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Abstract—The multi-armed bandit (MAB) model has been widely adopted for studying many practical optimization problems (network
resource allocation, ad placement, crowdsourcing, etc.) with unknown parameters. The goal of the player (i.e., the decision maker)
here is to maximize the cumulative reward in the face of uncertainty. However, the basic MAB model neglects several important factors
of the system in many real-world applications, where multiple arms (i.e., actions) can be simultaneously played and an arm could
sometimes be “sleeping” (i.e., unavailable). Besides reward maximization, ensuring fairness is also a key design concern in practice.
To that end, we propose a new Combinatorial Sleeping MAB model with Fairness constraints, called CSMAB-F, aiming to address the
aforementioned crucial modeling issues. The objective is now to maximize the reward while satisfying the fairness requirement of a
minimum selection fraction for each individual arm. To tackle this new problem, we extend an online learning algorithm, called Upper
Confidence Bound (UCB), to deal with a critical tradeoff between exploitation and exploration and employ the virtual queue technique
to properly handle the fairness constraints. By carefully integrating these two techniques, we develop a new algorithm, called Learning
with Fairness Guarantee (LFG), for the CSMAB-F problem. Further, we rigorously prove that not only LFG is feasibility-optimal, but it
also has a time-average regret upper bounded by 2% + Bi/mNTloe TP N \where N is the total number of arms, m is the maximum
number of arms that can be simultaneously played, T is the time horizon, 31 and 32 are constants, and 7 is a design parameter that we

can tune. Finally, we perform extensive simulations to corroborate the effectiveness of the proposed algorithm. Interestingly, the
simulation results reveal an important tradeoff between the regret and the speed of convergence to a point satisfying the fairness

constraints.

Index Terms—Multi-armed bandit (MAB), combinatorial sleeping bandits, fairness, Upper Confidence Bound (UCB), virtual queue,

Lyapunov drift, regret analysis.

1 INTRODUCTION

HE multi-armed bandit (MAB) model has been widely
T adopted for studying many practical optimization prob-
lems (network resource allocation, ad placement, crowd-
sourcing, etc.) with unknown parameters (see, e.g., [2]).
In the basic stochastic MAB setting, there are N arms
(i.e., actions), each of which, if played, returns a random
reward to the player (i.e., the decision maker). The random
reward of each arm takes values in [0,1] and is assumed
to be independent and identically distributed (i.i.d.) over time.
However, the reward distributions and the mean rewards
are unknown 4 priori. The player decides which single arm
to play in each round for a given time horizon of 1" rounds,
with a goal of maximizing the cumulative reward in the face
of unknown mean rewards.

However, this basic MAB model neglects several impor-
tant factors of the system in many real-world applications,
where multiple actions can be simultaneously taken and
an action could sometimes be “sleeping” (i.e., unavailable).
Take wireless scheduling for example: multiple clients com-
pete for a shared wireless channel to transmit packets to a
common access point (AP). The AP decides which client(s)
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can transmit at what times. A successfully delivered packet
will generate a random reward, which could represent the
value of the information contained in the packet. In each
scheduling cycle, multiple clients could be scheduled for
simultaneous transmissions as the channel can typically be
divided into multiple “sub-channels” using multiplexing
technologies [3]. On the other hand, some clients may be
unable to transmit packets when experiencing a poor chan-
nel condition (due to fading or mobility). Furthermore, in
addition to maximizing the reward, ensuring fairness among
the clients or providing Quality of Service (QoS) guarantees
to the clients is also a key design concern in wireless
scheduling [4], [5], as well as in network resource allocation
in general [6]. These important factors (i.e., combinatorial
actions, availability of actions, and fairness) are commonly
shared by many other applications too (see more detailed
discussions in Section 6). However, it remains largely unex-
plored in the literature to carefully integrate all these factors
into a unified MAB model.

To that end, in this paper we propose a new Combinatorial
Sleeping MAB model with Fairness constraints, called CSMAB-
F, aiming to address the aforementioned modeling issues,
which are practically important for a wide variety of appli-
cations. Compared to the basic MAB setting, in the proposed
framework the set of available arms follows a certain distri-
bution that is assumed to be i.i.d. over time and is unknown
a priori. However, the information of available arms will be
revealed at the beginning of each round. The player can
then play multiple, but no more than m, available arms and
receives a compound reward being the weighted sum of
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the rewards of the played arms. We also impose fairness
constraints that the player must ensure a (possibly different)
minimum selection fraction for each individual arm. The
goal is now to maximize the reward while satisfying the
fairness requirement. We summarize our main contributions
as follows.

First, to the best of our knowledge, this is the first work
that integrates all three critical factors of combinatorial arms,
availability of arms, and fairness into a unified MAB model.
The proposed CSMAB-F framework successfully addresses
these crucial modeling issues. This new problem, however,
becomes much more challenging. In particular, integrating
fairness constraints adds a new layer of difficulty to the
combinatorial sleeping MAB problem that is already quite
challenging. This is because not only the player encoun-
ters a fundamental tradeoff between exploitation (i.e., staying
with the currently-known best option) and exploration (i.e.,
seeking better options) when attempting to maximize the
reward, but she is also faced with a new dilemma: how
to manage the balance between maximizing the reward
and satisfying the fairness requirement? Several well-known
MAB algorithms can successfully handle the exploitation-
exploration tradeoff, but none of them was designed with
fairness constraints in mind.

To address this new challenge, we extend an online
learning algorithm, called Upper Confidence Bound (UCB), to
deal with the exploitation-exploration tradeoff and employ
the virtual queue technique to properly handle the fairness
constraints. By carefully integrating these two techniques,
we develop a new algorithm, called Learning with Fairness
Guarantee (LFG), for the CSMAB-F problem. Further, we
rigorously prove that not only LFG is feasibility-optimal, but
it also has a time-average regret (i.e., the reward difference
between an optimal algorithm that has a priori knowledge
of the mean rewards and the considered algorithm) upper
bounded by % + Buv mNT%Og L45:N where 1 and 3, are
constants and 7 is a design parameter that we can tune.
Note that our regret analysis is more challenging as the
traditional regret analysis becomes inapplicable here due to
the integration of virtual queues for handling the fairness
constraints.

Finally, we conduct extensive simulations to elucidate
the effectiveness of the proposed algorithm. From the sim-
ulation results, we observe that LFG can effectively meet
the fairness requirement while achieving a good regret
performance. Interestingly, the simulation results also reveal
a critical tradeoff between the regret and the speed of
convergence to a point satisfying the fairness constraints. We
can control and optimize this tradeoff by tuning the value
of parameter 7).

The rest of the paper is organized as follows. We first
discuss related work and describe the proposed CSMAB-
F framework in Sections 2 and 3, respectively. Then, we
develop the LFG algorithm for the CSMAB-F problem in
Section 4, followed by the performance analysis in Section 5.
Detailed discussions about several real-world applications
are provided in Section 6. Finally, we present simulation re-
sults in Section 7 and make concluding remarks in Section 8.
Some detailed proofs are provided in Section 9.

2 RELATED WORK

Starting with the seminal work of [7], the MAB problems
have been extensively studied in a large body of work (see,
e.g., [2], [8]). In the basic MAB setting, the authors of [7]
establish a fundamental logarithmic lower bound on the
regret of a class of “uniformly good policies” and propose
UCB policies that asymptotically achieve the lower bound.
Further, the work of [9] shows that logarithmic regret can be
achieved uniformly over time rather than asymptotically by
simpler sample-mean-based UCB policies and an ¢;-greedy
policy.

