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Abstract

Background

Low-grade gliomas cause significant neurological morbidity by brain invasion. There is no
universally accepted objective technique available for detection of enlargement of low-
grade gliomas in the clinical setting; subjective evaluation by clinicians using visual compari-
son of longitudinal radiological studies is the gold standard. The aim of this study is to deter-
mine whether a computer-assisted diagnosis (CAD) method helps physicians detect earlier
growth of low-grade gliomas.

Methods and findings

We reviewed 165 patients diagnosed with grade 2 gliomas, seen at the University of Ala-
bama at Birmingham clinics from 1 July 2017 to 14 May 2018. MRI scans were collected
during the spring and summer of 2018. Fifty-six gliomas met the inclusion criteria, including
19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas in 30 males and 26 females
with a mean age of 48 years and a range of follow-up of 150.2 months (difference between
highest and lowest values). None received radiation therapy. We also studied 7 patients
with an imaging abnormality without pathological diagnosis, who were clinically stable at the
time of retrospective review (14 May 2018). This study compared growth detection by 7 phy-
sicians aided by the CAD method with retrospective clinical reports. The tumors of 63
patients (56 + 7) in 627 MRI scans were digitized, including 34 grade 2 gliomas with radio-
logical progression and 22 radiologically stable grade 2 gliomas. The CAD method consisted
of tumor segmentation, computing volumes, and pointing to growth by the online abrupt
change-of-point method, which considers only past measurements. Independent scientists
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have evaluated the segmentation method. In 29 of the 34 patients with progression, the
median time to growth detection was only 14 months for CAD compared to 44 months for
current standard of care radiological evaluation (p < 0.001). Using CAD, accurate detection
of tumor enlargement was possible with a median of only 57% change in the tumor volume
as compared to a median of 174% change of volume necessary to diagnose tumor growth
using standard of care clinical methods (p < 0.001). In the radiologically stable group, CAD
facilitated growth detection in 13 out of 22 patients. CAD did not detect growth in the imaging
abnormality group. The main limitation of this study was its retrospective design; neverthe-
less, the results depict the current state of a gold standard in clinical practice that allowed a
significant increase in tumor volumes from baseline before detection. Such large increases
in tumor volume would not be permitted in a prospective design. The number of glioma
patients (n = 56) is a limitation; however, it is equivalent to the number of patients in phase Il
clinical trials.

Conclusions

The current practice of visual comparison of longitudinal MRI scans is associated with signif-
icant delays in detecting growth of low-grade gliomas. Our findings support the idea that
physicians aided by CAD detect growth at significantly smaller volumes than physicians
using visual comparison alone. This study does not answer the questions whether to treat or
not and which treatment modality is optimal. Nonetheless, early growth detection sets the
stage for future clinical studies that address these questions and whether early therapeutic
interventions prolong survival and improve quality of life.

Author summary

Why was this study done?

» Low-grade gliomas constitute 15% of all adult brain tumors and cause significant neuro-
logical morbidity by brain invasion.

o There is no universally accepted objective technique available for detection of enlarge-
ment of low-grade gliomas in the clinical setting.

o The current gold standard is subjective evaluation by clinicians using visual comparison
of 2D images from longitudinal radiological studies.

 To improve visual evaluation, a computer-assisted diagnostic procedure that digitizes
the tumor and generates volumetric measures could enhance detection of tumor growth
by directing the attention of the physician to a change in volume.

What did the researchers do and find?

o We studied the longitudinal radiological studies of 63 patients with a median follow-up
period of 33.6 months, and compared detection of growth by 7 physicians aided by the
computer-assisted diagnostic procedure to detection of growth by the standard method
(visual comparison).
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o The computer-assisted method helped physicians detect growth at significantly earlier
times and at significantly smaller tumor volumes than the current standard method.

« Physicians aided by the computer-assisted method diagnosed tumor growth in 13 of 22
glioma patients labeled as clinically stable by the standard method.

» Having tumor volume measurements and time series, we were able to identify tumors
with nonlinear and nonhomogeneous growth.

What do these findings mean?

o Current clinical practice is associated with significant delays in detecting growth of low-
grade gliomas.

« Earlier growth detection and detection at smaller tumor volumes are desirable because
smaller tumors are associated with smaller fields of radiation, optimal surgical resec-
tions, and longer survival with less neurological morbidity.

o Early growth detection holds the potential of lowering the morbidity, and perhaps mor-
tality, of patients with low-grade gliomas, a possibility that needs to be tested in prospec-
tive studies.

« In the future, there could be a policy of classifying and treating patients with low-grade
gliomas based on tumor growth rates and direction of tumor growth. The decision to
treat would be determined by the rate of growth and proximity to critical areas of the
brain, once they have been measured.

Introduction

Cancer patients are typically monitored with serial imaging of the affected organ; timely detec-
tion of tumor recurrence can have profound implications for morbidity and survival. Low-
grade gliomas (WHO grade 2) constitute 15% of all adult brain tumors [1-3]. Patients diag-
nosed with low-grade gliomas are followed by serial magnetic resonance imaging (MRI) of the
brain. Fluid-attenuated inversion recovery (FLAIR) is the principle imaging sequence for
assessment of growth of low-grade gliomas [4].

At initial diagnosis, low-grade gliomas may be treated by surgery, with or without radiation
or chemotherapy [5-7]. More extensive resections of low-grade gliomas are associated with
improved overall survival time and progression-free survival time [8-14]. Some studies have
reported a correlation between radiation therapy and cognitive impairment in patients with
low-grade gliomas [15,16]; however, a recent European Organisation for Research and Treat-
ment of Cancer study found no difference in global cognition in patients treated by radiother-
apy versus chemotherapy [17]. At the time of growth detection, low-grade gliomas may
remain at the same grade or could have transformed to higher grades [18]; they may again be
treated by surgery with or without radiation therapy and chemotherapy [19,20].

