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Abstract

We present the first query-based approach for explaining
missing answers to queries over nested relational data which
is a common data format used by big data systems such as
Apache Spark. Our main contributions are a novel way to
define query-based why-not provenance based on repairs to
queries and presenting an implementation and preliminary
experiments for answering such queries in Spark.
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1 Introduction

The need to explain missing answers is prevalent in many
applications including debugging complex analytical queries.
Such complex analytics are often implemented using data-
intensive scalable computing (DISC) systems such as Spark
which employ nested data models. Hence, there is a need
for missing answer techniques for nested data models and
implementations of such techniques in DISC systems.
Missing answers approaches typically fall into one of two
categories: instance-based approaches justify the absence of
an answer based on missing input data; and query-based ap-
proaches explain the missing answer by determining which
parts of the query are responsible for the failure to derive the
result. The contributions of this work towards explanation
for query-based missing-answers are twofold: (i) We deter-
mine which operators are responsible for a missing answer
based on a novel notion of responsibility rooted in query
repairs. This is necessary as the notion of picky operators
that was introduced in the seminal work by Chapman [5]
and was used as the basis of most follow-up work on query-
based why-not provenance is not suited well for nested data
as we illustrate below; (ii) we present a practical solution
for explaining missing answers in this context, a prototype
implementation using provenance tracking for Spark.

Example 1.1. Consider the nested relation shown in Fig-
ure la, which records taxi rides. Each row corresponds to
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spark.read. json("taxiRides. json")
drs.withColumn("ride",explode($"rides"))
fl1.withColumn("time",explode($"ride.times.start"))
fl2.filter($"time" > "10:00")
fi.select($"ride.from", $"ride.to", $"driver.name")
rt.groupBy ($"from", $"to").agg(collect_list($"name"))

(c) Processing pipeline
Figure 1. Given relation taxiRides (a), program (c) com-
putes a list of drivers (b) for each route (from A to B) .

one car, storing the driver in a nested tuple and rides in
a nested bag. The rides are grouped by their origin (from)
and destination (to). For each origin and destination, the re-
lation stores the start and end times of all trips in a nested
bag times. The Spark program in Figure 1c groups trips af-
ter 10 am by their origin and destination, and computes a
nested bag of drivers for each trip. The result is shown in
Figure 1b. Looking at the 2" result tuple, a user may wonder
why there is no result with the same from and to values
where (i) Jane is a driver or (ii) John appears only once in-
stead of twice. Our query-based why-not approach identifies
which operators of the Spark program cause the unexpected
result. Here, the filter operator or the second flatten operator
are too restrictive for (i). The filter condition can be changed
to 9 am or the second flatten operator should unnest the end
times instead of the start times. For (ii) the filter operator it
not restrictive enough. Why-not techniques such as [5] iden-
tify picky operators, i.e., operators whose inputs contain data
items that are “successors” of (are derived from) an input
which is “unpicked” (is compatible with the missing answer),
but whose output does not contain data items derived from
such successors. The intuition is that these operators are
responsible for removing data that could potentially have
produced the missing answer. However, such an approach
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would not identify the filter and flatten operators in our ex-
ample as picky wrt. the question (i), since a successor of the
2" input tuple which is compatible with (i) exists in the
output (the 2" result tuple).

2 Related Work

The work presented in this paper mainly builds on prior
research in three areas. We refer readers to [9] for a survey.

Query-based why-not provenance. Solutions that ex-
plain missing results based on the query or data transforma-
tion either identify query operators (query-based, e.g., [3-5])
responsible for the disappearance of relevant data or “repair”
the query by changing selected operators such that the miss-
ing result is returned. The later have also been referred to as
query refinement [13] and query relaxations [12]. All these
approaches target flat relational data and, with the exception
of [2, 5] which target workflows, support queries limited to
(at best) relational algebra plus grouping and aggregation.
These approaches cannot be easily extended to a richer set
of operators and nested data.

Provenance capture in DISC systems. While research
on why-not provenance has mostly focused on relational
queries, provenance capture for DISC systems has been stud-
ied [1, 10]. Given that we target query-based why-not expla-
nations for nested data in the context of such systems, we
choose to extend one of these systems.

Provenance for nested data. Given that query-based
why-not explanations are typically defined and computed
based on the provenance of existing results, our work is also
related to work on provenance models for nested data [1, 6].

