid division by zero if norm = 0.

Algorithm 1 Find explanations for 𝜙 using ARPs P
Naive-Generate-Expl(𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ),P, (𝜃, 𝛿), (𝜆,Δ), 𝑘)
1 E = ∅ // min-heap: top-𝑘 explanations sorted on 𝑠𝑐𝑜𝑟𝑒
2 for 𝑃 = (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀) ∈ P
3 if 𝐹 ⊆ 𝐺 ∧ 𝑡 [𝐹 ] |=𝜃,𝛿 𝑃 // Pattern is relevant?
4 P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 = getRefinements(𝑃,P)
5 for 𝑃 ′ = (𝐹 ′,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀) ∈ P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑

6 for 𝑡 ′ ∈ 𝛾F′∪V,agg(A) (𝑅)
7 if 𝑡 ′[𝐹 ] = 𝑡 [𝐹 ] ∧ 𝑡 ′[𝐹 ′] |=𝜃,𝛿 𝑃 ′

8 // Update min-heap
9 updateExpl(𝜙, E, 𝑡 ′𝑃, 𝑃 ′)
10 return E
updateExpl(𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ), E, 𝑡 ′, 𝑃, 𝑃 ′)
1 if (𝑑𝑖𝑟 = 𝑙𝑜𝑤 ∧ 𝑡 ′[𝑎𝑔𝑔(𝐴)] > 𝑔𝑃 ′,𝑡 ′ [𝐹 ′ ] (𝑡 ′[𝑉 ]))

∨(𝑑𝑖𝑟 = ℎ𝑖𝑔ℎ ∧ 𝑡 ′[𝑎𝑔𝑔(𝐴)] < 𝑔𝑃 ′,𝑡 ′ [𝐹 ′ ] (𝑡 ′[𝑉 ]))
2 𝐸 = (𝑃, 𝑃 ′, 𝑡 ′)
3 if (numElements(E) < 𝑘)
4 insertHeap(E, 𝐸)
5 elseif (𝑠𝑐𝑜𝑟𝑒 (Peek(E)) < 𝑠𝑐𝑜𝑟𝑒 (𝐸)
6 removeRoot(E)
7 insertHeap(E, 𝐸)
getRefinements(𝜙, 𝑃,P)
1 P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 = ∅
2 for 𝑃 ′ = (𝐹 ′,𝑉 ′, 𝑎𝑔𝑔′, 𝐴′, 𝑀 ′) ∈ P
3 if 𝐹 ′ ⊇ 𝐹 ∧𝑉 ′ = 𝑉 ∧ 𝑎𝑔𝑔′ = 𝑎𝑔𝑔 ∧𝐴′ = 𝐴
4 P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 = P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 ∪ {𝑃 ′}
5 return P𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑

2007 across all authors, and since this number is high, the
score of individual explanations will be low, validating the
intuition that a higher or lower number of publications of
other authors possibly does not affect the lower publication
count of 𝐴𝑋 in SIGKDD 2007.

3.4 Generating and Ranking Explanations

We now introduce a brute-force algorithm for generating
explanations (Algorithm 1) and discuss optimizations later.
The algorithm takes as input a set of ARPs P and a user ques-
tion 𝜙 = (𝑄, 𝑅, 𝑡, 𝑑𝑖𝑟 ). We first initialize a min-heap sorted
on the scores of explanations that is used to hold the top-
k explanations we have found so far. The algorithm then
iterates over all patterns in P. For each pattern 𝑃 ∈ P, it
first checks whether the pattern is relevant (Definition 5)
for question 𝜙 (line 3). For each relevant pattern 𝑃 we then
explore all drill-down options (lines 5 to 9). That is, we iterate
over all patterns 𝑃 ′ that are refinements of 𝑃 and all tuples 𝑡 ′
over schema (𝐹 ′,𝑉 , 𝑎𝑔𝑔(𝐴)), and for each such tuple check
whether it is an explanation (procedure updateExpl). For
each explanation, we first check if we have generated 𝑘 ex-
planations yet (line 3). If this is not the case then we insert
the explanation into the heap; otherwise, we check whether
its score is higher than the score of the heap’s root element
(which has the lowest score among the top-k explanations



we have found so far) and update the min-heap by removing
the root element and inserting the explanation (line 5).

3.5 Upper Score Bound and Optimizations

A disadvantage of the brute force algorithm is that we need
to check all candidate explanations, even if it is guaranteed
that they will not be part of the top-k explanations. To enable
pruning of the search space we introduce an upper bound on
the score of explanations and use this upper bound to prune
sets of candidate explanations whose upper bound is lower
than the lowest score of the top-k explanations we have
found so far, i.e., that are guaranteed to not be part of the
result. Furthermore, we keep a priority queue of candidates
that allows us to efficiently prune explanation candidate sets.

Consider the formula for computing the score of an expla-
nation 𝐸 = (𝑃, 𝑃 ′, 𝑡 ′) given in equation (1). Recall that norm
is computed based on 𝑃 and the user question alone. Thus,
this term will be the same for any refinement of a pattern
𝑃 according to a user question. If we can find a lower bound
for distance 𝑑 and an upper bound for deviation 𝑑𝑒𝑣 , then this
gives us an upper bound for 𝑠𝑐𝑜𝑟𝑒 . Specifically, we are inter-
ested in bounds for any 𝑡 ′ given 𝑃 and 𝑃 ′ because this would
allow us to avoid generating any candidate explanations for
patterns 𝑃 ′ where the upper score bound for any explanation
involving 𝑃 ′ as refinement is lower than the minimum top-k
score we have found so far. Furthermore, this will help us
heuristically prioritize patterns with higher bounds with the
hope to detect better explanations early-on and, thus, also
prune more subsequent candidates.
Recall that 𝑡 ′[𝐹 ] = 𝑡 [𝐹 ] by construction. Let 𝑇,𝑇 ′ be the

attributes of 𝑡, 𝑡 ′. Based on the definition of 𝑑 , the distance
of attributes that are not in 𝑇 ∩ 𝑇 ′ is set to the maximum
value of 1. The lowest distance value that could be achieved
for a pattern 𝑃 ′ under these constraints is when the distance
of all of the remaining attributes is 0. Thus, we get an lower
bound 𝑑↓(𝜙, 𝑃 ′) = |𝐹 ′ −𝐺 | for the distance for any 𝑡 ′ for a
refined pattern 𝑃 ′ and the user question tuple 𝑡 .
For the deviation we can simply compute the maximum

positive and negative deviation across all 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑃, 𝑅)
and 𝑣 ∈ Dom(𝑉 ) and store this information with the pattern
(this can be integrated with our pattern mining algorithm
without adding significant overhead).

