Inference and Learning Hardware Architecture for
Neuro-Inspired Sparse Coding Algorithm

Chester Liu and Zhengya Zhang
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI, 48109-2122
Email: cwhliu@umich.edu, zhengya@umich.edu

Abstract—In this paper we present three hardware architec-
tures designed to accelerate the inference operation of a neuro-
inspired sparse coding algorithm. The memory and commu-
nication requirement of the three architectures are compared,
and we show that one architecture outperforms the other two
in scalability. A hardware system consists of an accelerator
and a general purpose processor is proposed for the inference
and learning operation. Two optimizations are proposed to
further improve the overall performance by skipping unnecessary
computations and autonomously learning the feature set.

I. INTRODUCTION

Neuro-inspired sparse coding algorithm extracts salient fea-
tures from the input; for instance, features in the shape of
edge and dot are extracted from images [1]. The algorithm is
agnostic to the input type and has been applied to other types
of input such as audio [2] and video [3]. In extracting the
features, as shown on the left in Fig. 1, the input is encoded
into a sparse representation using a feature set that has been
learned for the input type. The sparse representation can be
processed by a downstream post-processing for applications
such as classification and recognition. The input can be
reconstructed, or decoded, from the sparse representation, as
shown on the right in Fig. 1.

Recently, there is a growing interest in hardware acceler-
ation of this type of algorithm [3]-[5], as it creates sparse
output, which provides great opportunity for optimization, and
it is trained by unsupervised learning, making it suitable for
applications that require continuous learning. In this paper,
we compare the memory and communication requirement
of three accelerator architectures (Section III), followed by
two optimization techniques proposed to improve the overall
system performance (Section IV).

II. SPARSE CODING

For a set of input data, sparse coding learns a feature set,
and finds a sparse representation for each individual input so
as to minimize the coding error between the original input and
the one reconstructed from the sparse representation. In sparse
coding, an input is represented, or encoded, by a coefficient
vector containing many zero values. An input can also be
reconstructed, or decoded, as a linear combination of the

978-1-5386-3603-9/18/$31.00 ©2018 IEEE

Input Reconstructed Input
A
Encode Feature Set Decode
or or
Represent Sparse coding Reconstruct
v

Sparse Representation

v

Post-processing

Fig. 1. Sparse coding operations overview

features with the coefficients. Mathematically, sparse coding
can be described by the following optimization problem

min <||><—<I>a|2 +v5(a)>)

where x is an input, ®a is the reconstructed input in which
® is the feature set and a is the coefficient vector, S is an
activation function used to enforce sparsity by penalizing non-
zero coefficients, and ~ controls the weighting between the
coding error ||x — ®al|” and the sparsity penalty S(a).

One of the earliest sparse coding algorithms solves the
optimization of (1) using conjugate gradient descent (CGD)
method [1]. However, a hardware implementation of CGD is
inefficient. Rozell et al. introduced a sparse coding algorithm,
named locally competitive algorithm (LCA) [6], that makes
use of a neural network with recurrent connections to optimize
(1). Compared to CGD, the recurrent neural network (RNN)
used by LCA can be parallelized and mapped to hardware
efficiently, making it more practical for hardware implemen-
tations.

Given a set of input data, learning refers to the optimization
of (1) over the feature set. And for a given input, the process
of determining the coefficients that minimize (1) is called
inference. In LCA, before the optimal feature set is found, the
optimization of (1) alternates between inference and learning.
In performing the inference operation, (1) is optimized over
a while ® is held constant. During the learning operation, ®
is updated while a remains fixed. Once the optimal feature
set is learned, it can be fixed for the inference operation, and

the learning operation can be disabled unless an incremental
learning is required to adapt the feature set to new inputs.

A. LCA Inference Operation

Inference for LCA is carried out over iterations. In the RNN
used by LCA, each neuron retains a neuron potential that is
updated in each iteration by the following equation

u = u+nAu)

where u is the current potential, Awu is the potential update,
u’ is the new potential, and 7 is a user-defined step size.
Depending on the application, a typical inference converges
in a few tens of iterations, and the inference result is defined

as a = T'(u) in which

u—A, ifu>A\
T(u) = X 3)
0, otherwise

where 7' is an activation function and A is a user-defined
threshold value that is used to control the sparsity: larger A
results in higher sparsity, i.e., more zero values.

