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A B S T R A C T

Credibly assessing the resilience of energy infrastructure in the face of natural disasters is a salient concern
facing researchers, government officials, and community members. Here, we explore the influence of the spatial
distribution of disruptions due to hurricanes and other natural hazards on the resilience of power distribution
systems. We find that incorporating information about the spatial distribution of disaster impacts has significant
implications for estimating infrastructure resilience. Specifically, the uncertainty associated with estimated in-
frastructure resilience metrics to spatially distributed disaster-induced disruptions is much higher than de-
termined by previous methods. We present a case study of an electric power distribution grid impacted by a
major landfalling hurricane. We show that improved characterizations of disaster disruption drastically change
the way in which the grid recovers, including changes in emergent system properties such as antifragility. Our
work demonstrates that previous methods for estimating critical infrastructure resilience may be overstating the
confidence associated with estimated network recoveries due to the lack of consideration of the spatial structure
of disruptions.

1. Introduction

Defined broadly, resilience is an emergent property of a system
which manifests as the result of an iterative process of sensing, antici-
pation, learning, and adaptation to all types of disruptions [1]. Using
this definition, resilience must be studied at a system-wide level, where
the resilience of an entire system is studied in the context of hazards
and disruptions. Characterization of the resilience of a complex system,
therefore, is inherently a comprehensive analysis of that which acts
against it. This system–disruption paradigm allows for the study of a
wide range of interaction-based entities from ecological plant–polli-
nator relationships [2,3] to the psychological resilience of families to
trauma [4].

In the context of engineering urban systems, the resilience of a
critical infrastructure (e.g., the electric power grid, telecommunication
networks, natural gas, water network, etc.,) includes study of the re-
covery from failures induced by hydro-climatic extremes and seismic
events as well as acts of terrorism. Critical urban networked infra-
structure is well-represented by a graph [5]. Subsequently, disrupting a
graph requires removing or disabling fractions of the system consistent
with an exogenous threat or hazard.

In this paper, we use a graph-theoretic approach to show that small

changes in the spatial characteristics of a disruption to a system radi-
cally change the characteristics of system performance as a disruption is
repaired over time. Whether the recovery is measured in-terms of net-
work-based performance metrics or by the extent of impact on stake-
holders, our results indicate that the measured resilience of a system is
heavily dependant on the spatial characteristics of the initial disruption.
We conduct this study in the case of an electric power distribution grid
impacted by a major landfalling hurricane. We generate different spatial
distributions of initial disruptions to a power grid and study their im-
pact on graph-theoretic measures of network connectivity as well as the
number of customers without power. The remainder of this paper is as
follows: Section 2 introduces relevant other works, Section 3 outlines
the data and methods used for this analysis, and finally Sections 4 and 5
detail the results and conclusion respectively.

2. Background

Network analysis deals with the study of graphs or networks.
Networks are “a collection of points [referred to as vertices or nodes]
joined together by pairs of lines [referred to as edges or links].” [5] The
edge-vertex pairing lends itself to be an intuitive mathematical object
for which to model phenomenon such as animal and plant interactions
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[6], academic authorship, urban infrastructure design [7] [8] and—-
most relevant to this work—electric power infrastructure [9–12]. Re-
presenting a system as a network allows for simple—and in most cases
tractable—estimations of system performance. Measurements of the
overall size, degree of connectivity, length of paths between vertices,
and degree of clustering are all easily computed from a network model
and can provide a myriad of insights about the system being re-
presented [13]. Graphs representing a system in which the components
interact can be used to model how the failure of one vertex may pro-
pagate through the network [14]. If failure likelihoods are drawn from
certain probability distributions, there can exist critical fractions of
node failures for which the failure will cascade to the entire network.
This holds when multiple networks are coupled together [15].

Network-based approaches have been widely used to model the
resilience of infrastructure [7,16,17]. This is in addition to conceptual
frameworks [1,18,19], highly detailed hazard simulations [20–23], and
statistical and machine learning approaches [24–28] .1 All of this work
contributes greatly toward improving the resilience of infrastructure by
advancing theoretical understandings in networks science [17], ad-
dressing particular infrastructure inefficiencies [30], and improving
policy decisions [31].

