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Highlights

• Maximum temperature is the most important predictor of climate-sensitive

peak load

• Dew point temperature significantly influences peak load both during sum-

mer and winter

• Maximum sustained wind speed lowers daily peak load

• Electricity price has a strong positive association with peak load

• Economic growth of the state is inversely associated with peak load
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Assessing climate sensitivity of peak electricity load for
resilient power systems planning and operation: A study

applied to the Texas region

Abstract

Accurate forecasting of peak electricity load has long been an active area

of research in electricity markets, and power systems planning and operation.

Unanticipated climate-induced surges in peak load can lead to supply shortages

causing frequent brownouts and blackouts, and large-scale socioeconomic im-

pacts. In this paper, the climate sensitivity of daily peak load is characterized by

leveraging advanced statistical machine learning algorithms. More specifically, a

rigorously tested and validated predictive model based on the Bayesian additive

regression trees algorithm is proposed. Results from this study revealed that max-

imum daily temperature followed by mean dew point temperature are the most

important predictors of the climate-sensitive portion of daily peak load. Among

the non-climatic predictors, electricity price was found to have a strong positive

association with the daily peak load. Economic growth was observed to have an

inverse association with the daily peak load. While the proposed framework is

established for the state of Texas, one of the most energy-intensive states with

geographic and demographic susceptibility to climatic change, the methodology

can be extended to other states/regions. The model can also be used to make

short-term predictions of the climate-sensitive portion of daily peak load.
Keywords: Predictive energy analytics, climate sensitive peak-load, dew point

Preprint submitted to Energy July 11, 2019
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temperature, statistical learning theory

1. Introduction

Ensuring the resilience of the grid, considering a multi-dimensional perspec-

tive [1], is of utmost importance to minimize the socio-economic impacts in face of

extreme events [2]. Accurate estimates of peak electricity load is an integral com-

ponent of electric power system adequacy planning, contributing to its resilience

[3]. Unlike many other commodities, electricity cannot be stored. Thus, supply

and demand have to be matched in real-time to ensure that power is available to

the consumers when the switch is turned on [4]. Adequate generation capacity

and demand-side resources have to be specifically planned and built, not only

to meet the maximum load and minimize blackout risks [5], but also for efficient

policy planning and implementation [6]. Accurate forecasts of daily peak load can

help electric utilities and energy professionals make optimal resource allocation

decisions, assess the security of power systems, and adequately schedule mainte-

nance plans. Over- or under-estimation of daily peak load will result in either

excess or inadequate supply respectively, resulting in inefficient investments and

expenditure patterns. The evolution of daily peak load is not deterministic and

depends on many uncertain, stochastic factors [7]— including climate variability,

socioeconomic condition, technology change, and population growth as well as

infrastructure and building types [8].

In this paper, a generalized, probabilistic predictive framework is proposed,

using a state-of-the-art Bayesian ensemble-of-trees algorithm. The proposed

framework is used to characterize the sensitivity of daily peak load to climate,

as climate variability and change has been projected to have significant impacts
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on the evolution of peak electricity load [9]. While the proposed data-centric

framework can be applied to any geographical area (contingent on data avail-

ability), geographical scope of the proposed analysis is focused on a single state.

The rationale for limiting the spatial scope of this analysis is that the consump-

tion patterns of electricity consumers are generally a function of where and how

they live [10], and is influenced by regional differences in climate, infrastructure

systems, policies, and societal norms [11].

The state of Texas is selected as a case study due to a number of reasons

such as the state’s infrastructure vulnerability to climate and weather [12]. The

climate variance in Texas is attributed to its unique location and is considered to

be the consequence of interactions between several weather and climate factors

such as the movement of seasonal air masses (e.g., Arctic fronts) from Canada,

subtropical west-winds from the Pacific Ocean and Northern Mexico, tropical

cyclones or hurricanes from the Gulf of Mexico, a high pressure system in the

Atlantic Ocean (aka the Bermuda High) and the movement of jet streams [13].

According to the U.S. Energy Information Administration (EIA), Texas pro-

duces more electricity than any other state, generating almost twice as much as

Florida which is the second highest electricity-producing state [14]. More than

three-quarter of the state’s electricity is generated by independent power produc-

ers and industrial generators [14]. It is noteworthy that not only is Texas the

largest electricity generating state in the country, but also one of the largest elec-

tricity consuming states, and has experienced rapid growths in both electricity

demand and generation in recent years [14]. Texas experienced a notable popu-

lation increase of around four million people, making the state rank among the

top five largest growing states in the U.S. [14]. With rapid population growth in
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Figure 1: A schematic of the weather and climate systems in the state of Texas [13].

