
Uncertainty Annotated Databases - A Lightweight
Approach for Approximating Certain Answers
Su Feng

Illinois Institute of
Technology

sfeng14@hawk.iit.edu

Aaron Huber
University at Buffalo
ahuber@buffalo.edu

Boris Glavic
Illinois Institute of

Technology
bglavic@iit.edu

Oliver Kennedy
University at Buffalo

okennedy@buffalo.edu

ABSTRACT
Certain answers are a principled method for coping with
uncertainty that arises in many practical data management
tasks. Unfortunately, this method is expensive and may ex-
clude useful (if uncertain) answers. Thus, users frequently
resort to less principled approaches to resolve uncertainty.
In this paper, we propose Uncertainty Annotated Databases
(UA-DBs), which combine an under- and over-approximation
of certain answers to achieve the reliability of certain an-
swers, with the performance of a classical database system.
Furthermore, in contrast to prior work on certain answers,
UA-DBs achieve a higher utility by including some (explicitly
marked) answers that are not certain. UA-DBs are based on
incomplete K-relations, which we introduce to generalize
the classical set-based notion of incomplete databases and
certain answers to a much larger class of data models. Using
an implementation of our approach, we demonstrate experi-
mentally that it efficiently produces tight approximations of
certain answers that are of high utility.

KEYWORDS
uncertain data, incomplete data, annotations

ACM Reference Format:
Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2019.
Uncertainty Annotated Databases - A Lightweight Approach for
Approximating Certain Answers. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,

Netherlands. ACM, New York, NY, USA, 19 pages. https://doi.org/
10.1145/3299869.3319887

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319887

Everything (D
arity(R)

)

Labeled as certain

Certain

Best-Guess

Possible

Impossible

UA-DB

Figure 1: UA-DBs provide both an under- and over-
approximation of certain answers.

1 INTRODUCTION
Data uncertainty arises naturally in applications like sens-
ing [34], data exchange [13], distributed computing [33], data
cleaning [10], and many others. Incomplete [25] and proba-
bilistic databases [41] have emerged as a principled way to
deal with uncertainty. Both types of databases consist of a set
of deterministic instances called possible worlds that repre-
sent possible interpretations of data available about the real
world. An often cited, conservative approach to uncertainty
is to consider only certain answers [1, 25] (answers in all
possible worlds). However, this approach has two problems.
First, computing certain answers is expensive1. Furthermore,
requiring answers to be certain may unnecessarily exclude
useful, possible answers. Thus, users instead resort to what
we term best-guess query processing (BGQP): make an edu-
cated guess about which possible world to use (i.e., how to
interpret available data) and then work exclusively with this
world. BGQP is more efficient than certain answers, and gen-
erally includes more useful results. However, information
about uncertainty in the data is lost, and all query results
produced by BGQP are consequently suspect.

Previous work has also explored approximations of certain
answers [19, 36, 39]. Under the premise that missing a cer-
tain answer is better than incorrectly reporting an answer as
certain, such work focuses on under-approximating certain
answers. This addresses the performance problem, but un-
der-approximations only exacerbate the problem of excluded
results. Worse, these techniques are limited to specific un-
certain data models such as V-tables, and with the exception
of a brief discussion in [24], only support set semantics.

1coNP-complete [1, 25] (data complexity) for first-order queries over V-
tables [25], as well as for conjunctive queries for, e.g., OR-databases [26].

https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/3299869.3319887
https://doi.org/10.1145/3299869.3319887

ADDR
id address geocoded

1 51 Comstock (42.93, -78.81)
2 Grant at Ferguson (42.91, -78.89) or (32.25, -110.87)
3 499 Woodlawn (42.91, -78.84) or (42.90, -78.85)
4 192 Davidson (42.93, -78.80)

LOC
locale state rect
Lasalle NY ((42.93, -78.83), (42.95, -78.81))
Tucson AZ ((31.99, -111.045), (32.32, -110.71))

Grant Ferry NY ((42.91, -78.91), (42.92, -78.88))
Kingsley NY ((42.90, -78.85), (42.91, -78.84))

Kensington NY ((42.93, -78.81), (42.96, -78.78))
Figure 2: Input data for Example 1. Tuples 2 and 3 of Table ADDR have uncertain geocoded values.

id locale state
1 Lasalle NY
2 Tucson AZ
3 Kingsley NY
4 Kensington NY
(a) One Possible World

id locale state
1 Lasalle NY
3 Kingsley NY
4 Kensington NY
(b) Certain Answers

id locale state
1 Lasalle NY
2 Tucson AZ
2 Grant Ferry NY
3 Kingsley NY
4 Kensington NY
(c) Possible Answers

id locale state Certain?
1 Lasalle NY 𝑡𝑟𝑢𝑒

2 Tucson AZ 𝑓 𝑎𝑙𝑠𝑒

3 Kingsley NY 𝑓 𝑎𝑙𝑠𝑒

4 Kensington NY 𝑡𝑟𝑢𝑒

(d) Uncertainty-Annotated Database

Figure 3: Examples of query results under different evaluation semantics over uncertain data.

Example 1. Geocoders translate natural language descrip-
tions of locations into coordinates (i.e., latitude and longitude).

Consider the ADDR and LOC relations in Figure 2. Tuples 2

and 3 ofADDR each have an ambiguous geocoding. This is an

x-table [2], a type of incomplete data model where each tuple

may have multiple alternatives. Each possible world is defined

by some combination of alternatives (e.g., ADDR encodes 4

possible worlds). An analyst might use a spatial join with a

lookup table (LOC) to map coordinates to geographic regions.

Figure 3a shows the result of the following query in one world.

SELECT a.id, l.locale , l.state

FROM ADDR a, LOC l

WHERE contains(l.rect , a.geocoded)

The certain answers to this query (Figure 3b) are tuples that

appear in the result, regardless of which world is queried. Fig-

ure 3c shows all possible answers that could be returned for

some choice of geocodings. Note also that ambiguous answers

(e.g., address 2) may not be certain, but may still be useful.

Ideally, we would like an approach that (1) generalizes to a
wide range of data models, (2) is easy to use like BGQP, (3) is
compatible with a wide range of probabilistic and incomplete
data representations (e.g., tuple-independent databases [41],
C-tables [25], and x-DBs [2]) and sources of uncertainty (e.g.,
inconsistent databases [5, 6, 17, 29, 30, 32], imputation of
missing values, and more), and (4) is principled like certain
answers. We address the generality requirement (1) by re-
thinking incomplete data management in terms of Green
et. al.’s K-database framework [21]. In this framework, each
tuple is annotated with an value from a semiring K . Choos-
ing an appropriate semiring,K-databases can encode a wide
range of query processing semantics including classical set-
and bag-semantics, as well as query processing with access
control, provenance, and more. Our primary contribution
here is to identify a natural, backwards-compatible general-
ization of certain answers to a broad class of K-databases.

Incomplete

K-database

Compact Incomplete

Data Model UA-DB

Rep

Rep

Cert

Certain

Answers

Certain
Answers

Best-Guess

Labeling

Best-Guess

Labeling

Certain
Answers

Cert

bounds

bounds

Query Query Query

over
approximation

under
approximation

over
approximation

under
approximation

Figure 4: The relationship between UA-DBs, certain
answers, and other incomplete data models

Our second major contribution is to combine an under-ap-
proximation of certain answers with best-guess query pro-
cessing to create an Uncertainty-Annotated Database (UA-DB).
A UA-DB is built around one distinguished possible world
of an incomplete K-database, for instance the “best-guess”
world that would normally be used in practice. This world
serves as an over-approximation of certain answers. Tuples
from this world are labeled as either certain or uncertain to
encode an under-approximation of certain answers. As illus-
trated in Figure 1, a UA-DB sandwiches the certain answers
between under- and over-approximations. A lightweight (ex-
tensional [41]) query evaluation semantics then propagates
labels while preserving the approximation’s guarantees.

Example 2. Continuing with Example 1, Figure 3d shows

the result of the same query as a set UA-DB. When the UA-DB

is built, one designated possible world of ADDR is selected, for

example the highest ranked option provided by the geocoder.

For this example, we select the first option for each ambiguous

tuple. The result is based on this one designated possible world,

which serves as an over-approximation of the certain answers.

A subset of these tuples (addresses 1 and 4) are explicitly labeled

as certain. This is the under-approximation: A tuple might still

be certain even if it is not labeled as such. We consider the

remaining tuples to be “uncertain”. In Figure 3d, tuples 1 and 4

(resp., 2) are correctlymarked as certain (resp., uncertain), while

tuple 3 is mis-classified as uncertain even though it appears in

all worlds. We stress that even a mislabeled certain answer is

still present: a UA-DB sandwiches the certain answers.

Figure 4 overviews our approach. We provide labeling

schemes that derive a UA-DB from common incomplete data
models. The resulting UA-DB bounds the certain tuples from
above and below, a property preserved through queries. UA-
DBs are both efficient and precise. We demonstrate efficiency
by implementing a bag UA-DB as a query-rewriting front-
end on top of a classical relational DBMS: UA-DB queries
have minimal performance overhead compared to the same
queries on deterministic data. We demonstrate precision
both analytically and experimentally. First, under specific
conditions, some of which we identify in Appendix B, exactly
the certain answers will be marked as certain. Second, we
show experimentally that even when these conditions do
not hold, the fraction of misclassified certain answers is low.
Importantly, a wide range of uncertain data models can be
translated into UA-DBs through simple and efficient transfor-
mations that (i) determine a best-guess world (BGW) and (ii)
obtain an under-approximation of the certain answers. We
define such transformations for three popular models of in-
complete data in Section 6: tuple-independent databases [41],
x-DBs [2] and C-tables [25]. In classical incomplete databases,
where probabilities are not available, any possible world can
serve as a BGW. In probabilistic databases (or any incomplete
data model that ranks possible worlds), we preferentially use
the possible world with the highest probability (if computa-
tionally feasible), or an approximation thereof.We emphasize
that our approach does not require enumerating (or even
knowing) the full set of possible worlds. As long as some
possible world can be obtained, our approach is applicable.
In worst case, if no certainty information is available, our ap-
proach labels all tuples as uncertain and degrades to classical
best-guess query processing. Furthermore, our approach is
also applicable to use cases like inconsistent query answer-
ing [5] where possible worlds are defined declaratively (e.g.,
all repairs of an inconsistent database).
We significantly extend the state-of-the-art on under-ap-

proximating certain answers [19, 36, 39]: (1) we combine
an under-approximation with best-guess query processing
bounding certain answers from above and below; (2) we
support sets, bags, and any other data model expressible as
semiring annotations from a large class of semirings; (3) we
support translation of a wide range of incomplete and prob-
abilistic data models into our UA-DB model; (4) in contrast
to certain answers, UA-DBs are closed under queries.

The remainder of the paper is organized as follows.
Incomplete K-Relations. (Section 3) We introduce incom-
plete K-databases, generalizing incomplete databases to K-
relations [21].We then define certain annotations as a natural

extension of certain answers, based on the observation that
certain answers are a lower bound on the content of a world.
We show that certain annotations correspond to the classical
notion of certain answers for set [37] and bag [24] semantics.
UA-DBs. (Section 4) We define UA-DBs as databases that
annotate tuples with pairs of annotations from a semiring
K . The annotation of a tuple in a UA-DB bounds the cer-
tain annotation of the tuple from above and below. This is
achieved by combining the annotations from one world (the
over-approximation) with an under-approximation that we
call an uncertainty labeling. Relying on results for under-
approximations that we develop in the following sections,
we prove that queries over UA-DBs preserve these bounds.
Under-approximating Certain Answers. (Section 5) To
better understand under-approximations, we define uncer-
tainty labelings, which are K-relations that under-approxi-
mate the set of certain tuples for an incompleteK-database.
Queries over Uncertainty Labelings. (Section 7) Since la-
belings are K-relations, we can evaluate queries over such
labelings. We demonstrate that evaluating queries in this
fashion preserves under-approximations of certain answers,
generalizing a previous result for V-tables due to Reiter [39].
Implementation for Bag Semantics. (Section 8) We im-
plement UA-DBs on top of a relational DBMS. We extend the
schema of relations to label tuples as certain or uncertain
(e.g., Figure 3d). Queries with UA-relational semantics are
compiled into standard relational queries over this encoding.
Performance. (Section 10) We demonstrate experimentally
that UA-DBs outperform state-of-the-art incomplete and
probabilistic query processing schemes, are competitive with
deterministic query evaluation and other methods for under-
approximating certain answers, and are also compatible with
non-set semantics. We then show that our approximation
is accurate for many real world datasets. Finally, we also
demonstrate that best-guess answers (and hence UA-DBs),
can have higher utility than certain answers.

2 NOTATION AND BACKGROUND
A database schema D = {R1, . . . ,R𝑛} is a set of relation
schemas. A relational schema R(𝐴1, . . . , 𝐴𝑛) is a relation
name and a set of attribute names 𝐴1, . . . , 𝐴𝑛 . The arity
𝑎𝑟𝑖𝑡𝑦 (R) of a relation schema R is the number of attributes
in R. An instance 𝐷 for database schemaD is a set of relation
instances with one relation for each relation schema in D:
𝐷 = {𝑅1, . . . , 𝑅𝑛}. Assume a universal domain of attribute
valuesD. A tuple with schema R is an element fromD𝑎𝑟𝑖𝑡𝑦 (R) .
In this paper, we consider both bag and set semantics. A set
(resp., bag) relation 𝑅 with schema R is a set (resp., bag) of
tuples with schema R. That is, for a set, 𝑅 ⊆ D𝑎𝑟𝑖𝑡𝑦 (R) . We
use TupDom to denote the set of all tuples over domain D.

id locale state
1 Lasalle NY
2 Tucson AZ
3 Kingsley NY
4 Kensington NY

(a) 𝐷1

id locale state
1 Lasalle NY
2 Grant Ferry NY
3 Kingsley NY
4 Kensington NY

(b) 𝐷2
Figure 5: Example incomplete database D = {𝐷1, 𝐷2}.

id locale state
1 Lasalle NY
3 Kingsley NY
4 Kensington NY

(a) 𝑄𝑁𝑌 (𝐷1)

id locale state
1 Lasalle NY
2 Grant Ferry NY
3 Kingsley NY
4 Kensington NY

(b) 𝑄𝑁𝑌 (𝐷2)

Figure 6: The result of a query 𝑄 over an incomplete
database D is the set of results in all worlds 𝐷 ∈ D.