Following this line of research, different MAB variants
have been proposed to model several important factors of
the system in real-world applications. The ones that are
relevant to ours include combinatorial MAB (CMAB) where
multiple arms form a super arm and can be simultaneously
played [10], [11], [12], [13], [14], [15] and sleeping MAB
(SMAB) where an arm could sometimes be “sleeping” (i.e.,
unavailable) [16], [17], [18], [19]. Being the first to study the
CMAB problem, the work of [10] considers combinations
of a fixed number of simultaneous plays. This simple com-
binatorial structure has been generalized to permutations
[11] and matroids [12]. The work of [13], [14] generalizes
linear reward functions considered in [10], [11], [12] to
include a large class of linear and nonlinear rewards. In
[15], the authors prove a tight problem-specific lower bound
for stochastic CMAB (where the reward of each played
arm rather than the combinatorial reward is revealed) and
propose an efficient sampling algorithm with an improved
multiplicative factor. The work of [16] is among the first
to study the SMAB problem. This work provides a com-
putationally efficient algorithm for the setting of stochastic
rewards while allowing both stochastic and adversarial
availability. Follow-up work of [17], [18] studies the setting
of adversarial rewards while the availability of arms is
either stochastic or adversarial. Very recently, the authors
of [19] analyze the performance of Thompson Sampling for
the SMAB problem and show that it empirically performs
better than other algorithms. Another recent study in [20]
considers combinatorial sleeping MAB with submodular
reward functions in the contextual bandit setting. This work
develops a solution based on a well-known greedy algo-
rithm for submodular maximization and prove that it can
achieve a sublinear regret, which is in comparison to the
greedy algorithm in the setting with known rewards.

MARB settings with constraints have also been considered
in prior studies. Most of them focus on bandits with budgets
(see, e.g., [21]) or bandits with knapsacks (see, e.g., [22]),
where no more plays can be made if the budget/knapsack
constraints are violated. Hence, these types of constraints
are very different from the long-term fairness constraints we
consider in this paper. Some very recent work considers
multi-type rewards [23] and multi-level rewards [24], [25].
They introduce a minimum guarantee requirement that the
total reward of some type/level must be no smaller than a
given threshold. However, these studies differ significantly
from ours in the following key aspects. First, and most
importantly, their constraints do not model fairness among
arms. The required minimum guarantee is for the total
rewards (of some type/level) rather than for each individual
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arm. Second, no learning algorithm is proposed in [23]; the
proposed learning algorithms in [24], [25] may violate the
constraints, although they show provable violation bounds.
Third, they assume that all the arms are available at all
times. Last but not least, the proof techniques for regret
analysis in [24], [25] are very different from ours.

Fairness in online learning has been studied in [26], [27].
A key idea of their proposed fair algorithm is that two arms
should be played with equal probability until they can be
distinguished with a high confidence. Another work [28]
studies how to learn proportionally fair allocations by con-
sidering the maximization of a logarithmic utility function.
These studies are less relevant to our work, although they
share some high-level similarities with ours in modeling
fairness.

At a technical level, the work of [29] that integrates learn-
ing and queueing is most related to ours. We follow a similar
line of regret analysis in [29] for deriving the upper bound.
However, they do not explicitly model fairness constraints,
nor do they consider the availability of arms.

We notice that since the publication of our conference
version [1], the work of [30] follows our model with a
stronger fairness notion and proposes algorithms that can
achieve an improved accumulative regret that is logarith-
mic. However, their proposed algorithms either are T-aware
(i.e., assuming the knowledge of the length of the time
horizon, T') or provide fairness guarantees for a special
homogeneous case only, where every individual arm has
the same minimum selection fraction requirement.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the detailed setting of our pro-
posed CSMAB-F framework. Let N = {1,2,..., N} denote
the set of N arms. Each arm ¢ € N is associated with a
reward X;(t) inround ¢, wheret = 0, 1,2, . ... The reward is
arandom variable on [0, 1] and follows a certain distribution
with mean p;. We assume that the reward for each arm is
iid. over time. The mean reward vector g = (p1,...,1N)
is unknown a priori. In our setting, an arm could sometimes
be “sleeping” (i.e., unavailable). Let A(t) € P(N') denote
the set of available arms in round ¢, where P(N) is the
power set of N. We use Pa(Z) £ P(A(t) = Z), where
Z € P(N), to denote the distribution of available arms,
which is assumed to be i.i.d. over time. This distribution is
unknown a priori, but the set of available arms A(t) will be
revealed to the player at the beginning of each round ¢.

In each round, the player is allowed to play multiple,
but no more than m, available arms (i.e., arms belonging to
A(t)). Each subset of available arms is also called a super
arm [13]. We restrict the size of a chosen super arm to be no
larger than m so as to account for resource constraints (see
discussions on applications in Section 6). Let S(Z) represent
the set of all feasible super arms when the set of available
arms Z is observed, i.e., S(Z) £ {S C Z : |S| < m},
where |S| denotes the cardinality of set S. In round ¢, a
player selects a super arm S(t) € S(A(t)) and receives a
compound reward R(t), which is a weighted sum of the
rewards of the played arms, ie., R(t) £ 3,cqq) wiXi(t),
where w; is the weight of arm ¢. We assume that the weights
w; are fixed positive numbers known a priori and are upper

3

bounded by a finite constant wmax > 0. The goal of the
player is to maximize the expected time—avera7ge reward for
a given time horizon of T rounds, i.e., E[1 R

To describe the action for each individual arm, we use a
binary vector d(t) = (d1(t),...,dn(t)) to indicate whether
each arm is played or not in round ¢, where d;(¢t) = 1 if arm
i is played, i.e., i € S(t); otherwise, d;(t) = 0. Then, the
action vector d(t) must satisfy Y.~ | d;(t) < m for all ¢t > 0.

As we discussed in the introduction, in addition to
maximize the reward, ensuring fairness among the arms is
also a key design concern for many real-world applications.
To model the fairness requirement, we introduce the follow-
ing constraints on a minimum selection fraction for each
individual arm:

R By .
thiloréf T Z E[d;(t)] > r; Vi e N, 1

t=0

where 7; € (0,1) is the required minimum fraction of
rounds in which arm ¢ is played. The minimum selection
fraction vector r = (ry1,...,ry) is said to be feasible if there
exists a policy that makes a sequence of decisions S(t) for
t > 0 such that (1) is satisfied. Then, the maximal feasibility
region C is defined as the set of all such feasible vectors
r € (0,1)N. A policy is said to be feasibility-optimal if it can
support any vector r (i.e., (1) is satisfied) strictly inside the
maximal feasibility region C.

We now consider the special class of stationary and
randomized policies called A-only policies. An A-only policy
observes the set of available arms A(t) for each round ¢
and independently chooses a super arm S(t) € S(A(t))
as a (possibly randomized) function of the observed A(t)
only. An A-only policy « is characterized by a group of
probability distributions, denoted by q = [¢s(Z),VS €
S8(2),VZ € P(N)], where qs(Z) is the probability that
policy a chooses super arm S € §(Z) when observing the
set of available arms Z € P(N), and Y ges(7) 9s(Z) = 1
for all Z € P(N). Then, under policy «, the action d$(t) is
i.i.d. over time with the following mean:

>

SeS(z)1ieS

Eldi ()= ) Pa(2)

ZeP(N)

QS(Z)7 (2)

for every arm ¢ € N and for all t > 0, and thus, constraint
(1) is equivalent to E[d®(t)] > r; for every arm i € N.
Further, we have the following lemma.