Dallas, Houston, Austin and San Antonio metropolitan areas, the state of Texas

has led the nation in terms of annual population growth since 2006 [14].

The largest share of retail electricity sales in Texas belongs to the residen-

tial sector [14], which is most sensitive to climate variability and change [15]. A

significant fraction of the households in the state use electricity as their primary

heating fuel in the winter [14]. The demand for air conditioning is also substan-

tially higher during the hot summer months. In recent years, Texas has observed

multiple episodes of unexpected demand surge during periods of heatwaves. The

Electric Reliability Council of Texas (ERCOT) region broke all previous records

of peak demand during the 2016 hot summer months across the state [14]. Texas,

therefore, exhibits a very interesting case study for understanding the nexus be-

tween climate variability and peak electricity load to inform adequate investment

decisions related to electric infrastructure capacity expansions and/or reliable
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power systems planning and operation .

The proposed data-centric predictive framework goes beyond the existing de-

terministic models with linear architecture, and uses the state-of-the-art statisti-

cal learning techniques to probabilistically assess the climate sensitivity of daily

peak load in the state of Texas. The models’ performance is evaluated based on

both goodness-of-fit and out-of-sample predictive accuracy to ensure high gen-

eralization performance as well as its ability to explain the variance in the his-

torical data. Then, the ‘best model’, selected based on both the generalizablity

and goodness-of-fit principles, was used to characterize the climate-sensitivity of

daily peak load in Texas.

The structure of this paper is as follows. In Section 2, a brief overview of

the existing literature is presented, highlighting the current knowledge gaps. The

data used in the analyses is discussed in Section 3. Sections 4 and 5 outline the

methodologies and results. Section 6 concludes the paper by summarizing the

key findings and delineating the future research directions.

2. Literature Review

There exists a significant body of literature in power system load forecasting.

The bulk of the existing research in this area has primarily focused on short-term

load forecasting (STLF). The goal of STLF is to predict the future hourly and

daily loads for a service area of interest, and plays a key role in various electricity

system operations planning such as identifying optimum spinning reserve capacity

as well as conducting reliability analysis and security assessment.

STLF has been modeled using a wide range of approaches including (a) sim-

ulation; (b) time series models; (c) regression analysis and statistical machine
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learning; and (d) and hybrid models. Below is a brief outline of the current state

of knowledge in short-term load forecasting. The review starts with highlighting

studies based on simpler generalized linear regression and time-series models and

then progresses to more complex approaches based hybrid modeling techniques

as well as machine learning techniques.

Haida and Muto [16] presented a regression-based daily peak load forecast-

ing method consisting of a regression model to predict the nominal load, and a

learning method to predict the residual load. Haida et al. [17] expanded this

model by introducing two trend processing techniques designed to reduce errors

in transitional seasons. Ramanathan et al. [18] leveraged multivariate regression

modeling using historical data for the Puget Sound Power and Light Company.

In this research, the statistical models were trained using the hourly load and

weather observations during the fall and winter months of 1983–1990, in order

to estimate short-term peak load. More specifically, a number of multiple linear

regression (MLR) models were developed for each hour of the day. The lead-time

for the forecast models ranged from 16-40 hours into the future.

Alfares and Nazeeruddin [19] presented a regression-based daily peak load

forecasting method for a whole year, including holidays. To forecast load precisely

throughout a year, various seasonal factors were considered. In the winter season,

average wind chill factor was also added as an explanatory variable. In the

transitional seasons (e.g., spring and fall), a transformation technique was used;

and for holidays, a holiday effect load was deducted from the normal load.

Papalexopoulos et al. [20] developed a hybrid regression-based approach to

improve the short-term system load forecasting for the Pacific Gas and Electric

Company in California. The initial model consisted of an autoregressive inte-
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grated moving average (ARIMA) peak load model and a MLR peak load model,

which used historical data from last 15 days in the inland valley and mountain

regions. The results from these two models were combined using a weighted aver-

age scheme in the initial model. The improved model removed the ARIMA peak

forecast model and only relied on the MLR model. Amjady [21] proposed a time

series model for short-term hourly forecasting of peak load. The results revealed

that the proposed ARIMA model provided a better fit to the actual hourly peak

load compared to the artificial neural network (ANN) models. Auffhammer et

al. [9] used a time-series model to parameterize the relationship between peak

electricity load and temperature, and estimated temperature response functions

for daily peak load and total daily energy consumption for the entire U.S. They

found peak load, at both the daily and annual levels, to be more sensitive to

climate change than the total daily consumption. Their results showed that the

impacts of climate variability on peak load varied substantially across geograph-

ical space, driven by differences in the distribution of heating and cooling degree

days as well as differences in heating and cooling technologies.