3 Preliminaries and Notation

To define why-not questions and explanations for nested
data, we first formalize the nested relational model and a bag
version of relational algebra (NRAB) inspired by [7]. Similar
to [1], this allows us to express a large variety of practical
queries on big data analytics platforms.

Definition 3.1 (Nested Relation). Let L be an infinite set
of names. A nested instance I is an element of a type 7 con-
forming to the grammar shown below where each A; € L. A

nested relation is a nested instance of some R-type.
£ :=INT|STR|BooL|... R :={{T}
T =(AA,.. A AY A =P |T|R

Data conforming to this model is manipulated through
NRAB using the operators shown in Table 2. Table 1 pro-
vides an overview of the notation used here. Due to space
constraints, we cannot discuss all details. We also omit the
definition of operators which behave as in flat relational
algebra: table access, projection, renaming, selection, join,
union, and deduplication. Given that our data model allows
a nested element to either be a tuple or a bag of homoge-
neous tuples (i.e., a nested relation), we provide two types of
nesting and flatten operators — one for nested tuples and one
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Notation Description

t.A Projection of tuple ¢ on an attribute of set of attributes A

TR.A The tuple type of a projection of relation R on attribute(s) A, e.g., if
type(R) = {{(A1 : INT, Ay : INT) }} then 7r 4, = (A; : INT)

scH(R) The set of attributes of relation R

o Concatenation of tuples and tuple types

t" €R Tuple ¢ appears in relation R with multiplicity n. For convenience, t° €
R indicates that ¢ does not appear in R

[Olp. [Q] | Evaluating query Q over a database D, possibly omitting D

Q(D) The result of evaluating a query Q over input D

Table 1. Notation

for nested relations. Aggregation applies to each input tuple
individually, aggregating all values from a relation nested in
a specified attribute.

Example 3.2. Employing our algebra, the sample program
of Kigure 1c candbe, gxpressedas,follgys:
Fariver (Fridatimes.start—)time(Frides—>ride(taXiRides))))))
We first denormalize the whole relation by flattening the
rides, times, and driver elements. We then filter records based
on the trip duration and project onto from, to, and name.
Finally, we nest all drivers for a trip in an element driver.

4 Why-Not Provenance for Nested Data

We now introduce why-not questions, (minimal) successful
re-parameterizations, and explanations.

4.1 Why-Not Questions

In our framework, a why-not question consists of a query, a
database instance, and a missing tuple with constants and
placeholders. The purpose of placeholders is to give the user
the flexibility to leave some parts of the missing answer of in-
terest unspecified, e.g., in our running example the user may
ask why are there no rides in the result that start from 10th
St. (leaving the destination and set of drivers unspecified).

Definition 4.1 (Why-not question). A why-not question ®
is a triple (Q, D, t) where Q is a query, D is a nested relation,
and ¢ is a tuple that is of same type as the result of query Q.
Each elementin ¢ is either (i) a constant value of the element’s
type, (ii) a placeholder ? that denotes some value of the type
of the element, or (iii) a placeholder * that represents any
number of tuples (possibly none) in nested collections.

Example 4.2. The why-not questions (i) and (ii) from Ex-
ample 1.1 can be expressed using the tuples shown below.
t;=(from:Main St., to:Market St.,driver: {{ (name:Jane),*}})
t;=(from:Main St., to:Market St.,driver: {{ (name:John) }} )

If instead we are interested in why there are no trips starting
from 10th street in the result, we can use placeholders for
attributes to and driver: t; = (from:10th St., to:?, driver:?)

Note that for finite domains, the problem of answering
why-not questions with placeholders can be reduced to an-
swering a set of questions where the tuple is fully specified
using constants.! However, this reduction may come at the
Even though there are infinitely many instances of a nested relation since

we employ bag semantics, the number of instances that can be produced by
repairs of a query are finite since the input database is fixed.
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Operator Semantics Output type type(-)

Tuple Flatten [FAR] = {{(t.Mo +.A)F 1tk e RY} {{rrar 0 7A}} where g 4 = (A : 74) and M = scu(R) — {A}
Relation Flatten ~ [[Fo(R)] = {{(.M o wFltk e RAul € t.AY {rrm o 7A}} where g 4 = (A: {{ra}}) and M = scu(R) — {A}
Tuple Nesting [INT_ (R = {(tMo(C: t.A)F | K e R} {rrM © (C: TR A)}} Where M = scu(R) — {A}