Image segmentation and analysis are non-trivial problems because of the unpredictable
appearance and shape of brain tumors on MRI. Recently, several artificial intelligence methods
and configurations have been applied to brain diseases, including brain tumors [21]. We have
developed a method for image segmentation of medical images that extracts object boundaries
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in computer vision [22]. Our method applies non-negative matrix factorization and a modified
level set method; it does not use deep learning, training data, or neural networks. Detection of
abrupt changes in the characteristics of physical systems is a fundamental problem in signal
processing; applications include fault detection and diagnosis, safety of aircrafts, prediction of
earthquakes, and biomedical applications, like electroencephalogram, electromyography, and
ECG analysis [23,24].

At present, visual comparison of 2-dimensional (2D) FLAIR images with or without bi-
dimensional measurement is the gold standard for surveillance of low-grade gliomas. Physicians
compare 2D images from a series of longitudinal studies. Because the overall survival time of
low-grade glioma is measured in years, most of the patients have a large longitudinal series of
images over several years. Comparison of the current MRI with all prior imaging takes a very
long time for image interpretation, which is practically not feasible in the current standard of
practice. Furthermore, in a typical cancer center, be it in an academic setting or in a private set-
ting, multiple physicians are involved in assessment of tumor growth, introducing high interob-
server variability [25]. We hypothesized that detection of a change in the state of the tumor, i.e.,
tumor growth, could be improved by a computer-assisted diagnosis (CAD) procedure that digi-
tizes the tumor and directs the attention of the physician to a change in volume. This is impor-
tant because small tumor size is associated with less neurological morbidity [2,17].

Methods
Ethical approval

The Institutional Review Board of the University of Alabama at Birmingham approved the
research; waiver of informed consent was granted because the research involved no greater
than minimal risk and no procedures for which written consent is normally required outside
the research context. This study did not have a protocol.

Study design

This is a retrospective observational study of the accuracy of the diagnosis of glioma growth by
expert physicians who viewed MRI scans in a clinical setting and by 7 expert physicians who,
in addition, were provided segmented images, numerical volumes, and a statistical determina-
tion of growth by the change-of-point method.

Patient selection and study size

We reviewed 165 patients who had been diagnosed with WHO grade 2 gliomas, seen in the
neuro-oncology clinics at the University of Alabama at Birmingham from 1 July 2017 to 14
May 2018 (see flow diagram in Fig 1). The MRI scans were collected from the radiology PACS
during the spring and summer of 2018.

The inclusion criteria were (1) pathological diagnosis of grade 2 oligodendroglioma (oligo),
grade 2 astrocytoma (astro), or grade 2 mixed glioma in the brain excluding the pineal gland
and (2) at least 4 MRI scans available for review either after the initial diagnosis or after the
completion of chemotherapy with temozolomide (if applicable). The exclusion criteria were
(1) treatment with radiation therapy after the initial diagnosis or (2) radiological reports indi-
cating development of new enhancement without an increase in FLAIR signal. Patients treated
by radiation therapy were excluded because radiation may confound the results by causing an
independent increase in FLAIR signal. We excluded patients whose radiological reports
described new enhancing nodules without an increase in FLAIR signal because they are easily
detected by visual examination.
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Table 1. Patient characteristics.

Pathology Number of patients
Oligodendroglioma 19
Astrocytoma 26
Mixed glioma 11
All 56

https://doi.org/10.1371/journal.pmed.1002810.t001
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Fig 1. Flow diagram and analysis plan. CP, clinical progression; CS, clinically stable; LLG, low-grade glioma.
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Mean age (years)

47
46
53
48

A total of 56 gliomas met the inclusion criteria, including 19 oligos, 26 astros, and 11 mixed
gliomas; only 2 patients received temozolomide (Table 1). All of the oligos had the 1p/19q co-
deletions except for 1 with a single deletion of 19q. At the time of retrospective review (14 May
2018), 34/56 patients had been diagnosed with clinical progression while the remaining 22/56

Number of males Number of females Number treated with temozolomide
11 8 1
14 12 1
5 6 0
30 26 2
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were diagnosed as being clinically stable by visual comparison of the most recent MRI per-
formed at the last clinic visit. We reviewed the records of 8 patients followed in our clinics for
an imaging abnormality without pathological diagnosis; 1 patient was excluded because of lack
of follow-up information. All 7 imaging abnormality patients were considered clinically stable
at the time of review of this study.

Time to growth detected by standard clinical care

Different board-certified neuro-radiologists at the University of Alabama at Birmingham Hos-
pital generated the radiological reports after evaluating each longitudinal MRI scan. We retro-
spectively calculated the time to growth detection from the impressions of the radiological
reports of these patients.

Tumor segmentation

A total of 627 MRI scans were analyzed. Segmentation of the FLAIR sequence was performed
by 2 procedures: First, an automated algorithm classified and contoured the different regions
in the image; it applied non-negative matrix factorization and a modified level set method
(NMF-LSM) as detailed in Dera et al. [22]. This automated segmentation generated 8 segments
for every image (see [22]), which were ranked by their maximal intensities. Second, the final
tumor margins were obtained by combining the regions whose maximal intensities were
above the level of the gray matter. A physician reviewed and approved the final tumor margins.
Detailed information on the segmentation method and combining the segments to compute
tumor margins is presented elsewhere [26]. The organizers of the Multimodal Brain Tumor
Segmentation (BraTS) Challenge (https://www.med.upenn.edu/sbia/brats2018/data.html)
have independently evaluated the accuracy of this method in the segmentation of the hyperin-
tense areas in T2/FLAIR MRI (i.e., whole tumor label) [27]. Tumor volumes were computed
by multiplying the sum of the tumor segments in all axial images by the distance between
images. The computations were performed at the Cheaha supercomputer of the University of
Alabama at Birmingham (https://docs.uabgrid.uab.edu/wiki/cheaha).

Online abrupt changes of point

To exclude FLAIR changes due to the evolution of post-surgical changes, the baseline volume
in the longitudinal series was the first minimum after surgical resection. To identify an abrupt
change of volume, we applied the function findchangepts in Matlab (Mathworks), detecting a
change in the root-mean-square level at a minimum threshold of 500/(volume at baseline) and
a minimum of 2 samples between change points. The number 500 corresponds to 5% of the
rounded median of the baseline volume.