Fan et al. [22] used a MLR methodology along with eight other models—

including ARIMA, support vector regression (SVR), random forests (RF), multi-

layer perceptron (MLP), boosting tree (BT), multivariate adaptive regression

splines (MARS), and k-nearest neighbors (kNN)—for predicting the next-day

commercial energy consumption and peak electricity loads for the tallest buildings

in Hong Kong. The authors concluded that SVR and RF models outperformed

traditional statistical models such as MLR and ARIMA models. The analysis

identified the peak power demand and daily energy consumption of seven days

and fourteen days before the prediction day as the top four most important inputs
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for the predictive models based on the random forest algorithm.

Sigauke and Chikobvu [23] developed a predictive model for daily peak de-

mand in South Africa, using the multivariate adaptive regression splines (MARS)

methodology. They demonstrated the model’s capability of yielding a signifi-

cantly lower root mean square error (RMSE) when compared to piecewise regression-

based models. Liu et al. [24] developed a semi-parametric, two-component mod-

eling procedure for forecasting hourly load in the eastern United States. The de-

veloped model consisted of a nonparametric component and a parametric ARIMA

component. The model estimation was carried out using a modified back-fitting

algorithm and was found to have a high predictive performance.

Lusis et al. [25] assessed the effects of calendar dates and forecast granularity

(length of each forecast interval) on the accuracy of day-ahead household load

forecast using various statistical learning techniques. Their statistical analysis

demonstrated that the model based on regression trees yielded a better overall

ability to predict the household load for the next 24 hours.

Chen et al. [26] applied a hybrid SVR model, both with and without multi-

resolution wavelet decomposition (MWD) pre-processing, to predict hourly elec-

tric power load in a hotel building. With 15-dimensional parameters of 29 clus-

tered days as the training sample, a nonlinear SVR model was developed. Al-

Musaylh et al. [27] evaluated the performance of data-driven models based on

MARS, SVR and ARIMA algorithms, for predicting short-term electricity de-

mand using Queensland area’s aggregated demand data from the Australian En-

ergy Market Operator. For identifying significant inputs for the three prediction

horizons (0.5h, 1.0h, and 24.0h), they changed the electricity demand data by ap-

plying partial autocorrelation functions. They found that the model based on the

9
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MARS algorithm yielded the most accurate results for 0.5h and 1.0h forecasts,

whereas the SVR model was better for a 24.0h horizon.

Beccali [28] used Elman’s recurrent ANN algorithm to predict (with a one

hour lead time) the intensity of the electric power supplied to households in a

suburban area of Palermo (Italy) between June 1, 2002 and September 10, 2003.

The forecasting performance of the model was tested by comparing the model

predictions with the electric current intensity recorded during a summer week.

The research pointed out the importance of a thermal discomfort index for a

simple but effective evaluation of the conditions affecting the occupant behavior,

and thus influencing the household electricity consumption related to the use of

heating, ventilation and air conditioning (HVAC) appliances.

Saini and Soni [29] predicted daily peak load using a feed forward neural net-

work (FFNN) based upon the conjugate gradient (CG) back propagation meth-

ods. They incorporated the effects of previous day peak load information, the

type of day, and eleven weather parameters. The training dataset was selected

using a growing window concept. To reduce the redundancies in the input space,

principal component analysis (PCA) was leveraged. The resulting dataset was

used to train a 3-layered neural network (NN). By comparing four different tech-

niques, they concluded one-step secant back propagation algorithm (OSS-BP) to

be the best learning technique for peak load forecasting.

Mukherjee and Nateghi [10] investigated the predictive performance of several

different parametric and non-parametric statistical learning methods—e.g., gen-

eralized linear model (GLM), generalized additive model (GAM), multivariate

adaptive regression splines (MARS), random forest (RF) and Bayesian additive

regression trees (BART)—to investigate the nexus between total electricity con-
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sumption and climate variability. They found that the model based on the BART

algorithm outperformed all the other statistical learning methods.