Relation [[fo%c (R = {(t.Mons(RAC, )|t € gr(R A} {{trm 0 (C: {{rr.4}})}} where M = scu(R) — {A}

Nesting gr(RA) = {t.A|t" € R},ns(R A C,t) = (C:[ma(ca=r (R)])

Aggregation [y »(R) = (o (B: f(tANFIF e RY type(R) o {{((B: type(f(A))})

Table 2. Evaluation semantics and output types for the operators of our nested relational algebra for bags.

cost of an exponential blow-up of the problem size. Thus,
for performance reasons, it is still important to directly sup-
port these question types to avoid this blow-up. However,
from a theoretical perspective, the expressive power of these
why-not question types is not larger than the fully specified
tuple case. In the present paper, we will limit the discussion
to fully specified tuples and leave the efficient handling of
questions with placeholders to future work.

4.2 Reparameterizations and Explanations

As mentioned in Section 2, the definition of picky operators
from [5] was shown to fall short in several regards. Here,
we take a more principled approach by considering a set
of operators as an explanation if there exists a minimal (in
a precise sense to be defined below) repair Qrepair of the
query which changes this set of operators and for which the
missing answer is in the result of Qr¢pqir (D). Note that we
only identify operators as potential causes instead of actually
repairing the query to limit the complexity of the problem.
Furthermore, we would like to point out that, for larger
instances and/or complex queries, we cannot expect the user
to specify all missing answers that should be produced by a
query. In this case, a repair that only returns the subset of the
missing answers provided by the user is unlikely to produce
all missing answers. Thus, we argue that it is more important
to identify parts of the query that may be incorrect rather
than returning a repair that is likely to be too restrictive.

To formalize such explanations, we have to decide what
modifications to the input query are admissible repairs, e.g.,
we disallow repairs that have nothing in common with the
original query since such repairs are unlikely to provide any
meaningful information about what is wrong with the input
query. Here, we focus on a set of repairs that we refer to
as re-parameterizations (RPs). That is, modifications of
the input query Q where the query structure is preserved
but parameters of operators may differ from Q, e.g., in the
running example, we may change 0;ime>10:00° t0 Otime>‘9:00°
but replacing it with a projection is disallowed. For a RP Q’,
we use A(Q, Q') to denote the set of operators which have
different parameters in Q and Q.

Successful Re-parameterizations (SRs). We use Re(®)
to denote the RPs for a question ®. A re-parameterization is
successful if it produces the missing answer. We use SR(®)
to denote the set of successful re-parameterizations for ®.

Definition 4.3 (Successful Re-parameterizations). Let ® =
(Q, D, t) be a why-not question. We call Q” € Re(®) a suc-
cessful re-parameterization if t € Q’(D).

Minimal Successful Re-parameterizations (MSRs). Ob-
viously, explanations should not be derived from SRs that
apply unnecessary changes to query Q. Intuitively, a SR Q"
applies unnecessary changes if we can find another SR Q’
that only changes a subset of the operators that Q’ changes
and for which the effect on the query result is less than Q"’s
effect. We formalize this as a partial order <¢ over SRs and,
then, define MSRs as SRs that are minimal according to <g.

Definition 4.4 (Minimal Successful Re-parameterization).

Let ® = (Q, D, t) be a why-not question. We call Q" € SR(®)

minimal if Q" € SR(®) : Q" <¢ Q’. We have Q" <¢ Q" if:
L A(Q.Q") CA(Q.Q”) 2. Q'(D)-Q(D) € Q”(D)-Q(D)
3. Q"(D)NQ(D) 2 Q"(D)NQ(D)

Explanations. We use MSR(®) to denote the set of MSRs
for ®. An explanation for ® according to one of its MSRs Q'
is A(Q, Q’), i.e., the operators whose parameters need to be
changed to produce t.

Definition 4.5. The set of explanations &(®) for a why-not
question @ is: E(®@) ={A(Q, Q") | Q" « MSR(D)}

Example 4.6. Consider a question ®; using tuple #; from Ex-
ample 4.2. Some RPs are (only modified operators are shown)
Q" : {Gtime>900} and Q" : {Grime>9:00> Fride.times.end—time }-
Here, Q" € SR(®;) because the structure of Q is preserved
and t; € Q’(D). While Q" € SR(®,), it is not minimal be-
cause Q' <¢ Q”: Q" unnecessarily changes the second flat-
ten operator, Q”’ (D) is a superset of Q' (D), and both retain
the same tuples from the original input. In fact, Q’ is an MSR
and, thus, the filter operator in Q is one possible explanation
for the missing answer.

