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H I G H L I G H T S

• Novel evaluation of the climate impact on the residential water-electricity nexus.

• The value of a multivariate framework based in statistical learning theory is shown.

• Climate variability explains 23–71% of the variance in the water-electricity nexus.

• The proposed multivariate framework performs better than a similar univariate model.
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A B S T R A C T

Accounting for the nexus between water and electricity demand is critical for ensuring efficiency and con-
servation measures are successful in lowering the net water and electricity use in a city. Considering the nexus is
also critical for accurately estimating the price elasticity of demand and designing effective demand response
programs. The importance of the water-electricity demand nexus is rapidly increasing as cities are stressed by
factors such as global climatic and socioeconomic changes as well as unprecedented rates of urbanization and
growth. Despite the extensive recent research efforts on electricity and water demand modeling, significant
knowledge gaps remain that are primarily rooted in (i) the use of univariate approaches that cannot adequately
account for the nexus and (ii) the lack of a comprehensive assessment of the role of climate drivers on the
demand nexus. To address these gaps, we propose a multivariate (i.e., multi-response), algorithmic framework
for assessing the climate-sensitivity of the coupled water-electricity demand nexus. To illustrate the applicability
of the proposed framework, six Midwestern cities were selected as test cases. The results indicated that climate
variability alone could account for 23–71% of variability in the water-electricity demand nexus with the sea-
sonally adjusted dataset, and 47–87% of the variability on the non-adjusted dataset. The results also revealed
that water use was more climate-sensitive than electricity use. Additionally, the importance of the variability in
the global climate drivers such as the El Niño/Southern Oscillation cycle was demonstrated. The modeling
results suggest that stronger El Niños lead to an overall decrease in the climate-sensitive portion of the water and
electricity use in the selected cities.

1. Introduction

The water-electricity nexus is a concept dating back to the late
1980’s, however applying the concept to urban areas began around
2010’s [1]. Since the release of these studies and reports, there have
been many initiatives surrounding the water-electricity nexus calling
for researchers to evaluate the nexus and its impacts at various spa-
tiotemporal scales and for numerous applications. The idea behind

studying the nexus, as opposed to studying water and/or electricity in
isolation, is that the two systems are interrelated and studying them
separately will likely lead to (i) attenuated effects in efficiency and
conservation programs to reduce residential energy and water con-
sumption, (ii) overestimating price elasticity of demand, and (iii) de-
signing ineffective demand response programs. On the other hand,
considering their co-benefits in conservation measures has demon-
strated potential to achieve savings at no net cost in some regions [2].
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Moreover, simulation tools that have been built in isolation (i.e., tools
that simulate only water or electricity) have been shown to result in
significantly different consumption patterns than their integrated
counterparts [3].

There are a variety of ways to study the water-electricity nexus,
including water for electricity analyses and electricity for water ana-
lyses. To understand water for electricity, researchers frequently eval-
uate the water that is used during electricity generation [4]. An esti-
mated 90% of the electricity in the US comes from thermoelectric
power plants, which require water for cooling [5]. The amount of water
withdrawn by these plants accounted for 40% of the water withdrawals
in the US during 2005 [6], making these plants a crucial aspect to
studying water availability in the US, especially during heatwaves and
droughts. Higher temperatures and drought conditions have been
shown to increase electricity demand, which ultimately leads to in-
creased water withdrawals by thermoelectric generators [5], especially
if the generators are coal-fired or cooled using open-loop technologies
[7]. The remainder of the electricity in the US comes from other
sources, including hydropower, which also requires a significant
amount of water resources. Although hydropower is often used for grid
stabilization, it can be significantly effected by increased rates of eva-
poration that accompany droughts [8]. Given that droughts are ex-
pected to increase [9], it is crucial that models represent the inter-
dependencies between water and electricity, even in non-
thermoelectric power plants. Electricity for water analyses, on the other
hand, focus on quantifying the electricity it takes to treat and distribute
water [4]. It was estimated that in 2012, water utilities in the United
States consumed 38,100 GWh of electricity [10], which will likely in-
crease as utilities continue to expand to keep up with urban growth.
Given that water-related electricity use is expected to increase in states
that are already water stressed, such as Florida, Texas, and Arizona
[11], analyses that focus on the water-electricity nexus are becoming
increasingly important.

Climate change will likely exacerbate the stress on urban water and
electricity utilities, which are already facing unprecedented growth in
many parts of the world, including the United States [12]. Water and
electricity utilities depend on each other to maintain their respective
services, but under the more variable conditions brought on by climate
change, including higher temperatures and increased frequency and
intensity of drought events [13], utilities may begin to face challenges
related to their supply. For example, as mentioned earlier, higher
temperatures will increase the demand for cooling in thermoelectric
power plants, which will lead to more water withdrawals by the power
plants [5]. The higher temperatures and increased frequency of
droughts will also put pressure on water resources and the utilities that
own them to provide water for public supply and any other major users,
including thermoelectric power plants [14]. This pressure could result
in temporary reductions in electricity production, such as those that
have occurred in a few European countries in the past few years [15]. In
this sense, the electricity sector puts pressure on the water sector by
requiring a large amount of water supply, and the water sector puts
pressure on the electricity sector when there are shortages. This will be
compounded by climate change, ultimately putting additional pressure
on both sectors.