Generalized graph-theoretic resilience analyses commonly model
disruptions by assigning a probability of failure to each vertex in the
graph [14,15,17]. The random pattern of outages fits within a prob-
abilistic formalism allowing for a theoretical understanding of network
properties, but provides little realism in the spatial pattern of disrup-
tions. Many of the infrastructure systems analyses continue to use
random vertex failures as the general form of the disruption [11,32,33].
Degree targeting is another commonly used technique in which failures
are initiated at vertices with the highest degree [10,12,14,34,35]. This
method is representative of a targeted attack in which an agent wishes
to remove nodes which connect to a large portion of the network,
however, there is no restriction on the spatial distribution of the fail-
ures. Similarly, other vertex properties have been used to motivate
targeting such as betweenness [10] or maximum flow [35]. Localized
failures—in which failures are initialized in small connected compo-
nents—have been previously studied, however with limited scope; fo-
cusing primarily on repair strategies [14], or to replicate previous in-
cidents [33].

It should be noted that many previous studies consider disruptions
to infrastructure which are -in some way- spatially organized either
through explicit specification[36], fragility curves[37], or reliance on
historical data[38]. However, to our knowledge the inclusion of spa-
tially structured and non-spatially structured disruptions is secondary
to the development of an optimization[39–41] or recovery model, or
resilience measurement algorithm[38,42]. This work is the first to focus
on the explicit impact of the spatial distribution of outages, which we
perform by using general, network-based modeling paradigms.

In this work, we isolate the importance of accounting for the spatial
distribution of a disruption and show that inducing changes in only the
spatial distribution significantly impacts measurements of system per-
formance. Specifically, the goal of the analysis is not so much to pro-
pose a particular spatial pattern of disruption over another, but to de-
monstrate the importance of considering the shape of disruptions in
estimating infrastructure recovery. We present the results in a case
study of an electric power distribution grid’s response to a hurricane.
The electric power distribution system has been identified as a critical
component of assessing the vulnerability of the electric power grid to
severe-weather disruptions such as hurricanes, with approximately 90%
of outages occurring at the distribution level [43].

3. Methods

As previously mentioned, to investigate the sensitivity of infra-
structure system performance to the spatial distribution of disruptions,
we present the case of an electric power distribution system’s recovery
after a major landfalling hurricane. Specifically, we focus on the impact
of the spatial distribution of hurricane-induced disruptions on the per-
formance of an electric power grid located in the Gulf Coast of the U.S.
(Fig. 1).2 We do this by simulating large-scale disruptions in the dis-
tribution grid, mapping the hurricane-induced disruptions to compo-
nent failures (outages) in a distribution-level power grid and studying
the sensitivity of the resilience of the system to the spatial distribution
of the disruption. The simulated outages are subsequently repaired over
time, replicating the actual recovery of the power grid from the hurri-
cane disruption so as to study the dynamics of the system’s recovery.

3.1. Electric power network

The city for which this analysis is being performed provided GIS
files including the location of all of the county’s power substations.
These are used to locate the position of the nodes in the test network.
There are 221 substations and 2 power plants in this data. As we were
unable to retrieve information on the connections between the sub-
stations, nodes are connected using a minimum spanning tree to es-
tablish the edges of the graph. A minimum spanning tree represents a
radial network, common among electric power distribution systems
[35,44] The resulting graph has 223 vertices and 222 edges.

3.2. Disruption generation algorithms

In this section, we describe the different disruption patterns eval-
uated in this study. All cases described cause failures in 60% of the
vertices, and this failure proportion is kept constant through all trials.
This is in accordance with the actual impact of Hurricane Katrina on the
electric power distribution network under study. As previous work
primarily focuses on analyzing randomized failures, we use random
outages as a base for comparison with previous studies. In simulation
replication, a different set of vertices is chosen at random such that 60%
of the network is inoperable. The random disruptions form a control
sample as there is explicitly no spatial association among the initial
disruption.

To evaluate how the spatial characteristics of the disruption impact
the network, additional simulation trials are performed using disrup-
tions generated by search trees. Disruptions are generated using both a
Breadth-First search (BFS) and a Depth-First search (DFS) tree [45] as
both create spatially constrained patterns of outages while using no
intrinsic information about the individual vertices. Details of the algo-
rithms used to generate the disruptions are listed in Algorithms 1 and 2.

