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Abstract— A configurable neuroinspired inference accelerator
is designed as an array of neurons, each operating in an
independent clock domain. The accelerator implements a recur-
rent network using a novel sparse convolution for feedforward
operations and sparse spike-driven reconstruction for feedback
operations. The proposed sparse convolution efficiently skips
zero-patches, and can be made to support practically any image
and kernel size. A globally asynchronous locally synchronous
architecture enables scalable design and load balancing to achieve
22% reduction in power. Fabricated in 40-nm CMOS, the
2.56-mm2 inference accelerator integrates 48 neurons, a hub,
and an OpenRISC processor. The chip achieves 718GOPS at
380 MHz, and demonstrates applications in feature extraction
from images and depth extraction from stereo images.

Index Terms— Configurable convolution, globally asynchro-
nous locally synchronous (GALS) architecture, recurrent neural
network (RNN), sparse coding, sparsity optimization.

I. INTRODUCTION

NEUROINSPIRED sparse coding algorithms have been
applied to various types of sensory inputs, including

image [1]–[3], audio [4], [5], and video [6]–[8], for feature
extraction in a wide range of applications such as denois-
ing [9], [10], super-resolution [11], [12], object recogni-
tion [13], [14], and face recognition [15].

The classic sparse coding is mapped to a fully connected
recurrent neural network (RNN) [16], and application-specific
integrated circuits (ASICs) have been designed to achieve
impressive performance and efficiency [14], [17]. However,
the ASIC designs have been limited to relatively small feature
sizes, e.g., 4 × 4, and small input image patch sizes, e.g.,
up to 16 × 16. The designs are not scalable to efficiently
support applications that require larger feature sizes or larger
input patch sizes. Convolutional sparse coding was therefore
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introduced to improve sparse coding’s scalability by exploiting
the shift-invariant characteristic commonly found in sensory
inputs [18], [19].

Although convolutional sparse coding is scalable in theory,
a number of important challenges still remain. First, sparse
coding is meant to be a universal encoding algorithm that
is input agnostic, but until now, it is unclear whether a
universal, or programmable, hardware can be made to extend
the applicability of sparse coding to more than one application.
Second, convolutional sparse coding is implemented in a
convolutional RNN that requires iterations of feedforward
and feedback convolution operations. Compared with popular
feedforward convolutional neural networks (CNNs), a convo-
lutional RNN requires possibly an order of magnitude or more
operations than a comparable CNN.

To address the programmability and complexity challenges,
we note two design opportunities. First, if a configurable
convolution engine can be made to support various kernel
sizes, a convolutional sparse coding hardware can be made
programmable to support different applications. Second, con-
volutional sparse coding and sparse coding, in general, provide
inherent data sparsity that can be leveraged to reduce the
computational complexity to improve both performance and
efficiency.

Convolution engines supporting the configurable kernel size
have been reported recently [20]–[24]. However, in these
designs, the hardware, i.e., multipliers and adders, cannot be
fully utilized in supporting all kernel sizes, and these designs
are unable to further improve their performance by exploiting
input sparsity effectively. A sparse convolution engine was
presented to increase the throughput by skipping zeros in
the input [25]; however, it only supports a fixed kernel size,
so its application is limited. A scalable hardware architecture
consisting of asynchronous modules has been designed for
spiking neural networks [26], [27], but the development of
such asynchronous designs requires specialized CAD tools,
which are not readily accessible.

In this paper, we present a configurable spiking convolu-
tional sparse coding accelerator that incorporates three new
features to advance the state of the art:

1) a new programmable convolution architecture, named
maze convolution, that supports configurable kernel
sizes and the full utilization of the hardware for all
supported kernel sizes;
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2) a new zero-patch skipping technique that effectively
exploits the sparsity in the input to increase the per-
formance and efficiency of sparse convolutions;

3) a scalable globally asynchronous locally synchronous
(GALS) hardware architecture that does not require
specialized CAD tools and can be implemented in the
standard digital design flow.

A prototype 40-nm test chip was designed to demon-
strate the performance of 718GOPS at 380 MHz, consuming
257 mW. The prototype chip can be programmed for a
variety of applications for learning and extracting features,
and performing classifications.