𝑑𝑒𝑣↑(𝜙, 𝑃) =
{︄
max𝑡 ∈𝛾F∪V,agg(A) (𝑅) (𝑑𝑒𝑣𝑃 (𝑡)) if𝑑𝑖𝑟 = 𝑙𝑜𝑤
min𝑡 ∈𝛾F∪V,agg(A) (𝑅) (𝑑𝑒𝑣𝑃 (𝑡)) if𝑑𝑖𝑟 = ℎ𝑖𝑔ℎ

Combining these bounds we get an upper bound for any
explanation for a user question𝜙 which is based on a relevant
pattern 𝑃 being refined to pattern 𝑃 ′:

𝑠𝑐𝑜𝑟𝑒↑(𝜙, 𝑃, 𝑃 ′) = 𝑠𝑐𝑜𝑟𝑒 (𝐸) =
𝑑𝑒𝑣↑(𝜙, 𝑃 ′)

𝑑↓(𝜙, 𝑃 ′) · norm

We amend Algorithm 1 to incorporate these optimiza-
tions. First, we iterate over patterns 𝑃 in decreasing order
of the normalization factor in the denominator norm. Then
we compute 𝑠𝑐𝑜𝑟𝑒↑(𝜙, 𝑃, 𝑃 ′) to decide whether to drill down
from this pattern. If the score bound is lower than the low-
est value of the current set of top-𝑘 tuples, this pattern is
skipped. Similarly, if 𝑃 is not pruned, then for each pattern
refinement 𝑃 ′ of 𝑃 , we decide whether to check all candidate
explanation tuples by computing a more accurate bound
using the information stored with the local versions of a
pattern. We do not show the modified pseudocode here since
the modifications are straightforward.

4 PATTERN MINING

We now present our solution for mining ARPs for an input
relation 𝑅. We split the task of pattern mining into two sub-
tasks: (i) enumeration of candidate patterns, and (ii) checking
whether a pattern candidate holds globally. We first intro-
duce a naive algorithm as a baseline and then present several
optimizations for the two subtasks. Here we do not try to
optimize regression analysis needed for generating a model
and for calculating its goodness-of-fit (GoF). We simply treat
regression analysis as a blackbox to which we feed data as
input, and get back a model and the GoF value.
Brute-force algorithm for pattern discovery. The naive
way of candidate enumeration is to generate all possible com-
binations (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀) for any 𝐹 ⊂ 𝑅,𝑉 ⊂ 𝑅, 𝐴 ∈ 𝑅 such
that 𝐹∩𝑉 = ∅ and𝐴 ∉ (𝐹∪𝑉 ), aggregation function 𝑎𝑔𝑔, and
regression model types𝑀 . Then we can determine whether
a particular pattern candidate 𝑃 = (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀) holds
globally over 𝑅 by retrieving the relevant data and running a
regression. The number of patterns considered by this brute-
force method is exponential in the number of attributes of the
relation𝑅. Although the runtime is polynomial if we consider
data complexity [45] (the number of attributes is constant),
for relations with more than a few attributes, this method
is not efficient. We give the pseudocode of the brute-force
method in Appendix C (Algorithms 3 and 4). To develop a
more efficient approach, we introduce several optimizations
in the following subsections. Some of these optimizations
do not affect the output of the algorithm while others are
heuristic in nature, i.e., we may not find all patterns.

4.1 Optimizations

Restricting pattern size. Consider the group-by attributes
𝐺 of the aggregate query of a user question. Typically, we
can expect |𝐺 | to be small. Explanations for a question are
unlikely to use patterns where 𝐹 ∪ 𝑉 is much larger than
𝐺 , because such patterns would be much more fine-grained
than the user question. Hence, we only consider patterns
for which |𝐹 ∪𝑉 | ≤ 𝜓 for a configurable threshold𝜓 . This



threshold can either be set conservatively, or, we can start
with a lower threshold and rerun pattern mining with a
larger threshold if a user question with a large |𝐺 | is asked.
This reduces the number of patterns from exponential in |𝑅 |
to exponential in𝜓 .
One query for all patterns sharing 𝑭 and 𝑽 . To check
whether a pattern 𝑃 holds globally, we check whether 𝑃 holds
locally for a sufficiently large number of fragments. Instead
of retrieving the tuples for each fragment using a separate
query, we can run a single query with 𝐹 ∪𝑉 as the group-by
attributes, and order the result first on 𝐹 and then on 𝑉 to
retrieve all fragments at once. Furthermore, this query can
be extended to evaluate all possible combinations 𝑎𝑔𝑔(𝐴) of
an aggregation function 𝑎𝑔𝑔 ∈ A and input attribute 𝐴 ∈ 𝑅
at the same time. Thus, a single query is sufficient to test all
patterns sharing the same 𝐹 and 𝑉 .
One query per 𝑭 ∪ 𝑽 . Consider a set of pattern candidates
that share the same 𝐹 ∪ 𝑉 . The group-by queries that we
run for patterns in this set only differ in the sort order they
use. Thus, instead of running a group-by query for each such
pattern, we can materialize the result of a single group-by
query for each set 𝐹 ∪𝑉 , and then sort the results for each
particular 𝐹 and 𝑉 . These sort queries are often faster than
the aggregation queries, since the result of aggregation is
typically significantly smaller than 𝑅.
Using the CUBE BY operator. Most SQL databases support
the cube operator [16], which evaluates an aggregation query
over multiple sets of group-by attributes returning the union
of all these group-by queries. Given a set of group-by at-
tributes 𝐺 , the cube operator computes aggregations over
all subsets of 𝐺 . Thus, we can utilize the cube operator to
compute the data required for all pattern candidates in a sin-
gle query. In the following we write 𝐺𝑃 to denote 𝐹 ∪𝑉 for
a pattern 𝑃 . Since we are only interested in patterns where
|𝐺𝑃 | ≤ 𝜓 , computing the cube over 𝑅 would return some
groupings which do not correspond to a valid pattern can-
didate. We use the SQL GROUPING(a) construct to filter out
invalid groups (details omitted due to space constraints). We
materialize the output of this query. To retrieve the data for
one pattern 𝑃 , we evaluate a selection and order-by query
over the materialized result. The number of such queries
we have to evaluate over the materialized result is the same
as that for the previous optimizations. Even though most
DBMSs optimize the execution of the cube operator, the expo-
nential number of groups that are generated results in poor
performance for relations with large number of attributes.
Reusing sort orders. Ideally, we would like to avoid hav-
ing to re-sort the result of a query grouping on a set 𝐺 to
fit the sorting requirements for a pattern 𝑃 . We make two
observations: (1) there are multiple sort orders that fulfill the
requirement that the partition attributes 𝐹 should be a prefix

Algorithm 2 ARP-mine pattern discovery

ARP-mine(𝑅,Ψ,𝜓, 𝜃, 𝛿, 𝜆,Δ)
1 P = ∅ // Patters that hold globally
2 C = ∅ // Candidate (𝐹,𝑉 ) we have considered
3 𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑠 = ∅ //Map of 𝐺 to |𝜋𝐺 (𝑅) |
4 for 𝑖 ∈ {2, . . . ,𝜓 }
5 for each 𝐺 ⊂ 𝑅 and |𝐺 | = 𝑖
6 𝐴𝑎𝑔𝑔 = 𝑅 −𝐺