In addition to the supply-based (inter) dependencies discussed
above, there are many aspects of water and electricity use that are in-
terconnected. For example, watering landscapes, washing clothes,
taking hot showers, and using a dishwater all require both water and
electricity. These dependencies are critical for both electric and water
utilities trying to reduce peak load to lower the likelihood of supply
inadequacies and service disruption risks, and reduce operations and
maintenance cost [16].

In comparison to the studies of water-electricity supply nexus, re-
search on the water-electricity demand nexus is more nascent [17]. The
majority of the work on the demand-side has primarily focused on
human behavior and specific tasks (e.g., heating water or using a

dishwasher [18], as well as outdoor activities such as landscaping
[19]). These studies provide a wealth of information on people’s be-
haviors and the coupling between the urban water and electricity sys-
tems, but there is very little work on the subject that takes climate
variability and change into account. The handful of studies that do
consider climate, employ only simple and limited measures (e.g.,
change in precipitation or temperature) to determine the impact [20].
For example, one study performed by Venkatesh et al. (2014) demon-
strated the value of precipitation and temperature on raw water sources
[21], but did not include other key factors, such as evaporation. Simi-
larly, a study by Mostafavi et al. [22] considered temperature when
modeling residential water and energy consumption, but did not in-
clude potentially important variables, such as relative humidity [22]. In
fact, the climate measures impacting the water-electricity nexus likely
go beyond simple measures such as precipitation and temperature that
have yet to be explored. In particular, the El Niño/Southern Oscillation
cycle, which has been shown to impact the water-energy-food nexus
[23], has not been included in urban water-electricity demand nexus
studies. Moreover, the majority of the existing studies have not har-
nessed a multivariate approach to simultaneously estimate the water
and electricity demand as a function of exogenous factors such as cli-
mate variability and change.

The purpose of this study is to bridge these gaps by proposing a
multivariate paradigm to harness the dependencies in the urban water
and electricity demand data and allow for simultaneously estimating
the climate-sensitive portion of the water demand, electricity demand,
and their nexus. Given the focus on the climate-sensitive portion of the
demand nexus, only climatic variables were used as predictors in the
study. Additionally, only the residential sector was included in this
study, as it has been shown in the literature that residential use is much
more sensitive to climate than commercial or industrial in a variety of
regions, including Ohio [24], Florida [25], and Indiana [26], among
others. The central goal of this paper is to comprehensively assess the
climate sensitivity of the urban water-electricity demand nexus, which
has largely been overlooked in previous studies. The proposed frame-
work is designed to handle multiple interdependent response variables.
Since the coupled water-electricity nexus model takes the correlation
between the response variables into account, it was hypothesized that
this multivariate modeling framework would predict the water and
electricity use better than similar univariate models. To test this hy-
pothesis, the framework was applied to six large-range cities in the
Midwestern United States and evaluated the impacts of climate varia-
bility on the demand nexus. It was also hypothesized that both local
climatic variables, such as precipitation and temperature, and large
climatic drivers, such as the El Niño/Southern Oscillation index, would
be important predictors of end-use demand for water and electricity.

2. Data and methods

To demonstrate the applicability of the proposed approach, the
Midwest region in the United States was selected as a case study. In this
section, we will first describe the study sites and the input data used for
the analyses presented in this paper, and will then delve into the pro-
posed methodology for assessing the coupled water-electricity nexus in
the case study areas.

2.1. Site description

In this study, the focus was on the northern and eastern parts of the
Midwest, including Ohio, Indiana, Illinois, Wisconsin, and Minnesota.
Within this study area, depicted in Fig. 1, six cities of varying popula-
tion sizes were selected: Chicago (IL), Columbus (OH), Indianapolis
(IN), Minneapolis (MN), Cleveland (OH), and Madison (WI). These ci-
ties were selected in order to capture a variety of different sizes, while
still focusing on some of the most populous cities in the region. In fact,
the population ranges from 255,000 people in Madison to 2,716,000
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people in Chicago. Moreover, each city, though they have different
demand patterns (see Fig. 1), will likely experience similar impacts of
climate change due to their geographical proximity. In particular, it is
likely that the Midwest region as a whole will have higher temperatures
and more precipitation asCO2 levels continue to rise [27], which will in
turn affect the urban water-electricity demand nexus.

