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Rapid Earthquake Association and Location

by Miao Zhang, William L. Ellsworth, and Gregory
C. Beroza

ABSTRACT

Rapid association of seismic phases and event location are cru-
cial for real-time seismic monitoring. We propose a new
method, named rapid earthquake association and location
(REAL), for associating seismic phases and locating seismic
events rapidly, simultaneously, and automatically. REAL com-
bines the advantages of both pick-based and waveform-based
detection and location methods. It associates arrivals of differ-
ent seismic phases and locates seismic events primarily through
counting the number of P and S picks and secondarily from
travel-time residuals. A group of picks are associated with a
particular earthquake if there are enough picks within the theo-
retical travel-time windows. The location is determined to be at
the grid point with the most picks, and if multiple locations
have the same maximum number of picks, the grid point
among them with smallest travel-time residuals. We refine seis-
mic locations using a least-squares location method (VELEST)
and a high-precision relative location method (hypoDD).
REAL can be used for rapid seismic characterization due to
its computational efficiency. As an example application, we
apply REAL to earthquakes in the 2016 central Apennines,
Italy, earthquake sequence occurring during a five-day period
in October 2016, midway in time between the two largest
earthquakes. We associate and locate more than three times
as many events (3341) as are in Italy's National Institute of
Geophysics and Volcanology routine catalog (862). The spatial
distribution of these relocated earthquakes shows a similar but
more concentrated pattern relative to the cataloged events. Our
study demonstrates that it is possible to characterize seismicity
automatically and quickly using REAL and seismic picks.

Supplemental Content: Figures detailing further location sensi-
tivity analysis.

INTRODUCTION

Earthquake detection and location methods are generally
divided into two main classes: pick-based methods and wave-
form-based methods (Pesicek et al., 2014; Grigoli et al., 2018;

and references therein). Standard pick-based detection and
location methods consist of three main sequential steps:
(1) phase detection and picking, (2) phase association, and
(3) event location (Grigoli et al., 2018). The first step includes
seismic phase detection and arrival-time picking, which are per-
formed based on the change of amplitude, energy, frequency, or
polarization of waveforms (Allen, 1978, 1982; Baer and
Kradolfer, 1987; Magotra et al., 1987; Cichowicz, 1993;
Withers et al., 1998; Bai and Kennett, 2000; Lomax et al.,
2012; Baillard et al., 2013) or determined by similarity, such
as using artificial intelligence algorithms (e.g., Mousavi et al.,
2018; Perol et al., 2018; Ross et al., 2018; Zhu and Beroza,
2019; Zhu et al., 2019).

Phase association groups those picks that best fit the differ-
ent phase types associated with a particular earthquake (Allen,
1982; Johnson et al., 1997; Grigoli et al., 2018) using simple
grouping strategies (e.g., Stewart, 1977), sophisticated cluster-
ing algorithms (Ester et al., 1996; Zhu et al., 2017), constant
relative event time (Bergen and Beroza, 2018), artificial intel-
ligence algorithms (McBrearty et al., 2019; Ross et al., 2019), or
other advanced algorithms based on the principle of travel-time
back projection (Dietz, 2012; Johnson et al., 1997; Patton et al.,
2016) and Bayesian probability theory (Arora et al., 2013).
Phase types (e.g., P or S) are interpreted during detection
or automatically identified during association. Event location
is determined by minimizing the travel-time residuals between
theoretical and observed (picked) seismic phases (usually P and
S phases) using linearized (e.g., Thurber, 1985) or global (e.g.,
Lomax et al., 2000) inversion algorithms.

Waveform-based methods, independent of seismic phase
picking, detect, associate, and locate earthquakes simultane-
ously in a single step by maximizing the stacked waveform
energy or coherence using the delay-and-sum concept (e.g.,
Kao and Shan, 2004; Grigoli et al., 2013; Zhang and Wen,
2015), which are sensitive to weak signals and enable us to
detect small earthquakes. They are computationally expensive,
however, due to the need for an exhaustive search of potential
locations in 3D space and potential origin times, sample by
sample, in continuous data. Pick-based methods are widely
used in routine seismic monitoring due to their high-computa-
tional efficiency; however, waveform-based methods generally
perform better than pick-based methods in detecting small
events (e.g., Kao and Shan, 2004; Grigoli et al., 2013, 2018;
Pesicek et al., 2014; Yoon et al., 2015, 2017; Zhang and
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Wen, 2015; Tong et al., 2016; Li et al., 2017; Perol
et al., 2018).