// for all 𝐴𝑖 ∈ 𝐴𝑎𝑔𝑔, 𝑎𝑔𝑔 ∈ A
7 𝑄 = SELECT G, sum(𝐴1), ... FROM R GROUP BY G

8 𝐷 = 𝑄 (𝑅)
9 insert(𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑠,𝐺, |𝐷 |)
10 Ψ = detectFDs(𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑠,𝐺,Ψ)
11 (P, C) = ExploreSortOrder(𝐺, 𝐷, C,P, 𝑅, 𝜃, 𝛿, 𝜆,Δ)

of the sort order giving us the flexibility to choose the one
we deem most beneficial, and (2) if 𝐹1 ⊃ 𝐹2 for two patterns
𝑃1 and 𝑃2 where (𝐹1 ∪𝑉1) = (𝐹2 ∪𝑉2) then we can reuse the
sort order for 𝑃1 to evaluate 𝑃2 as long as the attributes of 𝐹2
form a prefix of the sort order chosen for 𝑃1. For instance, if
𝐹1 = {𝐴, 𝐵,𝐶} and 𝐹2 = {𝐴,𝐶} and𝑉1 = {𝐷} and𝑉2 = {𝐵, 𝐷}
then a sort order (𝐴,𝐶, 𝐵, 𝐷) can be used for both 𝑃1 and 𝑃2.
Our optimized algorithm discussed in Section 4.2 exploits
this observation to reduce the number of sort queries we
have to run.

4.2 The ARP-mine Algorithm

We now present an enhanced algorithm that integrates the
optimizations we have presented so far. Algorithm 2 takes
as input a relation 𝑅, a set of functional dependencies3 Ψ,
a pattern size threshold 𝜓 , and thresholds (𝜃, 𝛿), (𝜆,Δ). It
returns a set of patterns that hold globally with (𝜃, 𝛿), (𝜆,Δ)
and where |𝐺𝑃 | ≤ 𝜓 . The algorithm uses two variables to
keep track of patterns that are known to hold globally (P) and
the pattern candidates that have been evaluated so far (C).
The algorithm explores pattern attribute sets in increasing
size from the minimal possible size of 2 (both 𝐹 and𝑉 consist
of a single attribute) up to the threshold 𝜓 . We enumerate
candidate patterns in increasing size of𝐺𝑃 = 𝐹 ∪𝑉 , because
this allows us to detect functional dependencies (FDs)𝐴 → 𝐵

from the data, where 𝐵 is a singleton attribute, to evaluate
patterns with 𝐺𝑃 = 𝐴 ∪ {𝐵}. The rationale for this is that,
as we show in Appendix D, we can skip patterns where
an attribute 𝐴 in 𝐹 is implied by 𝐹 − {𝐴}. Since patterns
have at least one predictor attribute (𝑉 ), FDs of the form
(𝐹 − {𝐴}) → 𝐴 would have been discovered in an iteration
before the current iteration considers patterns with 𝐹 , i.e.,
the FDs needed to skip a pattern will have been discovered
before the pattern is considered.
3This initial set of FDs can include FDs provided by the user and/or FDs
determined based on primary keys and uniqueness constraints that, for
most database systems, can be determined by querying the system catalog.



For each size 𝑖 (line 4), we generate all subsets 𝐺 of 𝑅
with cardinality 𝑖 . For each subset 𝐺 we compute a query
grouping on𝐺 to evaluate all combinations of aggregation
functions 𝑎𝑔𝑔 and input attributes 𝐴. We record the number
of groups in the result of this query in a map 𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑠 and
then use this map to check whether FDs (𝐺−{𝐴}) → 𝐴 hold
for some 𝐴 ∈ 𝐺 (as described in Appendix D). Afterwards,
procedure ExploreSortOrders (Algorithm 5) is called to
test all pattern candidates where 𝐺𝑃 = 𝐺 .
Procedure ExploreSortOrders generates all permuta-

tions 𝑆 of 𝐺 (line 1). Before running the sort query which
sorts the output of the aggregation query 𝐷 according to 𝑆 ,
we first check whether there is at least one (𝐹,𝑉 ) combina-
tion which we have not considered so far and that can be
tested using 𝑆 (line 2). Note that we use C to store all (𝐹,𝑉 )
pairs that we have explored so far. If no 𝐹 , 𝑉 pair exists that
can be tested based on 𝑆 and has not been tested already,
then we can skip 𝑆 . Otherwise, we generate all pairs (𝐹,𝑉 )
where 𝐹 ∪ 𝑉 = 𝐺 such that a permutation of 𝐹 is a prefix
of the sort order 𝑆 (line 5). For each such pair we add it to
C. We then check whether it has been checked before and
whether patterns with 𝐺𝑃 = (𝐹 ∪𝑉 ) can be skipped based
on the FDs that hold over the input 𝑅 (as described in Ap-
pendix D). If a pair passes these checks then we generate all
candidates for 𝐺𝑃 by choosing an aggregation function and
input attribute (or ∗ if 𝑎𝑔𝑔 = 𝑐𝑜𝑢𝑛𝑡 ). Each candidate is tested
using FitPattern (Algorithm 6, Appendix C).

This algorithm scans through the sorted aggregation result
(𝐷𝑠𝑜𝑟𝑡 ) processing one 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑃, 𝑅) at a time. Since 𝐹
is a prefix of the sort order 𝑆 , we know that all tuples 𝑡
with 𝑡 [𝐹 ] = 𝑓 will occur as one consecutive block in the
result. Thus, we can process the data for one 𝑓 at a time by
constructing the mapping from 𝑉 to the aggregation result
and then use regression to evaluatewhether the pattern holds
locally for 𝑓 . Once we have scanned through 𝐷𝑠𝑜𝑟𝑡 we have
explored all 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑃, 𝑅) and can now determine whether
the pattern holds globally and return either true or false.
Note that for simplicity we have presented Algorithm 6 to
evaluate a single pattern. To reduce the number of scans of
𝐷𝑠𝑜𝑟𝑡 we evaluate all pattern candidates for 𝑆 using one scan
of 𝐷𝑠𝑜𝑟𝑡 (essentially evaluating multiple patterns in parallel).

5 EXPERIMENTS

In this section, we evaluate the performance of explanation
generation algorithms presented in Section 3, the perfor-
mance of the aggregate regression patterns mining algo-
rithms presented in Section 4, and the quality of explanations
generated by our approach. We use two real world datasets
in the experiments. A qualitative analysis and user study are
presented in Appendix A and B, respectively.