2.2. Data description and preprocessing

The data for this study was obtained from four main sources–the US
Energy Information Administration (EIA), National Centers for
Environmental Information (NCEI), National Oceanic and Atmospheric
Administration (NOAA), and local water utilities. Specifically, monthly
residential electricity use was obtained from the EIA [28], meteor-
ological and climate data from the NCEI [29] and NOAA [30], and
residential water use was obtained through records requests to local
water utilities. The meteorological data was collected from several
meteorological towers stationed around each city and aggregated to get
an average monthly value for each city between 2007 and 2016. Spe-
cifically, there were four active towers in Chicago, Columbus, and
Minneapolis, three in Cleveland, and one in Indianapolis and Madison
(see Fig. 1). Meteorological variables used in the analysis included
temperature (dry bulb and dew point), relative humidity, wind speed,
and precipitation. The El Niño/Southern Oscillation strength index was
also included in the analysis, as a large-scale climatic driver that has
been shown to impact the climate of the Midwest [31].

In this study, there were two response variables: residential elec-
tricity use and residential water use, both normalized by the number of
customers reported by the utility. Often water and electricity are pro-
vided by separate utilities, with potentially different service areas, this

normalization allowed us to compare these two variables regardless of
the differences in service area. Additionally, the response data was
adjusted for seasonality to ensure that the results were demonstrating
the effect of climate on the water-electricity demand nexus, in-
dependent of the natural seasonality present in the usage patterns. In
the seasonality adjustment, the time series were decomposed and the
seasonality components were subtracted from the original time series
[32] (see Supplemental Methods for more information). There were
also eight meteorological and climatic predictors (see Table 1), that
were included in the initial model run. There was a focus on variables
that are easily measured by meteorological stations due to the avail-
ability of such data, as well as the results of previous studies, which
showed the importance of meteorological variables on water and
electricity demand. For example, Balling et al. 33] showed the impact of
precipitation and temperature on water consumption [33]. Similarly,
Mukherjee and Nateghi demonstrated the impact of temperature and
wind speed on electricity consumption [25]. Both average and max-
imum values of meteorological variables were included to establish
which statistic (i.e., maximum or mean) would better capture the in-
tensity of the signals in the water and electricity demand data. Simi-
larly, it has been shown that the El Niño/Southern Oscillation plays an
important role in affecting hydroclimatic processes across the US, and
in particular, the Midwestern region [31], making it an important
variable to include in the analysis of the climate impact on residential
water and electricity use.

2.3. Methodology

The interconnectivity between water and electricity use has been
well documented throughout the literature [1], with a few studies

Fig. 1. A map of the cities chosen for this study. From left to right: Minneapolis (MN), Madison (WI), Chicago (IL), Indianapolis (IN), Columbus (OH), and Cleveland
(OH). The locations of the weather stations used to collect the meteorological data are also included. The inset plot shows the mean± one standard deviation for both
water and electricity use for each city. The water use is in 100 gallons/customer (or metered account) and the electricity use is in kilowatt-hours/customer.
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focusing on the impacts of climate [20]. However, this is the first time,
to our knowledge, that the impact of climate on the water-electricity
nexus has been evaluated through a multivariate framework based on
statistical learning theory. The advantages of this framework include (i)
assessing the role of a wider range of climatic variables on the water-
electricity demand nexus than previous studies, and (ii) leveraging a
robust, non-parametric technique to assess the climate-sensitivity of
both water and electricity use simultaneously, while taking their com-
plex and non-linear interactions into account. Moreover, the required
inputs to the modeling framework are readily available, such that uti-
lity managers, researchers, or other interested parties can easily apply
the model to their city or cities of interest.

There are four main steps in the modeling process: (1) data collec-
tion, preprocessing and aggregation, (2) model training and testing, (3)

statistical inferencing, and (4) comparative analysis with a univariate
model. A schematic of this process can be seen in Fig. 2. The first step
was to collect the data, normalize the response variables and implement
seasonality adjustments (as described in Section 2.2), and to aggregate
the meteorological data spatially across weather stations and tempo-
rally from daily to monthly values. The initial model training and
testing was performed—within a 5-fold cross validation loop—with all
the predictor variables (see Table 1). Cross validation, which is a
standard process for ensuring the model is robust and validating the
predictions, was used for both model hyperparameter tuning as well as
model performance assessment. The initial model runs were then fol-
lowed by a variable selection step to establish the key predictors (see
Section 2.3.3 for more details). Finally, the statistical inferencing was
performed using the results from the final best model that included the

Table 1
The input variables used for developing the coupled water-electricity demand nexus model. Each variable was collected at the city-scale from January 2007
through December 2016 and aggregated to ensure a consistent monthly time scale.

