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Abstract—A  40nm, 2.56mm?, 2048-neuron globally asyn-
chronous locally synchronous (GALS) spiking neural network
(SNN) chip is presented. For scalability, we allow neurons to
specialize to excitatory or inhibitory, and apply distance-based
pruning to cut communication and memory. An asynchronous
router limits the latency to 1.32ns per hop. The reduced traffic
and lower latency allow the input channel to be parallelized to
achieve 7.85GSOP/s at 0.7V, consuming 5.9pJ/SOP.

Index Terms—spiking neural network, asynchronous network-
on-chip, distance-based pruning, deadlock handling.

I. INTRODUCTION

Bio-inspired spiking neural networks (SNN) have been
demonstrated to perform versatile cognitive tasks. The size of
a SNN, i.e., number of neurons, determines the capability of
the SNN. To enable the efficient mapping of large-scale SNNs,
hardware accelerators have been designed using modular tiles
and network-on-chip (NoC) [1]-[3]. However, the synapse
count scales quadratically with the number of neurons. Scaling
up a SNN eventually saturates NoC and on-chip memory
bandwidths, leading to a higher latency and energy. A high
latency, in particular, affects the dynamics of a SNN and
degrades its performance [4].

In this work, we allow neurons to specialize to either ex-
citatory or inhibitory and apply distance-based pruning to cut
the communication traffic and memory size. An asynchronous
router design limits the average latency to 1.32ns per hop,
3.1x lower than the state-of-the-art design [1]. The results
are demonstrated in a 2.56mm?2, 2048-neuron, 16-tile globally
asynchronous locally synchronous (GALS) SNN chip in 40nm
CMOS. The reduced traffic and lower latency allow the input
channel to be parallelized by 4x to achieve 7.85GSOP/s at
0.7V, consuming 5.9pJ/SOP, where a SOP denotes a synaptic
operation that conveys a spike from a neuron to another
through a nonzero unique synapse [1], [2].

II. NEURON SPECIALIZATION AND DISTANCE-BASED
PRUNING

Biological neurons are not homogeneous. Rather, they are
specialized to excitatory neurons (E neurons) that are stim-
ulated by inputs, and inhibitory neurons (I neurons) that are
stimulated by E and I neurons [5]. Illustrated in Fig. 1, E
neurons, which are the majority, do not suppress E neurons
directly; whereas 1 neurons, the minority, suppress both E
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Fig. 1. Neuron specialization to E and I neurons; and distance-bounded
routing and the resulting traffic reduction.

and I neurons. An N-neuron fully-connected SNN requires
nearly N2 synapses and N2 weights. By specializing M
(M < N) neurons to I neurons, and N — M neurons to
E neurons, the number of synapses and weights are reduced
by approximately N/M. Known algorithms, such as E-I Net
[5], have shown competitive classification performance using
networks of specialized neurons.

Connections between biological neurons are distance-
dependent with dense connectivity between nearby neurons
and sparse connectivity between distant ones [6]. This property
motivates a design to constrain the connectivity between
neurons based on distance. As shown in Fig. 1, neurons within
a local group are fully connected and the connections between
distant groups are pruned. The distance-based pruning reduces
spike traffic by 52% to 95%, with a higher reduction for a
larger network. The pruned SNNs can be trained to perform
the same tasks with high efficacy based on our experiments.
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Fig. 2. GALS SNN architecture consisting of 4 X 4 neuron groups,
asynchronous NoC and input channels.

III. SNN ACCELERATOR DESIGN

A 2048-neuron SNN prototype is constructed as shown in
Fig. 2 by tiling 16 neuron groups in a 4 x 4 grid. As one
example, we choose 1/4 of the neurons to be configured as
I neurons and 3/4 to be E neurons, cutting the number of
connections and weights by 4x; and we apply a distance
bound of 2 hops to further reduce the spike traffic and the
number of weights by 24%. These choices are made to keep
the accuracy degradation of the SNN below 1% for a common
set of classification tasks.

