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Magnetic resonance images of brain tumors are routinely used in heuro-oncology clinics
for diagnosis, treatment planning, and post-treatment tumor surveillance. Currently,
physicians spend considerable time manually delineating different structures of the
brain. Spatial and structural variations, as well as intensity inhomogeneity across
images, make the problem of computer-assisted segmentation very challenging. We
propose a new image segmentation framework for tumor delineation that benefits from
two state-of-the-art machine learning architectures in computer vision, i.e., Inception
modules and U-Net image segmentation architecture. Furthermore, our framework
includes two learning regimes, i.e., learning to segment intra-tumoral structures (necrotic
and non-enhancing tumor core, peritumoral edema, and enhancing tumor) or learning
to segment glioma sub-regions (whole tumor, tumor core, and enhancing tumor). These
learning regimes are incorporated into a newly proposed loss function which is based
on the Dice similarity coefficient (DSC). In our experiments, we quantified the impact
of introducing the Inception modules in the U-Net architecture, as well as, changing the
objective function for the learning algorithm from segmenting the intra-tumoral structures
to glioma sub-regions. We found that incorporating Inception modules significantly
improved the segmentation performance (o < 0.001) for all glioma sub-regions.
Moreover, in architectures with Inception modules, the models trained with the learning
objective of segmenting the intra-tumoral structures outperformed the models trained
with the objective of segmenting the glioma sub-regions for the whole tumor (p < 0.001).
The improved performance is linked to multiscale features extracted by newly introduced
Inception module and the modified loss function based on the DSC.

Keywords: gliomas, brain tumor segmentation, fully convolutional neural network, inception, U-net

1. INTRODUCTION

In recent years, there has been a proliferation of machine and especially deep learning techniques
in the medical imaging field (Litjens et al., 2017). Deep learning algorithms also referred to as deep
neural networks, are built using large stacks of individual artificial neurons, each of which performs
primitive mathematical operations of multiplication, summation, and thresholding. One of the key
reasons for the success of these modern deep neural networks is the idea of representation learning;
the process of learning useful features automatically from the data as opposite to manual selection
by expert humans (LeCun et al., 2015). Specifically, a convolutional neural network (CNN) is
designed to extract features from two-dimensional grid data, e.g., images, through a series of
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learned filters and non-linear activation functions. The set of
features learned through this process can then be used to
perform various downstream tasks such as image classification,
object detection, and semantic or instance segmentation
(LeCun et al., 2015).

Recently, U-Net (Ronneberger et al., 2015) which is an end-
to-end fully convolutional network (FCN) (Long et al., 2015)
was proposed for semantic segmentation of various structures in
medical images. U-Net architecture is built using a contracting
path, which captures high-resolution, contextual features while
downsampling at each layer, and an expanding path, which
increases the resolution of the output through upsampling at
each layer (Ronneberger et al, 2015). The features from the
contracting path are combined with features from the expanding
path through skip connections (Drozdzal et al., 2016), ensuring
localization of the extracted contextual features. Originally the
U-Net was developed and applied to cell tracking, more recently
the model has been applied to other medical segmentation tasks,
such as, brain vessel segmentation (Livne et al, 2019), brain
tumor segmentation (Dong et al., 2017), and retinal segmentation
(Girard et al., 2019). Architectural variations and extensions of
the U-Net algorithm, such as 3D U-Net (Kamnitsas et al., 2017;
Sandur et al., 2018), H-DenseUNet (Li et al., 2018), RIC-UNet
(Zeng et al., 2019), and Bayesian U-Net (Orlando et al., 2019)
have been developed to tackle different segmentation problems
in the medical imaging community.

Accurate semantic segmentation depends on the extraction
of local structural as well as global contextual information from
medical images during the learning process (training). Therefore,
various multi-path architectures have been proposed in the
medical image segmentation literature which extract information
from given data at multiple scales (Havaei et al., 2017; Kamnitsas
et al., 2017; Salehi et al., 2017). The concept of extracting and
aggregating features at various scales has also been accomplished
by Inception modules (Szegedy et al, 2015). However, the
mechanism of feature extraction is different compared to multi-
path architectures (Havaei et al., 2017; Kamnitsas et al., 2017;
Salehi et al., 2017). Each Inception module applies filters of
various sizes at each layer and concatenates resulting feature
maps (Szegedy et al, 2015). The dilated residual Inception
(DRI) block introduced in Shankaranarayana et al. (2019) was
designed to accomplish multi-scale feature extraction in an
end-to-end, fully convolutional retinal depth estimation model.
The MultiResUNet recently proposed in Ibtehaz and Rahman
(2019) combined a U-Net with residual Inception modules for
multi-scale feature extraction; authors applied their architecture
to several multimodal medical imaging datasets. Integrating
Inception modules in a U-Net architecture has also been
evaluated in the context of left atrial segmentation (Wang et al.,
2019). An architecture proposed in Li and Tso (2018) for liver
and tumor segmentation also incorporated inception modules,
along with dilated Inception modules, in a U-Net. Concurrently
and independently of this work, inception modules within U-Net
have also been recently proposed for brain tumor segmentation
in Lietal. (2019). However, authors used a cascade approach, i.e.,
first learn the whole tumor, then learn the tumor core, and finally
learn the enhancing tumor, which requires three different models.

