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ABSTRACT Understanding the resilience of a community facing a crisis event is critical to improving
its adaptive capacity. Community resilience has been conceptualized as a function of the resilience of
components of a community such as ecological, infrastructure, economic, and social systems etc. In this
work, we introduce the concept of a ‘resilience fingerprint’ and propose a multi-dimensional method for
analyzing components of community resilience by leveraging existing definitions of community resilience
with data from the social network Twitter. Twitter data from 14 events are analyzed and their resulting
resilience fingerprints computed. We compare the fingerprints between events and show that major disasters
such as hurricanes and earthquakes have a unique resilience fingerprint which is consistent between different
events of the same type. Specifically, hurricanes have a distinct fingerprint which differentiates them from
other major events. We analyze the components underlying the similarity among hurricanes and find that
ecological, infrastructure, and economic components of community resilience are the primary drivers of the
difference between the community resilience of hurricanes and other major events.

INDEX TERMS Data Analysis, Human Computer Interaction, Resilience, Twitter

I. INTRODUCTION

There is a temporal trend toward more frequent and more
unexpectedly intense natural disasters [1, 2]. To prepare
for uncertain future disasters, it is fundamental to question
what constitutes a resilient community so as to build a body
of knowledge useful in enhancing communities’ adaptive
capacity in the face of the next generation of unforeseen
disasters. Resilience is a concept with multiple definitions, all
of which stem from understanding how elements of a com-
munity protect against, respond to, and recover from a disrup-
tion [3–10]. At their core, these definitions establish how an
exogenous disruption bears on the dynamic interactions and
responses inside a community whether through ecological,
infrastructure, social, or economic mechanisms. However,
previous analyses do not directly incorporate the experience
of individuals during disasters when measuring the totality
of a community’s resilience. Instead, (community) resilience
analyses examine the impact of a disaster or disruption on in-
dividuals as manifested through an existing social, physical,
economic, or ecological systems [4, 7, 11, 12]. Recent work
has hypothesized that online social networks (OSNs) can fill
this gap in the study of resilience by incorporating the direct

measurement of individuals in a community throughout the
response to a major disruption [13, 14].

In this work, we formulate measurements of the resilience
of a community by augmenting existing conceptualizations
of community resilience with data from online social net-
works, namely the microblogging platform Twitter. In 2017,
80% of the US population is estimated to have a social media
account; of those Twitter is among the most popular with
62 million monthly active users in the US in 2018 [15, 16].
Twitter is a platform for disseminating and consuming con-
tent at an unprecedented scale, providing a direct conduit
into the response of individuals to major events. Interactions
on Twitter are based on short messages of 280 characters.
These messages (called tweets) are broadcast to a user’s
followers. Particularly during major events, the follower–
followee relationships leads to emergent social properties
at a macro-scale which are driven by a bottom-up self-
organization of information [17], thus providing unique ac-
cess to information deemed important by the community.
Consequently when the resilience of a community is tested
by a major event, the self-organization of Twitter discourse
indicates that topics which are relevant to the resilience
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of a community are detectable. In this paper, we leverage
this bottom-up information to develop a multi-dimensional
social resilience fingerprint which analytically captures the
interactions within pillars of community resilience during a
disruption.

We introduce the resilience fingerprint as a multi-
dimensional concept for understanding community re-
silience. A resilience fingerprint is the unique combination
of components of community resilience in response to a
major event or disruption. We use the analogy of a fingerprint
to emphasize the identifiability of components critical to
community resilience. In this way, we move away from
evaluating resilience in one dimension and instead propose
a relative-mapping of the interrelated aspects of resilience
to one another. Rather than asking how resilient is a com-
munity we ask what constitutes a resilient community. We
subsequently describe methods for measuring the resilience
fingerprint of communities impacted by major events through
analysis of the social media discourse surrounding the event
thus establishing a social resilience fingerprint.

A social resilience fingerprint is an analytical method
for understanding the interactions between components of
community resilience as observed through social media. This
is calculated first by defining community resilience as a set
of resilience components suitable for measurement by social
media, then categorizing the macro-scale Twitter response
of a community before, during, and after a major event
by its impact on the individual components. The relative
measurements of each resilience component –along with the
interaction between components– form the basis of the social
resilience fingerprint.

The remainder of this paper is as follows: Section II
provides background on community resilience and describes
our categorization of community resilience in the context of
online social network analysis; Section III describe the data
used in this analysis, as well as the methods used to turn large
corpora of tweets into a social resilience fingerprint. Finally,
Section IV applies the techniques presented to 14 events
with a significant Twitter response, the results of which are
presented in Section V.

