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A B S T R A C T

Heat mitigation strategies can reduce excess heat in urban environments. These strategies, including solar re-
flective cool roofs and pavements, green vegetative roofs, and street vegetation, alter the surface energy balance
to reduce absorption of sunlight at the surface and subsequent transfer to the urban atmosphere. The impacts of
heat mitigation strategies on meteorology have been investigated in past work at the mesoscale and global scale.
For the first time, we focus on the effect of heat mitigation strategies on the surface energy balance at the
neighborhood scale. The neighborhood under investigation is El Monte, located in the eastern Los Angeles basin
in Southern California. Using a computational fluid dynamics model to simulate micrometeorology at high
spatial resolution, we compare the surface energy balance of the neighborhood assuming current land cover to
that with neighborhood-wide deployment of green roof, cool roof, additional trees, and cool pavement as the
four heat mitigation strategies. Of the four strategies, adoption of cool pavements led to the largest reductions in
net radiation (downward positive) due to the direct impact of increasing pavement albedo on ground level solar
absorption. Comparing the effect of each heat mitigation strategy shows that adoption of additional trees and
cool pavements led to the largest spatial-maximum air temperature reductions at 14:00 h (1.0 and 2.0 °C, re-
spectively). We also investigate how varying the spatial coverage area of heat mitigation strategies affects the
neighborhood-scale impacts on meteorology. Air temperature reductions appear linearly related to the spatial
extent of heat mitigation strategy adoption at the spatial scales and baseline meteorology investigated here.

1. Introduction

The urban heat island (UHI) effect (in the urban canopy layer) is
defined as the shelter-height air temperature difference between a city
and its rural surroundings. The UHI affects human health (Kalkstein
et al., 2013) and building energy consumption (Akbari and Konopacki,
2005, EPA, 1992, Sailor, 2002) by altering the urban climate. The UHI
is stronger at night in cities because heat is stored during the day by
thermally massive man-made materials and subsequently released at
night after the sun goes down (IPCC, 2001, Moreno-garcia, 1994). Ex-
treme heat is the most prominent weather related cause of mortality in
the United States (Davis et al., 2003). Heat-related mortality depends
strongly on maximum daytime air temperatures and humidity, but also
on elevated air temperature during the night which can limit the human
body’s ability to release excess heat (Kalkstein et al., 2013). Mortality
from this cause significantly increases during heat waves. For instance,

in a heat wave during summer 2003 in Europe, 70,000 heat-related
deaths were reported (Robine et al., 2008).

One of the main causes of UHIs has to do with the physical prop-
erties of urban surfaces. Man-made materials with low albedo (i.e. the
fraction of downwelling solar radiation that is reflected by a surface)
and high thermal capacity (e.g. asphalt concrete) absorb and store solar
radiation in cities more than natural landscapes covered with soil and
vegetation. In addition, replacing natural landscapes with man-made
materials generally reduces latent heat in favor of sensible heat fluxes.
These modifications in the surface energy budget are important con-
tributors to the UHI.

There is body of literature addressing the effect of heat mitigation
strategies on building energy (Taleghani et al., 2014b, Taha et al., 1988,
Hirano and Fujita, 2012), and neighborhood (Botham-Myint et al.,
2015, Taleghani et al., 2014a), urban (Ban-Weiss et al., 2015, Taha,
2008, Vahmani et al., 2016), regional (Sproul et al., 2014, Millstein and
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Menon, 2011, Santamouris, 2007), and global (Akbari et al., 2009,
Zhang et al., 2016) meteorology and climate. Heat mitigation strategies
include solar reflective cool roofs and pavements, green vegetative
roofs, and street vegetation, all of which alter the land cover to either
(a) reduce absorption of sunlight at the surface and subsequent transfer
to the atmosphere, or (b) alter re-emission of surface energy in the form
of increased latent and decreased sensible heat flux. However, quanti-
fication of changes to the surface energy balance at the neighborhood
scale is rarely studied.