Variable type Variable name Units Source

Response (2007–2016) Monthly Water Use (normalized) gal. Local Utilities
Monthly Electricity Use (normalized) MWh EIA-861M [28]

Predictor (2007–2016) Average Maximum Dry Bulb Temperature °F NCEI [29]
Average Dew Point Temperature °F NCEI [29]
Average Relative Humidity % NCEI [29]
Average Maximum Relative Humidity % NCEI [29]
Average Wind Speed mph NCEI [29]
Average Maximum Wind Speed mph NCEI [29]
Accumulated Precipitation in NCEI [29]
El Niño/Southern Oscillation index – NOAA [30]

Fig. 2. Schematic of the modeling process used in this study. First, the data was collected, preprocessed and aggregated. Then, the model training and testing was
performed within the cross validation loop. Finally, the statistical inferencing and analysis as well as a model comparison was completed.
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reduced input variable set, based on the variable selection step (see
Section 2.3.4 for more details). Each of these steps will be described in
further detail in the following sections.

2.3.1. Supervised learning theory
The algorithm used throughout this study fall into a larger category

of statistical learning theory known as ‘supervised learning’. Supervised
learning algorithms are built to predict target variable(s) of interest
(i.e., the response variable(s)), given a number of predictor variables.
Supervised learning can be mathematically described as:

= + ∊Y f X( ) (1)

where Y is the response variable(s) of interest, X is the series of pre-
dictor variables used to predict the response, and ∊ is the irreducible
error (∊ ∼ N σ(0, )2 ) [34]. In supervised learning, the aim is to predict
the response variable(s) such that the expected error is minimized as
shown below [34].

̂∑
N

f X f Xmin 1 Δ[ ( ), ( )]
i

N

i i
(2)

Here ̂f X( )i and f X( )i represent the estimated and true functions, re-
spectively, and Δ represents some measure of distance (e.g. the Eu-
clidean or Manhattan distance).

Among the wide library of supervised learning algorithms, tree-
based methods are one of the most popular non-parametric learning
techniques [34]. Tree-based models offer competitive predictive accu-
racy compared to most of the state-of-the art statistical machine
learning algorithms [35], and lend themselves more easily to inter-
pretation and inferencing compared to other “black box” algorithms,
such as deep learning and support vector machines [34]. In this paper, a
multivariate extension of an ensemble-of-trees approach was im-
plemented, as described below.

2.3.2. Algorithm description
The proposed framework is based on an advanced supervised

learning technique—based on an ensemble-of-trees approach—that le-
verages the covariance structure of multiple response variables to better
estimate the complex interactions between the target variables.
Specifically, the predictive model of the coupled residential water and
electricity demand was developed based on a multivariate extension of
the gradient boosted regression trees algorithm [36].

Gradient boosted regression trees is an ensemble-of trees method
that takes advantage of the boosting meta-algorithm to increase the
predictive accuracy [36]. The boosting meta-algorithm works by se-
quentially fitting models (in this case decision trees), where in each
iteration more weight is given to the better classifiers and the mis-
classified points in order to reduce the overall loss function and en-
hance the predictive accuracy. Boosting is represented mathematically
in the equation below.

∑=G x α C x( ) ( )
m

M

m m
(3)

Here G x( ) is the final ensemble model, M is the total number of itera-
tions to be completed, αm is the weight of each prediction, and Cm is the
tree models fitted to the input variable x at iteration m.

In this paper, multivariate tree boosting, which extends gradient
boosted regression trees to a multivariate (i.e., multi-response) case, is
leveraged. Thus, the multivariate extension of the algorithm enables the
simultaneous prediction of multiple response variables [37]. Specifi-
cally, this algorithm iteratively builds trees by minimizing the squared
error loss for each response variable and maximizing the covariance
discrepancy in the multivariate response. In other words, at each
iteration, a prediction is made for each response variable, such that the
loss function is minimized and the covariance discrepancy between the
current and previous predictions is maximized. This allows each

subsequent prediction to be incrementally more accurate than the
previous, while ensuring the predictors that account for the most cov-
ariance in the nexus of the response variables are selected. The steps of
the algorithm are summarized below:

Algorithm 1. Multivariate Ensemble Tree Boosting Algorithm D[37]

1: for …m in M1, , steps (regression trees) do
2: forr in … R1, , quantitative response variables (e.g., water and electricity demand)

do

3: train tree m r( ) to residuals, and estimate the covariance discrepancy Dm r,
4: end for

5: Select the response y r( ) corresponding to the regression tree that yielded the
maximum Dm r,

6: Update residuals by subtracting the predictions of the tree fitted to y r( ), multi-
plied by step-size.

7: end for

This algorithm has been tested in a few multivariate predictive
applications, ranging from psychological well-being [37] to multi-di-
mensional infrastructure resilience assessment [26], and it was hy-
pothesized would be a good candidate for energy-water nexus mod-
eling.

2.3.3. Variable selection
Per Occam’s razor, it is desirable to establish the simplest model

(containing a subset of input variables) that best captures the data
dependencies and covariance. In other words, variable selection was
conducted to reduce model complexity via retaining only the most
important or influential predictors in the final model. In this frame-
work, variable selection was based on establishing the relative influ-
ence of each variable, via measuring the sum of squared errors obtained
on any split of a given predictor, summed over all trees in the prediction
model [34]. The calculated sums of squared errors provide a basis for
ranking the predictor variables. Thus, the relative influence is related to
the amount of reduction in total error that can be attributed to a given
predictor—the higher the reduction in error, the more influential (and
important) the variable is in the model. For multi-dimensional response
variables, the univariate relative influence is first measured for each
independent variable and for each response. Summing the importance
over all response variables renders a ‘global’ measure of influence for
the independent variables across all target variables.