In the clinical setting, a physician reviews the current MRI scan and compares it to MRI
scans performed on earlier dates. To simulate a clinic visit, the online change of point consid-
ers only past measurements. The time to growth detected by the CAD method corresponds to
the period of time between the dates of the baseline MRI and the first change of point.

Review of growth detection by the change-of-point method

Growth detected by the statistical change-of-point method was reviewed by 7 physicians who
are board-certified in neuro-radiology (AKB), neuro-imaging (LBN), neuro-oncology (HMF,
LBN, PPW, XH), radiation oncology (MB), and neurosurgery (JM). For 63 cases, the physi-
cians were provided with (1) the tumor volumes, (2) determination of growth or stability by
the change-of-point method, and (3) the images with segmentation, obtained at (1) baseline
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(as defined in the previous section), (2) the time point of growth detection by the statistical
change-of-point method, if different than the last visit, and (3) the last visit. The images
included a red line contouring the tumor margins, delineated by the segmentation method
(see S1 Data). The physicians were asked to determine if the tumor had grown compared to
baseline or not. These MRI scans and volumes, including the segmentation data, are available
in S1 Table and S1 and S2 Datas.

Mathematical model of gliomas

The authors have recently reported a system of partial differential equations (PDEs) that
model glioma growth at the scale of MRI and pathology. The equations include the rates of
replication (mitosis), brain invasion, angiogenesis, and a threshold for hypoxia; the numerical
methods used to solve the system of PDEs are detailed elsewhere [18,28,29].

Statistical analysis and curve fitting

The p-values were generated by the Mann-Whitney-Wilcoxon 2-tail test. Curve fitting was
done in Matlab using the fit function and the polyl (y = p1 * x + p2) and expl (y = a * exp(b * x))
models. Normalized volumes were computed by subtracting the baseline volume and dividing
by the most recent volume. Time intervals from baseline were normalized by dividing by the
largest. To identify tumors with exponential model growth, we selected a normalized curve if its
nonlinear sum of squares due to error (sse) was less than 0.6 * linear sse (0.6 was chosen as it
yields an exponential model fit of * > 0.85 for the normalized data of all the selected curves).

Results
Patient description

The CAD method was applied to the longitudinal MRI scans of a total of 63 patients, including
56 patients with gliomas; the mean age and the proportions male and female are shown in
Table 1. The range, mean, and median of the follow-up were 150.2, 46.6, and 33.6 months,
respectively. There were 3 groups of patients: 34 patients with grade 2 gliomas with a known
clinical progression, 22 patients with grade 2 gliomas who were clinically stable by visual com-
parison, and 7 patients with an imaging abnormality, who were also clinically stable by visual
comparison. The clinical progression group included 7 oligos, 18 astros, and 9 mixed gliomas.
The clinically stable tumor group included 12 oligos, 8 astros, and 2 mixed gliomas.

CAD detects growth earlier

In the clinical progression group, the median time to growth detected by visual comparison
for the oligos, astros, and mixed gliomas was 79 months, 33 months, and 56 months, respec-
tively. CAD aided the physicians in detecting growth statistically significantly earlier in 7/7 oli-
gos (median = 19 months), 14/18 astros (median = 12 months), and 8/9 mixed gliomas
(median: 16 months; Table 2). Furthermore, tumors were significantly larger at the time point
of detection when growth was detected by standard of care radiological assessment compared
to CAD, with median values of 163% versus 52%, 155% versus 50%, and 286% versus 69% for
oligos, astros, and mixed gliomas, respectively (Table 2 and Fig 2).

Time to growth in clinically stable grade 2 gliomas

In the clinically stable grade 2 glioma group, CAD aided the physicians in detecting growth in
7/12 oligos, 4/8 astros, and 2/2 mixed gliomas; the median period of follow-up was, respec-
tively, 37 months and 19 months for the grade 2 gliomas that exhibited growth versus
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Table 2. Clinical progression glioma group.

Pathology Number AG Time to growth (months), median (IQR) AV, median (IQR)

CAD vC p-Value CAD vC p-Value
Oligodendroglioma 7 7 19 (13-23) 79 (48-101) <0.001 52% (36%-72%) 163% (141%-479%) 0.001
Astrocytoma 18 14 12 (10-16) 33 (26-44) <0.001 50% (37%-76%) 155% (120%-257%) 0.001
Mixed glioma 9 8 16 (10-20) 56 (31-70) <0.001 69% (46%-116%) 286% (203%-537%) <0.001
All 34 29 14 (11-20) 44 (30-68) <0.001 57% (36%-77%) 174% (134%-342%) <0.001

AG: number of patients whose glioma time to growth detected by computer-assisted diagnosis (CAD) was shorter than that detected by visual comparison (VC). AV:
percent change in tumor volume from baseline to time point of growth detection. The p-values were generated by the Mann-Whitney-Wilcoxon 2-tail test. The results
of CAD were identical to that of VC in 5 patients.

https://doi.org/10.1371/journal.pmed.1002810.t002

remained stable by the CAD method (Table 3). The median time to growth detected by the
CAD method for oligos, astros, and mixed gliomas was 15 months, 12 months, and 8 months,
respectively (Table 3 and Figs 2 and 3).

Three of these 13 gliomas exhibited additional tumor growth during the follow-up period
after the time point of growth detection by CAD. In light of the CAD results, the patient whose
longitudinal MRI scans are shown in Fig 3D-3F elected to have a resection; pathological exam-
ination revealed a WHO grade 3 oligo, a diagnosis that mandates therapeutic intervention.
The treating neurosurgeon noted that whereas the current surgical option was a subtotal resec-
tion (Fig 3F), a gross total resection would have been a possibility at the time point of growth
detection by CAD (Fig 3E).

Imaging abnormality group

CAD did not detect growth in any of the 7 patients followed for an imaging abnormality. These
patients were followed for an average of 79 months (IQR = 68.5 months) after the first MRI.