II. SPARSE NEURAL CODING ALGORITHM AND MAPPING

Sparse coding is a neuroinspired coding algorithm that
attempts to find efficient, sparse representation of input stim-
ulus. Through learning, sparse coding can be used to develop
a dictionary of basis functions, or features, that are the
representative of the underlying structure in the data.

For sparse coding, the learning is unsupervised, so it can
be deployed in the field and learned directly from unlabeled
data. The resulting dictionary is overcomplete, meaning that
the size of the dictionary is larger than the input dimension.
The dictionary is developed in a way so as to maximize the
sparsity of the representation, which is a key feature of sparse
coding. After learning converges, sparse coding can be used
for inference to encode an input stimulus using the learned
dictionary.

Mathematically, sparse coding can be described by x = a�,
where x is a given input, � is the dictionary, and a is
the coefficient vector that is inferred by sparse coding. The
objective of sparse coding is to find a that minimizes the
encoding error and maximizes the sparsity of a, i.e.,

arg min
a

(�x − a��2 + λT (a)) (1)

where T is a threshold function and λ controls the weighting
between the encoding error term and the sparsity term.

It is advantageous to adopt sparse coding in designing
practical image, video, and audio processing systems, as it
learns a good dictionary that is the representative of the data,
and it allows the compression of large, dense inputs to sparse
coefficient vectors, akin to compressive sampling.

From the hardware design point of view, sparse coding
produces sparse coefficient vectors, which simplify down-
stream processing to improve the throughput and the energy
efficiency. Unlike conventional image and video codecs whose
dictionary of basis functions conveys a little information about
the input, the dictionary learned by sparse coding consists
of representative features. As such, the encoding contains
meaningful information as to which features are existent
and important in the input. After sparse coding, downstream
processing can be carried out directly in the encoded, i.e., com-
pressed, domain.

A. Locally Competitive Algorithm

One of the earliest sparse coding algorithms Sparsenet
solves the optimization of (1) using a conjugate gradient

descent method [1]. A hardware implementation of conjugate
gradient descent is however inefficient. Rozell et al. [16] intro-
duced a sparse coding algorithm named locally competitive
algorithm (LCA) that makes use of an RNN to solve the opti-
mization of (1). The RNN can be efficiently parallelized and
mapped to hardware, making it more appealing for practical
applications.

In the LCA formulation, each neuron retains a feature and
a potential that is charged with input stimuli through feed-
forward connections, and discharged with lateral inhibition
through feedback connections. Inference using LCA is carried
out over iterations. An iteration consists of a feedforward step
for the input stimuli to excite the neurons and a feedback step
for the neurons to inhibit or “compete” with each other to
represent the input. A typical inference converges in a few
tens of iterations.

In performing the feedforward and feedback steps, a few
simple rules are followed: 1) the closer a neuron’s fea-
ture resembles the input, the faster the neuron’s potential is
charged; 2) a pair of neurons’ inhibition is the strongest if the
pair shares similar features; and 3) a neuron of high potential
leaks faster than a neuron of low potential. Combining these
rules, LCA’s inference is described mathematically by the
following equations:

�u = �T x − (�T � − I )T (u) − u

u� = u + α · �u (2)

where u is an N-dimensional vector that stores neuron poten-
tials, x is an M-dimensional vector that stores input stimuli,
� is an M × N matrix that stores the dictionary, I is an
identity matrix that is used to remove self-inhibition, T is the
threshold function, α is the step size, and u� is the updated
neuron potential vector. In (2), �T x describes the feedforward
excitation; −(�T �−I )T (u) describes the feedback inhibition;
and −u describes the leakage term.

Thanks to the RNN formulation, LCA is suitable for hard-
ware implementation, and it has been successfully demon-
strated in hardware for image classification [14]. However,
LCA relies on a fully connected network with both feedfor-
ward and feedback connections, i.e., each neuron is connected
to all the inputs and all the other neurons. The fully connected
network does not scale with the input dimension.