Heat mitigation strategies alter land cover and change the energy
balance. The energy balance of the surface can be described as:

= + +
∗Q Q Q QH LE G (1)

where Q* is net radiation, QH represents the sensible heat flux, QLE

describes the latent heat flux, QG is the soil heat flux, and all terms are
in units of W/m2 (see Appendix 1; NOAA, 2015).

Each heat mitigation strategy can affect the surface energy balance
in the following ways:

– High albedo cool roofs replacing traditional dark roofs will increase
reflected sunlight at roof level and thus decrease net radiation. This
decreases the amount of heat available to be released to the atmo-
sphere as sensible heat (and longwave radiation, which is included
in net radiation). It also decreases the downward heat flux into the
building and may reduce waste-heat emitted by building air con-
ditioning systems.

– High albedo cool pavements replacing traditional dark pavements
will increase reflected sunlight at ground level and thus decrease net
radiation. This affects the surface energy balance similarly to cool
roofs, but occurs at ground level rather than roof level. Thus, in
addition to reducing heat that is transferred to the atmosphere, it

also can reduce the downward ground heat flux during the day and
upward ground heat flux at night. The reflected shortwave radiation
may also be intercepted by exterior walls and windows.

– Adding vegetation in the form of green roofs and trees increases
evapotranspiration (i.e. the combination of evaporation and tran-
spiration) and reduces sensible heating. In addition, vegetation
shades the surface leading to decreases in net radiation of the sur-
face underneath. Any albedo difference between vegetation and the
surface that the vegetation replaces can also lead to changes in net
radiation. In addition, any soil moisture changes from adopting
vegetation and adding irrigation would impact thermal properties
soil and thus ground heat fluxes (Vahmani and Ban-Weiss, 2016).

In this research, we focus on the effect of heat mitigation strategies
on the surface energy balance of a neighborhood. Previous studies have
mostly investigated the impacts of heat mitigation strategies on either
the building scale (i.e. smaller scale than our study) or urban scale (i.e.
larger scale than our study). The neighborhood under investigation is El
Monte, located in the eastern Los Angeles basin in Southern California.
Using a computational fluid dynamics (CFD) model to simulate mi-
crometeorology at high spatial resolution, we compare the surface en-
ergy balance of the neighborhood assuming current land cover to that
with widespread deployment of green roof, cool roof, additional trees,
and cool pavement as the four heat mitigation strategies. We consider a
summer day during a heat wave on the 30th of July 2014. We also
investigate how varying the coverage area of heat mitigation strategies
affects the neighborhood-scale impacts on meteorology. Please note
that for pedestrian thermal comfort analysis in this neighborhood,
readers can refer to our prior study (Taleghani et al., 2016).

Fig. 1. Top: The location of El Monte in Los Angeles County. The map shows the poverty level of neighborhoods in the county (data from (United States Census
Bureau, 2010)). Bottom: The simulated neighborhood (within the red box) in the city of El Monte.
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2. Methodology

Using the CFD model, ENVI-met (Bruse, 2017), we first performed a
control simulation of micrometeorology assuming current land cover of
the neighborhood. Four perturbation simulations were then carried out,
each assuming widespread adoption (over the entire neighborhood) of
cool roofs, cool pavements, vegetative roofs, and street level vegetation
in the neighborhood. These perturbation simulations were then com-
pared to the baseline to quantify the effect of the mitigation strategies
on micrometeorology and the surface energy balance. Subsequent si-
mulations then varied the spatial coverage area of heat mitigation
strategies, as will be later discussed.

2.1. Case study area

This paper focuses on a neighborhood located in Los Angeles
County, in Southern California, USA. Influenced by the Pacific Ocean,
this area experiences a Mediterranean climate (Kottek et al., 2006). The
neighborhood contains a financially vulnerable population (Fig. 1) with
annual income that is $10,967 lower than the annual average in the US
(United States Census Bureau, 2010). Sixty-five percent of the people in
the area are below the California adjusted poverty threshold (twice the
national threshold), placing it in the poorest 20% of neighborhoods in
the county (CalEnviroScreen, 2014). The neighborhood has a tree
coverage fraction of 0.062, which is lower than 85% of the neighbor-
hoods in Los Angeles County. The combination of these factors makes
the selected neighborhood vulnerable to heatwaves. The study domain
covers 650m * 450m, and represents a residential neighborhood
(Fig. 1). Most of the buildings have two stories with grass covered
yards. The roads and sidewalks are covered with asphalt concrete and
cement concrete, respectively.