DBLP. DBLP is a bibliography dataset extracted from
DBLP (http://dblp.uni-trier.de/) which consists of a table
Pub(author, pubid, year, venue) recording authors
and their publications. For each publication we record the
venue, publication year, and a unique identifier pubid. We
created versions of this dataset ranging from 10k to 1M rows.
Chicago crime. The Crime dataset (https://data.
cityofchicago.org/Public-Safety/Crimes-2001-to-present/)
reports crimes in Chicago from 2001 to 2017. It contains
6.5M rows and has 22 attributes. We dropped attributes
whose values are almost unique (e.g., case_id, latitude,
longitude), and we split some attributes into multiple parts
(month, week, etc.). The remaining attributes (e.g., block)
are discrete with a domain size between 2 and 59k. Based on
this preprocessing step, we created versions of varying size
(10k to 1M rows) and number of attributes (4 to 11).
Experimental setup. Cape is implemented in Python (ver-
sion 3.5) and runs on top of PostgreSQL (version 10.4). All
experiments were run on a machine with 2 x AMD Opteron
4238 CPUs, 128GB RAM, and 4 x 1 TB 7.2K RPM HDDs in
hardware RAID 5. The Cape framework consists of two main
steps: (i) Mine ARP offline, and (ii) find the top-k explanations
for a user question. We evaluate these two steps separately.
Parameters.We vary the following parameters: (1) 𝐷 : the
number of rows in the input dataset; (2) 𝐴: the number of
attributes in the input schema; (3)𝜓 : the maximal size of𝐺𝑃

considered (see Section 4); and (4) thresholds (𝜃, 𝜆, 𝛿,Δ). For
explanation generation, we also vary (5) 𝐴𝜙 : the number of
group-by attributes in the user question and (6) 𝑁𝑃 : the num-
ber of local patterns by using only a subset of the patterns
detected during explanation generation.

5.1 Mining ARPs

We first evaluate variants of the ARP mining algorithm in-
troduced in Section 4. Based on preliminary experiments we
found that the variation in runtime for repeated executions
of the same ARP-mining task is negligible (less than 2%) and,
thus do not report variance here. For this experiment, we
consider Naive (the brute force algorithm), Cube (which
uses a single cube aggregation query), Share-grp (which
shares group-by queries for all pattern with the same group-
by attributes), and ARP-mine (which shares group-by queries
and sort orders (Algorithm 2)). We set𝜓 = 4, 𝜃 = 0.5, 𝜆 = 0.5,
𝛿 = 15, and Δ = 15. We deactivate the FD optimizations
presented in Appendix D.
Crime dataset. Figure 3a shows the runtime for patternmin-
ing for the Crime dataset varying the number of attributes
(𝐴). Since we set𝜓 = 4, the number of pattern candidates that
needs to be considered and, thus, also the runtime is 𝑂 (𝐴4).
Naive already takes 18,000 seconds for 7 attributes (data
point omitted to increase legibility) demonstrating the need

http://dblp.uni-trier.de/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/
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Figure 6: Measuring explanation generation runtime

for optimization. ARP-mine slightly outperforms Share-grp
(∼ 7%). Both ARP-mine and Share-grp outperform Cube
with a margin that increases in 𝐴 (∼ 16% for 𝐴 = 4 up to
∼ 145% for 𝐴 = 11). This is not surprising, because the num-
ber of groups the CUBE operator has to generate is exponential
in 𝐴.
Figure 3b shows the result for varying 𝐷 (Naive is omit-

ted). The runtime of all methods increases linearly in 𝐷 .
Again this expected, since both aggregation queries and re-
gression analysis are linear in 𝐷 . As expected, ARP-mine
outperforms the other methods. Share-grp exhibits 8% (9%)
overhead compared to ARP-mine for 𝐷 = 10𝑘 (𝐷 = 1𝑀).
Cube exhibits 78% (57%) overhead for 𝐷 = 10𝑘 (𝐷 = 1𝑀).

DBLP dataset. Figure 3c shows the result for varying 𝐷
for the DBLP dataset. We fix 𝐴 = 4 since this dataset has
only 4 attributes. Again the runtime is linear in 𝐷 and ARP-
mine performs best. The performance difference between the
methods is less pronounced than for the Crime data which
is explained by the low number of attributes (cf. Figure 3a).

Subtask performance. To better understand the observed
behavior we drill-down into the individual subtasks. Figure 4
shows the runtime of regression, query processing, and the
remaining mining tasks. Within each group of bars the left
bar is ARP-mine, the middle one Share-grp, and the right
one Cube. We use the crime dataset (𝐷 = 10𝑘) and vary 𝐴.
The runtime of the different methods is normalized to the
slowest method (Cube). As expected all methods spend the
same amount of time on regression. With increasing number
of attributes the fraction of the runtime spend on regression
increases significantly. The exception is Cube for which the

time spend on query processing increases from ∼ 30% at 4
attribute to ∼ 50% at 11 attributes.
Functional dependencies.Weuse the Crime dataset with 9
attributes (𝐴 = 9, varying 𝐷) for which a reasonable amount
of FDs holds (note that this set of 9 attributes is different
from the set used in Figure 3a) and compare our ARP-mine
with and without FD optimizations activated (Appendix D).
Activating the FD optimizations (Figure 5) has a positive ef-
fect on runtime (improvement of ∼18% to ∼53%). In addition
to improving performance, the FD optimizations also prune
spurious patterns (see Appendix D).

5.2 Finding Explanations - Performance

We now evaluate the performance of explanation generation.
The number of local patterns have a significant effect on per-
formance. For this experiment we run pattern mining offline
to generate a large number of patterns. We then generate ex-
planations based on subsets of these patterns controlling the
total number of local patterns (𝑁𝑃 ). We compare ExplGen-
Naive which is the brute force algorithm (Section 3.4) with
ExplGen-Opt which is our optimized algorithm that prunes
parts of the search space (Section 3.5).
Generating user questions. We generate aggregate
queries by picking 2 to 8 group-by attributes for the Crime
dataset (2 to 4 for the DBLP dataset). For each query, we
create several user questions by randomly selecting result tu-
ples. We bias the selection to prefer groups with large counts
to create a worst case scenario for explanation generation.
DBLP dataset. For the DBLP dataset we set 𝐷 = 5𝑀 and
use all 4 attributes (𝐴 = 4). Figure 6a shows the runtime of
explanation generation when varying the number of local
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Figure 7: Parameter sensitivity analysis - measuring precision w.r.t. to ground truth for varying (𝜃, 𝛿), (𝜆,Δ)

patterns (𝑁𝑃 ). The runtime can vary significantly based on
the choice of UQ.We generated several user questions and re-
port the total time for generating explanations for all of these
questions. The runtime of explanation generation increases
linearly in 𝑁𝑃 . ExplGen-Opt outperforms ExplGen-Naive
with the margin increasing in 𝑁𝑃 (up to 35%).