B. Convolutional Formulation of LCA (CLCA)

Features in images tend to be shift-invariant, meaning that a
feature may appear at different locations in an image. Scanning
(i.e., convolving) the image with small-sized features known
as kernels is much more efficient than processing the image
using features of the same size as the image itself.

Taking advantage of this insight, Schultz et al. [19] intro-
duced convolution to the original LCA algorithm to improve
scalability by using small-sized kernels. In convolutional LCA,
the operational steps are the same as in LCA, but each
neuron is equipped with a potential map, as opposed to a
single potential, to keep track of the potential updated by the
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Fig. 1. Hardware mapping of the spiking convolutional sparse coding algorithm. In the first iteration, the input image is selected and the convolution result
is stored in the excitation map. In the subsequent iterations, the image reconstructed by the previous iteration’s feedback operation is selected. The neuron
generates spikes when the potential exceeds a threshold. The collection of spikes forms the sparse representation of the input image.

Fig. 2. Block diagram showing the system containing a hub and 48 neurons, all running in different clock domains.

following equation:

�ui = (
φT

i ∗ x
) − φT

i ∗
⎛

⎝
N∑

j

φ j ∗ S(u j )

⎞

⎠ − ui . (3)

Equation (3) largely resembles (2) except that matrix mul-
tiplications are all replaced by 2-D convolutions, and a binary
threshold function S is applied, i.e., S(x) = 1 if x is
above a threshold, otherwise S(x) = 0. Equation (3) can
be implemented in a convolutional RNN that consists of:
1) φT

i ∗ x as the feedforward operation in the first iteration;
2)

∑
j φ j ∗ S(u j ) as the feedback operation; 3) φT

i ∗ ∑
j φ j ∗

S(u j ) as the feedforward operation in subsequent iterations;
and 4) −ui as the leakage term in every iteration. Mapping
of (3) to hardware is shown in Fig. 1.

III. SYSTEM ARCHITECTURE

To implement a convolutional RNN for sparse coding,
a modular hardware architecture consisting of a single hub and
a multitude of neurons is designed as shown in Fig. 2, where
the feedforward operations are distributed to the neurons, and
the neuron output, in the form of binary spikes, is sent to the
central hub for feedback operations. The sparse neuron spikes
allow us to share one hub for feedback operations.

In a feedforward operation, the hub broadcasts a dense input
image (in the first iteration) or a sparse reconstructed image
(in subsequent iterations) to neurons. Upon receiving an
image, each neuron convolves it with its kernel and accumu-
lates the result to the potential map. Spikes will be generated
for locations in the map that exceed a threshold. The convolu-
tion is performed by the proposed convolution engine that is

optimized for both dense and sparse input with a configurable
kernel size. The design of the convolution engine is described
in Section IV.

In a feedback operation, neuron spikes are convolved with
their kernels to reconstruct the input image. A direct imple-
mentation of this convolution is computationally expensive.
We take advantage of the binary spikes to replace all multi-
plications in the convolution by additions, and further make
use of the high sparsity of the spikes (typically >80% sparse)
to design a sparsely activated spike-driven reconstruction that
saves computation, power, and chip area. The design of the
spike-driven reconstruction is described in Section VI.

Each neuron is equipped with one 8-Kb (32 b×32 b×8 b)
excitation memory, which buffers the excitation computed
in the first iteration, one 8-Kb (32 b×32 b×8 b) potential
memory, and a 1.8-Kb (15 b×15 b×8 b) latch-based kernel
buffer. The hub contains 96-Kb (48 b×16 b×16 b×8 b)
kernel memory, 19-Kb kernel non-zero (NZ) memory, 32 Kb
(32 b×32 b×16 b×2) image memory, and 4-Kb image NZ
memory. NZ memory provides fast NZ entry lookup and
is described in Section V. Image memory and image NZ
memory are double-buffered, enabling seamless data transfer
from one feedback operation to the next iteration’s feedforward
operation. With these memory configurations, the system can
process up to 15 × 15 kernel size and 32 × 32 image size.
An input image exceeding this size needs to be divided
into sub-images, with overlaps if necessary to minimize edge
artifacts. Note that the kernel and the image size are not limited
by the architecture, but by the available on-chip memory.