A BFS begins at a random vertex in the network and failures pro-
pagate to all neighbors of that vertex before extending to neighbors-of-
neighbors. As the size of the failure is pre-specified, the failures con-
tinue until the BFS tree is the required size. This provides a method for
generating localized clusters of failures. Similarly, a DFS outage pattern
begins at a random vertex and progresses away from the root node as
far as possible within the network before searching additional root-
node neighbors. The spatial pattern of DFS trees are connected, but far
less localized. These are referred to as the BFS and DFS disruption
methods for the remainder of the paper.

The search tree generation methods are computationally cheap, and
are built entirely using the spatial structure of the network. The selec-
tion of these algorithms are motivated by existing research supporting
the existence of tree-shaped outages in distribution systems owing to

1 See [29] for a comprehensive list of topics.

2 The specific community on the Gulf-Coast is withheld for privacy reasons
but represents a mid-sized metropolitan area
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the hierarchical nature of electric power distribution [43,46]. Here, we
do not validate actual spatial distributions of outages against the BFS
and DFS generation methods, but instead use these methods to isolate
the significance of different spatial configurations of outages in the

network on measurements of system performance. The initial dis-
tribution of outages for one simulation replication are seen in Fig. 2.

3.3. Performance metric calculation

In order to characterize the networks as they fail and recover, we
use two network-based measurements of system performance: network
efficiency and largest connected component. We measure the global effi-
ciency of the electric power network as it fails and recovers as one di-
mension of network performance. Global efficiency is defined as

=
<

G
n n d i j

Eff( ) 1
( 1)

1
( , )i j G

where d(i, j) is the distance between vertex pair i and j. Network effi-
ciency as a concept was proposed as a measure of how efficiently a
network exchanges information [47] and has been previously used the
context of power system resilience evaluation [11,48] and used as a
proxy for network performance [34,49].

Additionally we measure the size of the largest connected compo-
nent (LCC). This is defined as the number of vertices in the largest
connected subgraph [5]. A connected subgraph is a subset of the ver-
tices and edges for which a path exists between all pairs of vertices. LCC
has previously been used to evaluate topological models [11] and
provides a measure of the connectedness of the network (ie a fully
connected network has a maximal LCC because every vertex is included
in the largest cluster). LCC and efficiency have both been previously
studied as performance measurements for network representations of
power systems, and have been validated as system performance mea-
surements when a broad range of vulnerability scenarios are evaluated
[11].

3.4. Simulation methodology

The recovery simulation generates initial disruptions via random,

Fig. 1. The case study network situated in the Gulf Coast of the U.S. a The layout of the electric power grid placed over the county. b The density of customer-level
power outages during Hurricane Katrina with the network overlain. c Census-tract level population density for the corresponding area.

1: procedure BFS(graph = G, root = r, size = n)
2: Q← empty list of vertices to search
3: T← empty list of vertices in the tree
4: append r to Q
5: while |T | < n do
6: consider v, the first element of Q
7: remove v from Q
8: append v to T
9: for all w in neighbors(v) do
10: if w is not in T then
11: append w to Q
return T

Algorithm 1. Breadth-First Search.

1: procedure DFS(graph = G, root = r, size = n)
2: Q← empty list of vertices to search
3: T← empty list of vertices in the tree
4: append r to Q
5: while |T | < n do
6: consider v, the first element of Q
7: remove v from Q
8: append v to T
9: if w ∈ neighbors(v),w < T then
10: append w to front of Q
return T

Algorithm 2. Depth-First Search.
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BFS and DFS methods then subsequently repairs vertices in the net-
work. The rate of repair (i.e., repaired vertices per time unit) is derived
from the rate of outages seen in the gulf-coast power operator data. This
rate is kept constant through all experiments. At every time step, the
vertices to be repaired are chosen based on their contribution to the
total network efficiency. The number of vertices to be repaired is first
fixed based on the time dependent repair rate, then the set of vertices
chosen for repair are selected from the subset of inoperable vertices
which—if repaired—would maximally improve the network efficiency.
Vertices are selected in a greedy fashion such that the selected subset
maximally improves the efficiency of the network. The heuristic search
is detailed in Algorithm 3.