II. BACKGROUND

Externally, communities are the “totality of social system
interactions within a defined geographic space such as a
neighborhood, census tract, city, or county” [5], and can be
characterized by internal dynamics which comprise combi-
nations of individuals and groups with multiple –potentially
competing– interests and associations [18, 19]. The broad
scope of communities leads to a vast number of approaches
and methods for the study of their resilience. In this section
we discuss how conceptualizing resilience as a multidimen-
sional fingerprint fits within context of existing studies of
resilience and online social networks.

TABLE 1. Resilience components, their description, and community elements
from that category

Component Description Example elements

Ecology Related to natural systems
and features of the environ-
ment and ecosystem

Coasts, marshes,
streams, beaches,
wetland

Economy Financial, economic, and
business aspects within a
community

Currency, business op-
eration, labor

Institutions Government and service-
based institutions providing
community function and care

Police, hospital,
FEMA, government
officials

Social Non-institutional support sys-
tems within a community

Humanatarian aid, vol-
unteerism, neighbors

Infrastructure Physical infrastructure sys-
tems and their dependencies

Pipelines, power sys-
tems, cell communica-
tion

Quality of life The health and wellbeing of
the community

Health, hospital, men-
tal well-being

A. COMMUNITY RESILIENCE
In order to understand how multiple dimensions of disaster
resilience can be studied through social media, we establish
a definition of community resilience based on previous con-
structions and in alignment with evaluation through online
social networks. Community resilience has been formalized
as a comparative assessment of the resilience of commu-
nity components or categories [5, 6, 20]. Category-based
definitions of community resilience share substantial over-
lap. One such definition is given by the Multidisciplinary
Center for Earthquake Engineering Research, which cate-
gorize community resilience with the acronym PEOPLES:
Populations, Environment and ecosystem, Organized gov-
ernment, Physical infrastructure, Lifesyle and community,
Economic development, and Social-cultural capital [6]. A
similar definition proposes a framework which distinguishes
categories of resilience by how they are measured [5].
They include ecological resilience, social resilience, eco-
nomic resilience, institutional resilience, infrastructure re-
silience, and community competence [5]. We leverage a
multi-dimensional categorization of community resilience,
defined as a set of components which are derived from
previous definitions of community resilience so as to theo-
retically ground our analysis [5]. We define the categories of
community resilience in an OSN context as the Ecological,
Economic, Institutional, Social, Infrastructure, and Quality
of life categories. These categorizations are not mutually
exclusive, but are collectively exhaustive. Table 1 lists high
level descriptions of the components of a social resilience
fingerprint and the topics they encompass through Twitter.

B. TWITTER
Since its inception in 2006, Twitter has been a common
source of academic inquiry particularly relating to its use
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during disasters and major events. Since Twitter is a platform
for sharing and consuming media, early work in the evalua-
tion of tweet content established relationships between public
Twitter posts and internal sentiment, situational awareness
during disaster, and psychological trauma [17, 21].

Twitter has also been studied as a form of sensing network
which can augment more traditional analyses performed dur-
ing a disaster such as the study of vulnerability or resilience
[13, 14]. Understanding how online social networks can
be used to derive meaningful insight has been defined as
social media analytics [13, 22]. Work in this area is typically
broken down into multiple dimensions based on how social
media is used for analysis (e.g., tweet location, tweet content
etc.) [22]. What follows is a review of literature relating
to understanding disasters and communities through social
media.

Social media analytics has been previously used in many
disaster-related contexts to gather information about the spa-
tial distribution of disasters in an attempt to correlate measur-
able elements of a disaster with measurable elements of so-
cial media. Tweets related to a topic of a disaster were shown
to be more likely to occur near disaster-related areas during
a flood of the Elbe river [23, 24]. There is also significant
evidence to suggest GIS and remote-sensing applications can
be significantly improved by augmentation with social media
data [25]. The primary benefit of this augmentation is that
social media provides a ground-up network of sensors which
can allow for hyper-local and rapid updating of geographic
systems [26].

Temporal associations between tweets and disasters have
also been investigated. A study of Hurricane Sandy found the
time for an individual to learn about a disaster through social
media was proportional to an individual’s distance from the
impact [27]. In a different context, the role of individuals in
a disaster is found to be temporally-dependent [28]. During
times of disasters, individuals are observed to transition
toward an information-sharing role on Twitter, broadcasting
and exchanging information [29].

Another thrust of social media analytics is an analysis of
tweet content, in which a semantic understanding of a tweet
is used to make assessments of the tweet author [22]. Re-
lated to disasters, the ‘mood’ of tweets was tracked through
multiple disasters affecting North America as a proxy for
how individuals recover psychologically from disasters [30].
Other analyses use the content of social media networks to
understand the patterns of information diffusion in disaster
[31].