Despite the significant recent advances in the field, as outlined above, some

knowledge gaps remain. More specifically, many of the existing models focus pri-

marily on forecasting the load (with various lead times), and do not necessarily

focus on characterizing the climate-demand nexus, which is the focus of this study.

In addition, the models that focus on capturing the sensitivity of daily peak load

to climate variability either (a) are based on ‘rigid’ modeling assumptions (e.g.,

based on multiple linear regression and/or time series modeling); which while

interpretable, tend to underperform in terms of predictive accuracy [30], or (b)

focus primarily on developing accurate predictive models with very little empha-

sis on model inferencing and interpretation. This paper aims to bridge these gaps

by proposing a generalized, probabilistic predictive framework—grounded in sta-

tistical learning theory to (a) develop an accurate predictive model, based on both

in-sample-fit and out-of-sample predictive accuracy, (b) identify the key predic-

tors of the climate-sensitive portion of daily peak demand, and (c) characterize

and interpret the relationship between the key climate predictors and the daily

peak load. While the state of Texas is selected as a case study to demonstrate

the applicability of the proposed framework, the methodologies presented in this

paper are generalizable to other regions.

3. Data source, description, and visualization

This section summarizes the data used to train, test and validate our daily

peak load prediction models. The explanatory variables are discussed in Section

3.1, the response variable is summarized in Section 3.2, and the full data-set is
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presented in Section 3.3.

3.1. Input data (explanatory variables) preparation

The two categories of explanatory variables, namely, the weather time-series,

and the socio-economic data are used as input variables in this analysis. The

datasets are described in the following subsections.

3.1.1. Weather data

Daily weather data was obtained from the National Climatic Data Cen-

ter (NCDC) ranging from 01-January-2002 to 31-December-2017 from multiple

weather stations across the geographical area of Texas. The various weather vari-

ables (see Table 1) include: daily mean temperature (TEMP), mean dew point

temperature for the day (DEWP), daily mean sea level pressure (SLP), mean visi-

bility for the day (VISB), daily mean wind speed for the day (WDSP), maximum

daily sustained wind speed (MXSPD), maximum daily temperature (TMAX),

minimum daily temperature (TMIN), and daily total precipitation (PRCP).

Table 1: Weather variables description

Field Description Unit

TEMP Mean temperature for the day Fahrenheit

DEWP Mean dew point temperature for the day Fahrenheit

SLP Mean sea level pressure for the day Millibars to tenths

VISB Mean visibility for the day Miles to tenths

WDSP Mean wind speed for the day knots to tenths

MXSPD Maximum sustained wind speed of the day knots to tenths

TMAX Maximum daily temperature Fahrenheit

TMIN Minimum daily temperature Fahrenheit

PRCP Total daily precipitation Inches

12
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3.1.2. Socio-economic data

Socio-economic data was obtained from the U.S. Bureau of Labor Statistics

(BLS) [31]. The data include variables such as per capita real gross state product

(GSP) and unemployment percentage for the state of Texas as observed in a

particular year. Monthly electricity price for the state of Texas was obtained

from the U.S. Energy Information Administration (form EIA-826). The socio-

economic variables are added to the analysis to serve as control variables in the

models. Such non-climatic variables control for the socio-economic changes in the

state of Texas over the period of analysis (2002-2017), and thus help to isolate

the climate-induced effects on the electricity demand [10].

3.2. Response variable preprocessing

Hourly load data for the state of Texas was obtained from the “Hourly Load

Data Archives” reported by the Electric Reliability Council of Texas (ERCOT)

[32]. Also, the daily electricity sales data was extracted for the state of Texas

from the U.S. Energy Information Administration (EIA) database [14]. To ob-

tain the daily peak load data, maximum of the hourly loads recorded in a day,

over the period of 01 January 2002—31 December 2017 was estimated. Similar

to previous studies [33], the estimated daily peak load time-series data was de-

trended. Detrending was performed to remove the effect of population increase

and technological growth over the years, and thus isolating the influence of cli-

mate factors on the daily peak electricity load. In order to detrend the response

variable, the yearly average of the daily peak load P (y) was first calculated for

the entire period of study in the following way [33]:
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P =
2017∑

y=2002

365∑
d=1

E(d, y) (1)

The adjustment factor Fadj for each year was calculated from:

Fadj = P (y)−1
365∑
d=1

E(d, y) (2)

Daily peak load data was adjusted by dividing it by the adjustment factor for

that year, i.e.,

Eadj(d, y) = E(d, y)
Fadj

(3)

In all the equations above, y denotes the variable “year” and d denotes the

variable “day”. The final analysis and model development were conducted with

the trend-adjusted daily peak load data.