Network statistics are recorded at each step and vertices are re-
paired until the network is fully operational. The simulation procedure
is depicted in Fig. 3. The process of creating disruptions and repairing is
repeated 100 times for each disruption generation method to account

for the inherent randomness in the generation of the initial distribu-
tions. The analyses were performed on a 16-core Intel Xeon W-2145
processor, each operating at 3.7 GHz with 32GB of ram. Simulation,
analysis, and resulting plots were all generated in R version 3.4.4 [50].
Network statistics were calculated using igraph [51].

4. Results

4.1. Static measures of impact

We first evaluate the sensitivity of the static measure of performan-
ce—i.e., the performance of the system at the moment the disruption
occurs—to the spatial distribution of the disruption generated ran-
domly as well as via BFS and DFS algorithms (Fig. 4). To provide an
equal comparison—and in accordance to real data from Hurricane
Katrina—we present results which impact 60% of the network

Fig. 2. Outage generation types. The results of three outage generation techniques, each inducing failures in 60% of the grid. Fig. a is one instance of an outage
generated randomly. Fig. b is a an outage generated using a breadth-first algorithm, while c is a depth-first algorithm.

1: procedure LocalOpt(graph = G, failed vertices = F,repair= n)
2: R← empty list of vertices to be repaired
3: if |V(F)| = |V(G)| then
4: R = vertex with maximum degree
5: F = F − R
6: LocalOpt(G,F,n-1)
7: else |V(F)| < |V(G)|
8: if |V(F)| + n ≥ |V(G)| then
9: R = F
10: else|V(F)| + n < |V(G)|
11: R = f ∈ F s/t GE(G + f ) ≥ GE(G + f ′) ∀ f ′ ∈ F and f ′ , f
return T

Algorithm 3. Local-optimal search. Here, GE is the global efficiency of a graph, and F R indicates the removal of vertices R from F..
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regardless of the method of outage generation. However, our extensive
sensitivity analysis suggests that the results remained consistent when
evaluating network failures ranging from 10% to 90%.

Computed for 100 stochastic disruptions of each type, there is sig-
nificant evidence that the disruption methods alter the resilience of the
system. The mean efficiency of BFS- and DFS-constructed disruptions
are 485% and 457% higher than randomly constructed disruptions re-
spectively. Mean values vary significantly at each failure size as seen in
Table 1. Mean LCC increases similarly with BFS disruptions—BFS in-
crease of 595% over random, DFS increase of 494% over random

(Table 3). Results additionally indicate sample variance increases for
tree-constructed disruptions in both performance metrics as seen in
Tables 1 and 3. In the case of the mean comparison, the distributions of
efficiency and LCC values are compared using Kolmorogov-Smirnov
(KS) two-sample tests and all comparisons are found to be statistically
significant at a significance level of 0.01. Results of the KS tests are seen
in Table 2.

The lower efficiency values and LCC of the random disruption
method indicate greater disruption in the system. Lower network effi-
ciency is representative of lower comunicability among the network

Fig. 3. An overview of simulation methodology. The process here represents one simulation iteration.

Fig. 4. Static disruption comparison. Relative density of network performance after 100 disruptions for each disruption generation method. a is the network
efficiency for all three disruption generation methods while b is the size of the largest connected component.
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concomitant with greater static resilience to a disruption. Likewise
lower LCC values indicate geographic sparsity among the network’s
operable vertices. While neither of these performance metrics directly
map to the performance of a high-fidelity power-system simulation,
they demonstrate the sensitivity of the spatial distribution of a dis-
ruption on generalizeable measurements of system performance in a
network model. Consequently any claim resulting from a measure of
resilience is sensitive to the spatial characteristics of the initial dis-
ruption. Likewise, accounting for the spatial distribution of disruptions
introduces greater uncertainty into our estimation of the resilience of a
system.