III. DATA AND METHODS
The accessibility of tweets issued prior to 7 days in the past
as well as Twitter’s terms of service make acquiring corpora
of tweets a non-trivial task. In this section we first briefly
discuss the process of tweet acquisition, and follow with the
methods used to analyze the Twitter corpora.

A. TWEET ACQUISITION
Our tweet datasets were retrieved from various archival
sources [32–42]. High-level descriptions of the corpora are
listed in Table 2, with more details presented in Appendix
Table A1. Over 14 million tweets were analyzed spanning 14
major events. The major events include 5 hurricanes, 2 events
of public violence, 2 political referendums, 2 earthquakes, 1
public health crisis, 1 death of a celebrity, and 1 solar eclipse.
Events were chosen based on the scale of the social-media
response to the event, but little other restriction was placed
on inclusion in our study. This results in a corpus of tweets
which spans multiple years, sizes, event types, and archival
methods.

As of early 2019, Twitter limits access to the entire body
of published tweets via a paid subscription service. Addi-
tionally, Twitter’s Terms of Service prohibit the reproduction
or distribution of datasets of whole tweets and instead only
allow for the distribution of lists of numerical serial numbers
corresponding to each tweet, called tweet IDs [43]. Hence,
the medium of tweet compilation and sharing is the tweet
ID, which can be used to re-construct the original tweets.
IDs are simply serial numbers corresponding to each tweet
and provide no actionable information, therefore, the process
of hydrating tweets must be carried out to convert tweet
IDs into a full tweet as it would be seen on the platform.
Hydrating repeatedly calls the Twitter API with a speci-
fied tweet ID and returns the associated tweet content as
well as additional meta-data such as the author, the date of
publication, whether it is a retweet of someone else, etc.
As this is a process of retroactively accessing data, there
may be a loss of data. Tweets may not be available due to
deletion of the previous tweet, tweet-author’s user account, or
change in privacy settings of a user account. Recent work has
shown that despite this data loss, remaining samples of tweets
are still representative of the data published in real time
[43]. Based on previous findings which indicate that Twitter
messages sent during consequential events are more focused
on information-broadcasting and information sharing [28],
we additionally remove retweets (ie a user re-broadcasting
the tweet originally authored by someone else) from our data
to focus on originally produced content.

B. DATA PROCESSING
After hydrating and removal of retweets, the text data of
each tweet are processed to remove abnormalities. First,
URLs, and non-ASCII characters are removed using cus-
tomized regular expressions [44] 1. English and Spanish stop
words are then removed. Stop words are non-informative,
frequently-used words which do not contribute to a semantic
understanding of text [45]. In this case stop words are defined
using the popular stopwords R package [46–48]. Each
event’s tweets are then processed to remove words occurring
less than 10 times through all tweets related to an event.

1This is increasingly important in recent datsets as the use of emojis
becomes more prevalent
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TABLE 2. Size, date, and type of twitter events analyzed. Ordered by starting date of event.

Event Dates Total corpus IDsa Final tweet countb Retentionc

Hurricane Sandy 10/22/2012 to 11/02/2012 6,554,744 3,252,011 49.61%
Ebola Outbreak 08/18/2014 to 01/19/2015 5,085,767 993,905 19.54%
California Earthquake 08/24/2014 to 08/30/2014 254,529 50,414 19.81%
Nepalese Earthquake 04/25/2015 to 05/19/2015 4,223,983 509,299 12.06%
Brexit 05/05/2016 to 08/24/2016 23,733,133 3,884,599 16.36%
Charlottesville Riots 08/14/2017 to 10/23/2017 3,015,437 207,098 6.87%
Eclipse 08/17/2017 to 08/23/2017 13,548,321 1,211,729 8.94%
Hurricane Harvey 08/25/2017 to 10/23/2017 18,352,142 1,062,127 5.78%
Hurricane Irma 09/01/2017 to 10/23/2017 17,244,139 976,294 5.66%
Hurricane Maria 09/20/2017 to 10/03/2017 1,096,335 87,160 7.95%
Las Vegas shooting 09/29/2017 to 10/07/2017 14,108,104 866,758 6.14%
Ireland 8th Amendment 04/13/2018 to 06/04/2018 2,279,396 195,050 8.56%
Aretha Franklin’s death 08/08/2018 to 08/18/2018 2,832,128 252,433 8.91%
Hurricane Florence 09/05/2018 to 10/03/2018 4,971,575 488,106 9.82%
Total 117,299,733 14,036,983 11.97%
a Original number of tweet ids published in corpus.
b Total number of tweets used in this analysis after deleted tweets are accoutned for and retweets
removed.
c Tweet retention is calculated as the final tweet count divided by the total corpus ids for each event.