Figure 2: Daily peak electricity load (a) before detrending (left), (b) after detrending (right).

Figures 2 (a) and (b) show the raw and detrended daily peak loads, respec-

tively. It is evident that the slight upward linear trend in Figure 2 (a) is removed

after applying the de-trending methodology (Figure 2 (b)). The trend-adjusted
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daily peak load time-series varies seasonally over the months, signaling climate

sensitivity of the daily peak electricity load (Figure 3).

Figure 3 shows the violin plot of daily peak electricity load across the months.

A violin plot combines a box-plot and a kernel density plot in one graph. More

specifically, in a violin plot, a rotated kernel density plot is overlain on the two

sides of a box-plot. Figure 3 shows that there is significant seasonal variations in

peak electricity load. It is observed that in TX, the daily peak load is much higher

during the summer months, which is expected since the use of air-conditioning

is highest during the hottest days of summer, and lowest during the temperate

winter months and intermediate seasons (i.e., fall and spring).

Figure 3: Violin-plot of response variable for different months.

3.3. Final data-set

The final dataset was created by combining the daily peak electricity load,

weather variables, and socio-economic information, as described in Sections 3.1

and 3.2 above. Also, the days of the week is included as a control variable since
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there are important differences in electricity load patterns between weekdays

and weekends. The load on different weekdays can also be quite different. For

example, Mondays and Fridays (adjacent to weekends) may have structurally

different loads than Tuesday through Thursday. This is particularly true during

the summer season. The summary statistics of the response data is presented in

Table 2.

Table 2: Descriptive statistics of daily peak load (GW) during 01/01/2002–12/31/2017.

Mean Median Std. Dev. Kurtosis Skewness Min. Max.

36.26 34.27 9.02 0.44 0.89 19.27 71.09

Figure 4 depicts the correlation among all the selected predictors as well as

the trend-adjusted response variable. In this figure, each of the variables included

in the analysis is shown on the diagonal. At the bottom of the diagonal, the bi-

variate scatter plots with a fitted line, and at the top of the diagonal, the value

of the correlation with the associated significance levels (as stars) are displayed.

The significance level is denoted by stars, representing p-values of 0.001 (***),

0.01 (**), and 0.05 (*). The size of the numbers in the top diagonal represent the

degree of correlation, with larger numbers (and sizes) indicating higher correla-

tion levels and smaller numbers (and sizes) representing lower correlation levels.

Figure 4 reveals that the relationship between most of the predictors and the

daily peak load (response variable) is not linear. Thus, analyzing the sensitivity

16
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Figure 4: Correlation matrix plot.

of daily peak load using linear regression models will likely miss the potentially

statistically significant non-linear relationships. Significant linear correlations

are observed between the WDSP (mean wind speed) and MXSPD (maximum

sustained wind speed)—with a Pearson correlation of 0.78—and between the

PC.Real.GDP (per capita gross domestic product) and the PCT.Unemployment

17



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(percentage of unemployment)—with a Pearson correlation of -0.48. Moreover,

the temperature variables DEWP, TMAX, TEMP and TMIN are highly corre-

lated with one another (Pearson correlation coefficient: ρ > 0.8). Therefore, to

reduce masking effects due to correlation, three separate models are developed:

a model with DEWP and TMAX, a second model using TMIN, a third model

using TEMP, keeping all the other predictor variables same in all the models

(details described in Section 5).

4. Methodology

This section presents the generalized research framework proposed in this

study, and provides a brief theoretical background of the models developed to

evaluate the climate sensitivity of the daily peak load for the state of Texas.

4.1. Research framework

In this research, a generalized, probabilistic predictive framework is leveraged

to evaluate the climate sensitivity of the daily peak load. Figure 5 describes

the various steps and flow of the proposed research. As discussed before, data

on hourly electricity demand (from which the daily peak load was calculated)

was collected for the state of Texas, together with various climate and weather

variables as well as socio-economic information. Several types of data transfor-

mation techniques were implemented including (i) trend-adjustment of the peak

load data, (ii) spatiotemporal aggregation for the climate and weather data, and

(iii) inflation-adjustment on the socio-economic data, as needed. The datasets

were then aggregated from various sources using year, month, and day as the key

variables to generate the “Final Dataset”. This step was followed by the model

18
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development phase which is described in the subsequent subsections. As evident

from this framework, while data specific to the state of Texas was used to demon-

strate the applicability of the proposed research, the approach and methodology

is transferable and can be extended to other geographical regions.