Review of predictions of change-of-point method

The 7 expert physicians reviewed and agreed with the determinations of growth (true positives,
n =34 + 13) and no growth (true negatives, n = 7 + 9) at the times predicted by the statistical
online change-of-point method (Fig 3). The MRI data with segmentation results (S1 Data) and
volumetric measurements (S2 Data) with corresponding time intervals are available to the
reader (see S1 Table).

Nonlinear stationary growth

The data demonstrate that time to growth detected with the aid of the CAD method can be
several years shorter than that detected by visual comparison (Table 2), hence the importance
of the rate of tumor growth. Simulations of the mathematical model of gliomas reveal that
growth can be either nonlinear or almost linear as a function of the mitotic rate (Fig 2G); small
mitotic rates generate nonlinear curves. Using the normalized data of the 47 tumors with
growth (n = 47; 34 of Table 2 and 13 of Table 3), we identify 14/47 tumors whose normalized
growth curves fit a nonlinear exponential model (Fig 2H, r* = 0.86). We note that though 22/
29 tumors in the clinical progression group continued to grow after the time point of growth
detection by the CAD method (Fig 2A), 7 low-grade gliomas remained in a stationary phase of
slow growth (S2 Table), which lasted for longer than 3 years in 3 gliomas (Figs 2B and 3A-3C),
18 months in 2 gliomas, 14 months in 1 glioma, and 9 months in 1 glioma.
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Fig 2. Growth curves of grade 2 gliomas. (a and b) The tumor volumes of 2 patients in the clinical progression group, diagnosed with
oligos. (c and d) The tumor volumes of 2 patients in the clinically stable group diagnosed with an oligo and an astro, respectively. The
volumes at the time to growth detected by CAD and visual comparison are colored yellow and red, respectively. (e and f) The tumor
volumes of 2 patients in the clinically stable group by CAD and visual comparison, diagnosed with an astro and an oligo, respectively. The
x-axis in (a—f) corresponds to the time interval from the baseline MRI. (g) The results of simulations of the mathematical model for grade 2
gliomas, showing percent of brain invaded by the tumor (y-axis) as a function of the parameter for mitotic rate (per hour) in the presence
of a low angiogenesis rate (0.1/hour), see Scribner et al [18]. (h) The curve fit of the normalized data of 14 patients with nonlinear growth
using the model f(x) = a * exp(b * x), coefficients (with 95% confidence bounds): a = 0.03751 (0.02759, 0.04743), b = 2.98 (2.69, 3.27), sum
of squares due to error = 1.3701, * = 0.8580. astro, astrocytoma; CAD, computer-assisted diagnosis; oligo, oligodendroglioma.

https://doi.org/10.1371/journal.pmed.1002810.g002

3D growth is nonhomogeneous

Currently, clinical trials compute the size of a glioma as the bi-dimensional product of the 2
largest perpendicular diameters in the 2D section that includes the largest tumor component.
This practice assumes that a glioma grows homogeneously in 3D, i.e., it grows at equal rates in
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Table 3. Clinically stable glioma group.

Pathology Number
Oligodendroglioma 12
Astrocytoma

Mixed glioma 2

All 22

CAD G CAD TTG FUG FUS CAD AV

7 15 (11-24) 81 (26-86) 19 (16-26) 51% (45%-97%)
4 12 (8-16) 22 (18-24) 18 (6-50) 78% (64%-126%)
2 8 (7-9) 87 (73-101) NA. 42% (26%-58%)
13 13 (9-17) 37 (22-88) 19 (8-34) 58% (46%-86%)

CAD G: number of patients in the clinically stable group whose tumors were detected to have grown by computer-assisted diagnosis (CAD). CAD TTG: median (IQR)

time to growth (TTG) detected by CAD (months). FU G: median (IQR) time interval between baseline and last MRI scan for patients diagnosed with tumor growth by
CAD (months). FU S: median (IQR) time interval between baseline and last MRI scan for patients whose tumors were stable by CAD (months). CAD AV: median (IQR)
percent change in tumor volume from baseline to growth detection. N.A., not applicable. A statistical analysis comparing CAD TTG and visual comparison (VC) TTG is
not applicable here because the latter is not known; nonetheless, VC TTG will be larger than FU G. The Mann-Whitney-Wilcoxon 2-tail test comparing the CAD TTG
and FU G of all 13 patients yields p < 0.001. The results of CAD were identical to VC in 9 patients.

https://doi.org/10.1371/journal.pmed.1002810.t003

all directions. Fig 4 shows a counterexample, where tumor growth is not homogeneous in 3D
because the tumor grows faster at sections away from the largest axial tumor component.

Discussion

Visual comparison of longitudinal radiological studies is widely used in oncology. In all cases,
physicians examine 2D computed tomography or magnetic resonance images to diagnose
4-dimensional objects, i.e., a change in volume over time. Here, we screened 165 gliomas and
analyzed the data of a total of 63 patients, including 627 MRI scans; unexpectedly, we found
large differences in growth detection by visual comparison and by physicians aided by the
CAD method. Because low-grade gliomas are followed for several years, physicians are tasked
with comparing the current MRI to all previous studies. Reasons for missing growth by visual
inspection include (1) the large number of prior studies, which take a very long time for image
interpretation, (2) the current practice of comparing the current MRI to a couple of MRI scans
immediately preceding it, (3) the lack of determination of the baseline MRI, (4) small changes
from one study to the next that add up over time, (5) that comparing single 2-dimensional
images misses growth in the third dimension (Fig 4), i.e., in sections away for the largest
tumor component (e.g., cases 4384, 4385, 6936, 7492, 7505, and 7736 in S1 Data), and (6) that
baseline volume appears to be a factor for detecting growth by visual comparison; for example,
the tumor in Fig 2C (case 7504), whose baseline volume is 42% of that of the tumor in Fig 2B
(case 7490), was deemed stable after growing 6-fold whereas the growth of the tumor in Fig 2B
was detected after it grew by only 2-fold.