The computation of the potential update consists of a
feedforward term for the input to excite the neurons, and a
feedback term for the neurons to inhibit or “compete” with
each other to represent the input. For a network containing N
neurons, the potential update vector is calculated by

Au=0Tx — (®T®d - Iy —u “4)

where x is a M -dimensional input vector, ® is a M x N feature
set matrix in which each column stores a neuron’s feature, I is
a N x N identity matrix, and y is equal to T'(u), which is a N-
dimensional neuron output vector. In (4), ®”'x accounts for the
feedforward excitation which measures feature’s resemblance
to the input; feedback inhibition between two neurons is
stronger if they share similar feature, and is described by
—(®T® — I)y in which the identity matrix removes self
inhibition as LCA requires features to have unit L2 norm;
and —u is the neuron potential leakage. Equation (4) can be
rearranged into

Au=3T(x - dy)+y—u 6))

Note that inhibitions between neurons are calculated in (4),
whereas in (5) a reconstruction is carried out. Both (4) and
(5) are in vector form as they calculate the potential update
for all neurons. For an individual neuron it is calculated by

N
Au; = ¢l x — Z (@] &5)y;) — wi (62)
j=L#i
N
Aui = ¢ (x = D (ds15)) + vi — ui (6b)
j=1

where (6a) and (6b) are the scalar form of (4) and (5),
respectively.

B. LCA Learning Operation

Learning for LCA is unsupervised as it self-adapts the
features @ to better represent the input without requiring any
label. Rozell et al. mapped the optimization of (1) over ¢
to the recurrent neural network and derived the following
learning rule

' =P+ aAD

A = (x — da)a’ @

where A® is the feature update, ®’ is the updated feature
set, and « is a user-defined learning rate. For a given input,
inference is performed before learning can be carried out
as the inference result, i.e., a, is required in calculating the
feature update. In (7), @y is the reconstructed input and
(x—®y) represents the coding error. Intuitively, in performing
learning, (7) can be understood as minimizing the coding error
introduced by each individual neuron.

III. INFERENCE HARDWARE ARCHITECTURES

In this section we compare three different architectures de-
signed to accelerate the inference operation for LCA. The first
two architectures are designed based on (6a). Neurons in these
architectures have fully-connected feedback connections with
other neurons, and the feedback computation is distributed to
the neurons. The two architectures differ in the type of data
sent from neurons for feedback computation. Neurons in the
third architecture, which is based on (6b), are connected to a
centralized hub responsible for the feedback computation and
there is no connection between neurons.

A. Distributed Feature Feedback Architecture (DFFA)

In this architecture, the potential update is calculated using
(6a), and each neuron retains a feature, a potential, and an
output coefficient, as illustrated in Fig. 2a. In computing the
feedforward excitation, the input is sent to all neurons, and is
multiplied with the feature of each individual neuron in paral-
lel. When a neuron’s potential exceeds the threshold, namely
y > 0, the neuron inhibits other neurons by broadcasting its
feature, which will be used by other neurons in computing the
feedback inhibition.

The total memory storage requirement for features in this
architecture is O(NM), as each neuron needs to store its
own feature. To support broadcast, a neuron requires M
connections to the input and (N — 1)M connections to the
other neurons, requiring in total O(NM) feedforward con-
nections and O(N2M) feedback connections. By distributing
the feedforward and feedback computation to neurons, this
architecture achieves high modularity and parallelism. How-
ever, this architecture has limited scalability since the number
of feedback connections grows quadratically with the neuron
number.

B. Distributed Coefficient Feedback Architecture (DCFA)

This architecture shares a similar structure with DFFA, as
illustrated in Fig. 2b. The feedforward computation is the same
as in DFFA, and the potential update is also calculated using

Neurons

o

Neurons

¢ 7]

4 7]

X (0

¢N (0]

() (b)

Neurons

;
1
Hub
X > »
Yi - »2 q)
Oy :
bn

©

Fig. 2. Three accelerator architectures for LCA inference operation: (a) Neuron features are broadcast for a distributed feedback computation. (b) Neuron output
coefficients are broadcast for a distributed feedback computation. (c) Neuron output coefficients are sent to the hub for a centralized feedback computation.