The modular structure is made possible by deploying
a voltage-controlled oscillator (VCO) in every neuron and
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Fig. 3. Three modes of a 2 × 2 configurable convolver. (a) Mode 1 adds four products and accumulates the sum to one of the four buffer entries. (b) Mode
2 operates in 2-way parallel, each adding two products and accumulating the sum to one of the two buffer entries. (c) Mode 3 operates in 4-way parallel,
each accumulating one product to one buffer entry.

the hub. The hub broadcasts commands and data to all neurons
through a 128-bit (time-multiplexed 128-bit command and
16 8-bit data) asynchronous FIFO, and each neuron sends
neuron spikes back to the hub through a 10-bit (5-bit x- and
y-coordinates) asynchronous FIFO. The design of asynchro-
nous FIFOs is described in Section VII.

The accelerator is initialized by populating the kernel and
kernel NZ memories with data loaded through a 16-bit bidirec-
tional direct memory access (DMA) interface in the hub, which
is also used to off-load neuron spikes for verification. A UART
interface in the hub is used for controlling operations and
setting configurations such as the kernel size and the number
of iterations. As a demonstration of an integrated system,
the accelerator is integrated with an OpenRISC processor,
which can be tasked with learning and other postprocessing
operations.

IV. CONFIGURABLE CONVOLVER

A 2-D convolution operation can be viewed graphically by
sliding the kernel on the top of the input image and computing
one inner product of the kernel with the covered image portion
per step of the slide. Each inner product involves an elemen-
twise product of the kernel and the covered image portion
followed by the summation of the elements. If the kernel size
is fixed, a parallel compute array can be designed to support
the inner product computation. In the following, we will refer
to the inner product compute array as a convolver. If the size
of the kernel varies, a convolver of a fixed size cannot be
efficiently utilized. How to design a configurable convolver
to support different kernel sizes while achieving the highest
utilization is a challenge.

A. Fractional Partition and Combine

To address this challenge, our high-level idea is to design a
fixed C ×C convolver, and partition a K × K (K > C) kernel
into C×C sub-kernels that can be directly mapped to the C×C
convolver. Convolutions by sub-kernels produce partial sums,
and the complete convolution results are formed by adding
the partial sums. If a kernel cannot be partitioned into an
integer number of C × C sub-kernels, a naïve design would
result in the underutilization of the convolver. To overcome this
inefficiency, we apply a new fractional partition and combine
scheme to ensure the full utilization of the hardware.

For simplicity, we will use a C = 2, 2 × 2 convolver for
illustration. A 2 × 2 convolver is made of four multipliers
and four adders. We add configurable input connections to
the adders and a multi-port buffer memory with four entries
to make a configurable convolver that supports three basic
modes.

In mode 1, as shown in Fig. 3(a), the convolver com-
putes four products and a 4:1 summation, i.e., sums the
four products and accumulates the sum in one of the four
buffer entries. In mode 2, as shown in Fig. 3(b), the con-
volver functions as two independent sub-convolvers work in
parallel. Each sub-convolver computes two products, sums
them, and accumulates in one of the buffer entries. In mode
3, as shown in Fig. 3(c), the convolver functions as four
independent sub-convolvers. Each sub-convolver performs
one product followed by the accumulation in one buffer
entry.

With the configurable convolver, we illustrate our fractional
partition and combine scheme in Fig. 4 for an example of a
2 × 2 configurable convolver computing the convolution of a
3 × 3 kernel with a 4 × 4 image. The convolution will create
four output values. In this case, K = 3 is not divisible by
C = 2, so fractional partition is done as follows: the 3 × 3
kernel is partitioned into four sub-kernels: a 2 × 2 square,
a 2 × 1 column, a 1 × 2 row, and a 1 × 1 element. We show
the four sub-kernels in Fig. 4(a) and highlight how each is
used to compute partial sums. Note that except for the 2 × 2
square, the other three partitions are fractional.