In this study, the variables were selected for the final model if they
had a relative influence greater than 5% in at least 4 of the 6 cities.
Using this threshold, the following five predictors were retained in the
final model: average maximum dry bulb temperature, average dew
point temperature, average relative humidity, average wind speed, and
the El Niño/Southern Oscillation index. These variables were used in
the final model run and subsequent analyses/inferencing.

2.3.4. Statistical inferencing and analyses
The statistical inferencing for the multi-dimensional water-elec-

tricity nexus model—developed using the multivariate tree boosting
algorithm described in Section 2.3.2—was conducted using the fol-
lowing methods: (1) evaluating the model performance (i.e., model
goodness-of-fit and predictive accuracy), (2) assessing the covariance
explained by each predictor on individual response variables and
identifying the clusters of input variables that jointly influence one or
both response variables, (3) visualizing the partial dependence between
the important predictors and the response variables, and (4) comparing
the multivariate model performance to a similar univariate model.

• Model Performance

To evaluate model fit and predictive accuracy, the algorithm was
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run—within the 5-fold cross validation loop—for each city simulta-
neously (Fig. 2), resulting in one prediction per city per response
variable. The performance of the model was assessed using two statis-
tical measures: the out-of-sample root-mean-squared error (RMSE) and
the out-of-sample coefficient of determination (R2). RMSE provides an
absolute measure of error that heavily penalizes large deviations,
making it ideal for prediction applications. The out-of-sample R2 value
demonstrates the fit of the model predictions made by the test dataset,
which can be interpreted as the amount of variance explained by the
predictor variables.

• Heat Maps of the Covariance Structure

The leveraged algorithm can help identify the pairs of the predictor
variables that explain the variance in individual response variables
and/or the covariance between multiple response variables. The hier-
archical clustering technique can then be used to group the predictors
that explain covariance in similar pairs of response variables, and the
pairs of responses that are dependent on similar subsets of predictors;
the results can then be illustrated as a heat map [37].

• Partial Dependence

A crucial aspect of statistical inferencing is determining the nature
of the statistical relationship between the most important predictors
and the response variables. For non-parametric models, partial de-
pendency analyses are conducted to characterize the association be-
tween the inputs and the response variable(s). The partial dependence
can be calculated using the following equation [34]:

̂ ̂∑=
=

f x
n

f x x( ) 1 ( , )
i

n

C
i

1

( )

(4)

where x is the predictor of interest and xC
i( ) represents the other pre-

dictor variables that are not of interest. The estimated partial depen-
dence, ̂f x( ), is the average value of the response variable, when only
the predictor variable of interest is considered.

• Model Comparison

Finally, the results from the multivariate model were compared to
results from a similar univariate model. Specifically, gradient tree
boosting [36] was used to predict the water and electricity use as iso-
lated variables. Gradient tree boosting is the basis for multivariate tree
boosting [37], thus the main difference between the multivariate and
univariate algorithms is the consideration of response variable de-
pendencies. The purpose of this final analysis was to demonstrate the
value of the multivariate framework, as this is the first time this coupled
methodology has been applied to predicting the climate-sensitive por-
tion of the water-electricity nexus.

3. Results

Following the modeling process outlined above (see Fig. 2), the
climate-sensitive portion of the interdependent water and electricity
use was estimated for each city in the study area. In this section, we will
first describe the model performance, then discuss the results from the
various statistical inferencing techniques, including the covariance ex-
plained evaluations and the partial dependence visualizations, before
describing the comparison between the multivariate and univariate
model performance.

3.1. Model performance

To develop a predictive model of interdependent urban water and
electricity demand, the multivariate tree boosting algorithm described
in Section 2.3.2 was leveraged. In the initial training of model, several
independent variables that could potentially affect water and/or elec-
tricity demand were included (see Table 1). The final model included a
reduced variable set based on the relative influence each predictor had
over the predictive accuracy. The variables in the final model included
maximum dry bulb temperature, average dew point temperature,
average relative humidity, average wind speed, and the El Niño/
Southern Oscillation index. The selected variables were similar to pre-
vious studies on the sensitivity of water demand [33] and electricity
demand [25].

3.1.1. Treatment of seasonality
As part of the data preprocessing, the response variables were ad-

justed for seasonality. It has been shown that seasonality aids in the
predictive accuracy, but in such a way that is misrepresentative of the
actual system [32]. In other words, seasonality may mask the signals of
long-term trends, such as those related to climate change. Here we
present the results from the model performance using both the original
dataset and the seasonally adjusted dataset to demonstrate the differ-
ence between them. Without the seasonality adjustment (i.e., the ori-
ginal dataset), the model performance was better (see Table 2 and
Fig. 3a), which aligns with previous work on the effect of seasonality on
models. However, since the interest of this paper is the impact climate,
an inherently long-term concept, the seasonality may be masking the
true signal, thus including the seasonally adjusted dataset become im-
portant as well (see Table 3 and Fig. 3b).