Our proposed architecture is an end-to-end implementation with
respect to all tumor subtypes.

The Multimodal Brain Tumor Image Segmentation (BRATS)
challenge, started in 2012, has enabled practitioners and machine
learning experts to develop and evaluate approaches on a
continuously growing multi-class brain tumor segmentation
benchmark (Menze et al., 2014). Based on the annotation
protocol, deep learning architectures designed for the problem
typically derive the segmentation using a pixel-wise softmax
function on the output feature map (Isensee et al., 2018a). The
softmax function enforces mutual exclusivity, i.e., a pixel can only
belong to one of the intra-tumoral structures. The individual
output segments are then combined to create the glioma sub-
regions. Learning the glioma sub-regions directly using a pixel-
wise sigmoid function on the output feature map has been
discussed in Isensee et al. (2018b), as well as in Wang et al. (2018)
using a cascaded approach.

In this work, we introduce an end-to-end brain tumor
segmentation framework which utilizes a modified U-Net
architecture with Inception modules to accomplish multi-scale
feature extraction. Moreover, we evaluate the impact of training
various models to segment the glioma sub-regions directly rather
than the intra-tumoral structures. Both learning regimes were
incorporated into a new loss function based on the Dice similarity
Coeflicient (DSC).

2. METHODS

2.1. Data and Preprocessing

All experiments were conducted on the BRATS 2018 dataset
(Menze et al., 2014; Bakas et al., 2017a,b,c, 2018), which consists
of magnetic resonance imaging (MRI) data of 210 high-grade
glioma (HGG) and 75 low-grade glioma (LGG) patients. Each
patient’s MRI data contained four MRI sequences: T2-weighted
(T2), T1, T1 with gadolinium enhancing contrast (T1C),
and Fluid-Attenuated Inversion Recovery (FLAIR) images.
Furthermore, pixel-level manual segmentation markings are
provided in the BRAT'S dataset for three intra-tumoral structures:
necrotic and non-enhancing tumor core (label = 1), peritumoral
edema (label = 2), and enhancing tumor (label = 4). For the
intra-tumoral structures, following glioma sub-regions (Menze
etal., 2014) were defined: whole tumor (WT) which encompasses
all three intra-tumoral structures (i.e., label = 1 U 2 U 4), tumor
core (TC) that contains all but the peritumoral edema (i.e., label
= 1 U 4), and enhancing tumor (ET) (label = 4). Different
sequences provide complementary information for identifying
the intra-tumoral structures: FLAIR highlights the peritumoral
edema, T1C distinguishes the ET, and T2 highlights the necrotic
and non-enhancing tumor core. Converting from the intra-
tumoral structures to the glioma sub-regions is a linear, reversible
transformation; the glioma sub-regions are generated from the
intra-tumoral structures, and provided the glioma sub-regions,
the original intra-tumoral structures can be recovered.

The BRATS dataset is provided in a preprocessed format,
i.e., all the images are skull-stripped, resampled to an isotropic
1 mm?® resolution, and all four modalities of each patient
are co-registered. We performed additional preprocessing that
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included (in order): (1) obtaining the bounding box of the
brain in each image, and extracting the selected portion of the
image, effectively zooming in on the brain and disregarding
excess background pixels, (2) re-sizing the cropped image
to 128 x 128 pixels, (3) removing images which contained
no tumor regions in the ground truth segmentation, (4)
applying an intensity windowing function to each image such
that the lowest 1% and highest 99% pixels were mapped to
0 and 255, respectively, and (5) normalizing all images by
subtracting the mean and dividing by the standard deviation of
the dataset.