The retrospective analysis of radiological reports in this study yields an unaltered view of
the landscape of the diagnostic imaging of gliomas at a tertiary brain tumor center. In analyz-
ing longitudinal measurements of tumor volumes, the problem concerns both detecting
whether or not a change in tumor volume has occurred and identifying the time of any such
change. These questions are addressed by combining tumor segmentation with the change-of-
point analysis. Several segmentation methods including computer vision have recently been
developed [3]. CAD improves the detection of growth in grade 2 gliomas by contouring the
tumor margins and generating a signal that directs the attention of the physician towards a
change of point (Fig 3). The method used in this paper is semi-automated, i.e., the final tumor
contouring requires human approval. This method has been ranked among the top 3 algo-
rithms, statistically equivalent with 2 other algorithms competing in the BraTS 2016 challenge
[27]. Our segmentation method differs from deep learning algorithms as it does not require
offline training of a library of reference images. The online change-of-point method is a well-
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Fig 3. Time to growth detected by computer-assisted-diagnosis and visual comparison. (a—c) Axial FLAIR MRI scans of
a patient in the clinical progression group, diagnosed with an oligo, whose tumor volumes are shown in Fig 2B, at baseline
(a), the time point of growth detection by computer-assisted diagnosis (b), and the time point of detection by visual
comparison (c). (d-f) Axial FLAIR MRI scans of a clinically stable patient diagnosed with a grade 2 oligo, whose tumor
volumes are shown in Fig 2C, at baseline (d), the time point of growth detection by computer-assisted diagnosis (e), and the
last follow-up MRI, considered to be stable by visual comparison (f). Our panel of physicians reviewed the images and
agreed that the tumor had grown. This patient elected to have a resection; the pathological diagnosis revealed grade 3 oligo.
(g and h) Axial FLAIR MRI scans of a clinically stable patient diagnosed with an astro, whose tumor volumes are shown in
Fig 2D, at baseline (g) and the time point of growth detection by computer-assisted diagnosis (h). astro, astrocytoma;
FLAIR, fluid-attenuated inversion recovery; oligo, oligodendroglioma.

https://doi.org/10.1371/journal.pmed.1002810.g003

suited statistical method to simulate the clinic visit as it considers only past measurements at
each time point. It is better suited than the fixed threshold method because it handles all types
of time-ordered data, including data from non-normal distributions and data with outliers
[23,24]. To exclude changes caused by surgical intervention, the baseline MRI is taken as the
one that corresponds to the first minimal volume after resection.

Analysis of the 117 measurements of the 16 true-negative growth curves, i.e., stable by CAD
and confirmed by expert physician review, yields a mean and standard deviation percent vol-
ume change of 0.99% and 26.54%, respectively (curves for 2 such cases shown in Fig 2E and
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Fig 4. Growth away from the largest tumor section. (a—e) MRI of tumor 4385 (see S1 and S2 Datas) at time 0. (f-j)
MRI at the time point of growth detection by CAD. The surface areas of the tumor segments in (a-j) are 268, 1,174,
1,240, 962, 246, 718, 1,262, 1,764, 994, and 282 pixels?, respectively. The tumor exhibits larger percent growth from
baseline in the third dimension (compare a and f: 268 and 718) away from the section containing the largest tumor
component at baseline (compare c and h: 1,240 and 1,764). The second MRI was deemed stable by visual comparison.

https://doi.org/10.1371/journal.pmed.1002810.g004

2F). FLAIR images have variable quality; however, lower quality images are more likely to
yield underestimation than overestimation of tumor growth because CAD uses a physician-in-
the-loop approach whereby a physician must review and confirm both the segmentation
results and the determination of growth. Because the reviewing physician eliminates false posi-
tive segmentations and outliers, we believe that in cases where consecutive volumes show a
large variation, the higher measurement is more accurate than the lower volume. The main
objective of the CAD method employed here is to point the attention towards a potential
growth event; the physician has the final responsibility to confirm or not. We argue that mini-
mizing false negatives (even at the cost of potential false positives) is prudent and in the best
interest of patients. For instance, if we consider a case similar to the one shown in Fig 24, it is
possible that a physician may not confirm the first growth signal. However, the numerous and
continuous alerts starting at month 19 would hopefully make it impossible for the tumor to be
allowed to grow unchecked until month 80. We did not encounter false positive signals in our
datasets as the reviewing physicians in all cases agreed with the change-of-point detection (S1
Data). Nonetheless, if physician-endorsed false positives are frequent, one could increase the
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stringency of the change-of-point method by varying the threshold or by considering the sec-
ond or third change of point.

Tumor assessments in 2D and 3D differ with respect to magnitude. This study evaluated
and compared longitudinal volumes of low-grade gliomas. In clinical trials, tumor progression
is currently assessed by studying 2D sections of the brain that include the largest component of
the tumor; progression is determined when the product of 2 perpendicular lines increases by
25%. For example, a 12% increase in each of 2 dimensions generates a 25% increase in the
product in 2D (1.12* = 1.25). Multiplying by a third dimensional increase of 12% leads to a
41% increase in the volume (1.12° = 1.41). Similarly, 20% and 25% increases in each dimension
produce 73% and 95% increases in volume, respectively. Conversely, a 300% increase in vol-
ume can be generated by a 44% increase in each dimension (1.44° = 3).

The numerical growth charts suggest that low-grade gliomas may be distinguished not only
by their pathological diagnosis but also by their rate of growth (Fig 2). For example, the tumor
shown in Fig 2A grew at a faster rate than the tumors shown in Fig 2B-2D. The volumetric anal-
ysis permits the computation of the rate of growth of low-grade gliomas over time, which may
turn out to be a biological marker that may enhance tumor classification and guide therapy.

Although the current study demonstrates the utility of CAD in helping physicians detect
growth of grade 2 gliomas following initial observation, additional work is likely needed to
develop models for progression after some therapies. Though none of the patients in this study
had received radiation therapy, radiation therapy and immunotherapy may be associated with
new FLAIR signal that does not represent tumor growth.