Crime dataset. Figure 6b shows the results for the Crime
dataset 𝐷 = 1𝑀 . Again the runtime is linear in 𝑁𝑃 and
ExplGen-Opt outperforms ExplGen-Naive (up to 28%). We
also evaluate the effect of the number of user question group-
by attributes (parameter 𝐴𝜙 ) on runtime (Figure 6c).

5.3 Parameter Sensitivity

To evaluate how the thresholds (𝜃, 𝛿), (𝜆,Δ) affect the capa-
bility of our approach to return meaningful explanations we
created datasets with known ground truth counterbalances
and tested whether our approach is able to find the correct
explanation under varying parameter settings. To generate
ground truth explanations we started from the real-world
datasets and considered the patterns mined for these datasets.
To introduce an outlier and its counterbalance we randomly
selected a pattern, one partition attribute value, and one pre-
dictor attribute value. We then increased or decreased the
aggregation result by removing or adding tuples from/to the
set of data points corresponding to this combination. For
each outlier we introduced a counterbalance for different
values of the partition and predictor attributes.

We generated 10 user questions and then the top-10 expla-
nations using Cape. In Figure 7, we report the percentage of
ground truth explanations among the 100 explanations (10 ×
10) returned by Cape for various parameter settings. We vary
the local model quality threshold 𝜃 , global support threshold
Δ, and global confidence threshold 𝜆. In general, the number
of ground truth explanations found by Cape decreases when
𝜃 is increased; but if 𝜃 is too low, there will be explanations
from patterns with low regression model quality resulting
in the inclusion of incorrect explanations which in turn re-
duces precision if 𝜃 is lower than 0.2 for Δ ≤ 5. The global
confidence threshold (𝜆) has less of an effect when 𝜃 is low,

but the increase in 𝜆 will significantly reduce the number
of patterns available for generating explanations when 𝜃 is
high. The global support threshold Δ largely depends on
the distribution of the data, and it will affect the number
of patterns that hold globally: when Δ is 15 or 25, we find
much fewer ground truth explanations. The local support
threshold 𝛿 is used for avoiding meaningless patterns, like a
linear regression model for a single data point. Based on our
experience, as long as this parameter is within a reasonable
range, it does not affect the precision significantly. In sum-
mary, we recommend to set Δ to a low value. For the global
confidence we observe that choosing a value in the range
between 0.3 − 0.5 is reasonable unless 𝜃 is very high. Finally,
lower values of 𝜃 are more effective. The reason is that even
though not all patterns with lower goodness-of-fit are mean-
ingful, the existence of these patterns does not significantly
affect precision, because the ranking of explanations helps
to filters out meaningless explanations.

6 RELATEDWORK

Provenance. Data provenance for relational queries records
how results of a query depend on the input data [8, 10, 12, 17].
Although provenance has primarily been studied for non-
aggregate queries, the provenance semiring framework by
Green et al. [17] was extended to aggregate queries by Ams-
terdamer et al. [6]. This approach replaces the data domain
with symbolic expressions that combine elements of a semir-
ing with elements from the domain of an aggregation func-
tion to record how an aggregation function result is com-
puted from the input tuples and values. A simpler, but less
expressive, model for provenance of aggregate queries has
been explored in the context of the Perm and GProM sys-
tems [7, 15]. Summarization techniques have been used to
compactly represent provenance (e.g, Ainy et al. [5] and Lee
et al. [29]). However, as discussed earlier, provenance is not
sufficient for the type of explanations we study here.

Missing answers and why-not questions. The problem
of explaining missing query results has been studied using



two approaches: instance-based [20, 21, 24, 28] where expla-
nations are (missing) input tuples, and query-based [9, 44]
where explanations are based on query predicates or oper-
ators. Ten Cate et al. [43] studied the problem of finding
the most general explanations for why-not questions using
ontologies. For aggregate queries, Meliou and Suciu [31]
studied how to attain a desired change of a query answer
by updating the database. In contrast, we explain outcomes
based on patterns and counterbalance.
Explanations for query answers. Wu-Madden [47], Roy-
Suciu [36], and Roy et al. [35] proposed frameworks for
intervention-based explanations for outliers in aggregate
query results. Given a user question (similar to ours), these
methods find sets of tuples that, if removed, cause the answer
to change in the direction opposite to the direction of the
outlier. An explanation is then a compact summary of such
tuples represented as a selection predicate. In contrast to our
approach, the explanations produced by this line of work are
restricted to tuples in the provenance.
Several other approaches have been proposed to explain

query answers. They include causality and responsibility

(measuring the degree of contribution of tuples in the prove-
nance, e.g., [30]), and explanations for specific applications
like hierarchical summaries [1], summarized explanation ta-
bles for a binary outcome [14], for probabilistic databases
[26] and map-reduce job performance [27].
OLAP and data cube exploration techniques. Sarawagi
and Sathe [37, 39, 40] proposed techniques for efficient data
analysis over OLAP data cubes [16]. They proposed oper-
ators like RELAX (generalizes a specific problem case and
returns all possible maximal contexts in which the prob-
lem occurs), DIFF (reports the main summarized differences
between two values observed at aggregate levels), and SUR-

PRISE (helps a user to quickly familiarize herself with the
significant features of a OLAP cube) to automate the analysis
process. Sarawagi et al. [38] studied a discovery-driven explo-
ration approach to mine data for exceptions in patterns and
lead the analyst to interesting regions of a data cube. More
recently, Joglekar et al. [25] proposed the smart drill-down

operator for interactive exploration and summarization of in-
teresting (and possibly unexplored) tuples. These approaches
help interactive exploration of data, but do not automatically
generate explanations for user questions.
Datamining. Pattern detection has a long tradition in fields
like machine learning, knowledge discovery, and natural
language processing. Similar to the goal of many data mining
methods [18] such as association rule mining [4, 22], ARPs
compactly describe trends in data. However, our approach
differs in that we mine such patterns over the results of
aggregation queries. The algorithms for mining ARPs in this
paper are motivated by the optimizations in the seminal

work on association rule mining [4] and data cube [2, 19].
However, we needed to develop new techniques since the
monotonicity properties used in these works do not hold in
general for our problem. Outlier detection is also an active
field (e.g., see these surveys [3, 23]), but simply detecting
outliers is insufficient for explaining the underlying causes.

Interactive and visual data exploration. Visual data
exploration such as Voyager 2 [46], Zenvisage [41], Viz-
dom [11], and Tableau (Polaris) [42] aid users in understand-
ing characteristics of a dataset. Such techniques are very
effective for detecting outliers and can potentially be useful
for identifying simple ARPs. However, the large search space
for counterbalances for an outlier and the required corre-
lation between the outlier and user question provided by
patterns make even a guided manual exploration infeasible.
Thus, we consider these techniques as complementary to our
approach. For example, they can be used to determine out-
liers and, thus, help the user identify meaningful questions
or to visualize Cape’s explanations.