2.2. Segmentation Model Architecture
We propose a new architecture based on the 2D U-Net and
factorized convolution Inception module (Ronneberger et al.,

2015; Szegedy et al, 2016). Each convolutional layer in the
original U-Net was replaced with an Inception module that
included multiple sets of 3 x 3 convolutions, 1 x 1 convolutions,
3 x 3 max pooling, and cascaded 3 x 3 convolutions. A cartoon
of the proposed network architecture with an expanded view
of the Inception module is presented in Figure 1. We note that
at each layer on the contracting path, the height and width
of the feature maps are halved and the depth is doubled until
reaching the bottleneck i.e., the center of the "U." Conversely,
on the expanding path, the height and width of the feature
maps are doubled and the depth is halved at each layer until
reaching the output (i.e., segmentation mask for the given input
image). Furthermore, each set of feature maps generated on
the contracting path are concatenated to the corresponding
feature maps on the expanding path. We used rectified linear
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FIGURE 1 | Cartoon of the proposed segmentation architecture. The set of numbers shown below each Inception module indicate total number of filters used, and
height, width, and depth of the input feature map. The number of filters at each layer double on the encoder side, and the size of the output feature map (height and
width) halve. The multiplication by 4 for each depth value is due to the 4 filter variations in the Inception module, which generates 4 sets of equally sized feature maps
that are concatenated. The feature maps are then downsampled using max pooling, which halves their height and width. This process is repeated until reaching the
bottleneck i.e., the "center" of the U. Upsampling is then performed which doubles the height and width of each feature map, and the feature maps from the
corresponding stage on the contracting path are concatenated to the upsampled feature maps (shown by blue lines). The concatenation of the feature maps from the
contracting path doubles the depth of the output feature map on the expanding path, hence the multiplication by 8. At the last layer on the expanding path, the output
height and width are equivalent to the height and width of the original input images. A set of 1 x 1 convolutions is then applied to reduce the depth of the last feature
map to equal the number of classes (tumor regions). A pixel-wise activation function is then applied to then convert the reduced feature map to binary segmentation
images. Right Bottom: Internal architecture of one Inception module with multiple convolutional filters and max pooling filters is presented. The numbers in each block
represent convolution filter size. We used two 3 x 3 filters in series to get an equivalent receptive field of a 5 x 5 convolutional filter.
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unit (ReLU) as the activation function for each layer, and
performed batch normalization (Ioffe and Szegedy, 2015) in each
Inception module.

The input to our model isan N x M x D pixel image and the
output of the model is an N x M x K tensor. In out settings, N =
M = 128 pixels, D = 4 which represents all four MRI modalities,
and K = 3 which represents total number of segmentation
classes, i.e., intra-tumoral structures or the glioma sub-regions.
Each slice of K is a binary image representing the predicted
segments for the ith class where 0 < i < K—1. The binary images
are generated by pixel-wise activation functions, i.e., sigmoid for
glioma sub-regions and softmax for intra-tumoral structures.

2.3. Evaluation Metric and Objective (Loss)

Function

Dice Similarity Coeflicient (DSC) is extensively used for the
evaluation of segmentation algorithms in medical imaging
applications (Bakas et al., 2017a). The DSC between a predicted
binary image P and a ground truth binary image G, both of size
N x M is given by:

ZNIZ PUGU
Yo' Yt P+ Xk Xk Gi

where i and j represent pixel indices for the height N and width
M. The range of DSC is [0,1], and a higher value of DSC
corresponds to a better match between the predicted image P and
the ground truth image G.

DSC(P,G) =2 , (D

Our objective function (or the loss function) for the proposed
learning algorithm consisted of a modified version of DSC
(Equation 1). Specifically, following modification were made:
(1) we changed the sign of the DSC coefficient to formulate a
standard deep learning optimization (minimization) problem,
(2) introduced log function, and (3) introduced a new parameter
y to cater for extremely large values of the loss function. For
example, if a ground truth segment had very few white pixels

SN Z ' Gjj ~ 0, the model may predict no white pixels

Z Z —0 P,] = 0 resulting in an extremely large loss
functlon In our preliminary experiments, we found empirically
that y = 100 provided the best segmentation performance. The
resulting expression for the loss function is given as:

Z ZMIPGIJ+V
S i P+ o

Lpsc(P,G) = —10g|: = +y:|'
ij
(2)

The loss function presented in Equation (2) is able to handle
binary cases only (e.g., tumor and not tumor). The same can be
extended for the multi-class cases as:

Lpsc(P,G) = —log [
i=0

K—-1
Z DSC(P;, G; )} (3)

where K is the total number of classes.
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FIGURE 2 | Box plot displaying the results for each model variation. The x-axis is the glioma sub-region, and the y-axis is the DSC. The median value is denoted by
the horizontal orange line, and the mean is denoted by the green triangle. Abbreviations used are: WT, Whole Tumor; TC, Tumor Core; and ET, Enhancing Tumor.
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2.4. Experimental Setup and Model Training
We performed an ablation study to quantify the effects of
introducing Inception modules in the U-Net architecture as
well as the impact of different segmentation objectives, i.e.,
learning to segment intra-tumoral structures or glioma sub-
regions. Specifically, we trained four different models, i.e.,
two variations of the U-Net architecture (with intra-tumoral
structures and glioma sub-regions) and two variations of the

U-Net with Inception module (intra-tumoral structures and
glioma sub-regions).