Additionally -if the dataset was complied based on keyword
filtering- the words used for filtering were removed from the
corpora, as they would otherwise be included in all tweets
by construction. Finally, the remaining words are stemmed to
remove word endings using the Porter stemming algorithm,
implemented in R [49–51]. Stemming removes word endings
to avoid differentiating between words of similar mean-
ing used in different tenses, conjugations etc. For example
ecological and ecology would both stem to the same root:
ecolog. Word stemming has been previously shown to greatly
improve text processing and analysis [45].

C. SOCIAL RESILIENCE FINGERPRING
At the core of the methodology proposed in this paper
is understanding how individual components of commu-
nity resilience can be measured and understood through
the lens of social media. Formally we have a set of all
events E comprised of n individual events E such that
E1, E2, . . . , En ∈ E. For a given event E∗, we have a set
of tweets, tE

∗

1 , tE
∗

2 , . . . , tE
∗

m ∈ E∗, where m is the total
number of tweets compiled for each event after hydration and
processing. Each tweet is subsequently comprised of a series
of features, f , which are the individual words in each tweet
such that for a given tweet t∗, f t∗

1 , f t∗

2 , . . . , f t∗

l ∈ t∗. As each
tweet can contain multiple copies of the same word, we also
have a set of all features FE for a given event E.

Additionally, we manually coded a set of words for each
category in order to map the set of features to our pre-defined
resilience categories. Thus, each category of resilience con-
tains a set of words which indicate associated discourse.
For example, Cinfrastructure = {power, water, cell, outage,
road, . . . }. The words were manually selected by two groups
individually, then consensus was established between the two
sets. As such, the sets of words used in each category are not

mutually exclusive. The full listing of words coded for each
category is listed in Appendix A3.

To parse the features for a given event into categories we
construct a category co-association matrix, A for each event.
A is a symmetric 6 by 6 matrix with each row and column
corresponding to a resilience category. Aij is then the co-
association of category i with category j. The co-association
of a given category is based on the co-occurrence of words
from categories. As such, for resilience categories i and j,

Aij =
∑
r∈Ci
s∈Cj

∑
t

∑
r∈t

occ(r, s) (1)

Where

occ(r, s) =

{
1 if word r occurs with s

0 otherwise
(2)

After fixing a word r from one category, and word s from
another, the occ function is an indicator function taking
a value of 1 each time word r occurs with word s in a
given tweet. This is summed over all occurrences of r in a
given tweet (innermost summation of (1)), then subsequently
summed over every tweet. This is done for all combinations
of words in category i and category j. Thus Aij is the total
times a word from category i occurs in the same tweet as
category j. The matrix of values A –one for each event–
form the social resilience fingerprint. Off diagonal values of
A represent the frequency of resilience categories appearing
together in Twitter discourse. The diagonals of A are less
intuitive, representing the relative frequency of words from
the same category appearing in a tweet. This is a modified
version of a co-occurrence matrix, used for term clustering
in natural language processing [52–54]. This extension uses
apriori categorizations –grounded in the theoretical defini-
tions of community resilience– to find associations within
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topics to determine the relative association of categories of
resilience. In the following section, we apply this fingerprint-
ing methodology to multiple major events and discuss the
feasibility of extracting category-based insights using this
method. For the 14 events listed in Table 2, the categorical
binning described in (1) and (2) are used to establish the
social resilience fingerprint. As the total number of tweets
gathered for each event vary substantially, the A matrices are
scaled. This allows for a more balanced comparison between
events as it removes information regarding the total number
of tweets from the fingerprint so that any comparison made
between events is based solely on the pattern of interac-
tions among the components of the resilience fingerprint.
Sinkhorn-Knopp matrix regularization is used on A matrices
[55]; this preserves the structure of the fingerprint while
allowing the relations between categories to be compared
across events.

IV. RESULTS
Visual representations of the social resilience fingerprints
are shown in Figure 1. Each heatmap and associated bar-
graph show the relative association of each category and
the frequency of each category respectively. The respective
heatmaps are visual examples of the matrices A, representing
the co-association of discourse related to components of
community resilience. Because of the self-organization of
tweets in response to major events, we hypothesize that
stronger textual association of categories indicate a stronger
underlying relationship between the categories in the com-
munity and by extension in the resilience of the community.
This is in line with previous findings which found that event-
related keywords were indicative of a major event’s impact
on an individual [27].