Lemma 1. If a vector r is strictly inside the maximal feasibil-
ity region C, then there exists an A-only policy that can
support vector r.

Proof: The proof is omitted as it is quite standard and
follows a similar line of analysis in the proof of Theorem 4.5
in [31] (see [31, pp. 92-95]). O

Lemma 1 implies that there exists an optimal A-only
policy. Hence, assuming that the mean reward vector p is
known in advance, one can formulate the reward maximiza-
tion problem with minimum selection fraction constraint as
the following linear program (LP):
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max(ilmize Z Pa(Z) Z qs(2) Zwiﬂi (3a)
ZeP(N) SeS(2) €S
subject to Z Pa(2) Z qs(Z) > r;,Vi e N,
ZeP(N) SeS(2):ies
(3b)
Y. 4s(Z2)=1,YZ e P(N), (30)
5e8(2)
qs(Z) € 10,1],¥S € 8(Z),¥VZ € P(N). (3d)

Suppose that an optimal solution to the above LP is q* =
[q5(Z2),¥S € 8(Z),YZ € P(N)]. Then an optimal A-only
policy a* characterized by q* obtains the maximum reward:

R 2 3" Pa(2) Y q5(2)) wi. 4)

ZeP(N) SeS(2) €S

However, the mean reward vector p is unknown to the
player in advance. Hence, the player not only needs to
maximize the reward based on the estimated mean rewards
(i.e., exploitation), but she also has to simultaneously learn
to obtain a more accurate estimate of the mean rewards (i.e.,
exploration). Such a learning process typically incurs a loss
in the obtained reward, which is called the regret. Formally,
the time-average regret of a policy 7 for a time horizon of
T rounds, denoted by R.(T), is defined as the difference
between the maximum reward R* and the expected time-
average reward obtained under policy 7 that chooses super
arm S(t) in round ¢, i.e.,

T-—1
R:(T)2 R*—E %Z > wiXi(t)| - (5)

t=0 icS(t)

Note that minimizing the regret is equivalent to maximizing
the reward. Hence, the regret is a commonly used metric in
the MAB literature for measuring the performance of learn-
ing algorithms. In this paper, we will adopt the time-average
regret defined in (5) as the main performance metric.

The key notations in this paper are listed in Table 1.

4 THE LFG ALGORITHM

In this section, by carefully integrating the key ideas of UCB
[7], [9] and the virtual queue technique [31], we develop a
new algorithm, called Learning with Fairness Guarantee (LFG),
to tackle the CSMAB-F problem. While UCB is extended to
deal with the exploitation-exploration tradeoff, the virtual
queue technique is employed to handle the fairness con-
straints.

There are two main challenges in designing an efficient
algorithm for the CSMAB-F problem: (i) how to maximize
the reward in the face of unknown mean rewards and
(if) how to satisfy the fairness constraints. Note that these
two challenges cannot be addressed separately as they
are tightly coupled together. Therefore, we need a holistic
approach to manage the balance between maximizing the
reward and satisfying the fairness constraints. In what fol-
lows, we will first discuss the key ideas for addressing each
individual challenge and then propose the LFG algorithm
by carefully integrating them.

TABLE 1: Summary of key notations

Notations| Meaning

N; N Set of arms; number of arms

PN) Power set of N

T Time horizon

m Maximum number of simultaneously played arms

i Mean reward of arm ¢

w; Weight of arm 4

T Required minimum selection fraction for arm 7

X;(t) Reward of arm ¢ in round ¢

i (t) Sample mean of the observed reward of arm ¢ up to
round ¢

i (t) UCB estimate of arm ¢ in round ¢

hi(t) Number of times arm 4 has been played up to round ¢

d;(t) Indicator of whether arm i is played or not in round ¢

Qi(t) Virtual queue length for arm 4 in round ¢

A(t) Set of available arms in round ¢

S(t) Super arm played in round ¢

Pa(Z) Probability that the set of available arms is Z

S(Z) Set of feasible super arms when observing available
arms Z

qs(2) Probability that an A-only policy a chooses super arm
S when observing available arms Z

C Maximal feasibility region

R* Maximum reward with a priori knowledge of p

R (T) Time-average regret of policy ™

The key of maximizing the reward with uncertainty is to
strike a balance between exploitation (i.e., choosing the op-
tion that gave highest rewards in the past) and exploration
(i.e., seeking new options that might give higher rewards in
the future). We extend a simple UCB policy based on the
concept of optimism in the face of uncertainty to address
this challenge and describe the details as follows.

Let h;(t) be the number of times arm i has been played
by the end of round t, ie., hi(t) 2 Y i_,di(k). We set
hi(—1) = 0 as the system begins at ¢t = 0. Also, let ji;(t)
be the sample mean of the observed rewards of arm ¢ by the
end of round ¢, i.e., ji;(t) = W We set fi;(t) = 1
if arm 7 has not been played yet b}; the end of round ¢ (i.e., if
h;(t) = 0). We use [1;(t) to denote the UCB estimate of arm
1 in round ¢, which is given as follows:

3logt
th(t_n,l} ©)

where fi;(t — 1) and % correspond to exploitation
and exploration, respectively. We use the above truncated
version of the UCB estimate (i.e., capped at 1) as the actual
reward must be in [0, 1]. Similarly, we set ;(¢) = 1 if h;(t —
1) =0.

In the basic MAB setting, the classic UCB policy simply
selects the arm that has the largest UCB estimate in each
round [7], [9]. However, in the CSMAB-F setting we are
faced with several new challenges introduced by combina-
torial arms, availability of arms, and fairness constraints.
In particular, integrating fairness constraints adds a new
layer of difficulty to the combinatorial sleeping MAB prob-
lem that is already quite challenging. This is because not
only the player is faced with the exploitation-exploration
dilemma when attempting to maximize the reward, but she
also encounters a new tradeoff between maximizing the
reward and satisfying the fairness requirement. Therefore,
directly applying the UCB policy will not work as it was
designed without fairness constraints in mind. Next, we will

fi(t) £ min {ﬂi(t— 1)+
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explain how to use the virtual queue technique to properly
handle the fairness constraints, as well as how to cohesively
integrate it with UCB to address the overall challenge of the
CSMAB-F problem.

Following the framework developed in [31], we create
a virtual queue @; for each arm i to handle the fairness
constraints in (1). By slightly abusing the notation, we also
use Q;(t) to denote the queue length of Q; at the beginning
of round ¢, which is a counter that keeps track of the “debt”
to arm ¢ up to round ¢. Specifically, the virtual queue length
Q;(t) evolves according to the following dynamics:

Qi(t) = [Qi(t — 1) +rs — di(t — 1)]7, (7)

where [z]T £ max{x,0}. We set Q;(0) = 0 as the system
begins at t = 0. As can be seen in the above queue-length
evolution, the “debt” to arm ¢ increases by ; in each round
as r; is the minimum selection fraction, and it decreases by
one if arm ¢ is selected in round t — 1 (i.e., d;(t — 1) = 1).
Having introduced the UCB estimate and the virtual
queues, we are now ready to describe the proposed LFG
algorithm, which is presented in Algorithm 1. At the very
beginning, we initialize h;(—1) = 0 and @;(0) = 0 for all
arms ¢ € N (lines 1-3). In each round ¢, we first update
the UCB estimates fi;(¢) and the virtual queue lengths Q;(¢)
according to (6) and (7) for all arms i € N, respectively,
based on the decision and the feedback from the previous
rounds (lines 4-11); we set fi;(¢t) = 1 if h;(t — 1) = 0. Then,
we observe the set of available arms A(t) (line 12) and select
a super arm S(t) € S(A(t)) that maximizes the compound
value of the updated fi;(t) and Q;(t) as follows (line 13):