7 CONCLUSIONS

Existing techniques for explaining outliers in aggregation
results are often of limited applicability, because they only
consider inputs that belong to the outlier’s provenance. To
overcome this shortcoming, we presented a novel frame-
work for explaining outliers based on counterbalances w.r.t.
patterns (ARPs) that hold over the data in aggregation. We
developed efficient algorithms for mining ARPs and for gen-
erating explanations using ARPs. In future work, we plan to
support more diverse types of queries and develop a unified
system that combines explanations through counterbalance
with explanations through generalization/specialization and
provenance. Another challenging open research question is
how to deal with missing values in user queries, patterns,
and in explanations (e.g., if 𝐴𝑋 did not have any SIGKDD
paper in 2007).
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Explanation

Rank author venue year count(*) score

1 𝐴𝑋 2013 43 39.6
2 𝐴𝑋 TKDE 2012 1 5.8
3 𝐴𝑋 ICDE 2013 1 4.8
4 𝐴𝑋 SIGMOD 2012 1 4.5
5 𝐴𝑋 SIGMOD 2013 1 3.3

Table 4: Top-5 explanations produced by Cape for 𝜙0 =
(𝑄0, (𝐴𝑋 , 𝑆𝐼𝐺𝐾𝐷𝐷, 2012, 6), ℎ𝑖𝑔ℎ)

Explanation

rank type community year count(*) score

1 26 2012 117 63.9
2 Battery 26 2012 24 63.0
3 Battery 25 2011 79 60.5
4 Battery 2010 1095 49.0
5 Assault 26 2011 10 40.1

Table 5: Top-5 explanations produced by Cape for 𝜙1 =
(𝑄𝐶𝑟𝑖𝑚𝑒 , (𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 26, 2011, 16), 𝑙𝑜𝑤)

Explanation

Rank author venue year count(*) score

1 𝐴𝑋 WSDM 2012 1 44.7
2 𝐴𝑋 TIST 2012 1 44.7
3 𝐴𝑋 SYNTHESIS 2012 1 44.7
4 𝐴𝑋 RTSS 2012 1 44.7
5 𝐴𝑋 PIEEE 2012 1 44.7

Table 6: Top-5 explanations produced by the baseline

method for 𝜙0 = (𝑄0, (𝐴𝑋 , 𝑆𝐼𝐺𝐾𝐷𝐷, 2012, 6), ℎ𝑖𝑔ℎ)
Explanation

rank type community year count(*) score

1 Battery 25 2011 79 62.2
2 Narcotics 25 2011 94 54.9
3 Battery 25 2010 74 46.9
4 Narcotics 25 2010 87 44.8
5 Battery 25 2012 66 40.4

Table 7: Top-5 explanations produced by the baseline

method for 𝜙1 = (𝑄𝐶𝑟𝑖𝑚𝑒 , (𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 26, 2011, 16), 𝑙𝑜𝑤)

A QUALITATIVE EVALUATION

A.1 Example Explanations

Wenowdiscuss explanations for theDBLP andCrime datasets.
A brief qualitative evaluation was already given in the intro-
duction. Here we discuss explanations returned by Cape for
two additional user questions: 1) over the running example
query 𝑄0 which computes the number of publications per
author, venue, and year and 2) over a query for the crime
dataset which computes the number of crimes per crime
type, community area and year.
DBLP dataset. For the DBLP dataset, the top-5 explanations
for (𝑄0 (𝑃𝑢𝑏), (𝐴𝑋 , 𝑆𝐼𝐺𝐾𝐷𝐷, 2012, 6), ℎ𝑖𝑔ℎ), i.e., “Why is the

number of 𝐴𝑋 ’s SIGKDD 2012 papers high?”, are shown in
Table 4. The explanation ranked 1𝑠𝑡 explains this outcome
by the low number of papers 𝐴𝑋 published in 2013 which
may imply that 𝐴𝑋 focused on publishing in 2012 which in
turn explains the large amount of SIGKDD papers in 2012.

The remaining 4 explanations point out lower than expected
number of publications in a specific venue in 2012 or 2013.
Crime dataset. The top-5 explanations for the user ques-
tion (𝑄 (𝐶𝑟𝑖𝑚𝑒), (𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 26, 2011, 16), 𝑙𝑜𝑤), i.e., “Why is the

number of crimes of type Battery in community area 26 in 2011

low?”, are shown in Table 5. The highest ranked explanation
explains this outcome by the high number of crimes in this
area in 2012. Explanation 2 is a more specific version of the
first explanation implying that low numbers in 2011 are re-
lated to the high number of batteries in this area in 2012.
Explanation 3 reasons that the low number of batteries in
area 26 in 2011 can be explained by a high number of bat-
teries in area 25 — one of the 4 adjacent areas of area 26 —
in 2011, while explanation 5 relates it to the high number of
assaults in that area in 2011. Explanation 4 indicates that the
high number of batteries in 2010 may have led to the low
number in 2011 due to, e.g., increased police presence.

A.2 Comparison with a Baseline Approach

We also compare the explanations from our method with
the explanations from a baseline method, which finds coun-
terbalances in the query result using deviation (from the
average value in the query result) and similarity to score
explanations. Explanations produced by the baseline method
are shown in Table 6 and 7. Note that this method prefers
tuples from the query result as explanations if their ab-
solute values are high/low. Consider the explanations for
𝜙1 = (𝑄𝐶𝑟𝑖𝑚𝑒 , (𝐵𝑎𝑡𝑡𝑒𝑟𝑦, 26, 2011, 16), 𝑙𝑜𝑤) shown in Table 7.
All explanations are in the community area 25, because it
is adjacent to area 26 and has the largest number of crimes.
By not considering patterns the baseline method is ignorant
to whether a high/low value is an outlier (differs from an
expected value) or not. For instance, narcotics violations and
batteries in area 25 are in general high, but not higher than
usual for most of the returned explanations. This effect is
also observed in the explanations for the DBLP user question
produced by the baseline method. Here the explanations only
cover venues that𝐴𝑋 rarely publishes in (low count, but pre-
dictably so). However, these are unlikely to have caused the
outcome of interest. Finally, the baseline method does not
consider other aggregation queries with different group-by
attributes and, thus, will miss explanations that are more
coarse-grained or more finer-grained than the results re-
turned by the query in the user question (e.g., the high total
number of batteries in 2010).

B USER STUDY

We conducted a user study to evaluate the utility of Cape.
Specifically, we want to investigate whether Cape (S1) pro-
vides meaningful explanations, and (S2) whether Cape re-
duces the amount of time a user needs to find and confirm
explanations.