5 Implementation & Evaluation

A naive implementation of the model defined in the previous
section would likely be computationally prohibitive. We have
developed a prototype that employs a relaxed version of the
model. It is built on top of a provenance system for nested
data in Spark. Our implementation is guaranteed to produce
an explanation when &(®) # 0. This improves on the state-
of-the-art where no solution may be returned.
Implementation. Our prototype captures provenance
for Spark’s DataFrame API. DataFrames are collections of
tuples that roughly conform to our data model from Sec-
tion 3. It annotates input tuples with a unique identifiers and
tracks them through a query expressible in the algebra out-
lined in Table 2. For that it instruments DataFrame operators
to record associations between (nested) input and output
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elements as well as tracks schema manipulations while com-
puting the query result to answer why-not questions later.

In our prototype, why-not questions according to Defini-
tion 4.1 are expressed as tree-patterns [11]. A tree-pattern
allows for (i) addressing schema elements in a flexible man-
ner (e.g. by supporting ancestor-descendant relationships be-
tween elements, or placeholders as defined in Definition 4.1),
(ii) accessing individual tuples in nested collections, and (iii)
supporting multiplicity constraints over elements in nested
collections. While all three features improve the convenience
of expressing a why-not question, the latter two features
further improve the query performance as Spark’s built-in
means require expensive flattening, nesting, and join opera-
tions to evaluate such patterns.

Given a tree-pattern, query result, and collected prove-
nance, our prototype first identifies which parts of the query
result schema-matches the tree-pattern. Similar to [4], it em-
ploys an “unrenaming” of schema elements manipulated in
the program. Essentially, it traces matching output schema
elements back to the input schema. This allows the proto-
type to (partially) match the unrenamed tree-pattern over
the source data to identify source tuples that are potentially
relevant for explaining a missing answer. Such input tuples
are called compatibles. Next, the prototype employs forward
tracing of the compatibles to identify picky operators.

Discussion. While our solution may sound similar to [5],
it differs in several important aspects. For instance, our pro-
totype utilizes dedicated provenance capture methods for
nested data and processes novel types of why-not questions
for nested data using tree patterns. Implementation-wise,
it adds support for processing tree-patterns to Spark and,
in contrast to [5], mostly operates on a provenance repre-
sentation that consists of identifier mappings. Thus, it can
often avoid materialization or dynamic re-computation of
intermediate results.

Let us now compare the output of our prototype with our
formal semantics defined in Section 4. As mentioned earlier,
our protoype finds an answer if an explanation exists. More
precisely, when an explanation A(Q, Q’) of size one exists,
it is certainly returned. If no explanation in &(®) consists of
one operator, the returned sets of picky operators are strict
subsets of explanations from the full set of explanations.
Towards finding the complete explanations, one avenue for
future research is the injection of “fictive” tuples to explore
the full program, similarly to ideas presented in [8].

Evaluation. We conduct a preliminary evaluation of our
prototype using the dblp.org dataset (2GB). We flatten the
authors element of all journal articles and filter for database
journals (e.g., VLDB Journal) and then create a nested bag of
the titles of all such articles for each author. As a why-not
question, we ask why there is no result that has Miller as
author and includes an article titled “Creating probabilistic
databases from duplicated data”. The cause of the missing
answer is the filter condition: DBLP uses “VLDB J.”.
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A naive extension of the algorithms from [4, 5] for nested
data would consider all tuples that result from flattening as
compatible successors, thus failing to return any explanation.
However, for our why-not question, co-authors of Miller are
not compatible. Our prototype returns the correct result by
only tracking tuples whose flattened author is Miller.

In terms of performance, we run this scenario five times
on a machine with one 2.5Ghz quad-core Intel Core i7 CPU
and 16GB memory. Executing the query without provenance
tracking took 20.7 seconds on average. Computing the why-
not provenance took 25.6 seconds which, in this scenario, is
only 24% slower than computing the query result.

6 Conclusions

We present a novel formalization of query-based missing
answers, apply it to explain missing answers for queries over
nested data, and introduce a Spark-based implementation of
this technique. In future work, we will investigate extensions
of our algorithm and study which guarantees they provide
wrt. our formalization of why-not provenance.
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