S(t) € argmax > (Q:(t) + nwifii(t)), ®)
SES(A(L) 1%

where 7 is a positive parameter we can tune to manage the
balance between the reward and the virtual queue lengths.
Note that the size of S(A(t)) is exponential in m. Hence,
the complexity of selecting a super arm S(t) according to
(8) could be prohibitively high in general. However, thanks
to the special structure of linear compound reward, we
can efficiently solve (8) and find a best super arm S(t) by
iteratively selecting best individual arms. Specifically, we
select a super arm S(t) consisting of the top-m* arms in
A(t), where m* £ min{m, |A(t)|}. That is, starting with an
empty S(t), we iteratively select arm i* such that

i* € argmax Q;(t) + nw;fii, 9)
P€EAMR\S(2)

and after each iteration, we update super arm S(t¢) by
adding arm ¢* to it, i.e., S(t) = S(t) U {i*}. Repeating the
above procedure for m* iterations solves (8) and finds a best
super arm S(t). After we play arms in S(t) and set vector
d(t) accordingly (line 14), we observe the reward X, (t) for
all played arms ¢ € S(t) (lines 15-17) and update h;(t) and
f1;(t) accordingly for all arms i € N (lines 18-20).

Remark: As we mentioned earlier, we introduce a design
parameter 7 to manage the balance between the reward and
virtual queue lengths. When 7 is large, the LFG algorithm
gives a higher priority to maximizing the reward compared
to meeting the fairness constraints. This is because an arm
with a large estimated reward (i.e., UCB estimate) will be
favored, compared to another arm that has a small estimated

Algorithm 1 Learning with Fairness Guarantee (LFG)

1: fori € N do

2:  Initialize h;(—1) = 0 and Q;(0) = 0;
3: end for

In each round t¢:

4: fori € N do

5. if hy(t — 1) > 0 then

6: Update [i;(t) according to (6);
7. else

8: Set i (t) =1;

9: end if
10:  Update Q;(t) according to (7);
11: end for

12: Observe the set of available arms A(t);

13: Select super arm S(t) according to (8);

14: Play arms in S(t) and set vector d(¢) accordingly;

15: fori € S(t) do

16:  Observe the reward X, (t);

17: end for

18: fori € N do

19:  Update h;(t) and [i;(¢) according to d;(t) and X;(¢).
20: end for

reward but a large “debt” (i.e., virtual queue length). In
contrast, when 7 is small, the LFG algorithm gives a higher
priority to meeting the fairness constraints because an arm
with a large virtual queue length will be favored even if it
has a small estimated reward. Indeed, our simulation results
presented in Section 7 reveal an interesting tradeoff between
the regret and the speed of convergence to a point satisfying
the fairness constraints.

Note that the LFG algorithm adopts a linear combination
of the virtual queue length and the UCB estimate to address
the trade-off between reward maximization and fairness
guarantee. The reason that such a natural integration works
is partially due to the linearity of the offline problem (i.e.,
Eq. (3)). In particular, the objective function (i.e., Eq. (3a)) is
linear because we consider a linear reward function. In the
settings with more general nonlinear reward functions, such
as a submodular reward function, even the offline problem
with known rewards could easily become intractable (e.g.,
NP-hard) [32]. In such cases, it remains unclear how to
design efficient algorithms that can achieve a good regret
performance while satisfying the fairness constraints. We
leave this question to our future work.

In addition, our proposed LFG algorithm is based on
the drift-plus-penalty approach [31]. As explained in [31],
this approach can be viewed as a dual-based approach to
the stochastic optimization problem (i.e., the linear program
formulated in Eq. (3)), and it reduces to the well-known
dual subgradient algorithm for linear and convex programs
when applied to non-stochastic optimization problems.
However, to the best of our knowledge, our work is the first
to employ the drift-plus-penalty approach to solve a new
MAB problem with fairness constraints. The integration of
the virtual queue technique and the UCB algorithm renders
the regret analysis more challenging as the traditional regret
analysis for the UCB algorithm becomes inapplicable here.
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5 MAIN RESULTS

In this section, we analyze the performance of our proposed
LFG algorithm and present our main results. Specifically,
we show that the LFG algorithm is feasibility-optimal (i.e.,
it can satisfy any feasible requirement of minimum selection
fraction for each individual arm) in Section 5.1 and derive
an upper bound on the time-average regret in Section 5.2.

5.1 Feasibility Optimality

We first present the feasibility-optimality result. That is, the
LFG algorithm can satisfy the fairness constraints in (1) for
any minimum selection fraction vector r strictly inside the
maximal feasibility region C.

Note that the constraints in (1) are satisfied as long
as the virtual queue system defined in (7) is mean rate

stable [31, pp. 56-57], ie. limp_, M = 0.
In our virtual queue system, mean rate stab111ty is im-
plied by a stronger notion called strong stability, i.e.,
limsupy_, 23;01 E[Zf;l Qi(t)] < oo. Therefore, in or-
der to prove feasibility-optimality, it is sufficient to show
that the virtual queue system is strongly stable whenever
the minimum selection fraction vector r is strictly inside C.

We state this result in Theorem 1.

Theorem 1. The LFG algorithm is feasibility-optimal. Specifi-
cally, for any minimum selection fraction r strictly inside
the maximal feasibility region C, the virtual queue sys-
tem defined in (7) is strongly stable under LFG. That is,

lim sup — Z E

T—o0

ZQZ }<<oo (10)

where B £ N -+ MMWmax and € is some positive constant
satisfying that r + €l is still strictly inside C, with 1 being
the N-dimensional vector of all ones.

We prove Theorem 1 by using standard Lyapunov-drift
analysis [31]. The detailed proof is provided in Section 9.1.

Remark: Note that the work of [24] also studies an MAB
problem with minimum-guarantee constraints. However,
their work differs significantly from ours because their con-
sidered minimum guarantee is for the total rewards (of some
type/level) rather than for each individual arm, i.e., fairness
among arms is not modeled. More importantly, the pro-
posed learning algorithm in [24] may violate the constraints.
Although they show that the violations are upper bounded
by O(T°/9), this upper bound implies that the constraints
may not be satisfied even after a long enough time. In stark
contrast, Theorem 1 states that our proposed LFG algorithm
can satisfy the (long-term) fairness constraints as long as the
requirement is feasible. Another difference is that they do
not consider sleeping bandits, which can further complicate
the problem.

5.2 Upper Bound on Regret

In this subsection, we prove an upper bound on the time-
average regret (as defined in (5)) under the LFG algorithm.
This upper bound is achieved uniformly over time (i.e., for
any finite time horizon T') rather than asymptotically when
T goes to infinity. We state this result in Theorem 2.

6

Theorem 2. Under the LFG algorithm, the time-average
regret defined in (5) has the following upper bound:

N [31 mNTlogT+B2
2n ’

where 31 £ 2v/6wmax, and B2 £ (1 +

We prove Theorem 2 by using a similar line of regret
analysis in [29]. The detailed proof is provided in Section 9.2.