In this study, we propose an automatic and simultaneous
earthquake association and location method: rapid earthquake
association and location (REAL). Using the delay-and-sum
concept, we associate and locate earthquakes using P and S
picks obtained with a conventional short-term average/long-
term average (STA/LTA) picker. We introduce the association
and location procedure, illustrate its effectiveness using syn-
thetic tests, demonstrate REAL on five days of continuous seis-
mic records in central Apennines, Italy, and compare our
results with Italy’s National Institute of Geophysics and
Volcanology (INGV) catalog.

METHOD

Waveform-based earthquake detection and location methods
based on the delay-and-sum concept have been developed
and widely used in seismological studies for both absolute

seismic locations (e.g., Kao and Shan, 2004; Grigoli et al.,
2013) and relative seismic locations (e.g., Zhang and Wen,
2015). Compared to traditional pick-based earthquake detec-
tion and location methods, these methods are independent of
seismic phase detection, picking, identification, and association
using continuous seismic records instead of phase picks.
However, they generally have not been applied to rapid seismic
characterization due to their exhaustive searching in space and
time. Consequently, pick-based methods are still the preferred
solution for real-time seismological applications (Grigoli et al.,
2018). Here, we apply the delay-and-sum strategy to seismic
picks rather than continuous seismic data. REAL associates
seismic P and S picks (arrivals) to a particular event and locates
it simultaneously through counting the number of seismic
picks and calculating travel-time residuals rather than scanning
the entire waveform (or its characteristic function) and esti-
mating the brightness (energy) or the coherence sample by
sample (Fig. 1). This dramatically reduces the computation
time because we use very limited phase picks that are far fewer
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▴ Figure 1. Cartoon illustrating the concept of rapid earthquake association and location (REAL) for earthquake association and location.
(a) The distribution of seismic event (red star) and seismic stations (blue triangles). (b) P arrival-time curve (red curve) with its uncertainty
range (red dashed curves) due to velocity uncertainty and limited searching interval, associated P picks and other false P picks. (c) Same
as (b) but for S phase. (d) The optimal location is determined to be at the grid point with most picks or (e) the grid point with smallest travel-
time residual (shown in bottom parentheses, and its unit is second) and most picks if multiple locations have the same maximum number
of picks.
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than the number of continuous data samples (or time win-
dows). Figure 2 shows a flow diagram that describes how
the REAL algorithm works.

REAL consists of three main steps as follows:
• Step 1: Phase triggering and amplitude estimation. We cal-

culate the horizontal (including east and west compo-
nents) and vertical energy (vertical component) of the
waveforms recorded at each three-component station
and apply a recursive STA/LTA algorithm to these energy
traces (Grigoli et al., 2013). P and S picks, along with their
STA/LTA ratios, are determined from the vertical and
horizontal traces, respectively. Only the pick with the
highest STA/LTA ratio will be kept in REAL if multiple
picks appear within a specified time window (e.g., 5 s). To
calculate earthquake magnitude in the following step, we
also estimate horizontal-component amplitudes for picked
P and S phases after deconvolving raw waveforms with the
instrument response and then convolving the obtained
signal with the theoretical Wood–Anderson seismometer
response (Hutton and Boore, 1987). Therefore, our inputs
include first arrivals of the P and S phases, their STA/LTA
ratios and amplitudes. Phase amplitudes are optional and
are used in magnitude estimation as needed.

• Step 2: Grid search and objective function calculation. We
use P picks to initiate the procedure because they are typ-
ically more reliable than S picks. We search potential loca-
tions in 3D around the station with the earliest P arrival
(i.e., the initiating pick). The horizontal search range is
dependent on the average station interval, and the depth
range is from the surface to a specified depth (e.g., 30 km

for crustal earthquakes). We precalculate
theoretical P and S travel-time tables using
the TauP Toolkit (Crotwell et al., 1999)
and given velocity model. Without loss
of generality, we utilize 1D velocity models,
but we could easily extend REAL to 3D
velocity models. A time window around
the theoretical arrivals is adaptively deter-
mined to tolerate the model inaccuracy
and the grid spacing. We first count the
number of the observed P and S picks that
locate within the theoretical travel-time
windows and then calculate travel-time
residuals if multiple grid points have the
same maximum number of picks. We
perform grid search in parallel using a
shared memory programming paradigm
(OpenMP).