2.1 Possible Worlds Semantics
Incomplete and probabilistic databases model uncertainty
and its impact on query results. An incomplete database D
is a set of deterministic database instances 𝐷1, . . . , 𝐷𝑛 of
schema D, called possible worlds. We write 𝑡 ∈ 𝐷 to denote
that a tuple 𝑡 appears in a specific possible world 𝐷 .

Example 3. Continuing Example 1, Figure 5 shows the two

possible worlds in the result of the spatial join. Observe that

some tuples (e.g., ⟨ 1, Lasalle, NY ⟩) appear in all worlds. Such

tuples are called certain. Tuples that appear in at least one

possible world (e.g., ⟨ 2, Tuscon, AZ ⟩) are called possible.

Decades of research [2, 4, 7, 22, 25, 41] has explored query
processing over incomplete databases. These techniques com-
monly adopt the “possible worlds” semantics: The result of
evaluating a query 𝑄 over an incomplete database is the set
of relations resulting from evaluating 𝑄 over each possible
world individually using deterministic semantics.

𝑄 (D) ≔ { 𝑄 (𝐷) | 𝐷 ∈ D } (1)

Example 4. 𝑄𝑁𝑌 ≔ 𝜎𝑠𝑡𝑎𝑡𝑒=′𝑁𝑌 ′ (D) returns locations in
NY State from the database D shown in Figure 5. The result

of 𝑄𝑁𝑌 (D) is the set of worlds computed by evaluating 𝑄𝑁𝑌

over each world of D as shown in Figure 6. Observe that the

location with id 2 appears in 𝑄𝑁𝑌 (𝐷2), but not 𝑄𝑁𝑌 (𝐷1).

2.2 Certain and Best-Guess Answers
An important goal of query processing over incomplete data-
bases is to differentiate query results that are certain from
ones that are merely possible. Formally, a tuple is certain if
it appears in every possible world. [25, 37]:

𝑐𝑒𝑟𝑡𝑎𝑖𝑛(D) ≔ {𝑡 | ∀𝐷 ∈ D : 𝑡 ∈ 𝐷} (2)

In contrast to [25], which studies certain answers to queries,
we define certainty at the instance level. These approaches
are equivalent since we can compute the certain answers
of query 𝑄 over incomplete instance D as 𝑐𝑒𝑟𝑡𝑎𝑖𝑛(𝑄 (D)).

id address ℓ N B

1 51 Co. . . 𝐿1 1 T
2 Grant . . . 𝐿2 1 T
3 499 W. . . 𝐿4 1 T

(a) Address

ℓ locale state N B

𝐿1 L. . . NY 1 T
𝐿2 T. . . AZ 1 T
𝐿3 G. . . NY 1 T
𝐿4 K. . . NY 1 T
𝐿5 W. . . IL 1 T

(b) Neighborhoodstate N B

NY 2 = (1 · 1) + (1 · 1) 𝑇 = (𝑇 ∧𝑇) ∨ (𝑇 ∧𝑇)
AZ 1 = (1 · 1) 𝑇 = (𝑇 ∧𝑇)
IL 0 = (0 · 1) 𝐹 = (𝐹 ∧𝑇)

(c) Result of 𝑄𝑎

Figure 7: N- and B-relation examples

Although computing certain answers is coNP-hard [1] in
general, there exist PTIME under-approximations [23, 36, 39].

Best Guess Query Processing. As mentioned in the intro-
duction, another approach commonly used in practice is to
select one possible world. Queries are evaluated solely in
this world, and ambiguity is ignored or documented out-
side of the database. We refer to this approach as best-guess
query processing (BGQP) [45] since typically one would like
to select the possible world that is deemed most likely.
2.3 K-relations
Our generalization of incomplete databases is based on the
K-relation [21] framework. In this framework, relations are
annotated with elements from the domain 𝐾 of a (commu-
tative) semiring K . A commutative semiring is a structure
K = ⟨ 𝐾, ⊕K , ⊗K , 1K , 0K ⟩ with commutative and associa-
tive addition (⊕K) and product (⊗K) operations where ⊗K
distributes over ⊕K . As before,D denotes a universal domain.
An 𝑛-aryK-relation is a function that maps tuples (elements
from D𝑛) to elements from 𝐾 . Tuples that are not in the rela-
tion are annotated with 0K . Only finitely many tuples may
be mapped to an element other than 0K (i.e., relations must
be finite). Since K-relations are functions from tuples to an-
notations, it is customary to denote the annotation of a tuple
𝑡 in relation 𝑅 as 𝑅(𝑡). The specific information encoded by
an annotation depends on the choice of semiring.

Encoding Sets and Bags. Green et al. [21] demonstrated
that bag and set relations can be encoded as commutative
semirings: the natural numbers (N) with addition and multi-
plication, ⟨ N, +,×, 0, 1 ⟩, annotates each tuple with its multi-
plicity; and boolean constants B = {𝑇, 𝐹 } with disjunction
and conjunction, ⟨ B,∨,∧, 𝐹 ,𝑇 ⟩, annotates each tuple with
its set membership. Abusing notation, we denote by N and
B both the domain and the corresponding semiring.

Query Semantics. Operators of the positive relational alge-
bra (RA+) over K-relations are defined by combining input
annotations using operations ⊕K and ⊗K .

Union: [𝑅1 ∪ 𝑅2] (𝑡) = 𝑅1 (𝑡) ⊕K 𝑅2 (𝑡)
Join: [𝑅1 ⋈︁ 𝑅2] (𝑡) = 𝑅1 (𝑡 [R1]) ⊗K 𝑅2 (𝑡 [R2])

Projection: [𝜋𝑈 (𝑅)] (𝑡) =
∑︂

𝑡=𝑡 ′ [𝑈]
𝑅(𝑡 ′)

Selection: [𝜎𝜃 (𝑅)] (𝑡) = 𝑅(𝑡) ⊗K 𝜃 (𝑡)

Example 5. Figure 7 shows a N- (i.e., bag-) database, with
each tuple 𝑡 annotated with its multiplicity (the copies of 𝑡 in

the relation). Annotations appear beside each tuple. The query

𝑄𝑎 ≔ 𝜋𝑠𝑡𝑎𝑡𝑒 (Address ⋈︁ Neighborhood) computes states. Ev-

ery input tuple appears once (is annotated with 1). The output
tuple annotation is computed by multiplying annotations of

joined tuples, and summing annotations projected onto the

same result tuple. For instance, 2 NY addresses are returned.

In the following, we will make use of homomorphisms. A
mapping ℎ : K → K ′ from a semiring K to a semiring K ′

is a called a homomorphism if it maps 0K and 1K to their
counterparts in K ′ and distributes over sum and product
(e.g., ℎ(𝑘 ⊕K 𝑘

′) = ℎ(𝑘) ⊕K′ ℎ(𝑘 ′)). As observed by Green et
al. [21], any semiring homomorphism ℎ can be lifted to a ho-
momorphism from K-relations to K ′-relations by applying
ℎ to the annotation of every tuple 𝑡 : ℎ(𝑅) (𝑡) = ℎ(𝑅(𝑡)). Im-
portantly, queries commute with semiring homomorphisms.
That is, given a homomorphism ℎ, query 𝑄 , and K-database
𝐷 we have ℎ(𝑄 (𝐷)) = 𝑄 (ℎ(𝐷)). We will abuse syntax and
use the same function symbols (e.g.,ℎ(·)) to denote mappings
between semirings, K-relations, as well as K-databases.

Example 6. Continuing Example 5, we can derive a set

instance through a mapping ℎ : N→ B defined as ℎ(𝑘) = 𝑇 if

𝑘 > 0 and ℎ(𝑘) = 𝐹 otherwise. ℎ is a semiring homomorphism,

so evaluating𝑄𝑎 in N first and then applying ℎ (i.e., ℎ(𝑄 (𝐷)))
is equivalent to applying ℎ first, and then evaluating 𝑄𝑎 .

When defining bounds for annotations in Section 3, we
make use of the so called natural order ⪯K for a semiring
K , defined as an element 𝑘 preceding 𝑘 ′ if it is possible to
obtain 𝑘 ′ by adding to 𝑘 . Semirings for which the natural
order is a partial order are called naturally ordered [20].

∀𝑘, 𝑘 ′ ∈ 𝐾 :
(︁
𝑘 ⪯K 𝑘 ′

)︁
⇔

(︁
∃𝑘 ′′ ∈ 𝐾 : 𝑘 ⊕K 𝑘

′′ = 𝑘 ′
)︁

(3)

3 INCOMPLETE K-RELATIONS
Many incomplete data models do not support bag semantics.
Our first contribution unifies set and bag semantics under
a joint framework. Recall that an incomplete database is
a set of deterministic databases (possible worlds). We now
generalize this idea to K-databases.

Definition 1 (Incomplete K-database). Let K be a

semiring. An incomplete K-database D is a set of possible

worlds D = {𝐷1, . . . , 𝐷𝑛} where each 𝐷𝑖 is a K-database.

Like classical incomplete databases, queries over an incom-
pleteK-database use possible world semantics, i.e., the result
of evaluating a query𝑄 over an incompleteK-databaseD is
the set of all possible worlds derived by evaluating𝑄 over ev-
ery possibleworld𝐷 ∈ D (i.e.,𝑄 (D) = {𝑄 (𝐷1), . . . , 𝑄 (𝐷𝑛)}).

3.1 Certain Annotations
While possible worlds semantics are directly compatible with
incomplete K-databases, the same does not hold for the
concepts of certain tuples, as we will show in the following.
First off, we have to define what precisely do we mean by
certain answers over possible worlds that are K-databases.

Example 7. Consider a N-database D (bag semantics) con-

taining a relation LOC with two attributes locale and state.
Assume that D consists of the two possible worlds below:

LOC in 𝐷1
locale state N
Lasalle NY 3
Tucson AZ 2

LOC in 𝐷2
locale state N
Lasalle NY 2
Tucson AZ 1

Greenville IN 5
Using semiringN each tuple in a possible world is annotated

with its multiplicity (the number of copies of the tuple that

exist in the possible world). Arguably, tuples (Lasalle, NY)
and (Tucson, AZ) are certain since they appear (multiplicity

higher than 0) in both possible worlds while (Greenville,
IN) is not since it is not present (its multiplicity is zero) in

possible world 𝐷1
2
. However, the boolean interpretation of cer-

tainty in incomplete databases is not suited to N-relations (or
K-relations in general) because it ignores the annotations of

tuples. In this particular example, tuple (Lasalle, NY) ap-
pears with multiplicity 3 in possible world 𝐷1 and multiplicity

2 in possible world 𝐷2. We can state with certainty that in

every possible world this tuple appears at least twice. Thus, 2 is
a lower bound (the greatest lower bound) for the annotation of

(Lasalle, NY). Following this logic, we will define certainty
through greatest lower bounds (GLBs) on tuple annotations.

To further justify defining certain answers as lower bounds
on annotations, consider classical (i.e., set) incomplete data-
bases. Here, a tuple is certain if it appears in all possible
worlds. Like the bag semantics example above, certainty is a
lower bound on a tuple’s annotation across all worlds. Con-
sider the the order 𝑓 𝑎𝑙𝑠𝑒 < 𝑡𝑟𝑢𝑒 . If a tuple exists in every
possible world (is always annotated true), then intuitively,
the GLB of its annotation across all worlds is true. Otherwise,
the tuple is not certain (is annotated false in at least one
world), and the GLB is 𝑓 𝑎𝑙𝑠𝑒 .

To define a sensible lower bound for annotations, we need
an order relation for semiring elements. We use the natural
order ⪯K as introduced in Section 2.3 to define the GLB of a
set of K-elements. For a well-defined GLB, we require that
2All tuples not shown in the tables are assumed to be annotated with zero.

⪯K forms a lattice over 𝐾 , a property that makes K an l-

semiring [31]. A lattice over a set 𝑆 according to a partial
order ≤𝑆 over 𝑆 is a structure (𝑆,⊔,⊓) where ⊓ (the greatest
lower bound) is an operation over 𝑆 defined for all 𝑎, 𝑏 ∈ 𝑆 :

𝑎 ⊓ 𝑏 ≔ max
≤𝑆

({𝑐 | 𝑐 ∈ 𝑆 ∧ 𝑐 ≤𝑆 𝑎 ∧ 𝑐 ≤𝑆 𝑏})
We will use ⊓K to denote the ⊓ operation of the lattice

over ⪯K for a semiring K . Abusing notation, we will ap-
ply the ⊓K operation iteratively to sets of elements. e.g.,
⊓K {𝑘1, 𝑘2, 𝑘2} = (𝑘1 ⊓K 𝑘2) ⊓K 𝑘3. From here on, we will
limit our discussion to l-semirings. Many semirings, includ-
ing the set semiringB and the bag semiringN are l-semirings.
The natural order of B is 𝐹 ⪯B 𝑇 and 𝑘1 ⊓B 𝑘2 = 𝑘1 ∧𝑘2. The
natural order of N is the standard order of natural numbers
and 𝑘1 ⊓N 𝑘2 = min(𝑘1, 𝑘2).