The sensitivity of the resilience to disruption method additionally
manifests when measuring the number of customers with restored
power. Mapping the geographical location of each of the vertices in our
network to their respective census tract allows us to allocate customers
to each substation relative to their population density. Using this this

approximation, an average of 40.60% of the customers retain power
when disrupted randomly, versus 39.21% and 39.47% for BFS and DFS
outages respectively. This similarity is expected as the disruptions are
constructed to disconnect 60% of the substations in the network,
leaving approximately 40% of the network operational. However si-
milar to measurements of efficiency and LCC, the variance among po-
pulation affected is higher for tree-based disruptions. Table 4 shows the
distribution of the number of customers without power after the net-
work is made inoperable. After random outages are induced in the
system 33.57%–48.35% of the population’s distribution level power
remains operational, while after BFS and DFS outages 26.54%–53.77%
and 26.94%–48.95% of the population’s power remain operational re-
spectively. This represents an 88% increase in the uncertainty of the
performance estimates. Providing estimates of uncertainty is critical to
decision makers for the accurate characterization of the resilience of a
system [52].

4.2. Dynamic measures of impact

We also evaluate the dynamic performance —i.e., time dependant
performance metrics—under separate initial disruption methods as the
power grid is repaired (Fig. 5). The system performance—characterized
by efficiency and LCC—is then measured over time as the system re-
covers. This is done to characterize the dynamic resilience of the grid
under each disruption generation method, ceteris paribus.

Despite holding the recovery process constant, these results show
the efficiency of the network differs greatly in overall functional form
between random and spatially generated disruptions, indicating the
recovery is significantly coupled to the spatial distribution of disrup-
tions. Recovery from a random disruption pattern increases over time,
reaching a maximum prior to all nodes being repaired (Fig. 5e). This is
an indication of the network exhibiting antifragile properties. Anti-
fragility is a property by which a full reconstruction of the network is
not optimal with respect to the chosen performance metric[53,54]. In
the context of network-performance measurements of an electric power
distribution grid, antifragility indicates that a performance measure-
ment rises above the optimal value prior to the system returning to its
original state, as evident by the concave response seen in Fig. 5a [30].
As antifragility is considered an inherent property of a system [54], the
lack of antifragility in spatially-constructed outage systems indicates
that it is conditional on the choice of outage distribution. Spatially-
constructed outages generally have a much higher efficiency
throughout but follow an entirely different functional form than the
recovery from random disruptions. The deviation between mean effi-
ciency is highest at the initial disruption and decreases over time. Si-
milar to the static analysis, the variance is larger in the recovery from
spatially characterized outages. Thus, failing to account for the spatial
characteristics of the network disruption can drastically change im-
plications drawn from the associated resilience analysis. A key differ-
ence is the lack of antifragility in the distribution electric power net-
work with spatially characterized outages.

The difference between the disruption generation techniques is di-
minished when comparing the dynamics of the mean LCC rather than
mean network efficiency (Fig. 5 b,d,f). Beyond the initial value of the
LCC at the time of failure, there is little difference in the functional form

Table 1
Summary statistics for the distribution of efficiency for respective failure modes
with the percentage of optimal network efficiency listed in parentheses. Failure
fraction represents the fraction of the network which was induced as failed in
each iteration. Results presented here are for failures in 60% of the network.
Complete results are presented in Appendix Tables A.1 and A.2.

Generation
method

Mean Standard
deviation

Median Min Max

Random 0.0070 0.0011 0.0070 0.0047 0.0100
(20.68) (20.68) (13.90) (29.33)

BFS 0.0414 0.0071 0.0420 0.0240 0.0494
(121.50) (123.33) (70.62) (145.10)

DFS 0.0393 0.0038 0.0401 0.0270 0.0463
(115.33) (117.80) (79.41) (136.13)

Table 2
P-values for two-sample, two tailed, Kolmogorov–Smirnov tests between the
efficiency and LCC of given initial failure methods and failure fraction. Results
at the 0.6 failure fraction are presented in this article. Results use a significance
level of = 0.05. Values of zero listed with one significant digit indicate

<p 1.11022 e 16; this cutoff is the numerical precision of the machine used for
computations.