• Step 3: Criteria and feedback. We propose
two criteria to associate and locate an event
in REAL: (1) at least one grid meets the
criterion: the number of observed P and
S picks that appear in the predicted time
windows exceeds a preset threshold, and
(2) the optimal event location is deter-
mined to be at the grid point with the

maximum number of associated P and S picks, or if multi-
ple grid points have the same maximum number of picks,
the grid point with the most picks and the smallest travel-
time residual. Similar to waveform-based earthquake
detection and location methods (e.g., Kao and Shan,
2004; Shelly et al., 2007; Peng and Zhao, 2009), we keep
the most reliable event within a specified time window
(e.g., 5 s). Threshold settings would empirically change
with the number of stations, as well as pick quality
(e.g., uncertainty and reliability). Once an earthquake is
associated and located, we calculate its local magnitude
using the corrected amplitudes of the associated phases
and a widely used empirical amplitude-and-local-magni-
tude relationship (Hutton and Boore, 1987).

We have two pools of picks in our algorithm. Pool one
only includes P picks as initiating picks. An initiating P pick
will be removed from pool one after the current association
process whether or not it associates with an event. If an event
was declared, associated P picks are also removed from pool
one. The oldest remaining P pick in pool one initiates a new
association process. Pool two is used to count the number of P
and S picks, calculate the travel-time residuals, and estimate
earthquake magnitude. It contains all available P and S picks
and their Wood–Anderson amplitudes. It does not change,
which enables us to calculate the number of picks and travel-
time residuals for each potential event with the same pick
dataset.

The location accuracy and efficiency trade-off depends on
the number of seismic picks, the size of grid search, and the
accuracy of velocity model. To minimize potentially unstable
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▴ Figure 2. Flow diagram of REAL. The dashed rectangle indicates the parallel
programming part.
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detections around the boundary of the study area, we remove
events with large station gaps (e.g., >200°). We provide inter-
faces to refine earthquake locations using a least-squares loca-
tion software VELEST (Kissling et al., 1994) and a high-
precision relative location software hypoDD (Waldhauser
and Ellsworth, 2000). Therefore, we bridge the gap between
the raw continuous seismic data and high-precision earthquake
locations using a conventional STA/LTA picker, REAL, and
open-source location software.

SYNTHETIC VALIDATION

We use synthetic data to test the performance of REAL and
evaluate its reliability and robustness. We apply REAL to asso-
ciate and locate earthquakes in the central Apennines, Italy, on
14 October 2016, the first day of the field data in the next
section. Sixty high-quality broadband seismic stations are
located within 50 km of the sequence (Fig. 3), including both
permanent stations and those deployed after the first main-
shock of the 2016 earthquake sequence (Michele et al.,
2016; Moretti et al., 2016). INGV published 151 earthquakes
with a magnitude range of 0.6–3.3 in the study area. In this
section, we use these 151 cataloged events as our synthetic
events. A 1D layer velocity model is employed in the target
area (Chiaraluce et al., 2017).

To simulate P and S picks, we first calculate P and S travel
time for each event at 60 seismic stations using the TauP
Toolkit (Crotwell et al., 1999). P and S travel-time tables

are calculated and stored in distance and depth. The searched
area for the potential event location is 0.2° in latitude and 0.2°
in longitude with a searching interval of 0.02° (appropriate
1.5 km) and 30 km in depth with a search interval of
2 km, centered at the station that recorded the initiating P
phase. The threshold is consistent with the field application
in the next section. All 151 events, including their locations,
are recovered after applying REAL. The mean location uncer-
tainty is determined to be 0.74 km in horizontal direction and
0.57 km in depth, which is less than the grid interval. To test
the effect of inaccurate velocity structure, we employ REAL to
associate and locate these events using an averaged homog-
enous P and S velocities (i.e., 6.2 and 3:3 km=s) instead of
the known 1D layer velocity model. All events are recovered
with a mean location uncertainty of 0.76 km in the horizontal
and 0.57 km in depth. We randomly add perturbations to the
observed P and S arrivals to simulate the inaccurate time pick-
ing. All events are recovered with an acceptable location uncer-
tainty when we randomly vary the P and S arrivals from 0 to
0.2 s and from 0 to 0.4 s, respectively.