We define the certain annotation certK (D, 𝑡) of a tuple 𝑡
in an incompleteK-databaseD by gathering the annotations
of tuple 𝑡 from all possible worlds of D and then applying
⊓K to compute the greatest lower bound.

certK (D, 𝑡) ≔ ⊓K ({𝐷 (𝑡) | 𝐷 ∈ D})
Importantly, GLB coincides with the standard definition

of certain answers for set semantics (B): certB returns true
only when the tuple is present in all worlds. We also note
that certN = min, is analogous to the definition of certain
answers for bag semantics from [23]. For instance, consider
the certain annotation of the first tuple from Example 7. The
tuple’s certain multiplicity is certN ({2, 3}) =𝑚𝑖𝑛(2, 3) = 2.
Similarly, for the third tuple, certN ({0, 5}) = 0. Reinter-
preted under set semantics, all tuples that exist (multiplicity
> 0) are annotated 𝑡𝑟𝑢𝑒 (𝑇) and all others 𝑓 𝑎𝑙𝑠𝑒 (𝐹). For the
first tuple we get, ⊓B ({𝑇,𝑇 }) = 𝑇 ∧𝑇 = 𝑇 (certain). For the
third tuple we get ⊓B ({𝐹,𝑇 }) = 𝐹 ∧𝑇 = 𝐹 (not certain).

3.2 K𝑊 -relations
For the formal exposition in the remainder of this work it will
be useful to define an alternative, but equivalent, encoding
of an incomplete K-database as a single K-database using a
special class of semirings whose elements encode the anno-
tation of a tuple across a set of possible worlds3. We assume
a fixed set𝑊 = {𝑚 | 𝑚 ∈ N ∧ 0 < 𝑚 ≤ 𝑛} of possible world
identifiers for some number of possible worlds 𝑛 ∈ N. Given
the domain𝐾 of a semiringK , we write𝐾𝑊 to denote the set
of elements from the 𝑛-way cross-product of 𝐾 . We annotate
tuples 𝑡 with elements of 𝐾𝑊 to store annotations of 𝑡 in
each possible world. We use 𝑘 , 𝑘1⃗, . . . to denote elements
from 𝐾𝑊 to make explicit that they are vectors.

Definition 2 (Possible World Semiring). Let K = (𝐾,
⊕K , ⊗K , 0K , 1K) be an l-semiring.We define the possible world

3This encoding is a technical device that allows us to adopt results from the
theory of K-relations directly to our problem. It is not materialized.

semiringK𝑊 = (𝐾𝑊 , ⊕K𝑊
, ⊗K𝑊

, 0K𝑊
, 1K𝑊

). The operations
of this semiring are defined as follows ∀𝑖 ∈𝑊 :

0K𝑊
[𝑖] ≔ 0K (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖] ≔ 𝑘1⃗ [𝑖] ⊕K 𝑘2⃗ [𝑖]

1K𝑊
[𝑖] ≔ 1K (𝑘1⃗⊗K𝑊

𝑘2⃗) [𝑖] ≔ 𝑘1⃗ [𝑖] ⊗K 𝑘2⃗ [𝑖]
Thus, a K𝑊 -database is simply a pivoted representation

of an incomplete K-database.

Example 8. Reconsider the incomplete N-relation from Ex-

ample 7. The encoding of this database as a N2
-relation is:

locale state N2

Lasalle NY [3,2]
Tucson AZ [2,1]

Greenville IN [0,5]

Observe that K𝑊 is a semiring, since we define K𝑊 using
the |𝑊 |-way version of the product operation of universal
algebra, and products of semirings are also semirings [8].
Possible Worlds. We can extract the K-database for a pos-
sible world (e.g., the best-guess world) from a K𝑊 -database
by projecting on one dimension of its annotations. This can
be modeled as a mapping pw𝑖 : 𝐾𝑊 → 𝐾 where 𝑖 ∈𝑊 :

pw𝑖 (𝑘) ≔ 𝑘 [𝑖] (4)

Recall that under possible world semantics, the result of a
query 𝑄 is the set of worlds computed by evaluating 𝑄 over
each world of the input. As a sanity check, we would like
to ensure that query processing over K𝑊 -relations matches
this definition. We can state possible world semantics equiva-
lently as follows: the content of a possible world in the query
result (pw𝑖 (𝑄 (D))) is the result of evaluating query 𝑄 over
this possible world in the input (𝑄 (pw𝑖 (D))):

∀𝑖 ∈𝑊 : pw𝑖 (𝑄 (D)) = 𝑄 (pw𝑖 (D))

Recall from Section 2.3 that a mapping between semirings
commutes with queries iff it is a semiring homomorphism.

Lemma 1. For any semiring K and possible world 𝑖 ∈ 𝑊 ,

mapping pw𝑖 is a semiring homomorphism.

Proof. See Appendix A □

A useful consequence of Lemma 1 is thatK-databases and
K𝑊 -databases are equivalent and interchangeable.

Proposition 1. IncompleteK-databases andK𝑊 -databases

are isomorphic wrt. possible worlds semantics for RA+
queries.

Certain Annotations. Since the annotation of a tuple 𝑡 in
a K𝑊 -database is a vector recording 𝑡 ’s annotations in all
worlds, certain annotations for incomplete K-databases are
computed by applying⊓K to the set of annotations contained
in the vector. Thus, the certain annotation of a tuple 𝑡 from
a K𝑊 -DB D is computed as: certK (D, 𝑡) = ⊓K (D(𝑡))

4 UA-DATABASES
Wenow introduceUA-DBs (uncertainty-annotated databases)
which encode both under- and over-approximations of the
certain annotations of an incomplete K-database D. This is
achieved by annotating every tuple with a pair [𝑐, 𝑑] ∈ 𝐾2

where 𝑑 records the tuple’s annotation in an arbitrary pos-
sible world 𝐷𝑏𝑔 ∈ D i.e., 𝑑 = pw𝑏𝑔 (D)(𝑡) and 𝑐 stores the
under-approximation of the tuple’s certain annotation (i.e.,
𝑐 ⪯K certK (D, 𝑡) ⪯K 𝑑). We call the world selected as 𝐷𝑏𝑔

the best-guess world (BGW). Both under- and over-approx-
imations of certain annotations assign tuples annotations
from K , making them K-databases. Every possible world is
by definition a superset of the certain tuples, so a UA-DB con-
tains all certain answers, even though the certainty of some
answers may be underestimated. We start by formally defin-
ing the annotation domains of UA-DBs and mappings that
extract the two components of an annotation. Afterwards,
we state the main result of this section: queries over UA-
DBs preserve the under- and over-approximation of certain
annotations.

4.1 UA-semirings
We define a UA-semiring as a K2-semiring, i.e., the direct
product of a semiring K with itself (see Section 4.1). Recall
that operations inK2 = (𝐾2, ⊕K2 , ⊗K2 , 0K2 , 1K2) are defined
pointwise, e.g., [𝑘1, 𝑘1 ′] ⊗K2 [𝑘2, 𝑘2 ′] = [𝑘1⊗K 𝑘2, 𝑘1

′⊗K 𝑘2
′].

Definition 3 (UA-semiring). Let K be a semiring. We

define the corresponding UA-semiring K𝑈𝐴 ≔ K2

Note that for any K , K𝑈𝐴 is a semiring, because, as men-
tioned earlier, products of semirings are semirings.

4.2 Creating UA-DBs
We now discuss how to derive UA-relations from a K𝑊 -
database or a compact encoding of a K𝑊 -database using
some uncertain data model like c-tables. Consider a K𝑊 -
database D, let 𝐷 be one of its worlds and L a K-database
under-approximating the certain annotations of D. We refer
to L as a labeling and will study such labelings in depth in
Section 5 and 7. We cover in Section 6 how to generate a
UA-DB from common uncertain data models by extracting a
(best-guess) world 𝐷 and a labeling L. We construct a UA-
DB 𝐷𝑈𝐴 as an encoding of 𝐷 and L by setting for every tuple
𝑡 :

𝐷𝑈𝐴 (𝑡) ≔ [L(𝑡), 𝐷 (𝑡)]
For a UA-DB 𝐷𝑈𝐴 constructed in this fashion we say that
𝐷𝑈𝐴 approximates D by encoding (L, 𝐷). Given a UA-DB
𝐷𝑈𝐴, we would like to be able to restore L and 𝐷 from 𝐷𝑈𝐴.
For that we define two morphisms K2 → K :

ℎ𝑐𝑒𝑟𝑡 ([𝑐, 𝑑]) ≔ 𝑐 ℎ𝑑𝑒𝑡 ([𝑐, 𝑑]) ≔ 𝑑

Note that by construction, if an UA-DB 𝐷𝑈𝐴 is an encoding

of a possible world 𝐷 and a labeling L of a K𝑊 -database D
then: ℎ𝑑𝑒𝑡 (𝐷𝑈𝐴) = 𝐷 and ℎ𝑐𝑒𝑟𝑡 (𝐷𝑈𝐴) = L.

4.3 Querying UA-DBs
Wenow state themain result of this section: query evaluation
over UA-DBs preserves the under-approximation and over-
approximation of certain annotations.

Theorem 1 (Queries Preserve Bounds). LetD be aK𝑊 -

database, L a labeling for K𝑊 , 𝐷 one of its possible worlds,

and 𝐷𝑈𝐴 be the UA-DB encoding the pair (L, 𝐷). Clearly 𝐷𝑈𝐴

approximatesD. Then𝑄 (𝐷𝑈𝐴) is an approximation for𝑄 (D)
encoding the pair (𝑄 (L), 𝑄 (𝐷)).
Proof Sketch. We decouple 𝑐 and 𝑑 by showing that ℎ𝑐𝑒𝑟𝑡
and ℎ𝑑𝑒𝑡 are homomorphisms. Computing 𝑑 is exactly BGQP.
Then, we show in Section 7 that queries over ℎ𝑐𝑒𝑟𝑡 preserve
the lower bound. (See Appendix A for the full proof)

5 UNCERTAINTY LABELINGS
We now define uncertainty labelings, which areK-databases
whose annotations over- or under-approximate certain an-
notations of tuples in a K𝑊 -database with respect to the
natural order of semiringK . A labeling scheme is a mapping
from an incomplete databases to labelings.

Definition 4 (Uncertainty Labeling Scheme). 9LetDBK
be the set of all K-databases, M an incomplete/probabilis-

tic data model, and DBM the set of all possible instances

of this model. An uncertainty labeling scheme is a function

label : DBM → DBK such that the labeling L = label(D)
has the schema D.

Ideally, wewould like the label (annotation)L(𝑡) of a tuple
𝑡 from an uncertainty labeling L to be exactly certK (D, 𝑡).
Observe that an exact labeling can always be computed in
𝑂 (|𝑊 |) time if all worlds of the incomplete database can be
enumerated. However, the number of possible worlds is fre-
quently exponential in the data size. Thus, most incomplete
data models rely on factorized encodings, with size typically
logarithmic in |𝑊 |. Ideally, we would like labeling schemes to
be PTIME in the size of the encoding (rather than in |𝑊 |). As
mentioned in the introduction, computing certain answers
is coNP-complete, so for tractable query semantics we must
accept that L(𝑡) may either over- or under-approximate
certK (D, 𝑡) (with respect to ⪯K). For instance, under bag
semantics (semiring N), a label 𝑛 may be smaller or larger
than the certain multiplicity of a tuple. We call a labeling
c-sound (no false positives) if it consistently under-approxi-
mates the certain annotation of tuples, c-complete (no false
negatives) if it consistently over-approximates certainty, and
c-correct if it annotates every tuple with its certain annota-
tion. We also apply this terminology to labeling schemes, e.g.,

a c-sound labeling scheme only produces c-sound labelings.
For UA-DBs we are mainly interested in c-sound labeling
schemes to provide an under-approximation of certain an-
notations.

Definition 5. If L is an uncertainty labeling for D.

We call L. iff for all tuples 𝑡 ∈ D. . .
c-sound L(𝑡) ⪯K certK (D, 𝑡)

c-complete certK (D, 𝑡) ⪯K L(𝑡)
c-correct certK (D, 𝑡) = L(𝑡)

A labeling is both c-sound and c-complete iff it is c-correct.
Ideally, queries over labelings would preserve these bounds.

Definition 6 (Preservation of Bounds). A query se-

mantics for uncertainty labelings preserves a property 𝑋 (c-

soundness, c-completeness, or c-correctness) wrt. a class of

queries C, if for any incomplete database D, labeling L for D
that has property 𝑋 , and query 𝑄 ∈ C we have: 𝑄 (L) is an
uncertainty labeling for 𝑄 (D) with property 𝑋 .

6 LABELING SCHEMES
We define efficient (PTIME) labeling schemes for three incom-
plete datamodels and their probabilistic extensions: Tuple-In-
dependent (probabilistic) databases [41], (P)C-Tables [22, 25],
and x-DBs [2]. For further details and examples see [14]. We
also discuss methods for selecting a BGW for each model.
Tuple-Independent Databases.A tuple-independent data-
base (TI-DB) D is a database where each tuple 𝑡 is marked
as optional or not. The incomplete database represented by a
TI-DB D is the set of instances that include all non-optional
tuples and some subset of the optional tuples. That is, the
existence of a tuple 𝑡 is independent of the existence of any
other tuple 𝑡 ′. In the probabilistic version of TI-DBs each
tuple is associated with its marginal probability. The proba-
bility of a possible world is then the product of the probability
of all tuples included in the world multiplied by the product
of 1 − 𝑃 (𝑡) for all tuples from D that are not part of the
possible world. We define a labeling function labelTI-DB for
TI-DBs that returns a B-labeling L that annotates a tuple
with𝑇 (certain) iff it is not optional. For probabilistic TI-DBs
we label tuples as certain if their marginal probability is 1.

L(𝑡) ≔ 𝑇 ⇔ 𝑡 is not marked as optional

To create a BGW from an incomplete TI-DB D, we can
choose any subset of D that is a superset of the tuples we
labeled as certain. For probabilistic TI-DBs, we choose the
world with the highest probability, which can be computed
efficiently as follows: 𝐷𝑏𝑔 ≔ {𝑡 | 𝑡 ∈ D ∧ 𝑃 (𝑡) ≥ 0.5}

Theorem 2 (labelTI-DB is c-correct). Given a TI-DB D,

labelTI-DB (D) is a c-correct labeling.