Efficiency LCC

Failure
fraction

Random
vs BFS

Random
vs DFS

BFS vs DFS Random
vs BFS

Random
vs DFS

BFS vs DFS

0.1 0 0 0.0039 0 0 0.0541
0.2 0 0 0.0004 0 0 0.0001
0.3 0 0 0.0014 0 0 0.0000
0.4 0 0 0.0014 0 0 0.0000
0.5 0 0 0.0001 0 0 0.0000
0.6 0 0 0.0000 0 0 0.0000
0.7 0 0 0.0000 0 0 0.0008
0.8 0 0 0.0000 0 0 0.0000
0.9 0 0 0.0000 0 0 0.0000

Table 3
Summary statistics for the distribution of largest connected component (LCC)
for respective failure modes with percentage of the optimal value listed in
parentheses. Results presented here are for failures in 60% of the network.
Complete results are presented in Appendix Tables A.3 and A.4.

Generation method Mean Standard deviation Median Min Max

Random 9.05 2.32 9.00 5.00 15.00
(4.058) (4.036) (2.242) (6.726)

BFS 62.94 17.71 66.50 28.00 83.00
(28.22) (29.83) (12.56) (37.22

DFS 53.75 9.54 53.00 28.00 76.00
(24.10) (23.77) (12.56) (34.08)

Table 4
Summary statistics for the distribution of percent of county customers without
power in a static analysis. All numbers represent the fraction of the total po-
pulation of the county without power.

Mean Std Dev Median Min Max

Random 0.5928 0.0351 0.5940 0.5165 0.6643
BFS 0.5909 0.0676 0.6079 0.4623 0.7346
DFS 0.6151 0.0651 0.6053 0.5105 0.7306
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of the recovery of the network. The size of the LCC in the network
generally increases at an increasing rate when vertices are repaired in
the network, the primary difference being the initial size of the LCC
after failures are generated in the network. These estimates of system
recovery are therefore dependent on the spatial characteristics of the
initial disruption; however, this result is sensitive to the performance
metric used to measure recovery.

5. Conclusion

A key element of resilience is the ability of a system to respond to
and recover from disruptions of unprecedented magnitude or unfore-
seen cause. By their nature, all disruptions will require recovery. This
positions system recovery as a critical measurement in evaluating the
multifaceted resilience of infrastructure systems. A holistic under-
standing of all types of community recovery is imperative for the con-
tinued adaptation to unforeseen challenges. However, these holistic
understandings must be built upon a foundational knowledge of the
interaction of disasters with the built environment. We contribute to the
knowledge related to the interaction of the power distribution grid and
hurricanes by providing a novel framework for network resilience
analysis which is agnostic to the specifics of the system, allowing for
general insights about all facets of community recovery. Our framework
for considering spatially-constrained disruptions can be applied to any

hierarchical network within a community adversely effected by natural
hazards. We plan to extend the work presented here by evaluating the
impact of spatial distributions of outages on high-fidelity models of
infrastructure systems.

We show that the post-disruption network-performance of the
electrical power distribution grid is highly sensitive to the spatial
characteristics of disruptions in the system. Consequently, any insights
about general grid resilience which fail to account for the spatial
characteristics of the hazard significantly misrepresent the impact of
natural hazards on distribution-level electric power infrastructure.
More specifically, through the repeated simulation of multiple methods
of failure and recovery, we show that previous methods of evaluating
disaster impact overestimate the certainty associated with the mea-
surements of system recovery. We show via multiple avenues that im-
proved characterizations of disaster impact significantly increase both
the magnitude and uncertainty of the initial impact in the system. This
difference holds through the duration of the recovery process; and
when considering the dynamics of the system we find that emergent
system properties such as antifragility are also dependent on the
characteristics of the initial disruption. These differences are most
striking when contextualized by their impact on the power distribution
grid at a customer level. Our estimates indicate that the estimated range
of customers with access to electricity varies from 33 to 48% of the
county using previous methods, and up to 26–53% when using

Fig. 5. Performance metrics measured after the disruption over time for each disruption method. In a–f, the bands of uncertainty represent 95% confidence intervals
sampled from the empirical density at each point in time. The black line is the mean of the observations. The x-axis is the relative-completeness of the network repair
scaled by the total restoration time for each replication.
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improved outage characterizations, highlighting the need for continued
study of both the pattern of impacts due to natural disasters and the
vulnerability of the electric power distribution grid. By demonstrating
the sensitivity of the spatial distribution of outages on the electric
power grid, we hope to encourage consideration of the spatial dis-
tribution of disruptions in conducting infrastructure resilience analy-
tics.
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Appendix A

Table A.1
Summary statistics for the distribution of efficiency for respective failure modes. Failure fraction represents the fraction of the network which was induced as failed in
each iteration. Results presented in the body of the work represent a failure fraction of 0.6.