2.2. Simulation model

In this research we use a high-resolution computational fluid dy-
namics model, ENVI-met (Bruse, 2017). It numerically solves the Rey-
nolds Average Navier-Stokes (RANS) equations. With ENVI-met, it is
possible to simulate interactions between the surface (both manmade
and natural) and air (Bruse and Fleer, 1998, Bruse, 2017). ENVI-met
has been validated in several studies using different methods e.g.
(Srivanit and Hokao, 2013, Taleghani et al., 2014c). The control si-
mulation carried out in this study was evaluated as described in a
companion paper (Taleghani et al., 2016). The spatial resolution of this
model can vary between 0.5 and 10m, allowing investigators to explore
the effects of small elements such as single trees on the surrounding
environment.

Simulations in ENVI-met are based on data provided within two
files:

• The input file describes the physical environment such as trees and
buildings, the surface characteristics such as roof and pavements,
and the geographical location of the model.

• The configuration file determines the initial and boundary condi-
tions of the simulation such as wind speed and air temperature. The
duration of the simulation, heat transmission of building surfaces,
and albedo of urban surfaces are also specified here.

The simulations start at 4:00 h (local time) on 30 July 2014 and run
for a period of 24 h. The spatial resolution is 3m×3m×1m (dx, dy,
dz). The initial 2 m air temperature in the domain is 19.4 °C. The initial
wind speed in the first 10m above the ground is 1.6 m/s and westerly
(270°). The relative humidity is 81%. Finally, the albedo of the walls,
roofs and pavements are 0.2, 0.1 and 0.2, respectively, and heat
transmissions of 0.31W/m2 K (walls) and 0.33W/m2 K (roof) are used.
The internal building temperature is assumed to be 293 K (= 20 °C).

The boundary condition and wind profile options were left as

defaults. The lateral boundary condition (LBC) was set to “open”. The
LBC helps inform and stabilize the model as temperature, wind, and
humidity change near the edge of the domain during the simulation.
The open LBC takes the temperature, wind, and humidity values of grid
points near the edge of the domain and copies them into the border grid
points for each time step within the simulation. This reduces the effect
of the boundary on the domain, though may not be the most realistic
approach for model validation, and may not necessarily improve the
stability of the model (Bruse, 2017). Overall, the approach to handling
boundary conditions remains constant throughout the simulation. The
wind profile is set to a relatively stable profile. Winds at the surface are
set to ∼1m/s at the lowest levels of the domain, increasing to 3.5m/s
at the top of the domain. Overall, the wind profile does lead to high
amounts of advection into and out of the domain. But assuming the
wind profile has no impact on the energy transfer by advection allows
for a simpler resolution of the energy balance for the entire volume.
This simplification allows for greater attention to detail in the model to
be given to the anthropogenic, incoming/outgoing solar radiation, and
turbulent heat flux (latent and sensible) terms of the energy balance.

2.3. Simulation scenarios

In the control simulation (CO), micrometeorology assuming the
current land cover of the neighborhood is modeled for the 24th of July
2014. There was a heat wave on this day over the Southwest US (see
Appendix 2). The current land cover was obtained from Google Earth
and the street views of Google Maps. Four perturbation simulations
were carried out based on the control model with the following
changes:

• The green roof scenario (GR) added grass (and a root zone) to the
building roofs.

• The cool roof scenario (CR) increased the albedo of the building
roofs from 0.1 to 0.4.

• The trees added scenario (TA) added street trees on grasses in
canyons.

• The cool pavement scenario (CP) increased the albedo of the
roadway from 0.2 to 0.5.