Proof. Trivially holds. An incomplete (probabilistic) data-
base tuple is certain iff it is not optional (if 𝑃 (𝑡) = 1). □

(P)C-tables. Tuples in a C-table [25] consist of constants and
variables from a set Σ. Tuples are annotated by a boolean ex-
pression𝜙D (𝑡) over comparisons of values from Σ∪D, called
the local condition. Each variable assignment 𝑣 : Σ → D de-
fines a possible world derived by retaining only tuples with
local conditions satisfied under 𝑣 . Determining certainty of
tuples based on a C-table is expensive. Thus, we cannot hope
for an efficient c-correct labeling scheme for C-tables. Instead,
consider the following sufficient condition for certainty. If (1)
a tuple 𝑡 in a C-table contains only constants and (2) its local
condition 𝜙D (𝑡) is a tautology, then the tuple is certain. Our
labeling scheme for C-tables applies this sufficient condition
and, thus, is c-sound. Formally, L = labelC-table (D), where
for a C-table D and any tuple 𝑡 ∈ TupDom:

L(𝑡) = 𝑇 ⇔ 𝜙D (𝑡) is in CNF ∧ (|= 𝜙D (𝑡))

Green et. al. [22] extended C-tables by assigning each vari-
able to a probability distribution over its possible values. In
the resulting “PC-tables,” variables are treated as indepen-
dent, i.e., the probability of a possible world is the product
of probabilities of its defining variable assignments. Our la-
beling scheme works for both C-tables and PC-tables. To
compute a BGW for a C-table, we can randomly choose an
assignment for each variable in Σ. For a PC-table, comput-
ing the most likely possible world reduces to answering a
query over a TI-DB (#P in general [41]). Thus, we heuristi-
cally select the highest probability value for each variable
independently. Any such assignment must contain all certain
tuples, since their local conditions are tautologies. Alterna-
tively, a wide range of algorithms [15, 16, 18, 35] can compute
an arbitrarily close approximation of the most likely world.
Theorem 3 (labelC-table is c-sound). Given an incom-

plete/probabilistic databaseD encoded as a C-table or PC-table,

labelC-table (D) is c-sound.
x-DBs.An x-DB [2] is a set of x-relations, which are sets of x-
tuples. An x-tuple 𝜏 is a set of tuples {𝑡1, . . . , 𝑡𝑛} with a label
indicating whether the x-tuple is optional. Each x-tuple is
assumed to be independent of the others, and its alternatives
are assumed to be disjoint. Thus, a possible world of an x-
relation 𝑅 is constructed by selecting at most one alternative
𝑡 ∈ 𝜏 for every x-tuple 𝜏 from 𝑅 if 𝜏 is optional, or exactly one
if it is not optional. The probabilistic version of x-DBs (also
called a Block-Independent or BI-DB) as introduced in [2]
assigns each alternative a probability and we require that
𝑃 (𝜏) = ∑︁

𝑡 ∈𝜏 𝑃 (𝑡) ≤ 1. Thus, a tuple is optional if 𝑃 (𝜏) < 1
and there is no need to use labels to mark optional tuples. We
use |𝜏 | to denote the number of alternatives of x-tuple 𝜏 . We
define a labeling scheme labelx-DB for x-relations where tuple

𝑡 ’s annotation is𝑇 iff 𝑡 is the single, non-optional alternative
of an x-tuple. In probabilistic x-DBs we check 𝑃 (𝜏) = 1.

L(𝑡) ≔ 𝑇 ⇔ ∃𝜏 ∈ D : |𝜏 | = 1 ∧ 𝜏 is not optional

Theorem 4 (labelx-DB is c-correct). Given a database

D, labelx-DB (D) is a c-correct labeling.

For probabilistic x-DBs, the possible world with highest
probability can be efficiently computed and used as the BGW.
Since the x-tuples in an x-DB are independent, the proba-
bility of a possible world from an x-DB D is maximized by
including the highest probability alternative for each x-tuple
𝜏 (i.e., argmax𝑡 ∈𝜏 𝑃 (𝑡)), or no tuple if that is the highest prob-
ability option (i.e., max𝑡 ∈𝜏 𝑃 (𝑡) < (1−𝑃 (𝜏))). For incomplete
x-DBs, we choose a random alternative for each x-tuple.

7 QUERYING LABELINGS
We now study whether queries over labelings produced by
labeling schemes such as the ones described in Section 6
preserve c-soundness. Specifically, we demonstrate that stan-
dardK-relational query evaluation preserves c-soundness for
any c-sound labeling scheme. Recall that a query semantics
for labelings preserves c-soundness if a query 𝑄 (L) evalu-
ated on a c-sound labeling L of incomplete database D is a
c-sound labeling for𝑄 (D). Our result generalizes a previous
result of Reiter [39] to any type of incomplete K-database
for which we can define an efficient c-sound labeling scheme.
We need the following lemma, to show that the natural order
of a semiring factors through addition and multiplication.
This is a known result that we only state for completeness.

Lemma 2. Let K be a naturally ordered semiring. For all

𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ K we have:

𝑘1 ⪯K 𝑘3 ∧ 𝑘2 ⪯K 𝑘4 ⇒ 𝑘1 ⊕K 𝑘2 ⪯K 𝑘3 ⊕K 𝑘4

𝑘1 ⪯K 𝑘3 ∧ 𝑘2 ⪯K 𝑘4 ⇒ 𝑘1 ⊗K 𝑘2 ⪯K 𝑘3 ⊗K 𝑘4

Proof. See Appendix A □

7.1 Preservation of C-Soundness
We now prove that RA+ over labelings preserves c-sound-
ness. Since queries over both K𝑊 -databases and labelings
have K-relational query semantics, we can make use of the
fact that RA+ overK-relations is defined using ⊕K and ⊗K .
At a high level, the argument is as follows: (a) we show that
certK applied to the result of an addition (or multiplication)
of twoK𝑊 -elements 𝑘1⃗ and 𝑘2⃗ yields a larger (wrt. ⪯K) result
than adding (or multiplying) the result of applying certK to
𝑘1⃗ and 𝑘2⃗; (b) Since c-sound labelings for an input provide a
lower bound on certK , we can apply Lemma 2 to show that
the query result over a c-sound (or c-correct) labeling is a
lower bound for certK of the result of the query. Combining
arguments, we get preservation of c-soundness.

Functions that have the property mentioned in (a) are
called superadditive and supermultiplicative. Formally, a
function 𝑓 : 𝐴 → 𝐵 where 𝐴 and 𝐵 are closed under ad-
dition and multiplication, and 𝐵 is ordered (order ≤𝐵) is
superadditive (supermultiplicative) iff for all 𝑎1, 𝑎2 ∈ 𝐴:

𝑓 (𝑎1 + 𝑎2) ≥𝐵 𝑓 (𝑎1) + 𝑓 (𝑎2) (superadditive)
𝑓 (𝑎1 × 𝑎2) ≥𝐵 𝑓 (𝑎1) × 𝑓 (𝑎2) (supermultiplicative)

In a nutshell, if we are given a c-soundK-labeling, then eval-
uating any RA+-query over the labeling using K-relational
query semantics preserves c-soundness if we can prove that
certK is superadditive and supermultiplicative.

Lemma 3. Let K be a semiring. certK is superadditive and

supermultiplicative wrt. the natural order ⪯K .

Proof. See Appendix A □

Using the superadditivity and -multiplicativity of certK ,
we now prove preservation of c-soundness.

Theorem 5. Let D be a K𝑊 -database and L a c-sound

labeling for D. RA+
queries over L preserve c-soundness.

Proof. See Appendix A □

In Appendix B we demonstrate that under certain circum-
stances, queries also preserve c-completeness.

8 IMPLEMENTATION
We now discuss the implementation of a UA-DB as a query
rewriting front-end built on top of a relational DBMS. AK𝑈𝐴-
relation with schema R(𝐴1, . . . , 𝐴𝑛) annotated with a pairs of
K-elements [𝑐, 𝑑] is encoded byK-relationR′(𝐴1, . . . , 𝐴𝑛,𝐶)
where the annotation of each tuple encodes 𝑑 and attribute
𝐶 stores 𝑐 . We specifically implement UA-DBs for bag seman-
tics, as this is the model used by most DBMSes. In contrast
to N-relations where the multiplicity of a tuple is stored as
its annotation, relational databases represent a tuple 𝑡 with
multiplicity 𝑛 as 𝑛 copies of 𝑡 . We use𝐶 as a boolean marker
and mark 𝑐 copies of 𝑡 as certain (1) and the remaining 𝑑 − 𝑐
copies as uncertain (0) as shown in the example in Section 1.

Our frontend rewriting engine receives queries of the form
𝑄 (𝐷𝑈𝐴) over an N𝑈𝐴-annotated database 𝐷𝑈𝐴 with schema
{ R𝑖 (𝐴1, . . . , 𝐴𝑛) }. It rewrites these into equivalent queries
J 𝑄 K𝑈𝐴 (𝐷) over a classical bag-relational database 𝐷 with
schema { R′

𝑖 (𝐴1, . . . , 𝐴𝑛,𝐶) } where 𝐶 ∈ {0, 1} denotes the
uncertainty label. The rewrite rules implementing J · K𝑈𝐴

are given in Figure 8. Implementations of the labeling and
BGW-extraction schemes from Section 6 are used to make
our rewriting engine directly compatible with a wide range
of incomplete and probabilistic data models; Such inputs
are translated inline into encoded N𝑈𝐴-relations. We imple-
ment our approach as a middleware over a database system
through an extension of SQL. An input query is first parsed,

J 𝑅 K𝑈𝐴 = A Labeled R (see Section 6)
J 𝜎𝜃 (𝑄) K𝑈𝐴 = SELECT * FROM J 𝑄 K𝑈𝐴 WHERE 𝜃

J 𝜋𝐴1 ...𝐴𝑛 (𝑄) K𝑈𝐴 = SELECT A1, ..., AN, C FROM J 𝑄 K𝑈𝐴

J 𝑄1 ⊲⊳𝜃 𝑄2 K𝑈𝐴 = SELECT Q1.*, Q2.*, Q1.C*Q2.C AS C

FROM J 𝑄1 K𝑈𝐴, J 𝑄2 K𝑈𝐴 WHERE 𝜃

J 𝑄1 ∪𝑄2 K𝑈𝐴 = J 𝑄1 K𝑈𝐴 UNION ALL J 𝑄2 K𝑈𝐴

Figure 8: Query rewrite rules

translated into a relational algebra graph, rewritten using
J · K𝑈𝐴, and then converted back to SQL for execution. We
formally prove the correctness of our rewriting and show
SQL implementations of our labeling schemas from Section 6
in [14].

9 RELATEDWORK
Incomplete and probabilistic data models. Uncertainty
was recognized as an important problem by the database com-
munity early-on. Codd [11] extended the relational model
with null values to represent missing information and pro-
posed to use 3-valued logic to evaluate queries over data-
bases with null values. Imielinski [25] introduced V-tables
and C-tables as representations of incompleteness. C-tables
are closed under full relational algebra. Reiter [39] proposed
to model databases as logical theories, a model equivalent
to V-tables. Probabilistic data models quantify the uncer-
tainty in incomplete databases by assigning probabilities
to individual possible worlds. TI-DBs [41] are a prevalent
model for probabilistic data where each tuple is associated
with its marginal probability and tuples are assumed to be
independent. Green et al. [22] studied probabilistic versions
of C-tables. Virtual C-tables generalize C-tables [28, 45] by
allowing symbolic expressions as values. Probabilistic query
processing (PQP) has been studied for several decades (e.g.,
an important survey is [41]). Of particular note, Gatterbauer
and Suciu [18] showed that (efficient) extensional evaluation
semantics compute a lower bound on result probabilities.
Certain Answers.Many approaches for answering queries
over incomplete databases employ certain answer seman-
tics [1, 23–25, 36]. The foundational work by Lipski [37] de-
fined certain answers analogously to our approach, but using
minima instead of GLBs. Computing certain answers is coNP-
complete [1, 25] (data complexity) for first order queries, even
for restricted data models such as Codd-tables. This hardness
result even holds for conjunctive queries over more complex
uncertain data models (e.g., OR-databases [26]). Thus, it is
not surprising that approaches for approximating the set of
certain answers have been proposed. Reiter [39] proposed
a PTIME algorithm that returns a subset of the certain an-
swers (c-sound) for positive existential queries (and a limited
form of universal queries). Guagliardo and Libkin [23, 24, 36]
propose a query semantics that preserves c-soundness for

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 1 2 3 4 5 6 7P
e
r

tu
p
le

 e
x
e
c
u
ti
o
n
 t
im

e
(s

)

Complexity

c-tables
UADB

Figure 9: Certain answers over C-tables

full relational algebra (first order queries) for Codd- and
V-tables. Then, [24] defined certain and possible multiplic-
ities for bag semantics, and presented initial thoughts on
how to extend [23] for bag semantics. Our approach works
with a wider range of data models and models of uncer-
tainty than [23, 24], at the cost of being a slightly weaker
approximation. Furthermore, unlike this approach, UA-DBs
are closed under query evaluation. Sundarmurthy et al. [42]
introduced m-tables, which can represent not just uncer-
tainty, but also model information about missing tuples. [42]
also introduced the terms c-soundness/-correctness. Con-
sistent query answering [5, 6] (CQA) is computing certain
answers to a query over the incomplete database consisting
of all repairs for a database that violates a set of constraints.
The complexity of variants of this problem has been stud-
ied extensively (e.g., [9, 29, 32]) and several combinations of
classes of constraints and queries have been identified that
permit first-order rewritings [17, 19, 43, 44]. Geerts et al. [19]
study first order under-approximations of certain answers
in the context of CQA.
Annotated Databases. Green et al. [21] introduced the
semiring annotation framework that we utilize in this work.
The connection between annotated databases, provenance,
and uncertainty has been recognized early-on. A particular
type of semiring annotations, often called Lineage, has been
used for probabilistic query processing (e.g., see [40, 41]).
Green et al. [21] observed that set semantics incomplete data-
bases can be expressed as K-relations by annotating each
tuple with the set of worlds containing it. We define a more
general type of incomplete databases based on K-relations
which is defined for any l-semiring. Kostylev et al. [31] in-
vestigate how to deal with dependencies among annotations
from multiple domains. Similar to [31], we consider “multi-
dimensional” annotations, but for a very different purpose:
to extend incomplete databases beyond set semantics.