Remark: The derived regret upper bound in (11) is quite
appealing as it separately captures the impact of the fair-
ness constraints and the impact of the uncertainty in the
mean rewards for any finite time horizon 7. Note that
the rej%ret upper bound in (11) has two terms. The first
term 5 is inversely proportional to 7 and is attributed to
the 1mpact of the fairness constraints. Specifically, when
7 is small, the LFG algorithm gives a higher priority to
meeting the fairness requirement by favoring an arm with
a larger “debt” (i.e., virtual queue length) as in (9), even
if this arm has a small estimated reward. This results in a
larger regret captured in the first term. Similarly, a larger
71 leads to a smaller regret captured in the first term, but
it will take longer for the LFG algorithm to converge to
a point satisfying the fairness constraints. This interesting
tradeoff can also be observed from our simulation results in
Section 7. The second term £/ L THB2N s of the order
O(\/logT/T). This part of the regret corresponds to the
notion of regret in typical MAB problems and is attributed
to the cost that needs to be paid in the learning/exploration
process. Note that the second term is an instance-independent
upper bound that does not depend on the problem-specific
parameter p. Our derived bound on the time-average regret
is consistent with the instance-independent result for basic
MAB problems [2, Ch. 2.4.3]".

Ripc(T) <

(11)

572
12 ) Wmax-

6 APPLICATIONS

In this section, we provide more detailed discussions about
real-world applications of our proposed CSMAB-F frame-
work. Specifically, we will discuss the following three ap-
plications as examples: scheduling of real-time traffic in
wireless networks [5], ad placement in online advertising
systems [33], and task assignment in crowdsourcing plat-
forms [34].

6.1 Scheduling of Real-time Traffic in Wireless Net-
works

Consider the problem of scheduling real-time traffic with
QoS constraints in a single-hop wireless network. Assume
that there are IV clients competing for a shared wireless
channel to transmit packets to a common AP (see, e.g.,
[5]). Time is slotted. The AP decides which client(s) can
transmit at what times. Consider a scheduling cycle, called a
frame, that consists of m consecutive time slots. Every client
generates one data packet at the beginning of each frame.
To avoid interference, we assume that at most one client
can transmit in each time slot. Note that some clients may
sometimes be unable to transmit when experiencing poor
O(\/1ogT/T) vs.

1. Time-average cumulative

O(TlogT).

regret regret
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Fig. 1: Scheduling of real-time traffic

channel conditions (due to fading or mobility). Assume that
the channel conditions remain unchanged during a frame
but may vary over frames and that the AP obtains the exact
knowledge about the channel conditions through probing
messages.

At the beginning of each frame, the AP makes schedul-
ing decisions by selecting an available client to transmit
in each of the m time slots; at the beginning of each time
slot, the AP broadcasts a control packet that announces the
scheduling decision, and then, the selected client transmits a
packet to the AP in that time slot. We model real-time traffic
by assuming that packets have a lifetime of m time slots
and expire at the end of the frame. The above framework
is illustrated in Figure 1. While a successfully delivered
packet will generate a utility, which could represent the
value of the information contained in the packet, an expired
packet will be dropped at the end of the frame. We assume
that the utility corresponding to each client is a random
variable, and its mean is unknown a priori. There is a weight
associated with each client, indicating the importance of the
information provided by the client.

The goal of the AP is to maximize the cumulative utilities
by scheduling packet transmissions in the face of unknown
mean utilities. In addition, each client has a QoS require-
ment that a minimum delivery ratio must be guaranteed.
Clearly, the scheduling problem with minimum delivery
ratio guarantee can naturally be formulated as a CSMAB-
F problem.

6.2 Ad Placement in Online Advertising Systems

Online advertising has emerged as a very popular Internet
application [33]. Take a page of Weather.com website shown
in Figure 2 for example. When an Internet user visits the
webpage, the publisher dynamically chooses multiple ads
from the ads pool to display in the ad-mix areas (highlighted
by red circles in Figure 2). We assume that the ads pool
consists of IV ads, and the ad-mix area has a limited capacity,
which allows displaying no more than m ads simultane-
ously. Note that some ads are irrelevant to certain users,
depending on the context including users’ characteristics
(gender, interest, location, etc.) and content of the webpage.
Hence, such irrelevant ads can be viewed as unavailable
to those users, and the availability of ads depends on the
distribution of the context. After seeing a displayed ad, the
user may or may not click it. The click-through rate (i.e.,
the rate at which the ad is clicked) of each ad is unknown a
priori. Each click of an ad will potentially generate a revenue
for the advertiser, which can be viewed as the weight of the
ad.

RTINS >
Fig. 2: Ad placement
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Fig. 3: Task assignment in crowdsourcing

The goal of the ad publisher is to maximize the cu-
mulative revenues by determining a best subset of ads
to display in the face of unknown click-through rates. In
addition, the publisher must guarantee a minimum display
frequency for advertisers who pay a fixed cost over a spec-
ified period, regardless of users’ responses to the displayed
ads. Obviously, the ad placement problem with minimum
display frequency guarantee fits perfectly into our proposed
CSMAB-F framework.

6.3 Task Assignment in Crowdsourcing Platforms

The increasing application of crowdsourcing is significantly
changing the way people conduct business and many other
activities [34]. Consider a crowdsourcing platform such
as Amazon Mechanical Turk, Amazon Flex (for package
delivery), and Testlio (for software testing), as shown in
Figure 3. Tasks arriving to the crowdsourcing platform will
be assigned to a group of workers with different unknown
skill levels. Specifically, when a task arrives, the platform
may divide the task into multiple sub-tasks; then the sub-
tasks will be assigned to no more than m workers from a
pool of N workers, due to the number of sub-tasks or a lim-
ited budget. Note that some workers could be unavailable
to take certain tasks due to various reasons (time conflicts,
location constraints, limited skills, preferences, etc.). Each
completed task will generate a payoff that depends on the
quality or efficiency of the workers. The payoff is a random
variable, and its mean is unknown a priori due to unknown
skill levels of workers.

The goal of the crowdsourcing platform is to maximize
the cumulative payoffs by determining an optimal task allo-
cation in the face of unknown mean payoffs. In addition, the
platform has to take fairness towards workers into account
through a minimum assignment ratio guarantee for each
worker. This fairness guarantee helps maintain a healthy
and sustainable platform with improved worker satisfaction
and higher worker participation. Apparently, our proposed
CSMAB-F framework can be applied to address the task
assignment problem with minimum assignment ratio guar-
antee.

7 NUMERICAL RESULTS

In this section, we conduct simulations to evaluate the
performance of our proposed LFG algorithm and discuss
several interesting observations based on the simulation
results.

We consider two scenarios for the simulations: (i) N = 3
and m = 2; (ii) N = 10 and m = 6. Since the obser-
vations are similar for these two scenarios, we will focus
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Fig. 4: Performance comparisons of different algorithms

on the discussion about the first scenario due to space
limitations. We assume that the availability of arm ¢ is a
binary random variable that is i.i.d. over time with mean p;.
Then, the distribution of available arms can be computed
as Pa(Z) = [Liez pilligz(1 — p;) for all Z € P(N). We
also assume binary rewards with the same unit weight (i.e.,
w; = 1) for all the arms. The detailed setting of other pa-
rameters is as follows: p = (0.4,0.5,0.7), r = (0.5,0.6,0.4),
and p = (p1,p2, p3) = (0.9,0.8,0.7).