For more details see our companion paper (Taleghani et al., 2016).

3. Results

3.1. Air and ground surface temperatures in the control simulation

Fig. 2 illustrates the surface air temperature at 1.5 m above the
ground and the ground surface temperature for the neighborhood at
14:00 h. The highest surface air temperature in the neighborhood is
29.4 °C, located above asphalt concrete pavement (Fig. 2a). The coolest
surface air temperatures are associated with vegetated areas between
the residential buildings (26.1 °C). This indicates that the local land
cover has a significant role on the local air temperature, in accordance
with other studies (Hart and Sailor, 2009, Santamouris, 2014,
Taleghani et al., 2014d) that show that land surface characteristics alter
the microclimate. Similarly, surface temperatures are highest for pa-
vements (44 °C), while grasses have the lowest surface temperatures
(24.7 °C) (Fig. 2b).

3.2. Impacts of the heat mitigation strategies on the surface energy balance

Fig. 3 shows the impacts of adopting heat mitigation strategies re-
lative to the control on various meteorological variables including
surface air temperatures, surface temperatures, net radiation, sensible
heat flux, latent heat flux, and soil heat flux, at 14:00 h.

Comparing the changes in surface air temperatures among the dif-
ferent scenarios relative to the control, adopting cool pavements led to
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Fig. 2. Maps of (a) air temperature at a height of 1.5 m, and (b) ground surface temperature (z= 0m), both at 14:00 h on 30 July 2014.

Fig. 3. Absolute differences in micrometeorological variables between various heat mitigation scenarios and the control simulation at 14:00. Note that absolute
differences of surface air temperatures are redrawn from (Taleghani et al., 2016).
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the most cooling, up to 2.0 °C. The TA scenario also reduced surface air
temperature up to 1.0 °C in the canyons where new trees were added.
The CR and GR scenarios reduced surface air temperatures in the
neighborhood less than TA and CP. This is because these scenarios
changed the building roof characteristics, which are mostly at the
height of 6m. Thus, at the neighborhood scale, this model suggests that
roof surface properties are not as tightly coupled to near-ground air
temperatures. More coupling could occur under conditions that pro-
mote enhanced vertical mixing.

Comparing changes in ground surface temperatures among the
different scenarios, the CP scenario shows the maximum reduction of
up to 6.9 °C. In the TA scenario, ground surface cooling occurs
throughout the neighborhood but especially where new trees are added
in the canyons. The CR and GR scenarios did not affect surface tem-
peratures as much as the other two scenarios, as expected.

Fig. 3 also shows the absolute differences in net radiation (down-
ward positive) for perturbation scenarios compared to the control. The
adoption of cool pavements markedly reduces net radiation up to
320W/m2. The TA scenario also leads to reductions in net radiation in
locations where new trees are added by up to 246W/m2. While the
albedo of grass and trees are the same in this model (0.2), the reduction
in net radiation occurs due to the trees shading the ground. The GR and
CR scenarios did not change surface net radiation relative to the control
as expected.

Heat mitigation strategies had differing effects on sensible heat
fluxes (upward positive) in the neighborhood. The CP scenario shows
the maximum reduction in sensible heat flux of up to 257W/m2 over

pavements that were converted from low albedo to solar reflective. This
occurs as increasing the albedo of the ground reduces net radiation, and
thus the energy available to be re-emitted as convective heat to the
atmosphere. The TA scenario reduced the sensible heat flux where new
trees were added. This is similar to the mechanism for cool pavements
but is driven by the impacts of shading the ground on net radiation. CR
and GR did not appreciably change the sensible heat flux at the ground.

As the latent heat flux (upward positive) is associated with evapo-
transpiration of water at the surface, the TA scenario caused the max-
imum reduction of up to 212W/m2 beneath newly added trees. The
other scenarios showed markedly lower changes in latent heat flux as
expected. Reductions in latent heat flux in the CP scenario may be from
decreases in surface heating leading to reductions in buoyancy and thus
vertical mixing of water vapor. This would lead to reductions in water
vapor differential, which would be expected to reduce evaporative
fluxes.