The convolution proceeds as illustrated in Fig. 4(b) by
convolving sub-kernels with the input image using the 2 × 2
configurable convolver. In step 1, mode 1 is set to convolve
the 2 × 2 sub-kernel with the top-left 2 × 2 input image
patch. In step 2, the 2 ×2 sub-kernel slides one row down the
input image to compute another 2 × 2 convolution. Similarly,
in steps 3 and 4, the 2 × 2 sub-kernel slides one column
right and one row up, respectively, to compute the 2 × 2
convolutions. In step 5, mode 2 is set to convolve the 2 × 1
sub-kernel with two 2 × 1 columns in the input image. The
two 2 × 1 fractional partitions are combined to fully utilize
the convolver. A similar operation is done in step 6. In step 7,
mode 3 is set to convolve the 1×1 sub-kernel with four 1×1
elements in the input image. The four 1×1 fractional partitions
are combined to ensure the full utilization of the hardware.
In steps 8 and 9, mode 2 is set to convolve the 1×2 sub-kernel
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Fig. 4. Convolution of a 3 × 3 kernel with a 4 × 4 image. (a) Computation of the four output values. (b) Compute the convolution in nine steps using the
2 × 2 convolver. The convolver is set to mode 1 for steps 1–4, mode 2 for steps 5 and 6, mode 3 for step 7, and mode 2 for steps 8 and 9.

Fig. 5. Maze path for a 3 × 3 kernel. (a) When overlaid on image, the path
represents how it is traversed by the 2 × 2 convolver. (b) When overlaid on
kernel, the sub-paths cover the sub-kernels used in the corresponding steps.

with two 1 × 2 rows in the input image. Again, the two 1 × 2
fractional partitions are combined.

By partitioning a kernel to sub-kernels and mapping frac-
tional sub-kernel convolutions from consecutive steps on the
convolver, we ensure the full utilization of the hardware
and reduce the number of processing steps from 16 to 9 in
this small example, achieving the highest efficiency and the
minimum latency.

B. Maze Convolution

Notice from the small example that the steps are designed
to maximize data reuse following two principles: 1) steps
that use the same convolver mode are grouped together to
maximize the reuse of the same sub-kernel and 2) only allow
a single row or column slide in the input image between
steps to maximize the reuse of the input. These principles lead
to a carefully designed maze walking path that traverses the
input image, as illustrated in Fig. 5(a). The maze walking path
consists of a set of sub-paths that start with a dot and end with
an arrow, and each sub-path corresponds to a convolver mode,
as illustrated in Fig. 5(b). We name the convolution following
the maze walking path “maze convolution.”

Having a dedicated maze path for each kernel size allows
us to maximize data reuse, but it also increases the storage
requirement and control complexity. Fig. 6(a) illustrates a
maze path for a 5 × 5 kernel that maximizes data reuse. The
maze path uses two new types of sub-paths, as highlighted
in Fig. 6(a), adding extra storage requirement and control

Fig. 6. Construction of maze path for larger kernels. (a) To maximize data
reuse for the 5× 5 kernel, two new sub-path types are needed. (b) Maze path
constructed by adding one 2 × 5 segment and one 3 × 2 segment to the 3 × 3
maze path, all using the sub-paths already defined for 3 × 3 kernel. (c) Maze
path for 7 × 7 constructed by adding segments to the 3 × 3 maze path.

complexity. Instead, we can design the maze path for a large
kernel incrementally based on the sub-paths that are defined
for a small kernel. As illustrated in Fig. 6(b), the maze
path for the 5 × 5 kernel can be composed of the sub-paths
already defined for the maze path for the 3 × 3 kernel shown
in Fig. 5(b). High modularity is achieved by constructing the
maze path incrementally, as exemplified by the maze path for
the 7×7 kernel in Fig. 6(c), and maze paths for larger kernels,
e.g., 9 × 9, 11 × 11, and so on, can be constructed based on
the same principle.