Algorithm 3 Brute Force Pattern Discovery
NaivePatternDiscovery(𝑅, 𝜃, 𝛿, 𝜆,Δ)
1 P = ∅
2 for𝑀 ∈ M, 𝑎𝑔𝑔 ∈ A, 𝐴 ∈ (𝑅 ∪ {∗})
3 for𝐺 ⊂ (𝑅 − 𝑎)
4 for 𝐹 ⊂ 𝐺

5 𝑉 = 𝐺 − 𝐹

6 𝑃 = (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀)
7 if NaivePatternHolds(𝑃, 𝑅, 𝜃, 𝛿, 𝜆,Δ)
8 P = P ∪ {𝑃 }
9 return P

Algorithm 4 Evaluating Whether a Pattern Holds Globally
NaivePatternHolds(𝑃, 𝑅, 𝜃, 𝛿, 𝜆,Δ)
1 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 = ∅, 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 = ∅
2 for 𝑓 ∈ 𝜋𝐹 (𝑅)
3 𝑄𝑃,𝑓 = 𝛾V,agg(A) (𝜎𝐹=𝑓 (𝑅))
4 for 𝑡 ∈ 𝑄𝑃,𝑓 (𝑅)
5 ℎ𝑃,𝑓 (𝑡 [𝑉 ]) = 𝑡 [𝑎𝑔𝑔 (𝐴) ]
6 if |𝑄𝑃,𝑓 (𝑅) | ≥ 𝛿

7 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 = 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 ∪ {𝑓 }
8 𝐺𝑜𝐹 = ApplyRegression(𝑀,ℎ𝑃,𝑓 )
9 if 𝐺𝑜𝐹 > 𝜃

10 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 = 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 ∪ {𝑓 }
11 if |𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 | ≥ Δ ∧ |𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 |

|𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 | ≥ 𝜆

12 return true
13 else return false

Algorithm 5 Explore sort orders for a set of group-by of 𝐺
ExploreSortOrders(𝐺,𝐷, C, P, 𝑅, 𝜃, 𝛿, 𝜆,Δ)
1 for each permutation 𝑆 of𝐺
2 if ∃(𝐹,𝑉 ) ∉ C : 𝐹 ∪𝑉 = 𝐺 ∧ isPrefix(𝐹, 𝑆)
3 𝑄𝑠𝑜𝑟𝑡 = SELECT * FROM D ORDER BY S
4 𝐷𝑠𝑜𝑟𝑡 = 𝑄𝑠𝑜𝑟𝑡 (𝐷)
5 for each 𝐹,𝑉 where 𝐹 ∪𝑉 = 𝐺 ∧ isPrefix(𝐹, 𝑆)
6 C = C ∪ {(𝐹,𝑉 ) }
7 if (𝐹,𝑉 ) ∉ C ∧ ValidateFDs(𝐹,𝑉 ,Ψ)
8 for𝑀 ∈ M, (𝑎𝑔𝑔 ∈ A, 𝑎 ∈ (𝑅))

∨(𝑎𝑔𝑔 = 𝑐𝑜𝑢𝑛𝑡, 𝑎 = ∗)
9 𝑃 = (𝐹,𝑉 , 𝑎𝑔𝑔,𝐴,𝑀)
10 FitPattern(𝑃, 𝐷𝑠𝑜𝑟𝑡 , 𝜃, 𝛿, 𝜆,Δ)
11 return (P, C)

Datasets and queries. We use a subset of the Chicago
Crime dataset that contains only 2 community areas, and an
aggregation query 𝑄 that computes the number of crimes
per primary type, location, and year.

Q = SELECT primary_type , location_desc , year , count (*)

FROM crime

GROUP BY primary_type , location_desc , year

Participants. There are 14 participants - all of them are
graduate students working on different topics in databases,
and thus they all have some prior experience with SQL and
are capable to finish the tasks in our user study. We assigned

our participants randomly to either the “treatment” group
or the “control” group.
Tasks. Each study participant is asked to find explanations
to the following three questions based on the result of query
𝑄 over Crime table 𝐶 .

𝜙1 = (𝑄,𝐶, 𝑡1, ℎ𝑖𝑔ℎ), 𝑡1 = (Assault,CTA bus,2008,5)

𝜙2 = (𝑄,𝐶, 𝑡2, 𝑙𝑜𝑤), 𝑡2 = (Battery,Garage,2009,11)

𝜙3 = (𝑄,𝐶, 𝑡3, ℎ𝑖𝑔ℎ), 𝑡3 = (Crim. Damage,Church,2006,12)

Both groups were allowed to explore the dataset using
SQL queries, but only the “treatment” group was additionally
provided with the top-10 explanations produced by Cape
for each question. Before the start of a session, we allowed
participants to familiarize themselves with the dataset as well
as with the user questions. Then, we gave each participant
35 minutes to find explanations. The treatment group was
instructed that the explanations provided by Cape were not
necessarily correct and that it may be important to confirm
explanations by running queries on their own.
After finishing the task, the control group was provided

with the explanations produced by Cape, and each partici-
pant was asked to rate on a scale of 1 (strongly disagree) to 10
(strongly agree) how helpful these explanations were/would
have been for (S1) finding a meaningful explanation, and for
(S2) finding explanations faster. We also asked participants
to provide additional comments/suggestions.
Results.Overall, the responseswere very positive: 8.86±1.87
for S1 and and 8.36±1.39 for S2 (mean ± standard deviation).
To evaluate the performance of the participants, wemanually
determined a set of sensible explanations (not necessarily
returned by Cape) for each question. A question is consid-
ered to be correctly answered if any explanation found by
the participant was in this set. The success rates of the two
groups are shown below. Question𝜙3 is a less extreme outlier
and, thus, the overall success rate was lower (additionally,
some participants ran out of time). In short, having access
to the explanations produced by Cape improved the perfor-
mance of participants, further demonstrating the quality of
the explanations produced by Cape.

Success rate

Group 𝜙1 𝜙2 𝜙3
Treatment 86% 71% 57%
Control 71% 43% 0%

C PSEUDOCODE OF THE ALGORITHMS

Pseudocode for additional algorithms from Section 3 and 4.

D FUNCTIONAL DEPENDENCIES

Functional dependencies (FDs) that hold for an input table
can be used to infer that a pattern holds if another pattern
is already known to hold. In the following, we first prove



Algorithm 6 Checking whether pattern holds (Data given)
FitPattern(𝑃, 𝐷𝑠𝑜𝑟𝑡 , 𝜃, 𝛿, 𝜆,Δ)
1 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 = ∅, 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 = ∅, 𝑓 = nil, 𝐷𝑓 = ∅, ℎ𝑓 = ∅
2 for 𝑡 ∈ 𝐷𝑠𝑜𝑟𝑡

3 𝑓𝑐𝑢𝑟 = 𝑡 [𝐹 ]
4 if 𝑓𝑐𝑢𝑟 = 𝑓 // Collect data for 𝑓
5 ℎ𝑓 (𝑡 [𝑉 ]) = 𝑡 [𝑎𝑔𝑔 (𝐴) ]
6 𝐷𝑓 = 𝐷𝑓 ∪ {𝑡 }
7 elseif 𝑓 ≠ nil // Regression and check GoF
8 if |𝐷𝑓 | ≥ 𝛿