10 EXPERIMENTS
We evaluate the performance of queries over UA-DBs imple-
mented on a commercial DBMS4. We compare UA-DBs with
(1)Det: Deterministic BGQP, (2) Libkin: An alternate under-
approximation of certain answers [23, 36], (3)MayBMS: We

4The DBMS is not identified due to license restrictions

use MayBMS to compute the full set of possible answers5,
and (4) MCDB: We use MCDB-style [27] database sampling
(10 samples) to over-approximate the certain answers. All ex-
periments are run on a machine with 2×6 core AMDOpteron
4238 CPUs, 128GB RAM, 4×1TB 7.2K HDs (RAID 5). We re-
port the average running time of 5 runs. We also evaluate
false negative (i.e., a misclassified certain answer) rates for
UA-DBs and both false negative and false positive rates for
other systems. Furthermore, we demonstrate that BGQP and
UA-DBs produce answers that are of higher utility (more
similar to a ground truth result) than certain answers.

10.1 Performance Comparison
We first use PDBench [3], a modified TPC-H data gener-
ator [12] that introduces uncertainty by generating ran-
dom possible values for randomly selected cells (attributes).
The generator produces a columnar encoding optimized for
MayBMS,with tables as pairs of tuple identifiers and attribute
values. Ambiguity arises from having multiple values for the
same tuple identifier. We directly run MayBMS queries (omit-
ting probability computations) on these columnar tables. For
MCDB, we simulate the tuple bundle query using 10 samples.
We also apply Libkin by constructing a database instance
with nulls from the PDBench tables and applying queries
generated by the optimized rewriting described in [23]. We
run deterministic queries and queries generated by our ap-
proach on one possible world that is selected by randomly
choosing a value for each uncertain cell. For our approach,
we treat the input as an x-DB and mark tuples with at least
one uncertain cell as uncertain. The three PDBench queries
roughly correspond to TPC-H queries Q3, Q6 and Q7.
Amount of uncertainty. Using a scale factor 1 database
(∼1GB of data per possible world), we evaluate scalability
with respect to amount of uncertainty. Using PDBench, we
vary the percentage of uncertain cells in the range 2%, 5%,
10% and 30%. Each uncertain cell has up to 8 possible values.
Figure 10 shows the runtime results for the three PDBench
queries. As expected, runtimes for UA-DBs and Libkin are
similar to deterministic query processing. The slight over-
heads arise from propagating uncertainty annotations and
dealing with nulls, respectively. Furthermore, UA-DBs have
to output additional tuples that belong to the best-guess
world, but are not certain. Libkin slightly outperforms UA-
DBs for query Q3 at levels of uncertainty above 10%, since
the query’s join only returns certain tuples and, thus, there
is no overhead for dealing with nulls. For queries Q1 and
Q2, UA-DBs slightly outperform Libkin as the overhead of
comparing labeled nulls outweighs the overhead for return-
ing a larger result and propagating uncertainty annotations.

5Times listed for MayBMS do include only computing possible answers and
not computing probabilities, unless stated otherwise.

MCDB effectively needs to evaluate queries once for each
sample, and so runs more than 10 times slower than deter-
ministic query processing. MayBMS has a reasonable, but
still noticeable overhead at lower levels of uncertainty. As
uncertainty increases, the query output size in MayBMS in-
creases roughly cubically for Q1 and Q3, and it begins to
perform several orders of magnitude (the plots use log scale)
slower than UA-DBs. MayBMS performs better for the simple
selection query Q2. To better understand the performance of
MayBMS, we show result sizes (number of tuples) for each
query varying amounts of uncertainty in Figure 11. Our ap-
proach produces the same number of results as deterministic
processing. Conversely, MayBMS returns the full set of pos-
sible answers and, thus the result size increases dramatically
as uncertainty increases. We also show the percentage of
certain answers for each query per input uncertainty level
in Figure 12. The unexpected increase of result size for Q1
over UA-DBs is caused by a shift in the correlation between
attributes o_orderkey and l_shipdate that affects the num-
ber of tuples passing Q1’s selection condition resulting from
PDBench choosing values for uncertain cells independently.

Dataset size. To evaluate scalability, we use datasets with
scale factors (SF) 0.1 (100MB), 1 (1GB) and 10 (10GB) and fix
the uncertainty percentage (2%). The results are shown in
Figure 13. Again UA-DBs and Libkin exhibit performance
similar to deterministic queries as well as certain answers
and MCDB is again significantly slower. MayBMS’s relative
overhead over deterministic processing increases with data
set size. For instance, for Q1 the overhead is ∼ 60% for SF 0.1
and ∼500% for SF 10.

Certain Answers over C-tables. As an example of a more
complex incomplete data model, we evaluate the perfor-
mance of UA-DBs against computing certain answers over
C-tables. We create a synthetic table with 8 attributes. For
each tuple we randomly chose half of its attributes to be
variables and the other half to be floating point constants.
We construct random queries by assembling a number of
randomly chosen self-joins, projections, or selections. We
measure query execution time using UA-DBs. The exact cer-
tain answers for a query over the C-tables are computed
by instrumenting the query to calculate a local condition
for every result tuple and running the Z3 constraint solver
(https://github.com/Z3Prover/z3) over the resulting boolean
expression. An answer is certain iff its local condition is a
tautology. Figure 9 shows the average runtime per result tu-
ple for both C-tables and UA-DBs averaged over all randomly
generated queries. The x-axis is the number of operators (i.e.,
selection, projection or join) in the source query. Overhead
for C-tables increases super-linearly in query complexity
from about 27× to over 40×.

https://github.com/Z3Prover/z3

 0.1

 1

 10

 100

 1000

2% 5% 10% 30%

R
u
n
ti
m

e
 (

s
e
c
)

Amount of Uncertainty

Det
UA-DB
Libkin

MayBMS
MCDB

(a) PDBench - Q1

 0.1

 1

 10

 100

 1000

2% 5% 10% 30%

R
u
n
ti
m

e
 (

s
e
c
)

Amount of Uncertainty

Det
UA-DB
Libkin

MayBMS
MCDB

(b) PDBench - Q2

 0.1

 1

 10

 100

 1000

2% 5% 10% 30%

R
u
n
ti
m

e
 (

s
e
c
)

Amount of Uncertainty

Det
UA-DB
Libkin

MayBMS
MCDB

(c) PDBench - Q3
Figure 10: Performance of PDBench queries - varying the amount of uncertainty for scale factor 1

UA-DB MayBMS

𝑄1 𝑄2 𝑄3 𝑄1 𝑄2 𝑄3

2% 14,260 152,583 9,016 113,966 210,996 15,108
5% 34,041 152,432 8,619 501,114 327,052 32,438
10% 61,800 152,389 8,794 2,392,916 618,199 97,454
30% 130,581 152,885 7,994 134,054,635 3,941,554 4,351,782

Figure 11: Query result sizes (#rows)

𝑄1 𝑄2 𝑄3

2% 0 (0%) 143,618 (94%) 7,861 (87%)
5% 1 (0%) 130,594 (86%) 6,023 (70%)
10% 4 (0%) 111,120 (73%) 3,979 (45%)
30% 1 (0%) 52,724 (34%) 586 (7%)

Figure 12: Result certain answer %

 0.1

 1

 10

 100

100MB 1GB 10GB

R
u
n
ti
m

e
 (

s
e
c
)

Data size

Det
UA-DB
Libkin

MayBMS
MCDB

(a) PDBench - Q1

 0.1

 1

 10

 100

100MB 1GB 10GB

R
u
n
ti
m

e
 (

s
e
c
)

Data size

Det
UA-DB
Libkin

MayBMS
MCDB

(b) PDBench - Q2

 0.1

 1

 10

 100

100MB 1GB 10GB

R
u
n
ti
m

e
 (

s
e
c
)

Data size

Det
UA-DB
Libkin

MayBMS
MCDB

(c) PDBench - Q3

Figure 13: Performance of PDBench queries - varying database size for 2% uncertainty

 0

 2

 4

 6

 8

 10

 12

 1 6 11 16 21 26 31 36

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(a) Building Violations

0.0

0.5

1.0

1.5

2.0

 1 3 5 7 9 11 13 15 17 19

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(b) Shootings in Buffalo

 0

 2

 4

 6

 8

 10

 12

 14

 1 4 7 10 13 16 19 22 25

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(c) Business Liscenses

0.0

0.2

0.4

0.6

0.8

1.0

 1 3 5 7 9 11 13 15 17

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(d) Chicago Crime

 0

 5

 10

 15

 20

 1 3 5 7 9 11 13

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(e) Contracts

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 1 3 5 7 9 11 13 15 17

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(f) Food Inspections

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 1 3 5 7 9 11 13 15

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(g) Graffiti Removal

 0

 1

 2

 3

 4

 5

 6

 1 3 5 7 9 11 13 15 17 19

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(h) Building Permits

 0

 2

 4

 6

 8

 10

 12

 14

 1 11 21 31 41 51 61 71 81 91

fa
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 (
%

)

Number of Projection Attributes

Quartiles

(i) Public Library Survy

Figure 14: Measuring incompleteness as the fraction of certain answers that were misclassified as uncertain

Dataset Rows Cols 𝑈𝐴𝑡𝑡𝑟 𝑈𝑅𝑜𝑤

Building Violations 1.3M 35 0.82% 12.8%
Shootings in Buffalo 2.9K 21 0.24% 2.1%

Business Licenses 63K 25 1.39% 14.0%
Chicago Crime 6.6M 17 0.21% 0.9%

Contracts 94K 13 1.50% 19.2%
Food Inspections 169K 16 0.34% 4.6%
Graffiti Removal 985K 15 0.09% 0.8%
Building Permits 198K 19 0.42% 5.3%

Public Library Survy 9.2K 99 1.19% 14.2%

Figure 15: Real World Datasets
𝑄1 𝑄2 𝑄3 𝑄4 𝑄5

Overhead 2.28% 1.81% 1.32% 2.88% 3.51%
Error Rate 0.55% 0.37% 0% 0.92% 0.29%

Figure 16: Real Query Results
10.2 Real world datasets
Weusemultiple real world datasets (Appendix C) from awide
variety of domains to evaluate how our approach performs
for real world data.We use SparkML to imputemissing values
in the datasets, treating alternative imputations as a source
of uncertainty. The resulting dataset, represented as an x-DB,
was converted to a UA-DB using labelx-DB (6), which marks
all tuples with at least one uncertain attribute as uncertain.
Figure 15 shows basic statistics for the cleaned datasets: the
#rows, #attributes, the percentage of attribute values that
are uncertain (𝑈𝑎𝑡𝑡𝑟), and the percentage of rows marked as
uncertain by our c-complete labeling scheme (𝑈𝑟𝑜𝑤).
Incompleteness. To measure the false negative rate (frac-
tion of answers that are misclassified as uncertain) of our
approach, we use queries that project on a randomly chosen
set of attributes. The rationale for this is that projecting an
uncertain tuple onto a subset of its attributes that are certain
causes the tuple to produce a certain answer. This is the
primary situation in which UA-DBs mis-classify results, so
this experiment represents a worst case scenario for UA-DBs.
We evaluate queries which project on a randomly chosen
set of attributes and measure the false negative rate (FNR).
Figure 14a to 14i show the distribution of the FNR (min, 25-
percentile, median, 75-percentile, max) for queries with a
fixed number of projection attributes. As expected, the FNR
decreases as the number of projection attributes grows, but
is low in general (less than 20% in the worst case).For most
datasets, the median FNR is below 5% when at least half
of the attributes are involved in the projection. Note that
selection and join do not produce any “new” false negative
results (see proof of Theorem 6 in Appendix B). This shows
that for real world datasets with correlated errors, the FNR
is typically low.
Real Queries. We next evaluate the effectiveness of our
approach on five queries over the real world datasets (we
present the SQL code and descriptions of these queries in [14]).

Most of our real world datasets are from open data portals
that associate analyses (e.g., visualizations) with datasets.
Test queries are reverse engineered from these analyses. We
measure the performance overhead and false negative rate
of UA-DBs. Performance overhead is measured as the slow-
down relative to deterministic query processing. As Figure 16
shows, our approach introduces a slight (less than 4%) over-
head for these queries. The worst case (4%) is Q5, which
involves a join operator. All other queries, which contain
only selections and projections have under 3% overhead. In
each case, we saw a 1% false negative rate or lower. Notably,
Q3 returns no misclassified results due to its small result size.
Probabilistic databases. Wenext compare the performance
and accuracy of UA-DBs against MayBMS. For this exper-
iment, we use a BI-DB (an x-DB with probabilities), vary-
ing the number of alternatives for each block and use three
queries 𝑄𝑃1, 𝑄𝑃2 and 𝑄𝑃3 of varying complexity described
in [14]. For MayBMS, we treat tuples with probability 𝑝 ≥ 1
as certain6. Figure 18 shows both runtime and error rate for
both systems, with 2, 5, 10, or 20 alternatives. For MayBMS
we show the result for exact probability computation and
for approximation using the scheme from [38] with an error
bound of 0.3 (shown in parentheses). Note that query pro-
cessing in a UA-DB is independent of the number of possible
worlds. Only a single alternative is used for each block. We
observe that MayBMS’s results include both false positives
and false negatives. Because results are computed by sum-
ming floating point numbers, even MayBMS’ exact probabil-
ity computations exhibits a small amount of rounding error
that is more noticeable for larger number of alternatives (e.g.,
MB-20). Although approximating probabilities can improve
performance especially for complex queries, MayBMS is still
orders of magnitude slower than UA-DBs.𝑄𝑃3 includes a self-
join which further slows MayBMS down due to the increase
in possible worlds and expression complexity.
Beyond Set Semantics. In this experiment we evaluate the
FNR of our approach using bag semantics (semiring N) and
the access control semiring A [21]. For the bag semantics ex-
periment we evaluate projections under bag semantics over
some of the real world datasets from Figure 15. The results
for this experiment are shown in Figure 19. Observe that the
FNR is similar to the set semantics case. The access control
semiring annotates each tuple with an access control level
(one of 0 - “nobody can access the data’, T is “top secret”, S
is “secret”, C is “confidential”, and P is “public”) to determine
what clearance-level is necessary to view the tuple. Addition
(multiplication) is max (min) according to the following order
over the elements 0 < T < S < C < P. For this experiment,
we emulate a scenario where private information in a dataset
is heuristically detected and secured with an A annotation.
6MayBMS may report prob. > 1 due to rounding/approximation errors.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