C. Convolver Design Specification

To generalize, a C × C configurable convolver is made of
C2 multipliers, C2 adders, and C2 buffer entries. A C × C
convolver supports any convolution kernel size and image
size. Full utilization of the convolver can be achieved by
mapping the convolution of a K × K (K > C) kernel with
a (C + K − 1) × (C + K − 1) image, producing a C × C
output. Such a convolution requires K 2C2 multiplications and
accumulations, and only K 2 steps to complete on the C × C
convolver. A smaller image size can also be mapped, but
it would result in underutilization of the hardware. A larger
image can also be mapped, but for full utilization, the image
needs to be of the size ((C+K−1)+N K )×((C+K−1)+N K )
(N ∈ Z, N ≥ 0) or padded to the size.

In our design, padding is performed implicitly by the
controller to maintain a compact and constant memory size for
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TABLE I

COMPARISON OF SPARSITY UTILIZATION TECHNIQUES

the convolver, which is especially important for a configurable
convolver, because the size of padding varies for different
kernel sizes. After padding, a larger image is processed by
the configurable convolver one patch at a time. Each patch is
(C + K − 1) × (C + K − 1), and adjacent patches are offset
by K columns or K rows. The total number of patches is
(N + 1)2, and thus, the total number of steps to complete the
convolution is (K (N + 1))2.

V. SPARSITY OPTIMIZATION

If the input to a convolver is sparse, i.e., the input con-
tains many zero entries, there is a potential opportunity to
improve the design to increase the processing throughput and
efficiency. In particular, three methods have been demonstrated
in prior work. The first method, which we name zero-entry
masking [20], disables the multiply accumulate circuit when
encountering a zero in the input. Zero-entry masking reduces
the dynamic power consumption, but the throughput remains
constant, because it does not skip over a zero entry. The second
method, which we name zero-line skipping [25], skips over an
input line containing all zeros. Zero-line skipping increases
the throughput as the input sparsity increases, and it can
be combined with zero-entry masking to reduce the power
consumption. However, we notice that, in practice, it is more
likely to have an n × n (n ∈ Z, n > 0) square patch of
zeros than a 1 × n2 line of zeros. The third method, which
we name zero-entry skipping [28], [29], aims to skip over
all zeros in the input. Zero-entry skipping, albeit theoretically
optimal, requires complex control and incurs large hardware
overhead.

In this paper, we design a new sparsity optimization method
called zero-patch skipping to skip over square patches in the
input that contain all zeros. As shown in Table I, compared
with the three existing methods, zero-patch skipping offers
several advantages: 1) higher throughput than zero-entry mask-
ing; 2) more effective than zero-line skipping due to the higher
likelihood of encountering a square patch of zeros than a line
of zeros; and 3) lower hardware overhead than zero-entry
skipping thanks to the simpler per-patch-based control than
the entry-by-entry-based control.

To enable zero-patch skipping, we introduce a new data
structure called NZ map to associate with each input. Concep-
tually, an NZ map is constructed by scanning an I × I input
image with a C ×C NZ detector. The NZ detector outputs 1 if
at least one entry in a C×C patch is NZ, otherwise it outputs 0.
After scanning the I × I input, an (I −C +1)×(I −C +1) NZ
map is constructed. An NZ map example is shown in Fig. 7(a)
for the given input image.

Fig. 7. Example of zero-patch skipping. (a) NZ map obtained from scanning
the image with an NZ detector. (b) Maze path guided by an NZ map.

In practice, we do not use an NZ detector, because it would
be too costly in terms of latency. Instead, the NZ map is
built incrementally using very simple operations. In the first
iteration, the NZ map is initialized with all 1s, because the
input image is assumed to be dense. The NZ map is updated in
every subsequent iteration in the reconstruction process based
on the neurons, or kernels, that are activated. Since sparse
coding enforces sparse neuron spike, the NZ map will be
sparsely populated with 1s. The construction of the NZ map
will be discussed in detail in Section VI.

Maze convolution natively supports zero-patch skipping.
Guided by the NZ bit sequence obtained from traversing the
NZ map using the maze path, maze convolution skips steps
where the NZ bit is 0 to realize the sparsity-proportional
throughput increase. We show in Fig. 7(b) the NZ bit sequence
for the NZ map constructed in Fig. 7(a), and that five steps
are skipped in performing the maze convolution, effectively
doubling the throughput. Compared with [25], maze convolu-
tion with zero-patch skipping increases the throughput by up
to 40% at 90% input sparsity. The proposed maze convolution
with zero-patch skipping is equally applicable to CNNs [30].