First, in order to demonstrate that LFG can effectively
meet the fairness requirement, we compare LFG with
a fairness-oblivious combinatorial MAB algorithm, called
Learning with Linear Rewards (LLR) [11]. We modify the LLR
algorithm to accommodate sleeping bandits; the modified
version is called LLR for Sleeping bandits (LLRS). In each
round ¢, observing the set of available arms A(t), LLRS
selects a super arm S(t) that has the largest weighted sum
of the UCB estimates among all the feasible super arms in
S(A(t)), ie, S(t) € argmaxgeg(a)) 2ics Willi(t). Note
that LLRS is oblivious of the fairness constraints in (1).

We simulate LFG with 5 € {1, 10,100,1000} and LLRS
for T = 2 x 10* rounds (at which all the considered
algorithms are observed to converge) and present the results
in Figure 4. Figure 4a shows the time-average regret over
time for the considered algorithms; Figure 4b shows the
selection fraction of each arm at the end of the simulation
(ie,atT = 2 x 104). From Figure 4a, we can make the
following observations: (i) LFG with a larger n results in
a smaller regret, and LFG with » > 100 approaches a
zero regret; (ii) LLRS achieves the smallest regret, which
is even negative (i.e., it achieves a reward larger than the
optimal 12*). Observation (i) is expected, as we explained in
Section 5.2: the upper bound on regret in (11) approaches

8

zero when both 7 and T" become large. Observation (ii) is
not surprising because LLRS is fairness-oblivious and may
produce an infeasible solution. Indeed, Figure 4b shows
that Arm 1’s selection fraction under LLRS is smaller than
the required value (0.4 vs. 0.5). This is because Arm 1 has
the smallest mean reward and is not favored under LLRS,
which is unaware of the fairness contraints. On the other
hand, Figure 4b also shows that with different values of 7,
LFG consistently satisfies the required minimum selection
fraction, which verifies our theoretical result on feasibility-
optimality of LFG (Theorem 1).

At first glance, the above observations seem to suggest
that LFG with a large 7 is desirable because that leads to
a vanishing regret while still providing fairness guarantee.
However, what is missing here is the speed of convergence
to a point satisfying the fairness requirement, which is
another critical design concern in practice. To understand
the convergence speed of LFG with different values of 7, in
Figure 5 we plot the selection fraction over time for each
arm. Taking Figure 5a for example, we can observe that
the convergence slows down as 7 increases. In addition,
before LFG with = 1000 converges (e.g., when T' < 10%),
the actual selection fraction of Arm 1 does not meet the
required minimum value of 0.5. Since the constraints may
be temporarily violated, the regret could even be negative
before LFG converges (see 7 = 1000 in Figure 4a). Therefore,
the simulation results reveal an interesting tradeoff between
the regret and the convergence speed. We can control and
optimize this tradeoff by tuning 7. For example, for the
considered scenario, LFG with 7 = 100 seems to achieve a
good balance between the regret and the convergence speed.

Finally, we want to investigate the tightness of the upper
bound derived in (11). Consider the average of 100 inde-
pendent simulation runs for LFG with n = 100. Figure 6
shows the time-average regret vs. the time horizon 7' in a
log-log plot. Recall that the upper bound in (11) has two
terms. The impact of 1" appears in the second term that is
of the order \/logT/T. When T becomes large, it becomes
difficult to see the impact of 7" on the regret as the first term
% becomes dominant. Therefore, we consider the region
with 7" < 1000 (i.e., logT < 6.9). Figure 6 seems to suggest
that the time-average regret follows the order log T'/T rather
than /logT/T. This implies that the upper bound in (11)
is not tight. One reason could be that the y/log T'/T bound
is instance-independent. It remains open whether one can
come up with novel analytical techniques to derive a better
bound of log T'/T.

8 CONCLUSION

In this paper, we proposed a unified CSMAB-F framework
that integrates several critical factors (i.e., combinatorial
actions, availability of actions, and fairness) of the system in
many real-world applications. In particular, no prior work
has studied MAB problems with fairness constraints on
a minimum selection fraction for each individual arm. To
address the new challenges introduced by modeling these
factors, we developed a new LFG algorithm that achieves
a provable regret upper bound while effectively providing
fairness guarantee.
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We leave the following interesting questions to our
future work: Can one prove a tighter upper bound on
regret? How to develop efficient algorithms for a more gen-
eral model that potentially accounts for nonlinear reward
functions, more sophisticated combinatorial structures (e.g.,
matroids), and more general fairness criteria other than
temporal fairness that we consider in this paper?

9 PROOFS

9.1 Proof of Theorem 1

Proof: Consider the LFG algorithm. To prove feasi-
bility optimality, we want to show that for any vector r
strictly inside the maximal feasibility region C, the mini-
mum selection fraction requirements (i.e., Eq. (1)) are sat-
isfied. Note that the requirements of (1) are satisfied as
long as the virtual queue system defined in (7) is mean

. : E[XN, Qi(T)]

rate stable [31, pp. 56-57], ie, hmT%oo% =
0. In our virtual queue system, mean rate stability is
implied by a stron§er notion called strong stability, i.e.,
lim supy_, o %ZtT;o E[Y N, Qi(t)] < oo. Therefore, it is
sufficient to show that the virtual queue system is strongly
stable for any vector r strictly inside C.

We proceed the proof using the Lyapunov-drift anal-
ysis [31]. Let Q(t) = (Q1(t),...,Qn(t)) be the queue-
length vector in round ¢. Consider the following Lyapunov
function:

A 1 & 2
LQ(1) £ 5 Y- Q3 (1). (12)
i=1

where (a) is from the queue-length evolution (7) and (b)
holds because both 7; and d;(t) are within [0,1]. Taking
conditional expectation of both sides of the above gives

E[L(Q(t + 1)) — L(Q(1))|Q(?)]

N X [ &
NS e -2 |y done.mae

IN

Y dAi®)Qi(1)|Q()

LieS(t)

N N

> nwipi(t)|Q(t)

N N
5+ ZTiQi(t) +E |
i=1 Li€S(t)

—-E Z (Qi(t) + nw;fii(t))|Q(%)

ieS(t) (14)

IA

N N
5+ ; Qi () + Mwmay

—E| Y (Qit) + nwii(1)|Q(2)

1€S(t)

N
=B+ riQi(t)

i=1

i€S(t)
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where the last inequality holds because w; < wmax, fi(t) <
1,and |S(t)] < m,and B £ % + nMmwpay is a constant.
Recall that r is strictly inside C. Then, there must exist
some € > 0 such that r + €l is also strictly inside C, where
1 denotes the N-dimensional all-ones vector. By Lemma 1,
there exists an A-only policy « that can support vector r+e1.