The main limitation of this study was its retrospective design since the time point of tumor
growth detection was determined by retrospective review of the radiological reports. The find-
ings unequivocally point towards shortcomings of the current state of clinical practice that
allowed a significant increase in tumor volumes from baseline before growth was detected.
Because of ethical considerations, these large magnitudes of tumor growth would not be per-
mitted in a prospective design as coordinators would have to address the signals of growth
generated by CAD. Another limitation was the fact that the physicians who validated the volu-
metric results did not review all the longitudinal MRI scans in the absence of segmentation:
They viewed the volumes and the segmented images of the baseline and last MRI scans and the
MRI deemed to have tumor growth by CAD (if any); they were offered the option of viewing
additional segmented images if they desired. The reason for this design was that the time
needed to review 627 MRI scans is both significant and prohibitive; for the same reason, prac-
titioners currently compare the current MRI to a couple of MRI scans immediately preceding
it. The number of glioma patients (1 = 56) is a limitation; however, it is equivalent to the num-
ber of patients in phase II clinical trials. Another limitation is the fact that all patients were
adults; we plan to study pediatric patients in the future.

It is evident that the volumetric data of the CAD method help physicians detect growth of
low-grade gliomas significantly earlier than the current gold standard practice of visual com-
parison (Tables 2 and 3). However, this study does not address the questions of whether to
treat or not and which treatment modality is optimal. Nonetheless, early detection sets the
stage for future clinical studies to address these questions and whether early therapeutic inter-
ventions prolong survival and improve quality of life. In general, earlier growth detection and
detection at smaller tumor volumes are desirable because there is evidence that smaller tumors
are associated with smaller fields of radiation, optimal surgical resections (see Fig 3D-3F), and
longer survival with less neurological morbidity [8-14,19,20]. We suggest studying early inter-
ventions for cases where (1) the new growth is in the proximity of key nonsurgical structures
like the corpus callosum, (2) the rate of growth is elevated, or (3) the tumor is sensitive to
chemotherapy.
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Because low-grade gliomas grow at variable but slow rates, clinicians need to compare a
large number of longitudinal images spanning several months or years to detect growth, lead-
ing to significant delays in detection of tumor enlargement. Readily available computer-gener-
ated tumor outlines combined with longitudinal volumetric data and the identification of a
statistically significant change of point aid a rapid diagnosis of tumor enlargement. Hence,
CAD could avoid unpredictable delays and improve the determination of efficacy of new ther-
apeutic interventions. Furthermore, early growth detection holds the potential of lowering the
morbidity, and perhaps mortality, of patients with low-grade gliomas, a possibility that needs
to be tested in prospective studies.

Supporting information

S1 Data. MRI data. The .zip file includes .pdf files labeled as follows, using case number 4224
as an example: 4224 _t0.pdf includes the MRI data with segmentation of case number 4224 at
baseline. 4224 t1_CAD_G_VC_S.pdf includes the MRI data with segmentation of case num-
ber 4224 at time 1, i.e., the time point of growth detection by the change-of-point method
when the time point was different from the most recent MRI. 4224 _tend_CAD_G_VC_G.pdf
includes the MRI data with segmentation of case number 4224 at the most recent MRL
CAD_G and CAD_S mean that the change-of-point method predicted growth (G) or stability
(S), respectively. VC_G and VC_S mean that the visual comparison detected growth (G) or
stability (S), respectively.

(Z1P)

$2 Data. Volumetric measurements. The Excel sheet lists the tumor volumes (pixels”3) and
corresponding time intervals from baseline (months) for each case number.
(XLSX)

S1 STROBE checKlist.
(DOC)

S1 Table. Summary of the MRI data. The case numbers correspond to the same numbers on
the labels of the .pdf files that include the MRI data (S1 Data). Interval to last MRI refers to the
interval of time from the baseline MRI to the most recent MRI. CAD Dx and VC Dx refer to
the determination of growth or not (i.e., stable) by the CAD method and visual comparison
(VC), respectively. Time 1 denotes the time point at which CAD detected growth earlier than
the last MR, if any. Groups 1, 2, and 3 refer to patients with known radiological tumor pro-
gression, stable glioma, and imaging abnormality, respectively. As compared to VC, CAD
detected earlier growth in 29 group 1 gliomas (blue) and 13 group 2 gliomas (red).

(XLSX)

$2 Table. Stationary growth in the clinical progression group. Number of patients in the
clinical progression group with stationary/slow growth after the time point of growth detection
by CAD lasting for 9 months, 14 months, 18 months, and longer than 3 years.

(XLSX)

Author Contributions
Conceptualization: Hassan M. Fathallah-Shaykh, Nidhal Bouaynaya.

Data curation: Hassan M. Fathallah-Shaykh, Andrew DeAtkine, Elizabeth Coffee, Elias
Khayat, Asim K. Bag, John Fiveash.

Formal analysis: Hassan M. Fathallah-Shaykh.

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002810 May 28, 2019 14/16


http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002810.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002810.s002
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002810.s003
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002810.s004
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002810.s005
https://doi.org/10.1371/journal.pmed.1002810

@’PLOS ‘ MEDICINE

Growth Detection in Gliomas

Investigation: Hassan M. Fathallah-Shaykh.
Methodology: Hassan M. Fathallah-Shaykh.

Project administration: Hassan M. Fathallah-Shaykh.
Resources: Hassan M. Fathallah-Shaykh.

Software: Hassan M. Fathallah-Shaykh, Nidhal Bouaynaya.
Supervision: Hassan M. Fathallah-Shaykh.

Validation: Hassan M. Fathallah-Shaykh, Asim K. Bag, Xiaosi Han, Paula Province Warren,
Markus Bredel, James Markert, Louis B. Nabors.

Visualization: Hassan M. Fathallah-Shaykh, Asim K. Bag, Xiaosi Han, Paula Province War-
ren, Markus Bredel, John Fiveash, James Markert, Louis B. Nabors.

Writing - original draft: Hassan M. Fathallah-Shaykh, John Fiveash.