Soil heat flux reductions (downward positive) are largest in the CP
scenario, up to 65W/m2 over newly adopted cool pavements. This is
consistent with the large reductions in surface temperature and net
radiation in this scenario. Soil heat flux is also reduced in TA under
newly added trees, but to a lesser extent than in CP. The roof level
modifications (CR and GR) did not appreciably change soil heat flux.

Fig. 4 presents hourly mean diurnal profiles of changes in surface
energy budget variables. Values represent the spatial mean values for
outdoor grid cells in the domain.

The cool pavement scenario reduced surface net radiation (Fig. 4a)
in the neighborhood more than the other heat mitigation scenarios,

Fig. 4. Hourly mean diurnal profiles of net radiation (ΔQ*), sensible heat flux (ΔQH), latent heat flux (ΔQLE), and soil heat flux (ΔQG). Values are shown for each heat
mitigation scenario relative to the control simulation.
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with maximum reduction of 47.1W/m2 at 12:00 h. As the sun is the
driver of the surface energy balance (Oke, 2002), net radiation reduc-
tions largely occurred between 6:00 and 18:00. The TA scenario also
reduced net radiation during the day with maximum of 23.2W/m2.
However, consistent with Fig. 3, the CR and GR scenarios minimally
affect the surface energy balance at the ground.

Reductions in net radiation led to decreases in sensible heat flux
(Fig. 4b) during the day for the cool pavement scenario. Decreases in
sensible heating during the day were larger for this scenario than the
other three heat mitigation strategies. The maximum reduction is 36W/
m2 occurring at 13:00 h. For the TA scenario, the largest reductions
occur between 13:00 and 17:00, with maximum reduction reaching
9.4W/m2 at 15:00 h. In general, adding vegetation reduces the Bowen
ratio, which is the ratio of sensible to latent heat flux. Thus, even for
constant net radiation, adding trees would be expected to lead to the
repartitioning of surface energy in favor of lower ratios of sensible heat
to latent heat flux. The CR and GR scenarios lead to small changes in
sensible heat flux throughout the day.

Reductions in latent heat flux (Fig. 4c) are largest for the TA sce-
nario. The maximum reduction, which occurs at 11:00 h, is 16.1W/m2.
We originally hypothesized that TA should lead to increases in latent
heat fluxes. The decreases in latent heat fluxes modeled here could have
been caused by decreases in soil evaporation (caused by shading the
surface) being larger than increases in leaf evaporation and transpira-
tion. This type of model behavior has been observed by larger scale land
models in previous research (Pitman et al., 2009). The other scenarios
did not appreciably affect latent heat fluxes at the surface.

Reductions in net radiation led to decreases in ground heat flux
(downward positive) (Fig. 4d) in the CP scenario during sunlit hours.
The maximum reduction was 12.5W/m2 at 9:00 am. The diurnal cycle
of changes in ground heat flux was different for the TA scenario than for
CP in that two local maxima occur at 7:00 (5.4W/m2) and 16:00
(3.3W/m2). We hypothesize that this is mainly because of the shading
effect of trees, where shading is at a minimum at noon and a maximum
when the solar elevation is lower. Thus, even though the solar intensity
at the surface is largest at noon, the impact of shading on spatial

averages leads to maximum soil heat fluxes in the morning and after-
noon. Changes in ground heat fluxes are positive at night, meaning that
upward heat fluxes are decreased. This behavior was seen in a previous
study on cool pavements (Mohegh et al., 2017).

3.3. Sensitivity of neighborhood scale air temperature on the spatial extent
of heat mitigation adoption

The cool pavement (CP) and trees added (TA) scenarios led to the
largest changes in neighborhood-scale surface air temperatures among
the four heat mitigation strategies investigated here. It is of interest to
assess how air temperature changes respond to different spatial extents
of heat mitigation adoption. To investigate this issue, we carried out
further simulations that implement cool pavements and added trees as
follows:

Area 1: Only the street at the center of the modeling domain,
Area 2: The central block at the center of the modeling domain, and
Area 3: The entire neighborhood.