3.1.2. Measures of model performance
The performance of the final model was assessed based on the out-

of-sample estimates of the coefficient of determination (R2) and the
root-mean-squared error (RMSE). These measures of error were calcu-
lated using the test set. Based on the R2 values shown in Tables 2 and 3,
demonstrate that climate variables alone can account for a significant
fraction of the variability in the electricity and water demand—ranging
from 43% to 73% (i.e., R2 values of 0.43–0.73) in the in-sample per-
formance and 30–71% (i.e., R2 values of 0.30–0.71) in the out-of-

Table 2
The model performance for each city for the final model run using the original dataset (i.e., the dataset with seasonality intact). The in-sample measures were
calculated using the same data used to train the model, while the out-of-sample measures were calculated using the test dataset, which was not included in the model
training (see Fig. 2). RMSE is an absolute measure of error, while R2 can be interpreted as the amount of variance in the data that can be explained by the model.

City Water Use Electricity Use

In-sample R2 In-sample RMSE Out-of-sample R2 Out-of-sample RMSE In-sample R2 In-sample RMSE Out-of-sample R2 Out-of-sample RMSE

Chicago 0.71 0.333 0.47 0.731 0.85 0.235 0.76 0.499
Columbus 0.82 0.285 0.78 0.619 0.89 0.218 0.84 0.496
Indianapolis 0.89 0.222 0.83 0.491 0.94 0.160 0.87 0.385
Minneapolis 0.88 0.221 0.81 0.468 0.91 0.197 0.83 0.431
Cleveland 0.51 0.452 0.31 0.876 0.81 0.306 0.77 0.566
Madison 0.79 0.290 0.71 0.623 0.85 0.226 0.77 0.450
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sample performance, after seasonality was removed from the dataset.
Thus, while the previous literature primarily focused on explaining

the variance in the demand as a function of socioeconomic and tech-
nological factors as well as cultural norms, in this study, there was a
focus on isolating the effects of climate variability and demonstrated
the significant role of climate in explaining the covariance of the water-
electricity demand nexus.

The results summarized in Tables 2 and 3 indicate that a significant
fraction of variability (i.e., relatively large R2 values) in the water-
electricity demand nexus can be explained by the input climate vari-
ables.

This is further demonstrated in Fig. 3, which shows the predicted
values plotted against the actual values for both the original dataset
(Fig. 3, and the seasonally adjusted demand data (Fig. 3b). The results

Fig. 3. Out-of-sample model performance for (a) the original dataset (i.e., the dataset with seasonality) and (b) the seasonally adjusted dataset with the multivariate
model. The response variables, water and electricity use, have been scaled to account for different units of measurement. The lines are best fit lines plotted through
the predicted versus actual points, with a 45° dashed line for reference.

Table 3
The model performance for each city for the final model run using the seasonally adjusted dataset. The in-sample measures were calculated using the same data used
to train the model, while the out-of-sample measures were calculated using the test dataset, which was not included in the model training (see Fig. 2). RMSE is an
absolute measure of error, while R2 can be interpreted as the amount of variance in the data that can be explained by the model.

City Water Use Electricity Use

In-sample R2 In-sample RMSE Out-of-sample R2 Out-of-sample RMSE In-sample R2 In-sample RMSE Out-of-sample R2 Out-of-sample RMSE

Chicago 0.69 0.344 0.51 0.720 0.53 0.457 0.39 0.932
Columbus 0.63 0.416 0.62 0.894 0.49 0.500 0.31 0.975
Indianapolis 0.73 0.327 0.71 0.739 0.53 0.455 0.41 0.934
Minneapolis 0.69 0.333 0.55 0.761 0.50 0.467 0.42 1.113
Cleveland 0.44 0.490 0.23 0.910 0.46 0.509 0.34 0.943
Madison 0.54 0.444 0.34 0.925 0.43 0.512 0.30 1.003
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are illustrative of the fact that climate variability is an important driver
of water and electricity use in Midwestern cities.

3.2. Statistical inferences from the multivariate model

One of the advantages of the proposed multivariate approach is the
ability to determine the covariance explained by the predictors for each
individual response variable and the nexus between response variables.
This feature allows us to see what variables have the most impact on the
water-electricity nexus and if those variables differ from those most
greatly impacting water or electricity use alone.