Writing - review & editing: Hassan M. Fathallah-Shaykh, Andrew DeAtkine, Elizabeth Cof-
fee, Elias Khayat, Asim K. Bag, Xiaosi Han, Paula Province Warren, Markus Bredel, John
Fiveash, James Markert, Nidhal Bouaynaya, Louis B. Nabors.

References

1. Rasmussen BK, Hansen S, Laursen RJ, Kosteljanetz M, Schultz H, Norgard BM, et al. Epidemiology of
glioma: clinical characteristics, symptoms, and predictors of glioma patients grade I-1V in the the Danish
Neuro-Oncology Registry. J Neurooncol. 2017; 135(3):571-9. https://doi.org/10.1007/s11060-017-
2607-5 PMID: 28861666

2. Berntsson SG, Merrell RT, Amirian ES, Armstrong GN, Lachance D, Smits A, et al. Glioma-related sei-
zures in relation to histopathological subtypes: a report from the glioma international case-control study.
J Neurol. 2018; 265(6):1432—42. https://doi.org/10.1007/s00415-018-8857-0 PMID: 29687214

3. Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors. Brainlesion: glioma, multiple scle-
rosis, stroke and traumatic brain injuries. Lecture Notes in Computer Science. Volume 10154. Cham
(Switzerland): Springer International Publishing; 2016.

4. Bynevelt M, Britton J, Seymour H, MacSweeney E, Thomas N, Sandhu K. FLAIR imaging in the follow-
up of low-grade gliomas: time to dispense with the dual-echo? Neuroradiology. 2001; 43(2):129-33.
PMID: 11326557

5. Delgado-Lopez PD, Corrales-Garcia EM, Martino J, Lastra-Aras E, Duenas-Polo MT. Diffuse low-grade
glioma: a review on the new molecular classification, natural history and current management strate-
gies. Clin Transl Oncol. 2017; 19(8):931—44. https://doi.org/10.1007/s12094-017-1631-4 PMID:
28255650

6. BucknerJ, Giannini C, Eckel-Passow J, Lachance D, Parney |, Laack N, et al. Management of diffuse
low-grade gliomas in adults—use of molecular diagnostics. Nat Rev Neurol. 2017; 13(6):340-51.
https://doi.org/10.1038/nrneurol.2017.54 PMID: 28497806

7. LeRhunE, Taillibert S, Chamberlain MC. Current management of adult diffuse infiltrative low grade gli-
omas. Curr Neurol Neurosci Rep. 2016; 16(2):15. https://doi.org/10.1007/s11910-015-0615-4 PMID:
26750130

8. Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-lacono D, Talos F, et al. Survival rates in patients
with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005; 103
(6):1227-33. https://doi.org/10.1002/cncr.20867 PMID: 15690327

9. Johannesen TB, Langmark F, Lote K. Progress in long-term survival in adult patients with supratentorial
low-grade gliomas: a population-based study of 993 patients in whom tumors were diagnosed between
1970 and 1993. J Neurosurg. 2003; 99(5):854—62. https://doi.org/10.3171/jns.2003.99.5.0854 PMID:
14609165

10. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, et al. Independent association of
extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009; 110
(1):156-62. https://doi.org/10.3171/2008.4.17536 PMID: 18847342

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002810 May 28, 2019 15/16


https://doi.org/10.1007/s11060-017-2607-5
https://doi.org/10.1007/s11060-017-2607-5
http://www.ncbi.nlm.nih.gov/pubmed/28861666
https://doi.org/10.1007/s00415-018-8857-0
http://www.ncbi.nlm.nih.gov/pubmed/29687214
http://www.ncbi.nlm.nih.gov/pubmed/11326557
https://doi.org/10.1007/s12094-017-1631-4
http://www.ncbi.nlm.nih.gov/pubmed/28255650
https://doi.org/10.1038/nrneurol.2017.54
http://www.ncbi.nlm.nih.gov/pubmed/28497806
https://doi.org/10.1007/s11910-015-0615-4
http://www.ncbi.nlm.nih.gov/pubmed/26750130
https://doi.org/10.1002/cncr.20867
http://www.ncbi.nlm.nih.gov/pubmed/15690327
https://doi.org/10.3171/jns.2003.99.5.0854
http://www.ncbi.nlm.nih.gov/pubmed/14609165
https://doi.org/10.3171/2008.4.17536
http://www.ncbi.nlm.nih.gov/pubmed/18847342
https://doi.org/10.1371/journal.pmed.1002810

@’PLOS ‘ MEDICINE

Growth Detection in Gliomas

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

Nakamura M, Konishi N, Tsunoda S, Nakase H, Tsuzuki T, Aoki H, et al. Analysis of prognostic and sur-
vival factors related to treatment of low-grade astrocytomas in adults. Oncology. 2000; 58(2):108—16.
https://doi.org/10.1159/000012087 PMID: 10705237

Ahmadi R, Dictus C, Hartmann C, Zurn O, Edler L, Hartmann M, et al. Long-term outcome and survival
of surgically treated supratentorial low-grade glioma in adult patients. Acta Neurochir (Wien). 2009; 151
(11):1359-65. https://doi.org/10.1007/s00701-009-0435-x PMID: 19575144

Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in
the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008; 26(8):1338—45. https://
doi.org/10.1200/JC0.2007.13.9337 PMID: 18323558

Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery.
2008; 62(4):753—-64. https://doi.org/10.1227/01.neu.0000318159.21731.cf PMID: 18496181

Surma-aho O, Niemela M, Vilkki J, Kouri M, Brander A, Salonen O, et al. Adverse long-term effects of
brain radiotherapy in adult low-grade glioma patients. Neurology. 2001; 56(10):1285-90. PMID:
11376174

Ek L, Kristoffersen Wiberg M, Vestberg S. Decline in executive functions and speed in suspected low-
grade gliomas: a 3-year follow-up of a clinical cohort. Appl Neuropsychol Adult. 2018; 25(4):376—84.
https://doi.org/10.1080/23279095.2017.1316506 PMID: 28467112