A. EVENT SIMILARITY
From the wide range of the events studied, we hypothesize
that the Twitter discourse in reaction to similar events will
itself be similar, as measurable through the resilience fin-
gerprint. To evaluate this, we measure the component-wise
Spearman distance between scaled A matrices for all events.
The result is a numerical measure of similarity among the
structure of the resilience fingerprints in which a smaller
distance represents a more-similar pattern of Twitter dis-
course between two events. In Figure 2, the resulting pair-
wise distances are visualized in a heatmap after hierarchical
clustering is performed on the rows and columns –a tech-
nique called VAT or a Visual assessment of Cluster Tendency
[56–58]. Each element in Figure 2 represents the distance
between the row and column event.

The VAT methodology is formulated to allow for visual
identification of trends in data [56]. A VAT cluster appears
visually as a square block along the lower-left to upper-right
diagonal of the heatmap. In Figure 2, there are clear clusters
corresponding to Hurricanes Florence, Irma, Sandy, Harvey,
Maria as well as the 2018 Eclipse. Additionally, a case could
be made for the clustering of the Nepalese earthquake and

TABLE 3. Closest Events. The Pearson correlation is calculated between all
pairs of events, with the closest match listed. The correlations above 80%
have been highlighted in bold.

Event Best Match Correlation
aretha lasvegas 0.77
brexit charlottesville 0.50
calquake nepal 0.85
charlottesville lasvegas 0.86
ebola irma 0.56
eclipse charlottesville 0.51
florence irma 0.94
harvey irma 0.89
ireland calquake 0.78
irma florence 0.94
lasvegas charlottesville 0.86
maria florence 0.90
nepal calquake 0.85
sandy irma 0.88

the California earthquake. Finally, the upper right of Figure
2 provides evidence of clustering of the Las Vegas shootings,
Charlottesville riots, Ireland’s 8th constitutional amendment,
and the death of Aretha Franklin. As we calculated the
distance between the events by summing component-wise
distances between two fingerprints –each scaled from their
original counts– these clusters are representative of sim-
ilarity in the pattern of associations between components
of resilience. From this, we see a similarity in the social
resilience fingerprints of alike events, providing evidence that
our proposed methodology has discriminating power.

Based on this distance measure, we subsequently analyzed
each event’s closest match using an alternative distance mea-
sure, namely, the Pearsons’s correlation coefficient. This is
also computed between each pair of fingerprints. The closest-
correlated event to each event are listed in Table 3, along with
the associated correlation. The results paint a similar picture
to the VAT comparison. Natural disasters, such as hurricanes
and earthquakes, pair closely with one another, as do acts of
violence like the Las Vegas shooting and Charlottesville riots.

We perform another similarity measurement by comparing
the clusters generated via the k-means clustering algorithm.
We select 3 clusters as the marginal within-cluster error does
not improve greatly with additional number of clusters. Fig-
ure 3 shows the three clusters plotted on the axes of the first
two principle components of the data. The cluster containing
the hurricanes and eclipse differs most greatly in the direction
of the first principle component, while the remaining two
clusters differ based on the second component. The first
principle component is driven by differences in ecological
categories of resilience while the second is a difference in
social, economic, and institutional resilience.

From the results of these clustering methods, we hypoth-
esize that the similarity between the fingerprints of similar
events indicates that much of the emergent properties of the
resilience of a community is driven by the specific disaster.
Through this hypothesis, we propose that the elements of
community resilience common to each type of event are dis-
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FIGURE 1. Visualizing social resilience fingerprints. Each heatmap represents the association between one category with another. The color red indicates the most association, and the color blue represents the least association. Diagonal values in the heatmap are indicative of how self-associative a category is. Bar-graphs show the relative occurrence of each category. Note the color scheme in this plot is based on log-normalization of A, as opposed to Sinkhorn-Knopp, to aid in visualization.

tinct enough to affect the Twitter discourse of the individual
communities to an extent that it is measurable at a macro
scale.

B. CRITICAL COMPONENTS OF COMMUNITY
RESILIENCE
To further understand the importance of the categories of
community resilience, we now ask which elements of com-
munity resilience drive the similarity among events by look-
ing at the loading of each variable –corresponding to an i, j
element of the fingerprint across all events– as projected onto

the first two principle components. The variable loading for
the 10 most contributing variables are plotted in Figure 3
along with the events. Figure 3 additionally includes the k-
means clusters described in Section IV-A.