That is,
Y Pa(Z) Y. qg(Z)zrite VieN, (15)
ZeP(N) SeS(2):ies

where q = [¢%(Z),VS € S§(Z),VZ € P(N)] is the group
of probability distributions associated with policy . Recall
that in each round ¢, policy « observes available arms A(t)
and chooses a super arm S*(t) € S(A(t)) independent
of Q(¢). Then, the last term of the right-hand side of (14)
satisfies

E [ Z (Qi(t) +77wiﬂi(t))Q(t)]

i€S(t)

=E {]E [ Z (Qi(t) + nw;fii(1))|Q(2), A(t)

i€S(t)
A(t)]
{ [ i(1)1Q(1), A(t)
i€eSe(t)

] (16)
[ { i(t)A(t)
i€Sa(t)

DY ]
Z)> Qi(t)

i€S

D

SeS(2):ieS

Yk [E [ S (Qult) + i ()]Q).
1€ES(t)

|:S€S(A(t))

Z) 3. 4

ses(Z)

Y. Pa(2)

ZeP(N)

ZG’P(N)

N
= ZQi(t)

q5(2),

where (a) is due to the operations of LFG (specifically, (8)),
(b) holds because policy «’s decision is independent of Q(t),

and (c) is due to the operations of policy c.
Substituting (16) into (14) and applying (15) give

E[L(Q(t +1)) — L(Q(1))|Q(1)]
N
< B+ riQi(t)

N:l
= Qit) Y. PalZ2) > 4€(2)
i=1 ZePN)

Ses(z):ies
N

N
< B+ Y riQit) = Y Qi(t)(ri +¢)
i=1

=1

N
= B — GZQZ‘(t)
=1

Finally, invoking the Lyapunov Drift Theorem [31, The-
orem 4.1] gives (10), which completes the proof. O
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9.2 Proof of Theorem 2

Proof: Consider an optimal A-only policy a* and
its associated probability distributions q* = [¢§(Z),VS €
S8(Z),YZ € P(N)]. Let S*(t) be the super arm selected by
policy a* in round ¢. Vector d*(¢) = (d;(¢), ..., d§(t)) is the
corresponding action vector. Due to (4), we have

Y. Pa(2) Y a5(2)) wim

ZeP(N) SeS(2) €S
(18)
1€S*(t)

Plugging (18) into (5), we can rewrite the regret of LFG
as

1

Ripc(T) = T

> ¥ wx

t=0 3€5(t)

1
R — Z Wi g
1€5(t)

Z Wi by — Z wz,uZ].

P€ES*(t) 1€S(t)

;

Nl =

(19)

H\T
_.o

IE

Nl =

~
I

AR(t)

We define the following quantity:

> wip

zGS(t

=1

)& D wip —

i€S*(t)

= Zwiﬂid?(t) -
=1

(20)

which captures the gap between the expected rewards
achieved by policy a* and LFG in round ¢. Adding AR(t)
scaled by 7 to the drift of the Lyapunov function (i.e., (13))
gives the drift-plus-regret:

L(Q(t + 1)) - L(Q(t )) +nAR()
<= + Zerz Zd
+Uzwiuidf(t> - n;wiﬂidi(t) @1

N
2

Mz

(Qi(t) + nwipi) (di (t) — di(t))

1=1

+
N

+ Y Qit)(ri — i (1))

i=1



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2954310, IEEE

Transactions on Network Science and Engineering

We can bound the expected drift-plus-regret as

EIL(Q(t + 1)) - L(Q(®) + nAR()
N
< 5 D EIQu) + uun) (6 (1) — (1)
i=1
+ Y EQuO s = di (1) @)
Nz:l v
<5 +E D (Qilt) + i) (df (1) — di(8)) |,

=1

C1(t)

where the last step follows from E[Q;(¢)df(t)] =
E[Q;(t)]E[d}(t)] (due to the decision of policy a* being in-
dependent of the queue length Q;(t)) and E[d}(t)] > r; (be-
cause policy a* is stationary and feasible). Define C;(t) £
SN (Qi(t) + mwip) (dE () — dy(t)). Summing (22) for all
t € {0,...,T — 1}, using the trick of telescoping sum, and
dividing both sides of the inequality by T'n, we obtain

1
S EIL(Q(T)) - >
0 i
_— (23)
e 3 EICH(0)
< —+ — E[Cy
2n  Tni=
Since L(Q(T)) > 0 and L(Q(0)) = 0, we have
1 T-1 N T-1
i <
7 2 EIARM] < 50+ 7 z_: E[Ci(t)]. (24
t=0 t=0
In Section 9.3, we will show the following bound:
] T2
7 2 ElC1(1)]
Tn = (25)
< Wmax (2\/6mNT10 T+ (1+ 5”2)1\7)
=T & 2
Finally, plugging (25) into (24) and combining it with (19)
yield (11). This completes the proof of Theorem 2. O

9.3 Bounding C(t)

In this section, we want to show (25).
Consider a policy 7/, which, in each round ¢, chooses a
super arm S’(t) in the following manner:
S'(t) € argmax Y (Qi(t) + nwipi(t)).
SES(A(1)) fcs

(26)

Recall that in each round ¢, the LFG algorithm chooses a
super arm S(t) according to (8). Therefore, we have

Z (Qi(t) + nwipi(t)) >

i€5(t)

> (Qilt) + nwipa(t)). (27)

i€S'(t)

11

Next, we derive an upper bound on Ci (t):

N
Ci(t) = Z (Qi(t) + nw;p;)(d; (t) — di(t))
i=1
= > Qi) +nwip) — D> (Qult) + nwip)
€S (t) ieS(t)
(a)
< Y Qi)+ i) = D (Qlt) + nwips)
ies'(t) )
< Do Qi)+ nwip) = Y (Qilt) + nwips)
i€S5"(t) 1€S(t)
+ Z t) + nw;fii(t))
1€S(t)
— > (Qit) + nwifia(t))
ies' (1)
:w(ijw — )+ > wil z»)
i€S(t) 1€S’(t)

Ca(t) Cs(t)

(28)
where (a) is from (26) and (b) is from (27). Define Cy(t) =
Dies WiRi(t) — i) and C3(t) £ 37, gy wi(ps — fa(t)).
In Sections 9.4 and 9.5, we will show the following two
bounds, respectively:

;m@mg%m@ﬂmmmy4u+4w)

(29)
T-1 772
> E[C3(t)] € ——wmax N (30)
t=0 6

Finally, summing (28) for all ¢t € {0,...,T — 1}, dividing
both sides of the resulting inequality by 77, and plugging
(29) and (30) into it yield (25).

Remark: The bound in (29) consists of two terms: the first
term is of the order O(y/T log T'), which corresponds to the
notion of regret in typical MAB problems and is attributed
to the cost that needs to be paid in the learning/exploration
process; the second term is a constant, which is from apply-
ing the Chernoff-Hoeffding bound (see, e.g., [9]) to a “bad”

event {{;i(t — 1) — p; > /58 18: ) }. Similarly, the bound

in (30) is from applying the Chernoff Hoeffdmg bound to

another “bad” event {/i;(t — 1) —\/ Bt lag tl)}

9.4 Bounding C>(t)

In this section, we want to show (29).

Consider an arbitrary arm ¢ in A/ and an arbitrary round
t =0,1,...,7 — 1. Let t!, be the round in which arm i is
played for the a-th time. Recall that h;(t) is the number of
times arm 7 has been played by the end of round ¢. Clearly,
we have d;(t}) = 1, h;(t) = a, and h;(t{, — 1) = a — 1 for

alla € {1,2,...,h;(T — 1)}. In addition, we also have
0<t) <th<-- <ty <T. (31)
Define the following event:
Ui(t) £ {fa(t) < i} (32)
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Let E° be the complement of an event £, and let 1., denote
the indicator function. We bound the expectation of C(t) as

sz fii (t
sz fui(t
sz i (t

Zwm
®)

< Wiax ZE it

=1

Hi dl(t):|

dth»}

+E

dUhmm} (33)

(ﬂwwﬁ

= pi)di(t) Lve ey,
Jl(t)

where (a) is due to fi;(t) < p; when event U;(t) happens
and (b) is due to f;(t) > p; when event Uf(t) happens.
Define Jy (t) = (i (t)—pi)di(t)L{ue (1)} - Also, define another

event:
3logt
FEM) &2 pt—1)—p <y ="t 4
0 {m )~ < th(t_l)} 64
Then, summing J;(¢) forallt € {0,...,T — 1} gives
T-1
> il
t=0
hi(T—1)
= Z (1i(te) = pi) Liue iy
a=1
®) hi (T—1)
<1+ Z (1i(te) — i) Lyve (s )y
Ry (T 1)
=1+ D> (aty) = ) Liwpeiyy (Umasy + Lireein)
a=2