We trained all four models under same conditions to ensure
consistency and a fair comparison. All four models were trained
using k-fold cross-validation. The dataset was randomly split into
k mutually exclusive subsets of equal or near equal size. Each
algorithm was run k times subsequently, each time taking one
of the k splits as the validation set and the rest as the training

Pred ED

Pred WT

A intra-tumoral structures

e I

s glioma sub-regions

GT NET GTET

GT Combined

Pred NET Pred ET Pred Combined

GT Combined

Pred TC Pred ET Pred Combined

FIGURE 3 | Qualitative results from the same patient are presented in sub-figure (A) (top, intra-tumoral structures) and (B) (bottom, glioma sub-regions). All four MR
modalities (FLAIR, T2, T1, and T1C) are shown on the left in both sub-figures for easy visual analysis. (A) On the right top row, the ground truth (GT) segments for
each intra-tumoral structure are presented (abbreviations used are: ED, peritumoral edema; NET, necrotic and non-enhancing tumor core; ET, enhancing tumor). On
the right bottom row, the predicted (Pred) segments for each intra-tumoral structure are shown. The last image in each row is the combined segments i.e., ED, NET,
and ET all in one image, distinguished by different gray-level pixel values. (B) On the right top row, the ground truth (GT) segments for each glioma sub-region are
presented (abbreviations used are: WT, whole tumor; TC, tumor core; ET, enhancing tumor). On the right bottom row, the predicted (Pred) segments for each glioma
sub-region are shown. The last image in each row is the combined segments i.e., WT, TC, and ET all in one image, distinguished by different gray-level pixel values.
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set. In our experiments, we set k = 10, which means that each
model was trained 10 times using a different set of 90% of the
data and validated on the remaining 10% data. In total, our
experimental setup generated 40 models, i.e., 10 variations per
model. Later, mean and standard deviation (SD) were calculated
and are reported for each model in the Results section.

We used stochastic gradient descent with an adaptive moment
estimator (Adam) for training all models and their variations
(Kingma and Ba, 2014). The initial learning rate was set to 1074
which was exponentially decayed every 10 epochs. The batch
size was set to 64 and each model was trained for 100 epochs.
All learnable parameters, i.e., weights and biases of the models
were initialized based on the He initialization method (He et al.,
2015). The Keras (Chollet et al., 2015) application programming
interface (API) with TensorFlow (Abadi et al., 2016) backend was
used for implementation of all models. All models were trained
on a Google Cloud Compute instance with 4 NVIDIA TESLA
P100 graphical processing units (GPUs).

2.5. Model Testing and Statistical Analysis

of Results

After training, each model was tested on the entire BRATS
2018 dataset. For the models which learned to segment the
intra-tumoral structures, the predicted intra-tumoral structure
segments were combined to produce the glioma sub-regions,
and DSC for each glioma sub-region was computed. For models
which learned to segment the glioma sub-regions directly, DSC
values were readily computed. The process was repeated for each
image, and after evaluating all images, the average DSC score
was calculated for each glioma sub-region. Overall, the process
resulted in 4 sets of 10 DSC scores, one for each glioma sub-
region. All four models were compared for statistical significance
using a two-tailed Student’s ¢-test with equal variance and with
the probability of Type-I error set to o« = 0.05.