Following the GALS architecture, each neuron group is
placed in a separate clock domain, and the groups are con-
nected to an asynchronous NoC to propagate sparse and
stochastic spike traffic. Asynchronous-to-synchronous (A2S)
and synchronous-to-asynchronous (S2A) FIFOs bridge syn-
chronous clock domains with the asynchronous NoC. To
reduce latency and the backpressure from the NoC, we al-
locate dedicate asynchronous input channels for the efficient
broadcast of dense input data.

By neuron specialization, distance-based pruning and dedi-
cate input channels, the processing bandwidth can be quadru-
pled with the support of 4 input channels, leading to a 4x
higher utilization of the neurons.

A. Neuron Group

Separated from A2S and S2A FIFOs, and an asynchronous
NoC router within a tile, a neuron group is comprised of 128
integrate-and-fire neurons configurable as either E neurons or
I neurons, as shown in Fig. 3. A neuron group receives inputs
and spikes that stimulate and inhibit the neurons, respectively.

The inputs received from the input channels are multiplied
by input weights to compute stimuli. The input weights are
quantized to 3b and cached in an 18kb input weight memory.
Spikes are received from neurons within the group and external
to the group from the router. The inhibitory weights are looked
up based on the spike address. The 2b nonuniform-quantized
inhibitory weights are cached in a 9kb inter-group weight
memory and a 0.375kb intra-group weight memory and the
2b weights are restored to 3b after being read out.

The 128 neurons, clustered in 4 arrays, accumulate stimuli
and subtract inhibitions to update potentials. Spikes are gen-
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Fig. 3. Neuron group design.

erated when a threshold is crossed. An arbiter and a FIFO
serialize the spikes for output.

B. Low-Latency Asynchronous Network-on-Chip

All the neuron groups and input/output buffers in the pe-
ripheral are connected through asynchronous NoC routers. The
router is designed in dual-rail logic [7], [8], which performs a
handshake transaction to transfer output of one gate to the next
gate in order to assure valid data flow without a synchronizing
clock signal.

An asynchronous NoC router multicasts spike packets from
a neuron group to other neuron groups as well as to an
output buffer designated for collecting the spike packets from
the group for downstream processing, e.g., classification. The
router provisions IN and OUT ports to each of the four
directions and the neuron group, as shown in Fig. 4.

In a conventional design, to guarantee the correct operation,
the input port switch needs to hold a transaction to all the
OUT ports until all the OUT ports respond. This mechanism
can cause one bottleneck to be propagated to all directions. To
alleviate the impact, we employ a branch buffer to enable the
independent completion transaction on each branch, freeing
an OUT port to handle a new request from other input ports
when the OUT port’s current transaction is done.

The OUT port performs arbitration before forwarding the
data. In a straightforward implementation, the arbiter accepts
a request from an input port switch only after all the data bits
from the input switch arrive. Then, the forwarding logic needs
to wait for the selection signal from the arbiter. The strictly
sequential operation results in an increased latency. To shorten
the latency, we design the arbiter to look ahead the switch
enable signals from IN ports to trigger arbitration using a tree
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Fig. 4. Asynchronous NoC multicast router design.
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Fig. 5. Deadlock resolution by the addition of a turn port in each router.

arbiter prior to receiving all the bits in the packet, allowing
the selection to be done well in advance.

The branch separation and look-ahead arbitration techniques
reduce the average per-hop latency to 1.32ns in 40nm CMOS,
3.1x lower than the state-of-the-art [1]. The router is designed
by synthesizing dual-rail logic elements [8] as standard cells.
To reduce traffic for a more scalable design, spike packets are
distance-bounded to 2 hops, beyond which they are converted
to output packets or removed from the network. To cut
duplicate traffic, routing is limited to straight pass or right
turn.

Since the NoC allows all possible right turns, a loop of
turns made by unfinished packet transactions can cause a
deadlock. In the previous work [1], [2], dimension order
routing was adopted to prevent deadlocks by routing with
priority on either X- or Y-dimension. Dimension order routing
may imbalance the traffic in different ports, resulting in traffic
congestion. Instead, we add a turn port in every router to
channel the packets that have made a specific turn (e.g. packets
heading north and then making a turn to east in Fig. 5). The
addition of a turn port in each router prevents chain of channel
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Fig. 6. Asynchronous-to-synchronous (A2S) FIFO and synchronous-to-
asynchronous (S2A) FIFO design.

blockage without causing traffic congestion in any direction,
as illustrated in Fig. 5. Since our routing rule allows only right
turns, each router requires only one turn port and a 2:1 arbiter
to direct packets from the turn port.