<14+ Y ((rath) — i) Lwe)nr )y Hlirsey)s
= J2(th)
4 (35)
where (a) is due to d;(t}) = 1 foralla € {1,2,...,h(T —

1)} and d;(t) = 0 for all other ¢, (b) is due to fi;(t]) — i <
1, and (c) is due to (f;(t,) — pi)Lveiyy < 1. We define
Jo(th) = ((t) — i) Liyei)nr, i)y and want to bound
hi (T DE i h; T 1)
bOth Z [Jg(t )] and Z E[]I{Ftc(ta)}}
First, we want to bound 37 T YE[J,(#)). Consider ti

foralla € {2,...,h;(T—-1)}. Suppose event F;(t!) happens
Then, we have

. i 3logtt
Wt —1) — —= 36
frity —1) — pi < it — 1) (36)
From (6), we also have
; 3logtt
t! (e, — 1 —a 37
fi(th) < sty — 1) + ot — 1) (37)

12
Combining (36) and (37) gives
- 3logtt
i (t0) — g <24 ) —224— 38
[ii(ty) — pi < St — 1)’ (38)
which implies that for all a € {2,...,h;(T — 1)}, we have

Jo(th) = (i(ty) — i) Vgue ei)nr, ei)}
3logti (39)
=V 2h(th - 1)
Then, summing Jo(t}) for all a € {2,...,h(T — 1)}
gives
(T—1) (T—1)
<m M%ﬂ
Jo(th) — %
Z 2 Z tz _ ]_)
hi(T—1)
6logT
2 v (40)

hl(T D1
6logT 1—|—/ —dz
i ( R )
< 24/6h(T — 1) log T,

where (a) is from (39), (b) is due to t, < T (from (31))
and h;(t{ —1) =a—1foralla € {2,...,h;(T — 1)}, and
(c) is due to a basic relationship between the considered
summation and integral. Therefore, we have

hi(T—1)

D,

a=2

E[J2(t;)] < 2¢/6log TE[\/hi(T = 1)) (41)

Next, we want to bound ZZ:(Q []l{ Fe(ti)}]- Accord-
ing to the definition of ¢!, we have h;(t. — 1) = a — 1 and
thus /1;(t, — 1) is the sample mean of (a — 1) i.i.d. random
variables X;(t!),---, X;(t\_;) with mean p;. Further, we
know ¢! must satisfy a — 1 < ¢’ < T — 1. Hence,

3logt:,
2hi(t;, — 1)

3logT
2(a—1)["

By applying the union bound and the Chernoff-Hoeffding
bound (see, e.g., [9]), we have

Fe(th) = {ﬂi(ti —1) = p; >
(42)

C Ui {ﬂi(T - 1) —pi >

E[L{peqi)y] = P{Ff(th)}

= pl 1 3logT
S Z fi(T — 1) = s > 20a-1)

T=a—1
T—1
1 1 > 1 3
< — < +/ —dr < ——.
TZZ(L—l 7 7 (a—1)3 a1 X3 2(a — 1)
Hence, we derive

hi(T—-1)

>

a=2

(I > 3 2
Z afl SZT_i

(43)

]E[]l{FiC(tl
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Taking expectation of both sides of (35) and plugging
(41) and (43) into it yield

T—1
5
< hi(T — =
gE[Jl(t)] < 2y/6log TE[\/hi(T —1)] + 5 (44)
Finally, summing (33) for all ¢ € {0,...,7 — 1} and
plugging (44) into it yield (29):
T-1
E[C2()]
t=0
3 ™) @)
< Wi 9v/61log TE[\/hi(T — 1)] + 1 + —
_w;< 6log TE[\/hi(T — 1)] + +4)
2
< Wpax (2\/6mNTlogT +(1+ Z)N> ,
where the last step follows from + Zfil hi(T—1) <

\/N ’Ll

Zl L hi(T — 1) < T'm (due to the fact that at most m arms
can be selected in each round).

—1) (due to Jensen’s inequality) and

9.5 Bounding Cs(t)

In this section, we want to show (30).

Consider an arbitrary arm ¢ in A and an arbitrary round
t =0,1,...,7 — 1. Recall that C5(t) = >Z;cq/() Wit —
ai(t)). Let d'(t) = (dy(¢),...,dy(t)) be the action vec-
tor corresponding to S’(t). Also, recall that U;(t) =
{f:(t) < p; }. Similar to the derivation for Cs(t) in (33), we
bound the expectation of C5(t) as

e {3 wi
£ |3 i

N
2wl

N

2|2 wiln
< wmaXZE

fii () d; (f)}

fii (1)) d; () Lqv, (t)}:|

+E

i )d()]l{w(t)}} (46)

(t)d(t) L, (t)}:|

)i (8) 1w, (1)1,
Kq(t)

where (a) is due to fi;(t) > p; when event Uf(t) happens,
and (b) is due to fi;(t) < p; when event U;(t) happens. We
define K, (t) = (pi — ii(t))dj(t) 11y, )y and consider two
cases for E[K(¢)]: 1) t <t} and ii) ¢ > ¢}.

In Case i), event U;(t) must not happen, i.e., i;(t) > p;
must hold. This is because fi;(t) = 1 (due to h;(t —1) =0
for t < ti)and u; € [0, 1]. Hence, for all ¢ < t{ we have

E[K,(t)] = 0.

In Case ii), suppose event U;(t) happens. Then we have
fgi(t) < p; < land 1 < h(t — 1) < t. This, along with (6),
implies i;(t) = fi;(t— 1)+ /502081 5. which further implies

2h; (t*l
3logt
2hi(t—1) [~

(47)

Ui(t) = {ﬂi(t —1)—p < (48)

13

This leads to the following bound on E[K (¢)] for all ¢ > #¢:
E[K1(t)] = E[(pi — (1)) () 1w, (1))]

< E[lyy, 0] = P{Ui(t)}
3logt
2hi(t—1)

P{ﬂi(tl)m < -
where the inequality is due to p; — 1;(t) < 1and dj(¢) <1
Note that fi;(t —1) in Eq. (48) is the sample mean of h;(t —1)
i.i.d. random variables (donoted as X (1), X(2),---) in [0, 1]
with mean p; and that h;(t — 1) is random but has finite
possible values {1, - - - , t}. Hence, for each possible value of
h;(t — 1), the Chernodd-Hoeffding Bound could be applied.

Therefore, we have
3logt
2h;(t—1)

(49)

E[K:1 ()] < P{Ui(t)}

:2 {{h (t—1)= h}ﬂ{m(t 1)—pi <

h=1
t h
1 3logt
<SPS X(n) — i < —
<3 e {13 x - < Qh}
h=1 n=1
t
1 1
<> il
— 3 27
h:lt t

(50)
where the last inequality is from the Chernoff-Hoeffding
Bound (see, e.g., [9]).

Summing E[K(t)] forall ¢ € {0,...,T
ing (47) and (50) yield

— 1} and apply-

— T-1 1 oo 1 2
> E[K1(t)] < =<3 S=— &)
— —~ 1 —{ 6
t=ti+1 t=1
Finally, summing (46) for all t € {0,...,7 — 1} and

plugging (51) into it yield (30).
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