Generation
method

Failure
fraction

Mean Standard
deviation

Median Min Max

Random 0.1 0.0178 0.0025 0.0174 0.0138 0.0245
BFS 0.1 0.0298 0.0046 0.0297 0.0215 0.0363
DFS 0.1 0.0308 0.0042 0.0320 0.0217 0.0363
Random 0.2 0.0124 0.0016 0.0121 0.0095 0.0191
BFS 0.2 0.0294 0.0050 0.0278 0.0213 0.0408
DFS 0.2 0.0312 0.0066 0.0293 0.0216 0.0410
Random 0.3 0.0099 0.0013 0.0097 0.0076 0.0134
BFS 0.3 0.0307 0.0056 0.0295 0.0236 0.0427
DFS 0.3 0.0324 0.0075 0.0286 0.0232 0.0443
Random 0.4 0.0084 0.0010 0.0083 0.0059 0.0119
BFS 0.4 0.0313 0.0043 0.0294 0.0257 0.0410
DFS 0.4 0.0310 0.0033 0.0304 0.0243 0.0390
Random 0.5 0.0076 0.0009 0.0075 0.0058 0.0099
BFS 0.5 0.0360 0.0055 0.0358 0.0255 0.0467
DFS 0.5 0.0340 0.0023 0.0343 0.0279 0.0384
Random 0.6 0.0070 0.0011 0.0070 0.0047 0.0100
BFS 0.6 0.0414 0.0071 0.0420 0.0240 0.0494
DFS 0.6 0.0393 0.0038 0.0401 0.0270 0.0463
Random 0.7 0.0068 0.0015 0.0069 0.0043 0.0119
BFS 0.7 0.0479 0.0127 0.0462 0.0264 0.0751
DFS 0.7 0.0506 0.0052 0.0508 0.0322 0.0659
Random 0.8 0.0071 0.0016 0.0069 0.0035 0.0126
BFS 0.8 0.0561 0.0174 0.0533 0.0294 0.0880
DFS 0.8 0.0699 0.0126 0.0724 0.0427 0.0867
Random 0.9 0.0097 0.0031 0.0097 0.0045 0.0184
BFS 0.9 0.0659 0.0208 0.0609 0.0392 0.1389
DFS 0.9 0.0971 0.0140 0.0961 0.0600 0.1372

Table A.2
Summary statistics for the distribution of efficiency for respective failure modes scaled by the efficiency when the network is fully repaired. In this table, a value of
100 is the same performance metric seen at a fully repaired system.

Generation method Failure fraction Mean Median Min Max

Random 0.1 52.29 51.12 40.54 71.97
BFS 0.1 87.54 87.25 63.16 106.64
DFS 0.1 90.48 94.01 63.75 106.64
Random 0.2 36.43 35.55 27.91 56.11
BFS 0.2 86.37 81.67 62.57 119.86
DFS 0.2 91.66 86.08 63.45 120.45
Random 0.3 29.08 28.50 22.33 39.37
BFS 0.3 90.19 86.66 69.33 125.44
DFS 0.3 95.18 84.02 68.16 130.14
Random 0.4 24.68 24.38 17.33 34.96
BFS 0.4 91.95 86.37 75.50 120.45
DFS 0.4 91.07 89.31 71.39 114.57
Random 0.5 22.33 22.03 17.04 29.08
BFS 0.5 105.76 105.17 74.91 137.19
DFS 0.5 99.88 100.76 81.96 112.81
Random 0.6 20.56 20.56 13.81 29.38
BFS 0.6 121.62 123.38 70.51 145.12
DFS 0.6 115.45 117.80 79.32 136.02
Random 0.7 19.98 20.27 12.63 34.96
BFS 0.7 140.72 135.72 77.56 220.62
DFS 0.7 148.65 149.24 94.59 193.60
Random 0.8 20.86 20.27 10.28 37.02

(continued on next page)

B. Rachunok and R. Nateghi Reliability Engineering and System Safety 193 (2020) 106658

8



Table A.3
Summary statistics for the distribution of largest connected component (LCC) for respective failure modes.