VI. SPIKE-DRIVEN RECONSTRUCTION

Image reconstruction is performed at the end of each itera-
tion to compute the input for the next iteration. Reconstruction
latency therefore needs to be minimized so as not to halt the
next iteration. Reconstructing an image according to (3) is
costly in terms of both computation and latency as it involves
convolution of every neuron’s output with the neuron’s kernel
followed by the summation of all convolution results. How-
ever, in computing convolution, we are able to replace the
expensive multiplication with simple addition by exploiting
the neuron’s spiking output to reduce the computation cost
significantly. Furthermore, the sparse spikes allow us to hide
the latency by performing image reconstruction incrementally.

Triggered by a neuron’s spike, the hub performs image
reconstruction by retrieving the neuron’s kernel from the
kernel memory and accumulating the kernel in the image
memory, with the kernel’s center aligned to the spike location.
In parallel, the hub incrementally constructs the NZ map of the
reconstructed image by ORing the kernel’s NZ map retrieved
from the kernel NZ memory with the image NZ memory.
Constructing an NZ map incrementally eliminates the need
to scan the reconstructed image, saving both computation
and latency. Kernel NZ maps are pre-computed and loaded
to the kernel NZ memory during initialization. The spike-
driven reconstruction eliminates the need to store the spike
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Fig. 8. Asynchronous interface design. (a) Token-based asynchronous FIFO.
(b) Modified logic for the asynchronous FIFO to support broadcast.

map within each neuron, and a 16-entry FIFO in the hub is
sufficient for buffering spikes, cutting the storage by 2.5×.

VII. GLOBALLY ASYNCHRONOUS INTERFACES

We use a token-based asynchronous interface [31] to enable
the exchange of messages between neurons and the hub
that operate in different clock domains. The asynchronous
interface consists of a transmit clock domain (TCD) located
in the sender, a receive clock domain (RCD) located in the
receiver, and an N-entry memory storage bridging the two
clock domains as shown in Fig. 8(a).

TCD consists of a write pointer that selects the next entry,
N write token (WT) bits, and N synchronized read token (RT)
bits from the RCD. To send a message from the TCD to the
RCD, the message data are written to the entry pointed by
the write pointer, and the corresponding WT bit is toggled
before the write pointer is incremented. If the WT bit and
the synchronized RT bit pointed by the write pointer have the
same value, the entry has been read and is vacant for write;
on the other hand, if the WT bit and the synchronized RT
bit pointed by the write pointer in TCD have different values,
the data stored in the entry have not been read, indicating that
the FIFO is full. The RCD design follows the same principle.

We modify the FIFO full condition logic to allow one TCD
to broadcast data to M RCDs. When the WT bit pointed
by the write pointer is 0, the FIFO is full if any of the M
synchronized RT bits pointed by the write pointer is 1, which
can be detected by ORing these M synchronized RT bits; on
the other hand, when the WT bit is 1, the FIFO is full if any
of the M synchronized RT bits is 0, which can be detected
by ANDing these M synchronized RT bits. An example with
N = 2 and M = 2 is shown in Fig. 8(b). Compared

Fig. 9. Chip microphotograph.

Fig. 10. Chip power and area breakdown. (a) Power breakdown of the entire
chip. (b) Area breakdown of the entire chip. (c) Power breakdown of a single
neuron. (d) Area breakdown of a single neuron.

with a conventional handshake-based asynchronous FIFO that
requires two-way handshake, the token-based asynchronous
FIFO has lower transmission latency; however, it consumes
more routing resources, because, instead of just the transmitted
data, all entries are routed from TCD to RCD.