R
a

te

Amount of uncertainty

UADB(BGQP) - Precision
UADB(BGQP) - Recall

Libkin - Precision
Libkin - Recall

UADB(RGQP) - precision
UADB(RGQP) - Recall

(a) Income Survey

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

R
a

te

Amount of uncertainty

UADB(BGQP) - Precision
UADB(BGQP) - Recall

Libkin - Precision
Libkin - Recall

UADB(RGQP) - precision
UADB(RGQP) - Recall

(b) Buffalo News

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

R
a

te

Amount of uncertainty

UADB(BGQP) - Precision
UADB(BGQP) - Recall

Libkin - Precision
Libkin - Recall

UADB(RGQP) - precision
UADB(RGQP) - Recall

(c) Business License
Figure 17: Utility - varying the amount of uncertainty

UADB MB-02 MB-05 MB-10 MB-20

𝑄𝑃1
time (ms) 3.1 4.0 (4.1) 22.7 (22.3) 308.5 (305.6) 4.8k (4.7k)

error 0% 0% (0%) 0% (0%) 0% (0%) 0% (0%)

𝑄𝑃2
time (ms) 4.4 6.8 (6.8) 28.4 (28.5) 374.5 (367.0) 8.8k (7.0k)

error 1.6% 0% (0%) 0%(0%) 0% (0.5%) 0.5% (1.1%)

𝑄𝑃3
time (ms) 7.6 54.0 (20.3) 17.0k (10.8k) 289.7k (118.6k) 3.5m (1.1m)

error 3.0% 0% (0.1%) 0.1% (0.1%) 0.2% (0.3%) 0.6% (1.1%)

Figure 18: Probabilistic database

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25

M
e

a
n

 e
rr

o
r

ra
te

Number of projection attributes

buffalo
foodins
permits

Figure 19: Bag semantics - mislabelings

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1 3 5 7 9

M
e

a
n

 e
rr

o
r

ra
te

Number of Projection Attributes

1% errors
5% errors

10% errors
15% errors

Figure 20: Access control semiring - mislabelings

Using 5 real world datasets from Figure 15, we randomly
assigned access control labels to each tuple, and then created
multiple labelings with 1%, 2%, 5%, and 10% of misclassified
tuples. We evaluated random projection queries over these
datasets and measured the amount of misclassified query
results weighted by the distance between the certain annota-
tion and the labeling, e.g., the distance of C and T is 2

5 = 0.4.
In Figure 20, we vary the number of projection attributes
and show the distribution of the amount of misclassified
query results over 9 randomly selected projection queries
for 5 datasets. The FNR increases when the input error rate
is increased, but is quite low in most cases.

10.3 Utility of Query Answers
We claimed that BGQP and, thus also UA-DBs, have better
utility than certain answers, as additional, useful possible

answers are included in the result. The next experiment
supports this claim quantitatively by contrasting the under-
approximation of Libkin with UA-DBs evaluating two meth-
ods for extracting a best-guess world. To start, we create an
incomplete database for which we have the ground truth (i.e.,
a “correct” possible world). This world (denoted as 𝐷𝑔𝑟𝑜𝑢𝑛𝑑)
is created by processing a source dataset to remove all rows
with nulls. We next use 𝐷𝑔𝑟𝑜𝑢𝑛𝑑 to create an incomplete data-
base D by replacing a random set of attribute values with
nulls, varying the fraction of attributes replaced from 0% (de-
terministic input), to 50%. Then, we derive a best guess world
𝐷𝑐𝑙𝑒𝑎𝑛 from D by either using a standard missing value im-
putation algorithm (we refer to this method as BGQP) or
randomly pick a replacement value (random-guess query pro-
cessing or RGQP). We evaluate queries over D and 𝐷𝑐𝑙𝑒𝑎𝑛

using Libkin and UA-DBs respectively, and compare the re-
sult with the ground truth 𝐷𝑔𝑟𝑜𝑢𝑛𝑑 . Figure 17 shows both
precision (fraction of results in 𝐷𝑔𝑟𝑜𝑢𝑛𝑑) and recall (fraction
of 𝐷𝑔𝑟𝑜𝑢𝑛𝑑 in the results) as we vary the level of uncertainty.
Libkin’s method always under-approximates, guaranteeing
100% precision. However, recall is much lower than for UA-
DBs and drops rapidly when the amount of uncertainty is
increased. In contrast, the precision and recall achieved by
UA-DBs remains between 80-90% for BGQP, even when half
of all attribute values are uncertain. This supports our con-
jecture that certain answers are less similar to actual answers
than answers obtained over a best-guess world. Compared
with BGQP, RGQP is less accurate and less complete, but still
has a higher recall than Libkin.

11 CONCLUSIONS AND FUTUREWORK
We proposed UA-DBs as a novel and efficient way to repre-
sent uncertainty as bounds on certain answers. Being based
on K-relations, our approach applies to the incomplete ver-
sion of any data model that can be encoded as K-relations
including set and bag semantics. UA-DBs are backward com-
patible with many uncertain data models such as tuple-
independent databases, x-DBs and C-tables. In future work,
we plan add attribute level annotations, to encode certainty
at finer granularity, and to support larger classes of queries,

e.g., queries involving negation and aggregation. Further-
more, we plan to explore uncertain versions of more complex
semirings in the context of new use cases such as inconsistent
query answering and querying the result of data exchange.

ACKNOWLEDGMENTS
This work is supported in part by NSF Awards OAC-1640864
and IIS-175046. The conclusions and opinions in this work
are solely those of the authors and do not represent the views
of the National Science Foundation.

REFERENCES
[1] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. 1991. On

the Representation and Querying of Sets of Possible Worlds. Theor.
Comput. Sci. 78, 1 (1991), 158–187.

[2] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,
Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. 2006. Trio: A
System for Data, Uncertainty, and Lineage. In VLDB.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. 2008. Fast and Simple
Relational Processing of Uncertain Data. In ICDE.

[4] L. Antova, C. Koch, and D. Olteanu. 2007. MayBMS: Managing In-
complete Information with Probabilistic World-Set Decompositions.
In ICDE.

[5] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Con-
sistent Query Answers in Inconsistent Databases. In PODS.

[6] Leopoldo E. Bertossi. 2011. Database Repairing and Consistent Query
Answering. Morgan & Claypool Publishers.

[7] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur,
Christopher Ré, and Dan Suciu. 2005. MYSTIQ: a system for finding
more answers by using probabilities. In SIGMOD.

[8] Stanley Burris and H.P. Sankappanavar. 2012. A Course in Universal

Algebra. Springer-Verlag.
[9] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. On the

decidability and complexity of query answering over inconsistent and
incomplete databases. In PODS.

[10] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti,
Nan Tang, and Yin Ye. 2015. KATARA: A Data Cleaning System
Powered by Knowledge Bases and Crowdsourcing. In SIGMOD.

[11] E. F. Codd. 1979. Extending the Database Relational Model to Capture
More Meaning. TODS 4, 4 (1979), 397–434.

[12] Transaction Processing Performance Council. [n. d.]. TPC-H specifi-
cation. http://www.tpc.org/tpch/.

[13] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. 2011. Proba-
bilistic Data Exchange. J. ACM 58, 4 (2011), 15:1–15:55.

[14] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2019. Un-
certainty Annotated Databases - A Lightweight Approach for Approx-

imating Certain Answers (extended version). Technical Report CoRR.
https://arxiv.org/pdf/1904.00234.

[15] Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. 2011.
SPROUT2: a squared query engine for uncertain web data. In SIGMOD.
1299–1302.

[16] Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approxi-
mation in probabilistic databases. VLDB J. 22, 6 (2013), 823–848.

[17] Ariel D Fuxman and Renée J Miller. 2005. First-order query rewriting
for inconsistent databases. In ICDT.

[18] Wolfgang Gatterbauer and Dan Suciu. 2017. Dissociation and propaga-
tion for approximate lifted inference with standard relational database
management systems. VLDBJ 26, 1 (2017), 5–30.

[19] Floris Geerts, Fabian Pijcke, and Jef Wijsen. 2017. First-order under-
approximations of consistent query answers. International Journal of
Approximate Reasoning 83 (2017), 337–355.

[20] Floris Geerts and Antonella Poggi. 2010. On database query languages
for K-relations. J. Applied Logic 8, 2 (2010), 173–185.

[21] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Prove-
nance Semirings. In PODS.

[22] Todd J. Green and Val Tannen. 2006. Models for Incomplete and
Probabilistic Information. IEEE Data Eng. Bull. 29, 1 (2006), 17–24.

[23] Paolo Guagliardo and Leonid Libkin. 2016. Making SQL Queries Cor-
rect on Incomplete Databases: A Feasibility Study. In PODS.

[24] Paolo Guagliardo and Leonid Libkin. 2017. Correctness of SQL Queries
on Databases with Nulls. SIGMOD Record 46, 3 (2017), 5–16.

[25] Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information
in Relational Databases. J. ACM 31, 4 (1984), 761–791.

[26] Tomasz Imielinski, Ron van der Meyden, and Kumar V. Vadaparty.
1995. Complexity Tailored Design: A New Design Methodology for
Databases With Incomplete Information. J. Comput. Syst. Sci. 51, 3
(1995), 405–432.

[27] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher
Jermaine, and Peter J Haas. 2008. MCDB: a monte carlo approach to
managing uncertain data. In SIGMOD.

[28] O. Kennedy and C. Koch. 2010. PIP: A database system for great and
small expectations. In ICDE.

[29] Phokion G. Kolaitis and Enela Pema. 2012. A dichotomy in the com-
plexity of consistent query answering for queries with two atoms. Inf.
Process. Lett. 112, 3 (2012), 77–85.

[30] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. 2013. Efficient
Querying of Inconsistent Databases with Binary Integer Programming.
PVLDB 6, 6 (2013), 397–408.

[31] Egor V. Kostylev and Peter Buneman. 2012. Combining dependent
annotations for relational algebra. In ICDT.

[32] Paraschos Koutris and Jef Wijsen. 2018. Consistent Query Answering
for Primary Keys and Conjunctive Queries with Negated Atoms. In
PODS.

[33] Willis Lang, Rimma V. Nehme, Eric Robinson, and Jeffrey F. Naughton.
2014. Partial results in database systems. In SIGMOD.

[34] Julie Letchner, Christopher Ré, Magdalena Balazinska, and Matthai
Philipose. 2009. Access Methods for Markovian Streams. In ICDE.

[35] Jian Li, Barna Saha, and Amol Deshpande. 2011. A unified approach
to ranking in probabilistic databases. VLDBJ. 20, 2 (2011), 249–275.

[36] Leonid Libkin. 2016. SQL’s Three-Valued Logic and Certain Answers.
TODS 41, 1 (2016), 1:1–1:28.

[37] Witold Lipski. 1979. On Semantic Issues Connected with Incomplete
Information Databases. TODS 4, 3 (1979), 262–296.

[38] Dan Olteanu, Jiewen Huang, and Christoph Koch. 2010. Approximate
confidence computation in probabilistic databases. In ICDE.

[39] Raymond Reiter. 1986. A sound and sometimes complete query evalu-
ation algorithm for relational databases with null values. J. ACM 33, 2
(1986), 349–370.

[40] Anish Das Sarma, Martin Theobald, and JenniferWidom. 2008. Exploit-
ing Lineage for Confidence Computation in Uncertain and Probabilistic
Databases. In ICDE.

[41] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011.
Probabilistic databases. Synthesis Lectures on Data Management 3, 2
(2011), 1–180.

[42] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey F.
Naughton, and Val Tannen. 2017. m-tables: Representing Missing
Data. In ICDT.

[43] Jef Wijsen. 2010. On the first-order expressibility of computing certain
answers to conjunctive queries over uncertain databases. In PODS.

http://www.tpc.org/tpch/
https://arxiv.org/pdf/1904.00234

[44] Jef Wijsen. 2012. Certain conjunctive query answering in first-order
logic. TODS 37, 2 (2012), 9:1–9:35.

[45] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and
Oliver Kennedy. 2015. Lenses: An On-demand Approach to ETL.
PVLDB 8, 12 (2015), 1578–1589.