Generation
method

Failure
fraction

Mean Standard
deviation

Median Min Max

Random 0.1 84.46 23.86 83.00 42.00 138.00
BFS 0.1 158.22 35.67 160.50 82.00 202.00
DFS 0.1 164.34 35.36 181.00 80.00 202.00
Random 0.2 41.89 12.49 40.00 20.00 87.00
BFS 0.2 122.21 32.35 125.00 82.00 179.00
DFS 0.2 125.23 43.74 111.50 66.00 180.00
Random 0.3 25.54 8.05 24.00 13.00 50.00
BFS 0.3 105.79 29.70 91.00 64.00 154.00
DFS 0.3 105.84 40.11 80.50 54.00 159.00
Random 0.4 16.90 4.33 16.00 9.00 29.00
BFS 0.4 85.47 19.73 82.00 44.00 129.00
DFS 0.4 73.91 13.19 70.00 44.00 124.00
Random 0.5 12.22 2.83 12.00 7.00 21.00
BFS 0.5 76.04 17.13 82.00 39.00 100.00
DFS 0.5 62.14 7.92 64.00 41.00 80.00
Random 0.6 9.05 2.32 9.00 5.00 15.00
BFS 0.6 62.94 17.71 66.50 28.00 83.00
DFS 0.6 53.75 9.54 53.00 28.00 76.00
Random 0.7 6.80 1.51 7.00 4.00 12.00
BFS 0.7 46.78 15.55 47.00 17.00 68.00
DFS 0.7 47.43 7.66 49.00 24.00 66.00
Random 0.8 5.03 1.01 5.00 3.00 8.00
BFS 0.8 28.57 9.98 28.00 10.00 46.00
DFS 0.8 35.42 9.02 38.00 16.00 46.00
Random 0.9 3.40 0.57 3.00 3.00 5.00
BFS 0.9 11.49 4.49 10.00 5.00 24.00
DFS 0.9 16.25 3.35 16.00 9.00 24.00

Table A.2 (continued)

Generation method Failure fraction Mean Median Min Max

BFS 0.8 164.81 156.58 86.37 258.52
DFS 0.8 205.35 212.69 125.44 254.70
Random 0.9 28.50 28.50 13.22 54.05
BFS 0.9 193.60 178.91 115.16 408.05
DFS 0.9 285.25 282.31 176.26 403.06

Table A.4
Summary statistics for the distribution of largest connected component (LCC) for respective failure modes, scaled by the total LCC when the network is fully repaired.
In this table, a value of 100 is the same performance metric seen at a fully repaired system.

Generation method Failure fraction Mean Median Min Max

Random 0.1 37.87 37.22 18.83 61.88
BFS 0.1 70.95 71.97 36.77 90.58
DFS 0.1 73.70 81.17 35.87 90.58
Random 0.2 18.78 17.94 8.97 39.01
BFS 0.2 54.80 56.05 36.77 80.27
DFS 0.2 56.16 50.00 29.60 80.72
Random 0.3 11.45 10.76 5.83 22.42
BFS 0.3 47.44 40.81 28.70 69.06
DFS 0.3 47.46 36.10 24.22 71.30
Random 0.4 7.58 7.17 4.04 13.00
BFS 0.4 38.33 36.77 19.73 57.85
DFS 0.4 33.14 31.39 19.73 55.61
Random 0.5 5.48 5.38 3.14 9.42
BFS 0.5 34.10 36.77 17.49 44.84
DFS 0.5 27.87 28.70 18.39 35.87
Random 0.6 4.06 4.04 2.24 6.73
BFS 0.6 28.22 29.82 12.56 37.22
DFS 0.6 24.10 23.77 12.56 34.08
Random 0.7 3.05 3.14 1.79 5.38
BFS 0.7 20.98 21.08 7.62 30.49
DFS 0.7 21.27 21.97 10.76 29.60
Random 0.8 2.26 2.24 1.35 3.59
BFS 0.8 12.81 12.56 4.48 20.63
DFS 0.8 15.88 17.04 7.17 20.63

(continued on next page)
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