3. RESULTS

We present cross-validation DSC for all four models that were
trained and tested on the BRATS 2018 dataset. In Figure 2,
we provide a box plot for each model variation. The glioma
sub-region is on the x-axis and the DSC is on the y-axis
for each plot. We note that for intra-tumoral structures,
adding Inception modules to the U-Net resulted in statistically
significant improvements in WT (DSC improved from 0.903 to
0.925, p < 0.001), TC (0.938 t0 0.952, p < 0.001), and ET (0.937
t0 0.948, p < 0.001). Similarly, for the glioma sub-regions, adding
Inception modules to the U-Net also resulted in statistically
significant improvements in WT (0.898 to 0.918, p < 0.001), TC
(0.942 t0 0.951, p = 0.001), and ET (0.942 to 0.948, p = 0.002).
Changing the objective from learning the intra-tumoral
structures to learning the glioma sub-regions in the U-Net
resulted in no difference in performance for WT (0.903 to 0.898,
p = 0.307), TC (0.938 to 0.942, p = 0.284), and ET (0.937
to 0.942, p = 0.098). However, U-Net with Inception modules
which learned the intra-tumoral structures outperformed U-Net
with Inception modules which learned the glioma sub-regions in

TABLE 1 | Results of statistical comparison, i.e., p-values from two-tailed t-tests
comparing the models in the first column with the models in the second columns.

Model 1 Model 2 p-values
WT TC ET

U-Net U-Net 0.307 0.284 0.098
intra-tumoral structures  glioma sub-regions

U-Net Inception <0.001 <0.001 <0.001

intra-tumoral structures
U-Net Inception U-Net <0.001  0.001 0.002
glioma sub-regions glioma sub-regions

U-Net Inception 0.007 0.597 0.402

intra-tumoral structures

Statistically significant p-values are present in bold font.

WT (0.918 to 0.925, p = 0.007), but there was no performance
difference for TC (0.952 to 0.951, p = 0.597) and ET (0.948 to
0.948, p = 0.402). Qualitative results on the same patient from a
U-Net with Inception modules which learned the intra-tumoral
structures and U-Net with Inception modules which learned the
glioma sub-regions are presented in Figures 3A,B, respectively.
In Table 1, we provide a summary of statistical comparisons, i.e.,
p-values from Student’s t-test performed to compare different
models. Statistically significant p-values are in shown bold font.

4. DISCUSSION AND CONCLUSIONS

We set out to tackle the challenging problem of pixel-level
segmentation of brain tumors using MRI data and deep learning
models. We introduced a new framework building on well-
known U-Net architecture and Inception modules. We explored
two different learning objectives: (1) learning to segment glioma
sub-regions (WT, TC, and ET), and (2) learning to segment
intra-tumoral structures (necrotic and non-enhancing tumor
core, peritumoral edema, and enhancing tumor). Both learning
objectives were incorporated into the newly proposed DSC based
loss function. Our framework resulted into four different model
variations, ie., (1) a U-Net with learning objective of intra-
tumoral structures, (2) U-Net with glioma sub-regions, (3) U-
Net with Inception module and intra-tumoral structures, and
finally (4) U-Net with Inception module and learning objective
of glioma sub-regions.

We found that integrating Inception modules in the U-Net
architecture resulted in statistically significant improvement in
tumor segmentation performance that was quantified using k-
fold cross-validation (p < 0.05 for all three glioma sub-regions).
We consider that the observed improvement in the validation
accuracy is linked to multiple convolutional filters of different
sizes employed in each Inception module. These filters are able
to capture and retain contextual information at multiple scales
during the learning process, both in the contracting as well
as expanding paths. We also consider that the improvement
in the tumor segmentation accuracy is linked to the new loss
function based on the modified DSC (i.e., Equation 3). In our
proposed framework, we evaluate our models using DSC and
the learning objective or the loss function (Equation 3) used
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for training these algorithms is also based on DSC. This is in
contrast with conventional deep learning paradigms being used
in natural image segmentation, such as, Mask R-CNN, where
the loss function is based on multi-class cross-entropy and the
evaluation metric is based on Intersection-over-Union (IoU) or
DSC score (He et al., 2017). Furthermore, our DSC scores for
each glioma sub-region on the BRATS 2018 training dataset
are comparable or exceed the results of other recent published
architectures such as the No New-Net, which achieved second
place in the BRATS 2018 competition (Isensee et al., 2018b), and
the ensemble approach proposed in Kao et al. (2018).

Our results also demonstrate that changing the learning
objective from intra-tumoral structures to glioma sub-regions in
the architectures with Inception modules produced a statistically
significant positive impact only on WT, while not affecting
TC and ET. Since the only difference between TC and WT is
the peritumoral edema, these results suggest that learning to
segment the peritumoral edema independently is more effective
than learning in context of other two intra-tumoral structures.
We hypothesize that learning to segment WT directly may be
difficult for the model because it requires extracting information
from multiple modalities (T1, T1C, T2, and FLAIR); however,
the segmentation of peritumoral edema alone can primarily
be learned from FLAIR data. Therefore, for the proposed
framework, we recommend using intra-tumoral structures for
learning with U-Net Inception architecture.
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