TABLE I
COMPARISON OF MEMORY AND COMMUNICATION REQUIREMENT
Architecture Memory Feedforv\(ard Feedbafzk
connection connection
DFFA O(NM) O(NM) O(N2M)
DCFA O(N2M) O(NM) O(N?)
CRFA O(NM) O(NM) O(NM)

(6a). But unlike DFFA, in which each neuron only retains
its own feature, neurons in this architecture retain the entire
feature set. When a neuron’s potential exceeds the threshold,
the neuron broadcasts its output, which will be used by other
neurons to lookup the feature set in computing the feedback
inhibition.

This architecture achieves the same level of modularity and
parallelism as in DFFA. Compared to DFFA, this architecture
requires less feedback connections, i.e., O(N?), as features
are not broadcast from neurons. As a trade-off, the total
memory requirement for features is increased to O(N2M) in
order to store the feature set in every neuron. Implementations
based on this architecture typically lead to a better hardware
utilization than DFFA. An ASIC design based on this architec-
ture has demonstrated very high throughput for a network of
256 neurons [7]. This architecture, however, also has limited
scalability since the memory requirement grows quadratically
with the neuron number.

C. Centralized Reconstruction Feedback Architecture (CRFA)

Neurons in this architecture retain their own feature. A
centralized hub which retains the entire feature set is added and
connected to all neurons, as illustrated in Fig. 2c. The potential
update is calculated using (6b), of which the feedforward
and the feedback computation are carried out by the neurons
and the hub, respectively. In performing the feedforward
computation, the coding error, i.e., the difference between
the original input and the reconstructed input, is sent to all
neurons. Unlike the two distributed architectures, in which
neurons are fully-connected with each other, neurons in this

architecture are only connected to the hub and there is no
inter-neuron connection. When a neuron’s potential exceeds
the threshold, the neuron sends its output to the hub. In
performing the feedback computation, the hub collects output
from neurons and reconstructs the input, which will be used
in the next iteration.

Each neuron and the hub require O(M) and O(NM)
memory storage for the feature and the feature set, respec-
tively, requiring in total O(N M) feature memory storage. The
number of feedforward and feedback connection in this archi-
tecture are both O(NM). This architecture achieves the best
scalability by combining the advantage of the two distributed
architectures: (1) storing individual feature in neurons for the
feedforward computation, and (2) having another copy of the
feature set to reduce the number of feedback connections.
Compared to the distributed architectures, which can be made
fully parallel and each neuron has similar workload, the hub
in this architecture could become the performance bottleneck
as the workload of the hub is significantly higher than the
neurons. In preventing the hub from becoming the bottleneck,
[5] designed an event-driven reconstruction to reduce the
computation carried out at the hub by taking advantage of
the sparsity. To further improve the throughput, a globally-
asynchronous locally-synchronous structure is deployed in [5]
so as to balance the throughput between neurons and the hub
by adjusting their clock frequency.

IV. PROPOSED HARDWARE SYSTEM

A hardware system consists of an accelerator and a general
purpose processor, as illustrated in Fig. 3, is proposed to
accelerate the LCA inference and learning operation. Inference
operation is carried out by the accelerator implemented using
CRFA, which is the most scalable architecture discussed in
Section III. The processor incorporated in the system can be
programmed to control the accelerator and perform learning
operation that follows (7). The inference and learning effi-
ciency is further improved by two optimizations discussed in
the following subsections.

Neurons

Hub

Input
Reconstruction

0]

Sparsity Potential
Optimization | Update b1
Sparsity Potential
Optimization | Update b,
Sparsity Potential @l
Optimization | Update by

\/

Autonomous

. Processor
Learning

Fig. 3. The proposed hardware system consists of a CRFA accelerator for the inference operation and a general purpose processor for the learning operation.