VIII. IMPLEMENTATION RESULTS

A 4.1-mm2 test chip is implemented in a 40-nm CMOS
process, and the core design occupies 2.56 mm2. The chip
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TABLE II

COMPARISON WITH PRIOR WORK

microphotograph overlaid with the floorplan is shown in Fig. 9.
We use a mixture of 80.5% high-VT and 19.5% standard-VT

cells to reduce the logic leakage power by 33% (8.3 mW).
Dynamic clock gating is applied to reduce the dynamic power
by 24% (52 mW). A total of 49 VCOs, 48 for neurons and
one for the hub, are instantiated, with each VCO occupying
only 250 μm2. A 4 × 4 configurable convolver and 4 × 4 NZ
detection are implemented, supporting the odd kernel size from
5×5 to 15×15; the maximum supported kernel size is limited
by the on-chip memory resource, not by the proposed maze
convolution. The chip achieves a maximum 718GOPS running
at 380 MHz with a nominal 0.9-V supply at room temperature;
here, we define an operation as an 8-bit multiply or a 16-bit
add.

Fig. 10 shows the power and area breakdown of the test
chip. As shown in Fig. 10(a), the hub typically has more
workload than individual neurons, and our experiments show
that a balanced clock setting, in which the neuron clock
frequency is lowered to 70% of the hub clock, can further
reduce the power consumption by a maximum of 22% with
less than 5% drop in the throughput. Maze convolution and
zero-patch skipping require a more complex controller, and
yet, this overhead is within 15% of the power and area budget
for a neuron We use two sample applications to demonstrate
the proposed accelerator: extracting sparse representation of
images and extracting depth information from stereo images.

To extract sparse representation, we ran the accelerator
with 7 × 7 kernels for 10 iterations per input image. The
inference result, i.e., the collected neuron spikes, represents
the sparse representation of the image. Kernels are trained
using unsupervised learning with the natural scene image
data set provided in [1]. When running at 380 MHz with a

Fig. 11. Measured power and throughput of (a) feature extraction application
and (b) depth extraction application.

0.9-V supply, the accelerator consumes 195 mW while pro-
viding 24.6 Mpixel/s throughput. Running at 120 MHz with
a 0.6 V supply, the power consumption is lowered to 35 mW,
as shown in Fig. 11(a), providing 7.6 Mpixel/s throughput.

To estimate depth from stereo images [32], we use one
accelerator per channel (left or right) to extract features. Both
the accelerators use 15 × 15 kernels and run for 10 iterations
per input image. Kernels are learned by training on the natural
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scene image data set. A simple matching algorithm can be
programmed on the on-chip OpenRISC processor to estimate
depth by comparing the distance between the locations where
the same feature appears in the two channels. When running
at 380 MHz with a 0.9-V supply, each accelerator consumes
257 mW while providing 7.68 Mpixel/s throughput. Running
at 120 MHz with a 0.6-V supply, the power consumption
is lowered to 45 mW, as shown in Fig. 11(b), providing
2.4 Mpixel/s throughput. Compared with the optimal baseline
designs without exploiting sparsity, the throughput of the two
tasks is improved by 7.7× and 9.7×, respectively.

IX. CONCLUSION

In this paper, we present a configurable convolver, maze
convolution with sparsity optimization, and modular archi-
tecture and load balancing enabled by GALS. Using these
techniques, we designed a convolutional RNN that implements
convolutional sparse coding for a range of applications. The
techniques are equally applicable to CNNs.

Compared with other state-of-the-art inference accelerators
in Table II, the proposed accelerator implements a convolu-
tional RNN that is configurable to support different kernel
sizes, and exploits sparsity to increase throughput and effi-
ciency. Compared with an ASIC implementation of sparse
coding based on fully connected RNN [14], this design is
scalable, configurable, and applicable to a wide range of
applications. Compared with popular feedforward CNNs [20],
[21], [25], the convolutional RNN implementing sparse coding
can be more versatile as it supports unsupervised learning.
The design sacrifices power efficiency and area efficiently by
a small factor compared with [25] to gain configurability.
Note that the supported image and the kernel size in this
paper are limited by the available on-chip memory, not by the
architecture, which in theory supports any image and kernel
size. By exploiting sparisity, the power efficiency and area
efficiency of this design easily overtake those of dense CNN
accelerators [20], [21].
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