Figure 5: Research Framework

4.2. Statistical learning and model development

Supervised learning theory is leveraged to characterize the climate-daily peak

load nexus. Broadly speaking, the goal of supervised learning is to estimate

a function capable of predicting a statistical moment of a target variable (e.g.,

daily peak load) conditioned on one or more predictor variables (e.g, various cli-

mate variables), such that the loss function of interest (measuring the distance

between the predictions and the observed values) is minimized. Supervised sta-

tistical learning methods can be parametric, semi-parametric or non-parametric.

Parametric models generally assume a particular functional form that relates the

19
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input variables to the response. The assumed functional forms help with ease of

estimation and model interpretability, but come at the cost of predictive accuracy

since the assumptions (such as normality and linearity) often do not hold for real

data. Non-parametric models do not make many assumptions about the distri-

bution of the response variable or the shape of the function relating the response

to the predictors. Instead, they use the data in novel ways to approximate the

dependencies. Their predictive power is generally superior to parametric models

owing to their better approximation of the true functional forms. Moreover, non-

parametric methods are data-intensive and highly dependent on data quality. In

this research, the data is trained with a range of parametric and non-parametric

supervised learning models to investigate the sensitivity of daily peak load to

climate change. More specifically, the data is trained with generalized linear

models (GLM), generalized additive models (GAM), multi-adaptive regression

splines (MARS), and ensemble tree based models including random forest (RF),

Bayesian additive regression trees (BART) and neural network (NN). While the

overview of each of these algorithms is discussed in Appendix A, a brief expla-

nation of the BART algorithm is provided in the following section since it was

found to best capture the daily peak load–climate nexus.

4.2.1. Bayesian Additive Regression Trees (BART)

BART is a non-parametric, Bayesian, sum-of-trees model as shown in the

equation below [34].

y =
m∑

i=1
g(x;Tj,Mj) + ε; where ε ∼ N(0, σ2) (4)

g(x;T,M) is the function which assigns the parameters of the terminal nodes

20
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of trees to the predictors x. Regularization priors are used to control model’s

complexity and restrict the overwhelming influence of the large tree components.

Regularization priors eliminate an individual tree’s effect of being unduly influ-

ential on the sum-of-trees model [34].

4.2.2. Predictive accuracy vs. model interpretability

As mentioned earlier, flexible non-parametric methods generally have higher

predictive power than the parametric models. The improved predictive power,

however, comes at the cost of ease of interpretability. Partial dependence plots

(PDPs) are efficient methods of conducting variable inference for non-parametric

models. PDPs help in understanding the individual effects of the predictor vari-

ables (xj) on the response variable in a ceteris paribus condition (i.e. controlling

for all the other predictors). Mathematically, the estimated partial dependence

function is given as [35]:

f̂(xj) = 1
n

n∑
i=1

f̂(xj, x−j, i) (5)

Here, f̂ denotes the statistical model; n denotes the number of observations

in the training dataset; x−j denotes all the variables except xj . The estimated

PDP of the predictor xj provides the average value of the function f̂ when xj is

fixed and x−j varies over its marginal distribution.

4.2.3. Bias variance trade off

The generalization performance of a predictive model hinges on the ability

to simultaneously minimize the bias and variance of the model. Cross validation

is one of the most widely used methods for balancing bias and variance [30].

The method of k-fold cross validation is used to estimate predictive accuracy.
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K-fold cross-validation involves randomly dividing the data into k equally-sized

subsets. In each iteration, the model is fitted to all the data subsets except the kth

held-out subset, and the predictive accuracy is calculated based on the model’s

performance on the kth held-out subset. In this paper, the out-of-sample model

performance was estimated using a 20% holdout cross validation approach. The

out-of-sample mean square error (MSE) and mean absolute error (MAE) are then

calculated using the following formula [10]:

MSEout−of−sample = 1
k

[
n∑

k=1

1
m

(
m∑

i=1
(yi,k − ŷi,k)2)] (6)

MAEout−of−sample = 1
k

[
n∑

k=1

1
m
|

m∑
i=1

(yi,k − ŷi,k)|] (7)

k= number of times cross validation is performed; m=number of holdouts during

each cross validation yi,k=ith actual observation that was randomly holdout dur-

ing the kth cross-validation ŷi,k= predicted ith observation during the kth cross

validation using the model developed using the training set data during the kth

cross validation

The model selection is conducted based on both in-sample fit and out-of-

sample predictive accuracy. The in-sample error is measured using the in-sample

MSE, MAE, and adjusted R2 while the out-of-sample error was measured using

the out-of-sample MSE and MAE as discussed above.