A. Sparsity Optimization for Inference

In performing inference, typically the excitation to most of
the neurons is substantially lower than the threshold, leading
to a high sparsity in neuron output, i.e., only a few neurons
will have nonzero output. Prior work has demonstrated that
sparsity can be exploited to improve computation efficiency
by time-sharing critical hardware resource [7] or by skipping
redundant computations [5], [8]. However, they only focused
on improving the feedback computation efficiency. Here we
show that sparsity can also be exploited to improve feedfor-
ward computation efficiency for CRFA.

In the first iteration, all neuron outputs are zero, i.e., y; = 0;
therefore, (6b) is reduced to Au; = ¢! x, which is defined as
the excitation. If the excitation to a neuron is r times smaller
than the threshold, where r is the number of iterations, then the
neuron potential will not accumulate above the threshold so the
neuron can be disabled to reduce power consumption. A user-
specified sparsity can be enforced by disabling more neurons.
For example, if the target sparsity is s, then neurons with
excitation smaller than s\/N are to be disabled. Disabling
extra neurons helps further reduce the power consumption at
the cost of suboptimal inference result.

B. Autonomous Learning

Conventionally learning is viewed as a separate process
from inference. For example, a convolution neural network
(CNN) based design typically does not support on-chip learn-
ing as the computation of learning is too costly and is
drastically different from inference. Learning for LCA can be
readily supported by the inference accelerator based on CRFA
as the reconstructed input, which requires the most compu-
tation in the learning operation, is already computed by the
hub during the inference operation. In performing the learning
operation, the processor is programmed to compute the feature
update for each neuron by multiplying the reconstructed input
with the neuron output. The feature update is scaled and
accumulated to the current feature by the processor. The hub
in CRFA performs reconstruction in every iteration, meaning
that, compared to [7] which is implemented using DCFA
and an explicit reconstruction step is needed in performing

learning, the added hardware for learning in the proposed
system is minimal.

Interestingly, the LCA learning operation can be made
autonomous by adding a simple MAC that calculates the
reconstruction error as the hub performs reconstruction. Learn-
ing can be automatically triggered when the reconstruction
error exceeds a user-defined threshold value. And if the
reconstruction error is sufficiently larger than the threshold,
then a different set of features may need to be loaded.

V. CONCLUSIONS

In this paper, we compare three accelerator architectures
for LCA inference operation. A hardware system consists
of an accelerator and a general purpose processor for LCA
is presented. Two optimization techniques, i.e., feedforward
sparsity optimization and autonomous learning, are proposed
to further improve the system performance.

ACKNOWLEDGMENT

This work was supported in part by SONIC, DARPA
UPSIDE and Intel Corporation.

REFERENCES
(1]

B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, pp. 607-609, June 1996.

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-invariant sparse
coding for audio classification,” in Twenty-Third Conference on Uncer-
tainty in Artificial Intelligence, July 2007, pp. 149-158.

C.-E. Lee, T. Chen, and Z. Zhang, “A 127mW 1.63TOPS sparse spatio-
temporal cognitive SoC for action classification and motion tracking in
videos,” in IEEE Symposium VLSI Circuits, August 2017, pp. 226-227.
J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “Efficient hardware architec-
ture for sparse coding,” IEEE Transactions on Signal Processing, vol. 62,
no. 16, pp. 4173-4186, August 2014.

C. Liu, S.-G. Cho, and Z. Zhang, “A 2.56mm? 718GOPS configurable
spiking convolutional sparse coding processor in 40nm CMOS,” in /[EEE
Asian Solid-State Circuits Conference (A-SSCC), November 2017, pp.
233-236.

C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen, “Sparse
coding via thresholding and local competition in neural circuits,” Neural
Computation, vol. 20, no. 10, pp. 2526-2563, October 2008.

J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640M pixel/s 3.65mW
sparse event-driven neuromorphic object recognition processor with on-
chip learning,” in IEEE Symposium VLSI Circuits, June 2015, pp. 50-51.
P. Knag, C. Liu, and Z. Zhang, “A 1.40mm? 141mW 898GOPS sparse
neuromorphic processor in 40nm CMOS,” in [EEE Symposium VLSI
Circuits, June 2016, pp. 180-181.

[2]

(3]

[4]

[5

—

[6

—_

(71

(8]