C. Asynchronous-Synchronous Domain Crossings

The clock domain crossing is handled by A2S and S2A
FIFOs. The FIFO designs follow an asynchronous FIFO as
shown in Fig. 6. To translate an asynchronous signal into
a synchronous signal, A2S FIFO and S2A FIFO require
write and read clock generator logic, respectively. Write clock
generator produces a positive clock edge for write when all
the dual-rail bits arrive, and a negative clock edge when all
the dual-rail bits retract. Read clock generator produces a
positive clock edge for read when the dual-rail handshake is
received, and a negative clock edge when the transaction is
acknowledged.

Activity checker in A2S FIFO provides “all” and “any”
signals, which notify whether all or any, respectively, of the
data bits are active for completion detection. The M3DP and
M2DP gates in Fig. 6 are variants of Muller C-element that
efficiently provide compound logic functions. Also note that
the synchronizer is eliminated on the asynchronous side, as
a transaction can be invoked at any time when ready in the
asynchronous domain. The dual-rail A2S and S2A FIFOs are
designed using standard cells and synthesized with timing
constraints.
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Fig. 8. Tradeoff between compression ratio and reconstruction error in image
compression task. A reconstructed image with the highest compression ratio
is compared with the original image.

IV. CHIP MEASUREMENT RESULTS

The 2048-neuron, 16-tile GALS SNN accelerator test chip
was fabricated in a 40nm CMOS process. The accelerator
core occupies 2.56mm’ as shown in Fig. 7. The chip is
measured to achieve 7.85GSOP/s at a 0.7V supply voltage
in room temperature with neuron groups running at 110MHz,
consuming 46.4mW at 5.9pJ/SOP.

We demonstrate an example application of this SNN chip
in compressed sensing using learned dictionary elements. In
Fig. 8, we show the results of compressing natural images [9].
The experiment was performed by dividing input images into
16x16 patches, and applying the SNN chip to encode the
patches using learned dictionary elements. The compression
ratio can reach as high as 17.5x with a relatively low
normalized root-mean-square error (NRMSE) of 7.6%. The
dictionary can be learned from unsupervised training, enabling
effective compression of any type of data. To demonstrate the
SNN'’s feature extraction capability, we trained and mapped a
one-layer recurrent SNN together with a linear classifier for
MNIST, demonstrating a classification accuracy of 91.6%.

Table I compares this work with the latest SNN chip
designs. The energy efficiency of this 40nm chip is more
competitive than the 14nm Loihi [2] without technology
normalization. The energy and area efficiency of this chip
are within the ranges reported for the latest 10nm SNN
accelerator [3]. Compared to all-digital [4] and mixed-signal
SNN ASIC implementations [10], this design supports a larger

TABLE 1
MEASUREMENT RESULTS AND COMPARISON TABLE

[2] [3] [4] [10] This Work
Process 14nm 10nm 65nm 40nm 40nm
Area (mm’) 60 1.72 3.1 1.31 2.56
# of Neurons 13.1K 4096 256 512 2048
# of Synap 126M IM 128K - 149K
Synapse Bits 1b Tb 8b / 13b - 3b/2b
Voltage (V) 0.75 0.525 1.0 0.9 0.7
Architecture Async Sync Sync Sync GALS
Freq (MHz) - 105 310 250 110
Input
Bandwidth - - 1240 1778 440
(Mpixels/s)

SOP/s 440G 5.2G 1.24G 2.0G 7.85G
SOP/s/mm> 7.34G 3.0G 400M 1.53G 3.07G
pJ/SOP 23.6 38 1758 135 5.0
Deadlock Dimension . R . Turn port

Handling order routing P
Latency 4.1 ns 1
per Hop /6.5 ns ) B ) 132 ns

! Average latency estimated in post-APR simulation

network, a higher compute density, a higher energy efficiency,
and programmablity. The neuron specialization, distance-based
pruning and low-latency GALS approaches demonstrated by
this work will pave the way for more efficient and scalable
SNN accelerator designs.
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