Reijneveld JC, Taphoorn MJ, Coens C, Bromberg JE, Mason WP, Hoang-Xuan K, et al. Health-related
quality of life in patients with high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-
label, phase 3 intergroup study. Lancet Oncol. 2016; 17(11):1533—42. https://doi.org/10.1016/S1470-
2045(16)30305-9 PMID: 27686943

Scribner E, Hackney JR, Machemehl HC, Afiouni R, Patel KR, Fathallah-Shaykh HM. Key rates for the
grades and transformation ability of glioma: model simulations and clinical cases. J Neurooncol. 2017;
133(2):377-88. https://doi.org/10.1007/s11060-017-2444-6 PMID: 28451993

Baumert BG, Hegi ME, van den Bent MJ, von Deimling A, Gorlia T, Hoang-Xuan K, et al. Temozolomide
chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a rando-
mised, open-label, phase 3 intergroup study. Lancet Oncol. 2016; 17(11):1521-32. https://doi.org/10.
1016/S1470-2045(16)30313-8 PMID: 27686946

Jhaveri J, Liu Y, Chowdhary M, Buchwald ZS, Gillespie TW, Olson JJ, et al. Is less more? Comparing
chemotherapy alone with chemotherapy and radiation for high-risk grade 2 glioma: an analysis of the
National Cancer Data Base. Cancer. 2018; 124(6):1169-78. https://doi.org/10.1002/cncr.31158 PMID:
29205287

Wang S, Zhang Y, Zhan T, Phillips P, Zhang Y-D, Liu G, et al. Pathological brain detection by artificial
intelligence in magnetic resonance imaging scanning. Prog Electromagn Res. 2016; 156:105-33.
https://doi.org/10.2528/PIER16070801

Dera D, Bouaynaya N, Fathallah-Shaykh HM. Automated robust image segmentation: level set method
using nonnegative matrix factorization with application to brain MRI. Bull Math Biol. 2016; 78(7):1450—
76. https://doi.org/10.1007/s11538-016-0190-0 PMID: 27417984

Brodsky E, Darkhovsky BS. Nonparametric methods in change-point problems. New York: Springer;
1993.

Killick R, Fearnhead P, Eckley IA. Optimal detection of changepoints with a linear computational cost. J
Am Stat Assoc. 2012; 107(500):1590-8.

Kerkhof M, Hagenbeek RE, van der Kallen BF, Lycklama ANGJ, Dirven L, Taphoorn MJ, et al. Interob-
server variability in the radiological assessment of magnetic resonance imaging (MRI) including perfu-
sion MRI in glioblastoma multiforme. Eur J Neurol. 2016; 23(10):1528-33. https://doi.org/10.1111/ene.
13070 PMID: 27424939

Dera D, Raman F, Bouaynaya N, Fathallah-Shaykh HM. Interactive semi-automated method using
non-negative matrix factorization and level set segmentation for the BRATS Challenge. In: Crimi A,
Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors. Brainlesion: glioma, multiple sclerosis,
stroke and traumatic brain injuries. Lecture Notes in Computer Science. Volume 10154. Cham (Swit-
zerland): Springer International Publishing; 2016. pp. 195-205.

Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al. |dentifying the best machine learning
algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the
BRATS Challenge. arXiv:1811.02629v2. 2019 Mar 19.

Scribner E, Saut O, Province P, Bag A, Colin T, Fathallah-Shaykh HM. Effects of anti-angiogenesis on
glioblastoma growth and migration: model to clinical predictions. PLoS ONE. 2014; 9(12):e115018.
https://doi.org/10.1371/journal.pone.0115018 PMID: 25506702

Raman F, Scribner E, Saut O, Wenger C, Colin T, Fathallah-Shaykh HM. Computational trials: unravel-
ing motility phenotypes, progression patterns, and treatment options for glioblastoma multiforme. PLoS
ONE. 2016; 11(1):e0146617. https://doi.org/10.1371/journal.pone.0146617 PMID: 26756205

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002810 May 28, 2019 16/16


https://doi.org/10.1159/000012087
http://www.ncbi.nlm.nih.gov/pubmed/10705237
https://doi.org/10.1007/s00701-009-0435-x
http://www.ncbi.nlm.nih.gov/pubmed/19575144
https://doi.org/10.1200/JCO.2007.13.9337
https://doi.org/10.1200/JCO.2007.13.9337
http://www.ncbi.nlm.nih.gov/pubmed/18323558
https://doi.org/10.1227/01.neu.0000318159.21731.cf
http://www.ncbi.nlm.nih.gov/pubmed/18496181
http://www.ncbi.nlm.nih.gov/pubmed/11376174
https://doi.org/10.1080/23279095.2017.1316506
http://www.ncbi.nlm.nih.gov/pubmed/28467112
https://doi.org/10.1016/S1470-2045(16)30305-9
https://doi.org/10.1016/S1470-2045(16)30305-9
http://www.ncbi.nlm.nih.gov/pubmed/27686943
https://doi.org/10.1007/s11060-017-2444-6
http://www.ncbi.nlm.nih.gov/pubmed/28451993
https://doi.org/10.1016/S1470-2045(16)30313-8
https://doi.org/10.1016/S1470-2045(16)30313-8
http://www.ncbi.nlm.nih.gov/pubmed/27686946
https://doi.org/10.1002/cncr.31158
http://www.ncbi.nlm.nih.gov/pubmed/29205287
https://doi.org/10.2528/PIER16070801
https://doi.org/10.1007/s11538-016-0190-0
http://www.ncbi.nlm.nih.gov/pubmed/27417984
https://doi.org/10.1111/ene.13070
https://doi.org/10.1111/ene.13070
http://www.ncbi.nlm.nih.gov/pubmed/27424939
https://doi.org/10.1371/journal.pone.0115018
http://www.ncbi.nlm.nih.gov/pubmed/25506702
https://doi.org/10.1371/journal.pone.0146617
http://www.ncbi.nlm.nih.gov/pubmed/26756205
https://doi.org/10.1371/journal.pmed.1002810