With a fine search grid (0.001° in latitude and longitude
and 0.1 km in depth), we analyze event location convergence
using a synthetic event near the center of the network (i.e.,
[42.75°, 13.25°, 10 km]). This event is fully recovered along
with its location after applying REAL. Figure 4 shows the dis-
tribution of the number of associated P and S picks (120 picks
in total), as well as the distribution of travel-time residuals over
the grids that have the same maximum number of picks. The
total number of picks converges toward the target point
(Fig. 4a), and the optimal location is further determined from
travel-time residual (Fig. 4b). To simulate a less well-observed
event, we randomly select 18 P and S picks from the total 120
picks. REAL successfully associates the 18 picks with this event
and recovers its location as well (Ⓔ Fig. S1, available in the
supplemental content to this article). To test the tolerance
of REAL to false triggers, we randomly add false picks for both
P and S phases at the 60 stations, ranging from the earliest P
pick to the latest S pick. On average, one false pick would
appear every 4.25 s. This event is recovered with a well-con-
strained location when the number of false picks is up to four
times greater than the real ones (Ⓔ Fig. S2), which indicates
that REAL is robust with respect to false picks.

APPLICATION TO FIVE DAYS CONTINUOUS DATA
IN 2016 CENTRAL APENNINES, ITALY,
EARTHQUAKE SEQUENCE

In this section, we apply REAL to seismic data recorded over
five days (from 14 October 2018 to 18 October 2018) midway
in time between the two largest earthquakes in the 2016 central
Apennines, Italy, earthquake sequence. We first detect and pick
P and S phases from vertical and horizontal components,
respectively, using continuous three-component seismic data
and a recursive STA/LTA algorithm (Grigoli et al., 2013), then
estimate horizontal-component amplitudes for triggered P and S
phases after convolving them with a standard Wood–Anderson
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▴ Figure 3. Map showing seismic stations (triangles) within
50 km of the earthquake sequence, 151 Institute of Geophysics
and Volcanology (INGV) cataloged events (gray dots), and their
locations determined by REAL (black stars) in synthetic test.
Inverted triangle represents the event used for location resolution
test in Figure 4. (Inset) Regional map of Italy, with the rectangle
indicating the study region.
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seismometer instrument response (Hutton and Boore, 1987).
We use the same search area and search interval as used in the
synthetic test. We empirically set the threshold to five P picks
and a total of 18 P and S picks (i.e., 15% of the total potential
120 picks) and remove events occurring close to the boundary
of the study area or with a station gap of larger than 200°. We
associate 3341 events in the five-day interval. REAL recovers
all M ≥ 1:0 events (835) in the INGVmonitoring room cata-
log. Twenty-seven small events (M < 1:0) escape the detection
and location for three possible reasons (1) deficient seismic
phase picking, (2) their locations are close to the boundaries
of our study area, or (3) they occurred closely after other large
events. We estimate the approximate magnitudes of complete-
ness for the REAL and INGV catalogs using the same ampli-
tude-and-local-magnitude relationship (Hutton and Boore,
1987). The REAL catalog has a completeness of magnitude
0.4 compared to 1.0 for the INGV catalog (Fig. 5). The size
of the search grid cells limits our location accuracy (Figs. 6b
and 7a). To improve the location accuracy, we repick the asso-
ciated arrivals using an Akaike information criterion picker
(Maeda, 1985) and relocate the earthquakes. We refine the
locations using a least-squares location method, VELEST
(Kissling et al., 1994), based on those associated arrivals and
initial locations (Figs. 6c and 7b). The median travel-time
residual reduces from 0.25 to 0.2 s. We then employ the dou-
ble-difference location method hypoDD (Waldhauser and
Ellsworth, 2000) to improve the relative locations of 3023
events (Figs. 6d and 7c). The median travel-time residual

further reduces to 0.06 s. The distribution of our associated
and relocated events shows a similar but more concentrated
pattern than the INGV catalog (Figs. 6 and 7).