9 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 = 𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 ∪ {𝑓 }
10 𝐺𝑜𝐹 = ApplyRegression(𝑀,ℎ𝑓 )
11 if 𝐺𝑜𝐹 > 𝜃

12 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 = 𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 ∪ {𝑓 }
13 if |𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 | ≥ Δ ∧ |𝑓 𝑟𝑎𝑔𝑔𝑜𝑜𝑑 |

|𝑓 𝑟𝑎𝑔𝑠𝑢𝑝𝑝 | ≥ 𝜆

14 return true
15 else return false

an inference rule that augments the partition attributes of a
pattern based on a set of FDs and then motivate why inferred
patterns are redundant in terms of explanatory power and,
thus, can be safely excluded from pattern detection without
affecting our ability to generate explanations.
Augment F. Consider a functional dependency 𝐴 → 𝐵

where 𝐴 ⊂ 𝑅 and 𝐵 ∈ 𝑅 for a relation 𝑅. Furthermore,
consider a pattern 𝑃 = [𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴) that holds glob-
ally over 𝑅 where 𝐴 ⊆ 𝐹 . If we add 𝐵 to 𝐹 to get a pattern
𝑃 ′ = [𝐹 ′] : 𝑉 〜 𝑎𝑔𝑔(𝐴) where 𝐹 ′ = 𝐹 ∪ {𝐵}, then 𝑃 ′ is guar-
anteed to hold globally. We can state this as the inference
rule shown as Equation 2 below.

𝑅 |=(𝜃,𝛿),(𝜆,Δ) [𝐹 ] : 𝑉 〜 𝑎𝑔𝑔(𝐴) ∧𝐴 ⊆ 𝐹 ∧𝐴 → 𝐵

⇔𝑅 |=(𝜃,𝛿),(𝜆,Δ) [𝐹 ′] : 𝑉 〜 𝑎𝑔𝑔(𝐴) (2)

To see why this rule holds, consider an 𝑓 ∈ 𝑓 𝑟𝑎𝑔(𝑃, 𝑅) and
the queries 𝑄𝑃,𝑓 :=𝛾V,agg(A) (𝜎𝐹=𝑓 (𝑅)). Since, 𝐴 → 𝐵 and
𝐴 ⊆ 𝐹 , we know that for every tuple in 𝑅 where 𝑡 [𝐹 ] = 𝑓

we also have 𝑡 [𝐵] = 𝑏 for some value 𝑏. Now since 𝐹 =

𝐹 ∪ {𝐵}, if we set 𝑓 ′ = (𝑓 , 𝑏), then the set of tuples in 𝑅
where 𝑡 [𝐹 ′] = 𝑓 ′ is the same as the set of tuples where
𝑡 [𝐹 ] = 𝑓 . It follows that queries 𝑄𝑃,𝑓 :=𝛾V,agg(A) (𝜎𝐹=𝑓 (𝑅))
and𝑄𝑃 ′,𝑓 :=𝛾V,agg(A) (𝜎𝐹 ′=𝑓 ′ (𝑅)) produce the same result. Thus,
the pattern 𝑃 holds locally on 𝑓 if and only if 𝑃 ′ holds lo-
cally on 𝑓 ′, because the regression analysis that is used to
determine whether a pattern holds locally is performed on
the results of these queries.
Skipping redundant patterns. An important property of
the augmentation rule shown in Equation 2 is that if an expla-
nation for a user question is based on an augmented pattern
𝑃 ′ then the same type of explanations hold for the pattern
𝑃 that was augmented. The opposite is not necessarily true,

because the augmented pattern may contain attributes that
are not part of the group-by of the user question and we only
consider patterns for explanations whose𝐺𝑃 are contained in
the set of group-by attributes of the user question. Therefore,
it would be sufficient to evaluate pattern candidates where
the set of partition attributes 𝐹 is minimized w.r.t. a set of
functional dependencies that hold over the input dataset. To
this end, we use functional dependencies to decide if we want
to do regression on a certain pattern based on whether 𝐹 is
minimal, i.e., none of the attributes in 𝐹 is implied by a subset
of 𝐹 which can be checked in linear time in the number of
attributes by testing for each 𝐴 ∈ 𝐹 whether 𝐴 ∈ (𝐹 − {𝐴})+
(i.e., 𝐴 is in the attribute closure of 𝐹 − {𝐴}). Given a pattern
and set of FDs Ψ as input, for every𝐴 ∈ 𝐹 we check whether
the other attributes 𝐹 − {𝐴} imply 𝐴. If we find an implied
attribute then we return false (the pattern should not be
considered).4 If no such attribute exists, then we consider
the pattern (return true).
F functionally determines V. Consider a pattern 𝑃 where
𝐹 functionally determines 𝑉 (𝐹 → 𝑉 ). Then for every 𝑓 ∈
𝑓 𝑟𝑎𝑔(𝑅, 𝑃), the fragment of 𝑅 for 𝑓 will contain only one
row since 𝐹 is a key for the fragment. That is, such a pattern
cannot possibly fulfill the local support threshold 𝛿 as long
as 𝛿 > 1 (which is reasonable to assume).
Detecting functional dependencies during patternmin-

ing. Functional dependencies are often not readily available
for a dataset. Obviously, we could employ any existing FD
detection algorithm to determine the set of FDs for the input
relation 𝑅 (e.g, see [33] for a performance comparison of
state-of-the-art approaches). Alternatively, we can compute
functional dependencies as a side effect of pattern mining.
When we evaluate an aggregation query with group-by at-
tributes 𝐺 to gather the data for regression analysis for pat-
terns with𝐺𝑃 = (𝐹∪𝑉 ) = 𝐺 , thenwe can count the groups to
determine the number of unique𝐺 values in the dataset. We
memorize this information to test an FD𝐴 → 𝐵 where𝐴 ⊆ 𝑅

and 𝐵 ⊆ 𝑅 holds. We check whether |𝜋𝐴 (𝑅) | = |𝜋𝐴∪𝐵 (𝑅) |
using the number of groups for 𝐴 and 𝐴 ∪ 𝐵. Recall that
𝐴 → 𝐴1 and𝐴 → 𝐴2 implies𝐴 → 𝐴1, 𝐴2 and vice versa (fol-
lows fromArmstrong’s axioms). Thus, it is sufficient to check
for FDs with a single RHS attribute. If we detect FDs during
pattern mining to avoid the cost of mining FDs, then we have
to ensure that we have evaluated an FD 𝐴 → 𝐵 before it is
needed for pattern skipping. This can be achieved by mining
patterns in increasing size of their group-by attributes 𝐺𝑃 .
4This can be implemented using the concept of the closure of a set of
attributes 𝐻 with respect to a set of FDs Ψ, which is the set of attributes
that are implied by 𝐻 according to Ψ.
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