A PROOFS
Proof of Lemma 1. Proven by substitution of definitions.

pw𝑖 (0K𝑊
) = 0K𝑊

[𝑖] = 0K pw𝑖 (1K𝑊
) = 1K𝑊

[𝑖] = 1K

pw𝑖 (𝑘1⃗⊕K𝑊
𝑘2⃗) = (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖] = 𝑘1⃗ [𝑖] ⊕K 𝑘2⃗ [𝑖]

= pw𝑖 (𝑘1⃗) ⊕K pw𝑖 (𝑘2⃗)

pw𝑖 (𝑘1⃗⊗K𝑊
𝑘2⃗) = (𝑘1⃗⊗K𝑊

𝑘2⃗) [𝑖] = 𝑘1⃗ [𝑖] ⊗K 𝑘2⃗ [𝑖]

= pw𝑖 (𝑘1⃗) ⊗K pw𝑖 (𝑘2⃗) □

Proof of Theorem 1. We first prove that the possible
world 𝐷 = pw𝑖 (D) for some 𝑖 encoded by 𝐷𝑈𝐴 is preserved
by queries. We have to show that for any query 𝑄 we have
ℎ𝑑𝑒𝑡 (𝑄 (𝐷𝑈𝐴)) = pw𝑖 (𝑄 (D)). Since a UA-DB is the direct
product of two semirings, ℎ𝑑𝑒𝑡 is a homomorphism. Also by
construction we have ℎ𝑑𝑒𝑡 (𝐷𝑈𝐴) = 𝐷 . Using these facts and
Lemma 1 we get:

ℎ𝑑𝑒𝑡 (𝑄 (𝐷𝑈𝐴)) =𝑄 (ℎ𝑑𝑒𝑡 (𝐷𝑈𝐴)) = 𝑄 (𝐷)
=𝑄 (pw𝑖 (D)) = pw𝑖 (𝑄 (D))

For the same argument as above, ℎ𝑐𝑒𝑟𝑡 is a homomorphism,
so 𝑄 (ℎ𝑐𝑒𝑟𝑡 (𝐷𝑈𝐴)) = ℎ𝑐𝑒𝑟𝑡 (𝑄 (𝐷𝑈𝐴)). Since according to The-
orem 5 queries over labelings preserve the under-approxi-
mation of certain annotations this implies the theorem. □

Proof of Lemma 2. ⊕K : Based on the definition of ⪯K , if
𝑘 ⪯K 𝑘 ′ then there exists 𝑘 ′′ such that 𝑘 ⊕K 𝑘

′′ = 𝑘 ′. Thus,
𝑘3 = 𝑘1 ⊕K 𝑘1

′ and 𝑘4 = 𝑘2 ⊕K 𝑘2
′ for some 𝑘1 ′ and 𝑘2 ′. Also,

(𝑘1 ⊕K 𝑘2) ⪯K (𝑘1 ⊕K 𝑘2) ⊕K 𝑘
′′ for any 𝑘 ′′ and we get:

𝑘1 ⊕K 𝑘2 ⪯K (𝑘1 ⊕K 𝑘2) ⊕K (𝑘1 ′ ⊕K 𝑘2
′) = 𝑘3 ⊕K 𝑘4

⊗K : The proof for multiplication ⊗K is similar.

(𝑘1 ⊗K 𝑘2)
⪯K (𝑘1 ⊗K 𝑘2) ⊕K (𝑘1 ⊗K 𝑘2

′) ⊕K (𝑘1 ′ ⊗K 𝑘2) ⊕K (𝑘1 ′ ⊗K 𝑘2
′)

=(𝑘1 ⊕K 𝑘1
′) ⊗K (𝑘2 ⊕K 𝑘2

′) = 𝑘3 ⊗K 𝑘4 □

Proof of Lemma 3. Recall that ⊕K𝑊
and ⊗K𝑊

are defined
element-wise and that certK (𝑘) = ⊓K (𝑘). Furthermore,
𝑘1 ⪯K 𝑘2 iff ∃𝑘 ′ : 𝑘1 ⊕K 𝑘 ′ = 𝑘2. Consider an arbitrary
𝑘1⃗, 𝑘2⃗ ∈ 𝐾𝑊 . Let 𝑘𝑔𝑙𝑏1 = ⊓K (𝑘1⃗) and 𝑘𝑔𝑙𝑏2 = ⊓K (𝑘2⃗). Based
on the definition of ⊓K this implies that for any 𝑖 , 𝑘𝑔𝑙𝑏1 ⪯K
𝑘1⃗ [𝑖] which in turn implies that 𝑘1⃗ [𝑖] = 𝑘𝑔𝑙𝑏1 ⊕K 𝑘

′ for some
𝑘 ′. Analog, we can find a 𝑘 ′′ such that 𝑘2⃗ [𝑖] = 𝑘𝑔𝑙𝑏2 ⊕K 𝑘

′′.

Superadditivity: Let 𝑘𝑔𝑙𝑏 = ⊓K (𝑘1⃗⊕K𝑊
𝑘2⃗). We are going to

prove that 𝑘𝑔𝑙𝑏1 ⊕K 𝑘𝑔𝑙𝑏2 is a lower bound for (𝑘1⃗⊕K𝑊
𝑘2⃗), i.e.,

that ∀𝑖 ∈𝑊 : 𝑘𝑔𝑙𝑏1 ⊕K 𝑘𝑔𝑙𝑏2 ⪯K (𝑘1⃗⊕K𝑊
𝑘2⃗) [𝑖]. Since, 𝑘𝑔𝑙𝑏 is

the greatest lower bound this implies that 𝑘𝑔𝑙𝑏1 ⊕K 𝑘𝑔𝑙𝑏2 ⪯K
𝑘𝑔𝑙𝑏 . Consider an arbitrary 𝑖 ∈𝑊 . Based on the discussion
above we have:
(𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖] = 𝑘1⃗ [𝑖] ⊕K 𝑘2⃗ [𝑖] = 𝑘𝑔𝑙𝑏1 ⊕K 𝑘
′ ⊕K 𝑘𝑔𝑙𝑏2 ⊕K 𝑘

′′

=(𝑘𝑔𝑙𝑏1 ⊕K 𝑘𝑔𝑙𝑏2) ⊕K 𝑘
′ ⊕K 𝑘

′′ ⪰K 𝑘𝑔𝑙𝑏1 ⊕K 𝑘𝑔𝑙𝑏2
Thus, 𝑘𝑔𝑙𝑏1 ⊕K 𝑘𝑔𝑙𝑏2 is a lower bound and since 𝑘𝑔𝑙𝑏1 =

certK (𝑘1⃗) and 𝑘𝑔𝑙𝑏2 = certK (𝑘2⃗) it follows that certK
is superadditive:

certK (𝑘1⃗) ⊕K certK (𝑘2⃗) ⪯K certK (𝑘1⃗⊕K𝑊
𝑘2⃗)

Supermultiplicativity: We use an analogous argument to

prove supermultiplicativity. Let 𝑘𝑔𝑙𝑏 = certK (𝑘1⃗ ⊗K 𝑘2⃗). We
will prove that 𝑘𝑔𝑙𝑏1 ⊗K 𝑘𝑔𝑙𝑏2 is a lower bound for (𝑘1⃗⊗K𝑊

𝑘2⃗)
which implies supermultiplicativity. Consider 𝑖 ∈𝑊 :

(𝑘1⃗⊗K𝑊
𝑘2⃗) [𝑖] = (𝑘𝑔𝑙𝑏1 ⊕K 𝑘

′) ⊗K (𝑘𝑔𝑙𝑏2 ⊕K 𝑘
′′)

=(𝑘𝑔𝑙𝑏1 ⊗K 𝑘𝑔𝑙𝑏2) ⊕K (𝑘𝑔𝑙𝑏1 ⊗K 𝑘
′′) ⊕K (𝑘 ′ ⊗K 𝑘𝑔𝑙𝑏2) ⊕K (𝑘 ′ ⊗K 𝑘

′′)
⪰K (𝑘𝑔𝑙𝑏1 ⊗K 𝑘𝑔𝑙𝑏2) □

Proof of Theorem 5. Since L is a c-sound labeling, for
any tuple 𝑡 we have L(𝑡) ⪯K certK (D, 𝑡). We have to
prove that for any 𝑡 we have 𝑄 (L)(𝑡) ⪯K certK (𝑄 (D), 𝑡).
For that we show that for any 𝑘1, 𝑘2 ∈ K and 𝑘3⃗, 𝑘4⃗ ∈ 𝐾𝑊

such that 𝑘1 ⪯K certK (𝑘3⃗) and 𝑘2 ⪯K certK (𝑘4⃗), we
have (𝑘1 ⊕K 𝑘2) ⪯K certK (𝑘3⃗⊕K𝑊

𝑘4⃗) and 𝑘1 ⊗K 𝑘2 ⪯K
certK (𝑘3⃗⊗K𝑊

𝑘4⃗).

𝑘1 ⊕K 𝑘2 ⪯KcertK (𝑘3⃗) ⊕K certK (𝑘4⃗) (by Lemma 2)

⪯KcertK (𝑘3⃗⊕K𝑊
𝑘4⃗) (by Lemma 3)

𝑘1 ⊗K 𝑘2 ⪯KcertK (𝑘3⃗) ⊗K certK (𝑘4⃗) (by Lemma 2)

⪯KcertK (𝑘3⃗⊗K𝑊
𝑘4⃗) (by Lemma 3)

Since by assumption the input labeling is c-sound, we
have L(𝑡) ⪯K certK (D, 𝑡) for any tuple 𝑡 . Thus, based
on the property we have just proven and the fact the K-
relational query semantics is defined based on the opera-
tions of semirings only, this implies that for any tuple 𝑡 :
𝑄 (L)(𝑡) ⪯K certK (𝑄 (D), 𝑡). Thus, 𝑄 (L) is a c-sound la-
beling for 𝑄 (D). □

Proof of Theorem 3. Let L = labelC-table (D). A tuple 𝑡
is labeled as certain iff 𝜙D (𝑡) is in CNF and |= 𝜙D (𝑡), which
means the expression 𝜙D is a tautology. By definition of C-
tables, a tuple 𝑡 exists in a possible world if 𝜙D (𝑡) evaluates
to true in that possible world. Thus, 𝑡 must exist in all possible
worlds if 𝜙D (𝑡) is a tautology and L is c-sound. □

Proof of Theorem 4. Trivially holds, since a tuple is cer-
tain iff it is not optional and has only one alternative. Even
though multiple x-tuples may share an alternative, the inde-
pendence of x-tuples guarantees that this does not lead to
additional certain tuples. □

B PRESERVATION OF C-COMPLETENESS
TI-DBs.We now demonstrate that positive queries preserve
c-completeness if the input is a labeling produced by the c-
complete labeling scheme labelTI-DB (Section 6). To show this,
we observe that if there exists possible a world for which two
K𝑊 -elements 𝑘1⃗ and 𝑘2⃗ are both minimal then⊓K commutes
with addition and multiplication, and standard K-relational
semantics preserves c-completeness.

Lemma 4. Let 𝑘1⃗, 𝑘2⃗ ∈ 𝐾𝑊
for some possible world semiring

K𝑊 . If there exists 𝑖 ∈ 𝑊 such that ⊓K (𝑘1⃗) = 𝑘1⃗ [𝑖] and
⊓K (𝑘2⃗) = 𝑘2⃗ [𝑖], then the following holds:

⊓K (𝑘1⃗⊕K𝑊
𝑘2⃗) = ⊓K (𝑘1⃗) ⊕K ⊓K (𝑘2⃗) = (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖]

⊓K (𝑘1⃗⊗K𝑊
𝑘2⃗) = ⊓K (𝑘1⃗) ⊗K ⊓K (𝑘2⃗) = (𝑘1⃗⊗K𝑊

𝑘2⃗) [𝑖]

Proof. Recall that pw𝑖 is a homomorphism (Lemma 1),
so (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖] = 𝑘1⃗ [𝑖] ⊕K 𝑘2⃗ [𝑖] and ⊓K (𝑘 𝑗⃗) = 𝑘 𝑗⃗ [𝑖]
for 𝑗 ∈ {1, 2}. Thus, (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖] = ⊓K (𝑘1⃗) ⊕K ⊓K (𝑘2⃗).
Next, ⊓K (𝑘1⃗⊕K𝑊

𝑘2⃗) = (𝑘1⃗⊕K𝑊
𝑘2⃗) [𝑖] which holds if for any

𝑗 ≠ 𝑖 ∈𝑊 we have (𝑘1⃗⊕K𝑊
𝑘2⃗) [𝑖] ⪯K (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑗]. Since
𝑘1⃗ [𝑖] = ⊓K (𝑘1⃗) and ⊓K is defined based on the natural or-
der, we know that 𝑘1⃗ [𝑖] ⪯K 𝑘1⃗ [𝑗] and analog for 𝑘2⃗ we have
𝑘2⃗ [𝑖] ⪯K 𝑘2⃗ [𝑗]. Lemma 2 then implies (𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑖] ⪯K
(𝑘1⃗⊕K𝑊

𝑘2⃗) [𝑗]. The proof for multiplication is analogous.
□

To demonstrate c-completeness preservation for TI-DBs
we have to demonstrate that the encoding of a TI-DB as a
K𝑊 -database fulfills the precondition of Lemma 4.

Lemma 5. LetD be aK𝑊 -database that represents a TI-DB.

Then there exists 𝑖 ∈𝑊 such that for any tuple 𝑡 :

⊓K (D(𝑡)) = D(𝑡) [𝑖].

Proof. Consider the possible world 𝐷 defined as follows:

𝐷 (𝑡) =
{︄
⊓K (D(𝑡)) if 𝑃 (𝑡) = 1
0K otherwise

This world exists, because in a TI-DB all tuples with proba-
bility 𝑝 = 1 have annotation 1B in all worlds. Furthermore,
since the tuples are independent events, there must exist one
world containing no tuples with probability 𝑝 < 1. Let 𝑖 de-
note the identifier of this world and denote by 𝐷 = pw𝑖 (D).
(Case 1) 𝑃 (𝑡) = 1 and so ∀𝑗 ∈ 𝑊 : D(𝑡) [𝑖] = D(𝑡) [𝑗].

(Case 2) 𝑃 (𝑡) < 1 and 𝐷 (𝑡) = D(𝑡) [𝑖] = 0K . Because ∀𝑘 ∈
𝐾 : 0K ⪯K 𝑘 , it follows that ⊓K (D(𝑡)) = 0K = D(𝑡) [𝑖]. As
a result, ∀𝑡 ∈ TupDom : ⊓K (D(𝑡)) = 𝐷 (𝑡) = D(𝑡) [𝑖] □

Lemmas 4 and 5 together imply that our labeling approach
preserves c-completeness if the input is a TI-DB.

Corollary 1. Let L be a labeling for a TI-DBD computed

as label𝑇 𝐼 (D). Then RA+
over L preserves c-completeness.

x-DBs. In general, RA+ queries over labelings derived from
x-DBs using our labeling scheme labelx-DB from Section 6
do not preserve c-completeness. We present a sufficient con-
dition for a query to preserve c-completeness over such a
labeling. To this end, we define x-keys, constraints that en-
sure that alternatives within the scope of an x-tuple are not
all identical if projected on a set of attributes 𝐴. Since our
labeling scheme for x-DBs is c-complete, queries preserve
c-completeness unless a result tuple that is certain is de-
rived from multiple correlated uncertain input tuples. Since
x-tuples from an x-DB are independent of each other, this can
only be the case if a result tuple is derived from alternatives
of an x-tuple 𝜏 from every possible world (i.e., where 𝜏 is not
optional). Such a situation can be avoided if it is guaranteed
that it is impossible for a result tuple to be derived from all
alternatives of an x-tuple.