DISCUSSION

REAL is based on the idea of delay-and-sum, but it differs from
previous methods that use the delay-and-sum concept. We
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▴ Figure 4. (a) Distribution of number of P and S picks in longitude–latitude plane, (b) latitude-depth plane and (c) longitude-depth plane
when applying REAL to associate and locate the synthetic event shown in Figure 3. (d–f) Distribution of travel-time residuals over the grids
in (a–c) with the same maximum number of picks (120). White stars represent the optimal location determined by REAL.
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count the associated seismic picks as our objective function
rather than enhance the energy or coherence of the seismic
waveform (or its characteristic). The spatial travel-time residual
is used as supplemental information to determine the optimal
location. Compared to the source-scanning algorithm (Kao
and Shan, 2004), REAL uses limited seismic picks rather than
continuous data. This reduces the computational cost. The
computational efficiency depends on the number of seismic
picks, search area, and grid spacing. To accelerate the associa-
tion and location process, we only utilize those P and S picks in

a limited time window following the initiating P pick. The
time range depends on the travel time across the study area.
For one day of data in this study, it takes only seconds for hun-
dreds of picks and minutes for thousands of picks on a
MacBook laptop computer (3.1 GHz quad-core Intel Core
i7 processor).

As suggested in our synthetic tests, REAL can determine
earthquake location accurately if we have a sufficient number
of phase picks, a fine-enough searching interval, and a reason-
ably accurate velocity model. Other seismic detection and
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▴ Figure 6. Earthquake location comparison between (a) INGV cataloged events (dots), (b) blindly associated events (stars) identified by
REAL, (c) locations refined by VELEST, and (d) relocations using hypoDD. Triangles represent seismic stations used in this study. Gray
rectangle marks zoomed-in area in Figure 7.
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picking methods can be used in phase picking step (e.g., Lomax
et al., 2012; Chen and Holland, 2016; Zhu and Beroza, 2019;
Zhu et al., 2019) to improve location precision. Additional
phases (e.g., pP, sP) can also be used to improve location
accuracy, as long as the corresponding travel-time tables are
provided. Although we only tested REAL for regional earth-
quake association, it should be straightforward to extend it to
global monitoring using a global travel-time table. In addition
to the dense station coverage case, REAL can successfully deal
with the sparse station coverage case as well (Wang et al., 2018).
It is also possible to apply REAL to real-time seismic monitor-
ing using P picks alone.

REAL possesses the main advantages of both pick-based
and waveform-based detection and location methods.
Waveform-based methods search for events in 3D space in
the whole study region using continuous seismic data.
REAL searches for a smaller area around the station with
the current initiating phase and seismic picks rather than con-
tinuous data. This reduces the computational cost. A potential
limitation of REAL is that it may not detect weak events as
well as the waveform-based methods, due to the limitations
of phase picking methods. REAL differs from the standard
pick-based methods in three aspects: (1) REAL associates
and locates seismic events simultaneously rather than separately
using seismic picks; (2) REAL automatically excludes those
unlikely seismic picks (outliers) that can lead to missing earth-
quakes or false detections and large location uncertainties; and
(3) the objective function in REAL includes both the number
of seismic picks (similar to the stacking process in waveform-
based methods) and the travel-time residual (as in standard
pick-based methods). In other words, REAL combines the
computational efficiency of standard pick-based methods and
the location accuracy of waveform-based methods. On the
other hand, REAL also inherits some of the disadvantages from
waveform-based methods, such as that it only keeps the most
reliable event within a time window and can miss events that
occur closely in space and time.

CONCLUSIONS

Rapid earthquake detection and characterization is a crucial
task in earthquake seismology. Pick-based detection and loca-
tion methods still dominate in routine seismic monitoring due
to their high-computational efficiency. We present a novel
method, REAL, for rapidly and simultaneously associating and
locating earthquakes using the concept of delay-and-sum for P
and S picks. This method combines the computational effi-
ciency and location accuracy from pick-based and waveform-
based methods, respectively. We associate and locate 3341 seis-
mic events during five days in central Apennines, Italy, which is
more than three times as many as are in the INGV routine
catalog. We demonstrate that it is practical to detect and locate
earthquakes, automatically, rapidly, and precisely using conven-
tional phase pickers, REAL, and available high-precision earth-
quake-location methods.

DATA AND RESOURCES

Seismic data were downloaded from Italy’s National Institute
of Geophysics and Volcanology (INGV) and Incorporated
Research Institutions for Seismology (IRIS) though the
International Federation of Digital Seismograph Networks
(FDSN) web services (http://www.fdsn.org/, last accessed
February 2019). The earthquake catalog used in this study
can be downloaded from http://cnt.rm.ingv.it/ (last accessed
February 2019). Some figures in this article were generated
using the Generic Mapping Tool (Wessel et al., 2013). The
rapid earthquake association and location (REAL) software
can be downloaded from https://github.com/Dal-mzhang/
REAL (last accessed June 2019).
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