5. Results

Using each algorithm described in the methodology section, three sets of

models are developed, namely, one using TMAX and DEWP (Model 1) [i.e.,
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not including TEMP and TMIN], one using TEMP (Model 2) [i.e., excluding

DEWP, TMAX, and TMIN], and finally a model using TMIN (Model 3) alone

[i.e., excluding DEWP, TMAX, and TEMP], while keeping the non-temperature

variables the same in all the models. The rationale for the development of three

separate models are: 1) including highly correlated variables within the same

model could mask the individual effects of the variables while inferencing; and 2)

assessing separate models can help identify which temperature variable(s) best

capture(s) the climate sensitivity of daily peak load. The results showed that the

model with DEWP and TMAX outperformed the other two models. This is not

surprising since (1) DEWP accounts for humidity which has been shown to be a

key predictor of the electricity demand for space conditioning [10]; and (2) using

TMAX can help capture temperature extremes in Texas which have occurred

with a higher frequency in recent years leading to unanticipated demand surges

during the hot spells [36].

5.1. Model Performance

Table 3 summarizes the goodness-of-fit and predictive performance of each of

the trained models. The percentage improvement (%imp) metric is also provided

in Table 4, indicating the percentage improvement yielded by each of the trained

models over having no statistical model and using the historical average as a

predictor (i.e., the ‘mean-only’ model) .
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Table 3: Comparative assessment of the model performance.

# Models R2 In-sample err. Out-of-sample err.

RMSE MAE RMSE MAE

1 Mean-only -NA -NA -NA 9.399 8.202

2 GLM 0.526 6.499 5.375 6.494 5.363

3 GAM 0.874 3.337 2.626 3.379 2.660

4 MARS-1 0.861 3.518 2.761 3.530 2.772

5 MARS-2 0.880 3.264 2.542 3.274 2.545

6 MARS-3 0.886 3.186 2.487 3.239 2.515

7 MARS-4 0.886 3.186 2.487 3.240 2.516

8 RF 0.980 1.350 1.044 3.112 2.441

9 BART 0.930 2.500 1.928 2.866 2.213

10 NN 0.899 3.000 2.316 3.382 2.641

The predictive model is selected based on the BART algorithm as the final

model, since it outperformed all the other models in terms of out-of-sample pre-

dictive accuracy (Tables 3-4). In terms of in-sample goodness of fit, the model

based on the Random Forest algorithm ranked top, indicating potential over-

fitting of the data (Table 3).

To further examine the performance of the final best model (based on BART),

the model predictions versus observed values of daily peak load (Figure 6) is plot-

ted. The 95% credible intervals provide 56.09% coverage for all the observations

(Figure 6a) whereas the 95% prediction interval offers a 97.09% coverage (Figure

6b).

The observed deviations at the tails of the Q−Q plot of the residuals (Figure
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Table 4: Models’ percentage improvement over the ‘null’ (i.e., mean-only) model.

Models Out-of-sample error (%imp)

RMSE MAE

GLM 31 35

GAM 64 68

MARS-1 62 66

MARS-2 65 69

MARS-3 66 69

MARS-4 65 69

RF 67 70

BART 69 73

NN 64 68

Figure 6: a. In-Sample fitted vs. actual values using 95% Credible Intervals. b. In-Sample

fitted vs. actual values using 95% Prediction Intervals.

7) is attributable to other unobserved variables (probably non-climatic factors)

that influence the daily peak load demand, but are not captured in the climate-
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Figure 7: QQ-plot of the BART model (the red dashed lines in the QQ-plot represent 95%

confidence intervals)

peak load nexus model presented in this paper.

5.2. Model Inference

The ranking of the important predictors influencing daily peak electricity load

is given in Figure 8. The figure helps identify maximum temperature (TMAX) as

the most important predictor followed by mean dew point temperature (DEWP),

total monthly electricity price (Tot.Price.Monthly), and per capita real gross state

product (PC.Real.GDP).

26



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 8: The ranking of the importance of the explanatory variables in contributing to the

accuracy of the final best model.

The partial dependencies between the top six key predictors and daily peak

load are plotted in the following sub-sections to characterize the marginal influ-

ence of the key predictors on the daily peak electricity demand.