Fig. 5 demonstrates the absolute difference in surface air tempera-
ture at 14:00 h after adopting added trees or cool pavements in the
three areas relative to the control simulation. For TA in area 1, a small
temperature reduction is evident on the street with added trees. The
mean temperature reduction in area 1 is 0.1 °C, while the neighborhood
average temperature reduction is 0.01 °C. When added to area 2, tem-
perature reductions occur on the east-west streets, while north-south
streets have minimal temperature reduction. This likely occurs because
of the westerly winds in the domain; temperature reductions accumu-
late as air is advected toward the east. The mean neighborhood tem-
perature reduction in area 2 is 0.1 °C, while that for the neighborhood is
0.05 °C. When added to area 3, the TA scenario leads to the largest
neighborhood-scale air temperature reductions, with a mean tempera-
ture reduction of 0.2 °C. Again, temperature changes are largest for
east-west streets.

Cool pavement adoption led to larger air temperature reductions in

Fig. 5. Surface air temperature difference at 14:00 h compared to the control model when trees (a–c) and cool pavements (d–f) are added to areas 1, 2, and 3 (shown
in the top row).
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leading
to

decreased
energy

available
for

soil
evaporation.

U
sing

green
and

cool
roofs

did
not

sig-
nifi

cantly
change

the
energy

balance
ofthe

ground
surface

as
they

w
ere

im
plem
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at

the
height

of6
m

(on
tw

o
story

buildings).Both
spatial

variations
and

diurnal
cycles

in
the

surface
energy

balance
are

in-
vestigated.

W
e
also

investigated
the

sensitivity
of

neighborhood
scale

air
tem

-
perature

on
the

spatial
extent

of
heat

m
itigation

adoption
for

adding
trees

and
coolpavem

ents.W
e
sim

ulated
adoption

of
these

strategies
in

three
areas,

from
the

center
street

of
the

dom
ain

to
the

entire
neigh-

borhood.W
e
found

that
increasing

the
spatial

extent
of

adopting
trees

and
cool

pavem
ents

generally
led

to
larger

reductions
in

surface
air

tem
perature,both

at
the

center
of

the
neighborhood

(over
pavem

ent),

Table 1
The air temperature reductions in different areas (as illustrated in Fig. 5).

Modified
cells

Temperature reduction
at the center of the
neighborhood (°C)

Mean temperature reduction
averaged over area
corresponding to scenario (i.e.
Area 1, 2, or 3) (˚C)

Mean temperature
reduction averaged over
the entire neighborhood
(°C)

Temperature reduction at the center
of the neighborhood per modified
area (°Cm−2× 100,000)

Mean temperature reduction averaged
over area corresponding to scenario
per modified area (°Cm−2× 100,000)

Mean temperature reduction averaged
over the entire neighborhood per
modified area (°Cm−2× 100,000)

TA Scenario Area 1 (111
cells)

0 0.1 0.01 0 10.0 1.0

Area 2 (466
cells)

0.04 0.1 0.05 1.0 2.4 1.2

Area 3
(2562 cells)

0.21 0.2 0.22 0.9 0.9 1.0

CP Scenario Area 1 (157
cells)

0.51 0.2 0.01 36.1 14.2 0.7

Area 2
(1286 cells)

0.55 0.2 0.08 4.8 1.7 0.7

Area 3
(4427 cells)

0.56 0.26 0.26 1.4 0.7 0.7
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and averaged over the entire neighborhood. When normalized per area
modified, temperature reductions are mostly independent of the spatial
extent of cool pavement adoption or tree addition. In other words, air
temperature reductions appear linearly related to the spatial extent of
heat mitigation strategy adoption at the spatial scales and baseline
meteorology investigated here. Analogous linearity has been reported
in studies using mesoscale climate models (Mohegh et al., 2017; Li
et al., 2014). Further research should try to harmonize predicted tem-
perature reductions from heat mitigation strategies ranging from
neighborhood to urban scales.
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