From the variable loadings, we can see that –as expected–
the vectors with similar directionality have overlapping cat-
egories. Along the x-axis of Figure 3 are the associations of
the ecological category with all others, indicating they are
strong contributors to the similarity of the hurricane-events.
Likewise, institutional and economic category dominate the
first quadrant. Finally, social components tend in the direc-
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tion of the cluster associated with the Charlottesville riots
and Las Vegas shootings. In Figure 3, a small angle between
vector loading indicate high correlation between variables.
From this we can generally infer a positive correlation within
the ecological and social categories as well as between the
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FIGURE 4. Category-based difference between the average hurricane
fingerprint and all average non-hurricane fingerprint. Each element represents
the difference between the hurricane and non-hurricane association of
categories. Blue indicates stronger association in non-hurricane events, while
red indicates stronger association in hurricane events . Coloration based on
log-normalization of A matrices rather than Sinkhorn-Knopp for visual clarity

institution and economy categories.
From Figure 3 we can also interpret that the first principle

component is driven by changes in the ecological categories
indicating this may be primary drivers behind the clustering
of the hurricanes, and consequently a significant component
of community resilience.

C. POSTERIOR ANALYSIS

To further investigate the components most influential in the
social resilience fingerprint, we look at the explicit difference
between events of different types. The most apparent cluster
of events are Hurricanes Florence, Irma, Sandy, Harvey, and
Maria. As such, we compute the element-wise mean finger-
print of the hurricane-events and non-hurricane-events. The
element-wise difference –calculated as the hurricane mean
minus the non-hurricane mean– is visualized in a heatmap
in Figure 4. For each pair of categories, the color of the
cell value indicates whether those categories have a stronger
association among the hurricane fingerprints (colored red), or
the non-hurricane fingerprints (colored blue).

Figure 4 confirms the results of the PCA analysis and indi-
cates the ecological and infrastructure categories of resilience
are much stronger in the hurricane fingerprints than in the
non-hurricane fingerprints. The interaction of infrastructure
and ecological categories are the strongest for the hurricane
category among the non-diagonal elements. At the same
time, the economic-institutional relationship is most strong
among the non-hurricane events.

VOLUME 4, 2016 7



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2914797, IEEE Access

Rachunok et al.: Twitter and Disasters: a Social Resilience Fingerprint

V. DISCUSSION
After clustering the social resilience fingerprints for all events
and analyzing what drives their similarity, we identify two
major trends: first is the strong distinction between hurri-
cane and non-hurricane events with respect to fingerprint
similarity, and second is the importance of ecological and
infrastructure resilience in making that distinction.

We see a strong association, not just of one hurricane with
another, but among all hurricanes for which we could collect
data. The hurricane-related tweet corpora were collected in a
variety of ways and span distinct spatial and temporal scales.
Despite these differences, the similarity in the fingerprints
indicate generalizable patterns in community resilience in
the face of hurricane impacts. Moreover, it provides a strong
evidence supporting the fingerprinting methodology. It also
suggests that Twitter is a persistent source of data about
individual responses to a disaster within a community, es-
tablishing Twitter as a valuable tool for measuring disaster
resilience across communities.

Additionally, general similarity among specific non-
hurricane events indicates emergent themes in the Twitter
responses manifesting as similar social resilience finger-
prints of related events, and thus similarities in the under-
lying resilience. The relative similarity of the California
and Nepalese earthquakes, as well as the public violence
in Charlottesville and Las Vegas, both indicate that other
types of major events may also have fundamental, emergent
themes decodable through Twitter discourse. We conjecture
that similarity in the social resilience fingerprints of related
events is indicative of fundamental similarity in the resilience
of the communities facing such events. That is, there are
emergent similarities between the way different communities
respond to the same event across all types of events. However,
we recognize the limitation of drawing conclusions from the
similarity of only two events studied in this paper and intend
to expand upon this analysis to test our conjecture.

The second major trend in the analysis of the social re-
silience fingerprints is the influence of individual components
of resilience in the separation of one event from another.
Ecology, infrastructure, and economic categories drive much
of the separation between the emergent clusters in the data.
Economic resilience is intuitively intertwined with all other
categories in our definition [3, 6, 7], and is seen in the
Principle Component Analysis to contribute greatly to the
distinction between clusters of non-hurrican events.

The significance of infrastructure resilience in differenti-
ating between hurricane and non-hurricane events –as seen
in Figure 4– is likely due to the significance of infrastructure
damage in communities affected by hurricanes. Ecological
resilience and its close ties to sustainability, have been previ-
ously shown to be strong drivers of community resilience at
all levels [3, 5]. We see the distinction in Figure 3, manifest-
ing as the ecological loadings in the direction of the first prin-
ciple component –indicating that ecology explains the largest
degree of variance among the fingerprints. This reveals that
the resilience fingerprint method is not limited by what has

hampered the previous attempts in quantifying community
resilience –namely the difficulty in acquiring data related to
specific ecosystems. Due to the difficulties in finding relevant
measurement indicators, ecological resilience has previously
been excluded from resilience assessments [60].