Fig. 4 shows the clustered heat maps of the covariance explained for
each city. These heat maps are clustered via hierarchical clustering,
which indicates which predictors are affecting the response variables in
similar ways, as well as which response variables pairs are being in-
fluenced by similar subsets of predictors. Overall, assessing the

covariance explained allows us to investigate the similarities and dif-
ferences between the cities, as well as any differences between the
isolated water use, isolated electricity use, and the water-electricity use
nexus. The results from the heat maps demonstrate that although the
model itself is generalizable across the different cities, as indicated by
the model performance (see Table 3), the covariance explained by the
variables will differ from city to city. For example, in the land-locked
cities of Columbus, Indianapolis, and Minneapolis, average relative
humidity explains the most covariance in water use. This is different
than the coastal cities of Chicago and Cleveland, where the ENSO index
explains much of the water use and relative humidity has less of an
impact.

The covariance explained, however, does not give any indication to
the direction of the relationship between the predictors and the re-
sponse variables—just the magnitude of it. Thus, it is necessary to
perform other analyses to determine if higher relative humidity will

Fig. 4. Clustered heat maps showing the covariance explained by each predictor variable in each city, after the seasonality was removed from the dataset. The darker
blues represent higher values of covariance explained, while the lighter blues represent less. The variables have been grouped using hierarchical clustering, a method
used to group similar objects together. In this figure, predictors clustered together explain the covariance in similar outcome pairs, therefore, the position of the
variables on the axes is different for each city due to each city has a different clustering outcome.
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lead to higher or lower water use in Indianapolis, for example. To an-
swer this question, the partial dependence of the predictors on the in-
dividual response variables was evaluated. A selection of these partial
dependence plots are shown in Fig. 5 (additional partial dependence
plots can be seen in Supplemental Figure S2).

These plots show the relationship between the most important
variables and water use in each city. In particular one can see that in the
cities of Columbus, Indianapolis, and Minneapolis, as relative humidity
increases, the water use decreases. A similar pattern appears in Chicago
and Cleveland—as the El Niño gets stronger, the water use decreases.
This suggests that utility managers trying to reduce water use in

Columbus or Indianapolis should focus on the days with intermediate
relative humidity, as that is when people are using the most water.
Likewise, a manager in Chicago or Cleveland should focus their demand
reduction efforts during the cold phase of the El Niño cycle (i.e., La
Niña).

3.3. Univariate model comparison

One of the goals of this work was to demonstrate the power of in-
cluding both water and electricity use in the model as interdependent
response variables. This was done through a model performance

Fig. 5. Partial dependence plots between the most important predictor variable and water use in each city. Note that the water use has been scaled, so there are no
units.

Table 4
The in-sample and out-of-sample model performance (R2 and RMSE) of the univariate model, gradient tree boosting, for each city after the seasonality was removed
from the data.

City Water Use Electricity Use

In-sample R2 In-sample RMSE Out-of-sample R2 Out-of-sample RMSE In-sample R2 In-sample RMSE Out-of-sample R2 Out-of-sample RMSE

Chicago 0.60 0.437 0.50 0.747 0.36 0.600 0.32 0.981
Columbus 0.55 0.500 0.53 0.860 0.36 0.601 0.26 0.987
Indianapolis 0.62 0.429 0.64 0.732 0.39 0.577 0.29 0.938
Minneapolis 0.56 0.451 0.55 0.756 0.32 0.599 0.32 1.003
Cleveland 0.34 0.614 0.36 0.860 0.30 0.630 0.28 0.991
Madison 0.41 0.548 0.37 0.883 0.28 0.663 0.28 1.036
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comparison of the multivariate tree boosting model and a univariate
version: gradient tree boosting. The results from the univariate model
run are shown in Table 4.

Both approaches revealed that a significant fraction of the varia-
bility in the water and electricity use could be accounted for by climate
variables alone. Additionally, the relative performance of the various
cities matched between the univariate and multivariate models. For
example, in both approaches, Indianapolis’s water use was found to be
most climate-sensitive, while Cleveland’s revealed the least amount of
climate sensitivity (based on their estimated coefficients of determi-
nation). Overall, however, the multivariate model was better at cap-
turing the climate sensitivity of two demands than the univariate
model, with the exception of Cleveland’s and Madison’s water use.

The main difference between the univariate and multivariate
models was the inclusion of response variable interdependencies within
the multivariate model. This is indicative that, in most cases, the con-
sideration of the interconnectivity between water and electricity use
improves the final prediction of both water and electricity use. Of the
cities tested as a part of this analysis, the climate sensitivity of water use
in Cleveland and Madison—smallest cities included in this study—were
better accounted for by the univariate model, which suggests a loose
coupling between the climate-sensitive portion of the water and elec-
tricity use in those cities than the other cities studied. Additional re-
search is necessary to determine the reason behind this reduced cou-
pling between the climate-sensitive portion of the water and electricity
demand.

4. Discussion

This study focused on analyzing the water-electricity demand nexus
based solely on climate variables. This allowed us to isolate the effect of
climate on residential water and electricity use—a factor that is often
not included in demand analyses. The results show that water use is
more climate-sensitive in most of the cities included. This suggests that
water use is more dependent on the climate than electricity use, which
is an interesting finding, given the documented increase in electricity
with increasing temperatures in the Midwest [26].