Definition 7 (x-key). Let 𝑅 be an x-relation with schema

R. A set of attributes 𝐴 ⊆ R is called an x-key for 𝑅 iff

∀𝜏 ∈ 𝑅 : (𝜏 is optional)∨|𝜏 | = 1∨(∃𝑡1, 𝑡2 ∈ 𝜏 : 𝑡1 [𝐴] ≠ 𝑡2 [𝐴])

An x-key is a set of attributes𝐴 such that for any x-tuple 𝜏
that is not optional and has more than one alternative, there
exists at least two alternatives that differ in 𝐴. We prove
that for any x-DB D, if a conjunctive, self-join free query 𝑄
(a query using selection, projection, and join that accesses
no relation more than once) returns at least one x-key per
accessed relation, then the query preserves c-completeness.

Theorem 6. Let L be a labeling for an x-DB D computed

using labelx-DB. Consider a conjunctive query 𝑄 in canonical

form 𝜋A (𝜎𝜃 (𝑅1 × . . . × 𝑅𝑛)) with 𝑅𝑖 ≠ 𝑅 𝑗 for all 𝑖 ≠ 𝑗 ∈
{1, . . . , 𝑛}. Query 𝑄 preserves c-completeness if A contains an

x-key for every relation 𝑅𝑖 accessed by 𝑄 .

Proof. Let D = {𝑅1, . . . , 𝑅𝑛} be an x-database, D ′ =

{𝑅′
1, . . . , 𝑅

′
𝑛} its encoding as a B𝑊 -database, L a c-complete

labeling for D ′ derived using labelx-DB, and 𝑄 be a selfjoin-
free query of the form 𝜋A (𝜎𝜃 (𝑅1 × . . . × 𝑅𝑛)) such that A
contains an x-key for every relation 𝑅𝑖 for 𝑖 ∈ {1, . . . , 𝑛}.
Any selfjoin-free RA+ query without union can be brought
into this form. We have to show that 𝑄 (L) is a c-complete
labeling for 𝑄 (D ′). We prove this claim by contradiction.
For sake of the contradiction assume that 𝑄 (L) is not a c-
complete labeling. Then there has to exist a tuple 𝑡 ∈ 𝑄 (D ′)

such that 𝑄 (L)(𝑡) = 𝐹 and certB (𝑄 (D ′) (𝑡)) = 𝑇 . Recall
that ⊕B = ∨ and ⊗B = ∧. Unfolding definitions of relational
algebra operators over K-relations we get:

𝑄 (L)(𝑡) =
⋁︂

𝑢:𝑢 [𝐴]=𝑡∧∀𝑖∈{1,...,𝑛}:𝑢 [𝑅𝑖]=𝑡𝑖

(︄
𝑛⋀︂
𝑖=1

L(𝑡𝑖)
)︄
∧ 𝜃 (𝑢)

𝑄 (D ′) (𝑡) =
∑︂

𝑢:𝑢 [𝐴]=𝑡∧∀𝑖∈{1,...,𝑛}:𝑢 [𝑅𝑖]=𝑡𝑖

𝑅′
1 (𝑡1) ⊗B𝑊 . . . ⊗B𝑊 𝑅′

𝑛 (𝑡𝑛) ⊗B𝑊 𝜃 (𝑢)

Note that for result tuples 𝑢 of the crossproduct for which
𝑢 ̸ |= 𝜃 we have 𝜃 (𝑢) = 𝐹 (respective 𝜃 (𝑢) = 0B𝑊). Thus, any
monomial (product) corresponding to such a 𝑢 will evaluate
to 𝐹 (0B𝑊). Thus, we can equivalently write the above expres-
sions as shown below where the 𝑗 values identify monomials
for which 𝑢 |= 𝜃 WLOG assuming that there are𝑚 ∈ N such
monomials. We get: 𝑄 (L)(𝑡) =

⋁︁
∀𝑗 ∈{1,...,𝑚}

(︁⋀︁𝑛
𝑖=1 L(𝑡 𝑗𝑖)

)︁
and 𝑄 (D ′) (𝑡) =

∑︁
∀𝑗 ∈{1,...,𝑚}

∏︁𝑛
𝑖=1 𝑅

′
𝑖 (𝑡 𝑗𝑖). We use 𝑏 𝑗𝑖 to

denote L(𝑡 𝑗𝑖) and 𝑘 𝑗𝑖⃗ to denote 𝑅′
𝑖 (𝑡 𝑗𝑖). Based on our as-

sumption we know:
⋁︁

∀𝑗 ∈{1,...,𝑚}
(︁⋀︁𝑛

𝑖=1 𝑏 𝑗𝑖
)︁
= 𝐹 . So this

can only be the case if for every 𝑗 ∈ {1, . . . ,𝑚} there exists
𝑓 ∈ {1, . . . , 𝑛} such that 𝑏 𝑗𝑓 = 𝐹 . For any 𝑗 ∈ {1, . . . ,𝑚} let
𝑚𝑖𝑛 𝑗 denote the smallest such 𝑓 , i.e., the first element in the
𝑗𝑡ℎ conjunct that is false and let 𝑡𝑚𝑖𝑛 𝑗

denote the correspond-
ing tuple. Based on the fact that L = labelx-DB (D ′) and that
labelx-DB is c-complete, we know that if L(𝑡𝑚𝑖𝑛 𝑗

) = 𝐹 then
𝑡𝑚𝑖𝑛 𝑗

is not certain. We will use this fact to derive a contra-
diction with the assumption certB (𝑄 (D ′) (𝑡)) = 𝑇 . For that,
we partition the set of monomials from 𝑄 (D ′) (𝑡) into two
subsets𝑀1 and𝑀1

C where𝑀1 contains the identifiers 𝑗 of all
monomials such that𝑚𝑖𝑛 𝑗 = 1 and𝑀1

C contains all remain-
ing monomials. We will show that certB (

∑︁
𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖) =

𝐹 , then certB (
∑︁

𝑗 ∈𝑀1
C
∏︁𝑛

𝑖=1 𝑘 𝑗𝑖) = 𝐹 , and finally certB (𝑄 (D ′) (𝑡)) =
certB (

∑︁
𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖 ⊕B𝑊

∑︁
𝑗 ∈𝑀1

C
∏︁𝑛

𝑖=1 𝑘 𝑗𝑖) = 𝐹 which is
the contradiction we wanted to derive.
First, consider

∑︁
𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖 . Since ⊗B = ∧ and ⊗B𝑊 is

defined as point-wise application of ∧ to a vector 𝑘 ∈ B𝑊 we
have𝑘⊗B𝑊 𝑘 ′⃗ ⪯B𝑊 𝑘 for any𝑘 and𝑘 ′⃗. Thus,

∑︁
𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖 ⪯B𝑊∑︁

𝑗 ∈𝑀1 𝑘 𝑗1 . We show certB (
∑︁

𝑗 ∈𝑀1 𝑘 𝑗1) = 𝐹 from which fol-
lows certB (

∑︁
𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖) = 𝐹 .

By construction we have that 𝑡 𝑗1 is not certain for all 𝑗
in 𝑀1. Now consider the set of x-tuples from 𝑅1 for which
the tuples 𝑡 𝑗1 are alternatives. WLOG let 𝜏1, . . . , 𝜏𝑙 be these
x-tuples. Now consider an arbitrary x-tuple 𝜏 from this set
and let 𝑠1, . . . , 𝑠𝑜 be its alternatives that are present in 𝑀1.
We know that none of the 𝑠𝑖 are certain based on the fact
that alternatives are disjoint events and x-tuples are inde-
pendent of each other. We distinguish 2 cases: either 𝜏 is
optional or 𝜏 is not optional. In the latter case based on
the fact that the query result contains an x-key for 𝑅1 we
know that there exists at least one alterative 𝑠 of 𝜏 that is
neither in𝑀1 nor in𝑀1

C . To see why this is the case observe

that its presence in 𝑀1 would violate the x-key while by
construction𝑀1

C only contains tuples 𝑡 from 𝑅′
1 which are

certain. Next we construct a possible world 𝑤 ∈ 𝑊 from
D which does not contain any of the 𝑡 𝑗1 which means that
𝑘 𝑗1 [𝑤] = 𝐹 . In turn, this implies that

∑︁
𝑗 ∈𝑀1 𝑘 𝑗1 = 𝐹 . We

construct𝑤 as follows: for every x-tuple 𝜏 from 𝜏1, . . . , 𝜏𝑙 we
either include no alternative of 𝜏 if the x-tuple is optional or
an alternative that is not present in𝑀1. Now further parti-
tion𝑀1

C into two subsets:𝑀2 which contains all monomials
for which 𝑚𝑖𝑛 𝑗 = 2 and 𝑀2

C for all remaining monomi-
als. Then using an argument symmetric to the one given
for 𝑀1 above we can construct a possible world for which∑︁

𝑗 ∈𝑀2

∏︁𝑛
𝑖=1 𝑡 𝑗𝑖 [𝑤] = 𝐹 and, thus, certB (

∑︁
𝑗 ∈𝑀2

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖) =

𝐹 . Because the x-tuples from𝑀1 and𝑀2 are from different
relations there is no overlap between these sets of x-tuples.
Based on the independence of x-tuples in x-DBs this im-
plies that we can also construct a possible world 𝑤 where∑︁

𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖 [𝑤] ⊕B𝑊

∑︁
𝑗 ∈𝑀2

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖 [𝑤] = 𝐹 and, thus,

certB (
∑︁

𝑗 ∈𝑀1

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖 ⊕B𝑊

∑︁
𝑗 ∈𝑀2

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖) = 𝐹 . We can

now continue this construction to include𝑀3,𝑀4, and so on.
Note that we are guaranteed that𝑀𝑛 contains all monomials
that will be left over at this point, because we started from
the observation that at least one 𝑘 in every monomial cor-
responds to a tuple 𝑡 which is not certain. It follows that
certB (𝑄 (D ′) (𝑡)) = certB

(︁∑︁𝑛
𝑜=1

(︁∑︁
𝑗 ∈𝑀𝑜

∏︁𝑛
𝑖=1 𝑘 𝑗𝑖

)︁)︁
= 𝐹

which contradicts our assumption that certB (𝑄 (D ′) (𝑡)) =
𝑇 and thus concludes the proof. □

C DATASETS
BuildingViolations:Building violations issued byChicago’s
Department of Buildings from 2006 to the present. 7 Shoot-
ings in Buffalo: Shootings in Buffalo during the year 2016.
8 Business Licenses: Current and active business licenses
issued by the Department of Business Affairs and Consumer
Protection. 9 Chicago Crime: Reported incidents of crime
occurring from 2001 to present. 10 Contracts: Contracts and
modifications awarded by the City of Chicago since 1993.
11 Food Inspections: Inspections of restaurants and other
food establishments in Chicago from January 1, 2010 to the
present. 12 Graffiti Removal: All graffiti removal requests,

7https://data.cityofchicago.org/Buildings/Building-Violations/22u3-xenr
8http://projects.buffalonews.com/charts/shootings/index.html
9https://data.cityofchicago.org/Community-Economic-Development/
Business-Licenses-Current-Active/uupf-x98q
10https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/
ijzp-q8t2
11https://data.cityofchicago.org/Administration-Finance/Contracts/rsxa-
ify5
12https://data.cityofchicago.org/Health-Human-Services/Food-
Inspections/4ijn-s7e5

https://data.cityofchicago.org/Buildings/Building-Violations/22u3-xenr
http://projects.buffalonews.com/charts/shootings/index.html
https://data.cityofchicago.org/Community-Economic-Development/Business-Licenses-Current-Active/uupf-x98q
https://data.cityofchicago.org/Community-Economic-Development/Business-Licenses-Current-Active/uupf-x98q
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Administration-Finance/Contracts/rsxa-ify5
https://data.cityofchicago.org/Administration-Finance/Contracts/rsxa-ify5
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5

open and closed, since January 1, 2011. 13 Building Per-
mits: All types of structural permits in San Francisco from
Jan 1, 2013-Feb 25th 2018. 14 Public Library Survey: Over
25 years worth of research publications about the Public
Libraries Survey. 15 NHANES: Family level information on
income sources, monthly income, and family cash assets. 16

13https://data.cityofchicago.org/Service-Requests/311-Service-Requests-
Graffiti-Removal/hec5-y4x5
14https://www.kaggle.com/aparnashastry/building-permit-applications-
data/data
15https://www.imls.gov/research-evaluation/data-collection/public-
libraries-survey/explore-pls-data/pls-data
16https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/INQ_H.htm

https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Graffiti-Removal/hec5-y4x5
https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Graffiti-Removal/hec5-y4x5
https://www.kaggle.com/aparnashastry/building-permit-applications-data/data
https://www.kaggle.com/aparnashastry/building-permit-applications-data/data
https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/explore-pls-data/pls-data
https://www.imls.gov/research-evaluation/data-collection/public-libraries-survey/explore-pls-data/pls-data
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/INQ_H.htm

	Abstract
	1 Introduction
	2 Notation and Background
	2.1 Possible Worlds Semantics
	2.2 Certain and Best-Guess Answers
	2.3 K-relations

	3 Incomplete K-relations
	3.1 Certain Annotations
	3.2 KW-relations

	4 UA-Databases
	4.1 UA-semirings
	4.2 Creating UA-DBs
	4.3 Querying UA-DBs

	5 Uncertainty Labelings
	6 Labeling Schemes
	7 Querying Labelings
	7.1 Preservation of C-Soundness

	8 Implementation
	9 Related Work
	10 Experiments
	10.1 Performance Comparison
	10.2 Real world datasets
	10.3 Utility of Query Answers

	11 Conclusions and Future Work
	Acknowledgments
	References
	A Proofs
	B Preservation of C-Completeness
	C Datasets