The resilience fingerprints of three events were not re-
vealed as expected: The Irish constitutional amendment,
Brexit, and the Ebola outbreak. The authors hypothesized
that the Irish constitutional amendment and Brexit would be
similar events due to their close physical proximity and the
general political nature of the event; a trend which did not
emerge from our analysis. One explanation for the difference
are in the specificity of search terms used for the generation
of the Irish amendment tweet dataset. The Irish amendment
tweet dataset used 52 terms to filter by, the most most filter
terms used by almost a factor of 2 (See Appendix Table A2
for terms); the Brexit dataset was built on only one search
term: brexit. The terms used to filter the Irish referendum
dataset are also more specific than the others, leading to a
corpus of tweet text which may be overly specific to the Irish
political system and the issues of the referendum, lacking
substantive information about the community’s response in
favor of the individuals. Tweets related to the Ebola virus
additionally showed little relation with other events. In this
case, we hypothesize that the location of the event relative
to major Twitter-adoptive societies may affect the ability of
fingerprinting to detect a signal. International Twitter use is
lower than that of the US [16]. As such we hypothesize that
someone tweeting about Hurricane Florence was more likely
witnessing community impacts due the storm than someone
tweeting about the ebola outbreak.

VI. CONCLUSION AND FUTURE RESEARCH
In this paper, we present the resilience fingerprint as a con-
cept for understanding community resilience as the relation-
ship of individual components. We then calculate a social
resilience fingerprint by leveraging social media analytics
guided by the community resilience theory. We find evidence
that resilience fingerprinting can highlight the different com-
munity responses to a variety of major events and identify the
components of community resilience which most contribute
to the overall response. We leverage a category-based def-
inition of community resilience to classify the macro-scale
response on Twitter to a disaster into elements of community
resilience.

In summary, the resilience fingerprint provides a concept
for the multi-dimensional analysis of the emergent responses
of communities to major events. The rapid spread of informa-
tion via social media makes social resilience fingerprinting a
vital complement to existing resilience analyses, capable of
categorizing the community response to a disaster.

In this work, the categories were manually coded, as
guided by the literature in community resilience. However,
an ongoing extension of this work is to use automated topic
detection to both determine what individual words best com-
prise a resilience category, and to determine the emergent
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resilience categories in an unsupervised way. Additionally,
we aim to extend the classification of tweets beyond word-
association based on recent developments in the classification
of tweets related to disasters [59, 61].

This work does not include retweets in the data analyzed
with the resilience fingerprint. A sensitivity analysis is on-
going as to assess the impact of retweets on event similarity.
Finally, we are expanding the fingerprinting methods to al-
low for the creation of a resilience fingerprint in real time.
This will provide a dynamic look at the interactions among
communities as they respond to major disasters and events.
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TABLE A1. Tweet corpora summary. Description of events used along with the quantity of tweets and their acquisition methods and respective sources.

Event Event Description Event
Dates

Total Tweet
IDs

Resulting
Tweets

Tweet acquisition
method

Reference

Aretha Franklin’s
death

The death of singer Aretha
Franklin

08/08/2018-
08/18/2018

2,832,128 252,433 Keyword filtering [32]

Brexit The referendum to remove the UK
from the European Union

05/05/2016-
08/24/2016

23,733,133 3,884,599 Keyword filtering [33]

California earth-
quake

Magnitude 6.0 earthquake strik-
ing south of Napa, CA

08/24/2014-
08/30/2014

254,529 50,414 Keyword filtering [34]

Charlottesville White supremacist rally which
resulted in significant counter-
protesting and violence in Char-
lottesville, VA

08/14/2017-
10/23/2017

3,015,437 207,098 Keyword filtering [35]

Ebola Outbreak Ebola epidemic in Guinea,
Liberia, Sierra Leone and other
parts of West Africa

08/18/2014-
01/19/2015

5,085,767 993,905 Keyword filtering [34]

Eclipse 2017 Solar eclipse passing over
much of the United States

08/17/2017-
08/23/2017

13,548,321 1,211,729 Keyword filtering [36]

Hurricane
Florence

Major Atlantic Hurricane impact-
ing the Eastern United States

09/05/2018-
10/03/2018

4,971,575 488,106 Keyword filtering [37]

Hurricane Harvey Major Atlantic Hurricane impact-
ing the Gulf Coast

08/25/2017-
10/23/2017

18,352,142 1,062,127 Keyword filtering [38]

Ireland 8th Referendum to remove the Eight
Amendment from the Irish Con-
stitution, governing the legality of
abortion

04/13/2018-
06/04/2018

2,279,396 195,050 Keyword filtering [39]

Hurricane Irma Major Atlantic hurricane impact-
ing the Caribbean and Florida
Keys