Given that the model performance for the electricity sector was
more impacted by the seasonality adjustment than the water sector, the
results suggest that in the Midwest, the long-term climatic conditions
are more likely to drive changes in water use, while the short-term
weather patterns are more likely to act as a driver for electricity use.
That is not to say that climate is the only driver of changing water use,
but rather it is a potentially important driver that has often been left out
of many demand analyses. In this sense, water demand studies, which
often focus on population, socioeconomic, and/or cultural factors,
ought to also include climatic factors in their analyses. This will become
especially important as researchers and practitioners try to predict
water demand under climate change.

One of the main findings of this study was the importance of the El
Niño cycle on the residential water and electricity demand in the region
of interest. The ENSO index was consistently among the predictors that
explained the most covariance in the response variables. Given that the
El Niño cycle is a well-documented climate phenomenon that can be
predicted relatively easily, it is an ideal variable for making more
general or broad predictions. For example, a common ENSO-based
prediction is the type of winter that a given region will have (e.g., a
strong El Niño usually leads to warmer, drier winters in the Midwest
[31]). This modeling framework allows us to make a simple, first order
forecast for the demand nexus based on large scale climate predictor. In
other words, the results suggest that a strong El Niño is more likely to
lead to lower water and electricity use. This knowledge would allow
utility managers to prepare for the upcoming season based on the
predicted El Niño strength that is determined on a monthly basis. The
importance of the ENSO index also has implications for climate change.
It is likely that El Niños will become stronger as sea surface temperature

continues to increase [38], and the results suggest that if this holds true,
water and electricity use in the Midwestern cities studied, will decrease
as a result of the change in climate, should everything else in the cities
remain constant. This assumption—that the population, socioeconomic
breakdown, culture, etc. of a city will remain constant—is, of course,
highly unlikely; however, the results demonstrate the importance of
including climate variables in the overall analysis of water and elec-
tricity demand.

Finally, one of the goals of this study was to compare the results
from the multivariate model, which considers the coupling between
water and electricity demand, and a univariate model that is based on
the same algorithm. The results demonstrate that the multivariate fra-
mework is able to better capture the climate-sensitivity of water and
electricity use in most cases. Since both models were based on the same
algorithm, the only difference between them being the inclusion of
multiple interconnected response variables, the results suggest that
system coupling are an important consideration for the prediction of
water and electricity demand. Ultimately, the results indicate that there
needs to be an increased effort to (i) consider the increasing role of
climate drivers on demand and (ii) harness a multivariate framework to
better account for the interdependent response variables in demand
analyses.

5. Conclusions

The purpose of this study was to build a multi-response predictive
model of the portion of the urban residential water-electricity demand
nexus that was sensitive to climate, using the multivariate tree boosting
algorithm. In this study, there were two response variables: water use
and electricity use, and five main predictors. The model was tested on
six Midwestern cities of variable size, demonstrating the general-
izability of the model to the region of interest. The results of the study
indicated that a significant fraction of the water-electricity demand
nexus can be explained by climate variability alone. Urban water and
electricity demand are impacted by a number of factors, including po-
pulation density, socioeconomic status, and cultural values, in addition
to the climate. However, the role of climate has been understudied in
comparison to other important drivers of urban water and electricity
demand. For this reason, the goal in this study was to isolate the effects
of climate and demonstrate the value of their inclusion in future ana-
lyses. The results indicated that water and electricity use are sensitive to
climate variables, and will likely be affected by future climate change.
The impact of the El Niño cycle was especially important in each city, as
the variable consistently explained much of the covariance in the water-
electricity nexus and in the individual response variables.

The proposed framework can be used by utility managers, policy-
makers, or urban planners that are interested in tailoring conservation
interventions to the times at which they will be most effective. For
example, focusing on conservation during the cold cycle of the El Niño
(i.e., La Niña) will likely be more effective and result in greater re-
ductions than the same campaign during a strong El Niño. This fra-
mework is also applicable for practitioners that are trying to plan for
demand changes so that they can plan their supply changes accordingly.
Finally, the model performance was compared to a similar univariate
algorithm, known as gradient tree boosting. The results demonstrated
that in the majority of cities studied, the multivariate (i.e., multi-re-
sponse) algorithm outperforms the univariate version. Since the main
difference between the algorithms is the inclusion of multiple inter-
dependent response variables, we recommend that future studies,
especially in the Midwest, focus on modeling the water-electricity
nexus, even if they are only interested in one of the response variables.
Although the focus of this study was to isolate and analyze the effect of
climate variables on the water-electricity nexus, the framework could
easily be expanded to included other important factors, such as socio-
economic status, housing characteristics, or population density, as well
as expanded to other cities around the world. Moreover, while the focus
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of this study was the water-electricity demand nexus, the proposed
framework could be easily extended to include other critical urban
services (e.g., food).
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