09/01/2017-
10/23/2017

17,244,139 976,294 Keyword filtering [38]

Las Vegas shoot-
ing

Lone-gunman attack on a music
festival in Las Vegas, NV

09/01/2017-
10/23/2017

14,108,104 866,758 Keyword filtering [40]

Hurricane Maria Major Atlantic hurricane severely
impacting Puerto Rico

09/20/2017-
10/03/2017

1,096,335 87,160 Keyword filtering [41]

Nepal Magnitude 7.8 earthquake in the
Gorkha District of Nepal

04/25/2015-
05/19/2015

4,223,983 509,299 Keyword filtering [34]

Hurricane Sandy Major Atlantic storm impacting
much of the Caribbean and East
Coast of the US

10/22/2012-
11/02/2012

6,554,744 3,252,011 Bounding box sur-
rounding CT, DE,
MA, MD, NJ, NY,
NC, OH, PA, RI,
SC, VA, WV.

[42]
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TABLE A2. Tweet Acquisition. Keywords, keyword phrases, and hashtags used to create the tweet datasets.

Event Keywords

Aretha Franklin’s death aretha_franklin, queen_of_soul

Brexit brexit

California earthquake napa_earthquake, sonoma_earthquake, bay_area_earthquake, california_earthquake, ca_earthquake,
sfearthquake, san_francisco_earthquake, napaearthquake, sfquake, napaquake, napa_quake, sonoma_quake,
bay_area_quake, california_quake, ca_quake, san_francisco_quake

Charlottesville charlottesville, standwithcharlottesville, defendCville, heatherheyer, unitycville

Ebola Outbreak ebola, ebola_virus

Eclipse solareclipse2017, solareclipse, eclipse2017, eclipseday, eclipse

Florence florence, hurricaneflorence, florencehurricane, hurricane_florence", florencenc, hurricaneflorence2018, hurri-
canceflorence

Harvey hurricane_harvey, hurricaneharvey, harvey, hurricane

Ireland 8th 8thref, hometovote, jointherebellion, trustwomen, repealthe8th, together4yes, togetherforyes, voteyes,
time4choice, knowyourrepealers, mybodymychoice, savethe8th, loveboth, lovebothvoteno, votenotoabortion,
standupforlife, lifecanvass, protectthe8th, 8thamendment, whoneedsyouryes, men4yes, register4yes, roadtorepeal,
repealfacts, healthcarenotairfare, repeal, trustwomen, itstime, whyimvotingyes, deaftogetherforyes, doctorsforyes,
repeal4betterbirth, togetherforno, men4no, whoneedsyourno, rallyforlife, votenotoabortion, bemyyes, academics-
foryes, hometovoteno, hometocanvass, abortionreferendum, savita, repealshield, farmersforyes, lawyersforchoice,
lawyersforyes, studentsforchoice, archivingthe8th, repealedthe8th, wemadehistory, nowforni, wetrustwomen,

Irma irma, hurricane_irma, irmastrong

Las Vegas shooting vegas

Maria hurricane_maria, hurricanemaria, tropical_storm_maria, maria_storm

Nepal basantapur, patan, anamnagar, bhaktapur, durbar_square, nuwakot, dharahara_tower, gorkha, lamjung, khudi,
kathmandu, sankhu, sunsari, solu_district, okhaldhunga, nepal, nepal_earthquake, ktmearthquake, indiaw-
ithnepal, nepalquake, nepalquakerelief, nepalearthquake, kathmanduquake, kathmanduquakerelief, kathman-
duearthauqake, quakenepal, earthquakenepal, quakekathmandu, earthquakekathmandu, prayfornepal

Sandy NA
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TABLE A3. Categories of resilience and associated keywords. Keywords are manually coded based on conceptual definitions of resilience categories.

Ecological Social Economy Institution Infrastructure Quality
ecological social economy institution power community
ecology love nation nation nation love
erosion peace market hospital emergency life
wetlands prayer business vote flight home
biology family bank poll airplane hospice
coast life trade country safe hospital
marsh bless stock police water protest
dune spirit politic mayor power health
fish protest money president relief school
bird rally dollar governor city doctor
river monument credit senator coal nurse
climate_change god job flag evacuate medic
rainfall church jobs doctor airport safe
nature donate work nurse cell found
floodwater aid money govern water aid
beach network wealth school outage humanatarian
sun church property medic road life
stream faith pay fema bus health
flood friend employer shelter car depression
storm friends employee school infrastructure
wind family potus
rain pray red_cross
water neighborhood church
weather town evacuate
beach homeland
tropic responders
climate fema

ems
police
fire
government
alderman
county
officials
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