5.2.1. Influence of maximum temperature and dew point temperature

The PDP of daily peak electricity load versus the maximum temperature

(TMAX) (Figure 9a) shows an initial inverse relationship between load and in-

creasing temperatures until 70◦F/21◦C and then an increasing trend thereafter.

The marginal plot indicates that for a 30◦F/-1◦C increase in TMAX (70◦F/21◦C

— 100◦F/38◦C), the daily peak load increases by 20 GW. Peak load is relatively

insensitive to maximum temperature in the range of 67◦F/19◦C to 74◦F/23◦C

since the need for space heating or cooling is minimum during temperate ranges.
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The increasing trend associated with temperatures less than 67◦F/19◦C indicates

increasing peak load due to increased space heating during colder winter days.

Figure 9b illustrates the PDP of daily peak electricity load versus the average

daily dew point temperature. Three distinct regions are apparent in the figure.

For days with colder dew point temperatures (i.e., colder and humid winter days

with temperatures below 30◦F/-1◦C) the daily peak load increases as the dew

point temperature decreases. This can be attributed to increased demand for

space heating with decreasing temperatures. The peak load is minimum for

DEWP in the range of 30◦F/-1◦C — 40◦F/4◦C and rapidly increases for warmer

days (i.e. DEWP above 40◦F/4◦C)

Figure 9: a. Influence of mean dew point temperature and b. Influence of maximum tempera-

ture on daily peak load.

5.2.2. Relationship with electricity price

Electricity price is found to be one of the most important non-climatic pre-

dictor of daily peak load. As discussed before, electricity price (along with other
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socio-economic variables) is used as a ‘control variable’ to isolate the effect of

climate on daily peak demand. However, since it is found to be among the key

predictors of daily peak demand, a brief discussion of its relationship with the

response variable is included. Figure 10 shows that the daily peak electricity

load exhibit a positive correlation with the monthly mean electricity price which

is in line with the existing literature [37] that indicates higher prices are charged

during times of peak demands.

Figure 10: Influence of total monthly electricity price on daily peak load

5.2.3. Relationship with per capita gross state product

Figure 11 shows that the peak electricity load is decreasing with the economic

growth in terms of per capita real gross domestic product (PC.Real.GDP). Eco-

nomic growth is positively associated with socio-technical advancements such as

more investments in new energy-efficient equipment. Moreover, with the signifi-
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cant growth of cyber infrastructure and development of IOTs (internet of things),

the key driver of economy has shifted away from heavy manufacturing industries

to cyber business and service-oriented industry. A recent study by the American

Council for an energy efficient economy argued that since the mid-1990s, much of

the observed downward trend in the energy demand intensity associated with the

economic growth can be attributed to the growth of such less energy-intensive

cyber businesses [38].

Figure 11: Influence of per capita gross state product on daily peak load.

5.2.4. Relationship of unemployment with peak load

The association of unemployment with the daily peak load (Figure 12) shows

a random fluctuation. Although there is no significant upward or downward

trend in the marginal peak load with increasing unemployment rates, the levels

of uncertainty changes. The uncertainty bands (shaded gray area) are wider at
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the higher percentage of unemployment, indicating a higher variability in peak

loads associated with higher unemployment rates.

Figure 12: Influence of PCT.Unemployment (%) on daily peak load.

5.2.5. Influence of maximum sustained wind speed

Daily peak electricity load has an inverse relationship with increasing max-

imum sustained wind speeds (Figure 13). This is intuitive, as sustained winds

lower the feels-like temperature, and increase the rate of evaporation from the

human body as well as the built environment, and therefore, creating a cooling

effect. Thus, during breezy/windy days the lower daily peak loads is attributable

to lower electricity demands for space cooling [39].
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Figure 13: Influence of maximum sustained wind speed (Knots to tenth) reported for the day

on daily peak load.

6. Conclusion

Effective adequacy planning in the electricity sector is requisite for achieving

grid resilience, as it helps minimize significant supply surplus/shortages and thus

mitigates unpredictable electricity price hikes and rolling blackouts, which often

result in large-scale socio-economic losses. Effective adequacy planning hinges

on access to accurate forecasts of demand patterns, particularly under exogenous

shocks such as climate variability and change.

In this paper, the climate sensitivity of daily peak load is investigated using

advanced machine learning algorithms. A generalized probabilsitic predictive

framework is proposed—based on a Bayesian tree-ensemble algorithm—to assess

the climate sensitivity of peak load and to identify its key predictors. Although

the proposed model is used to characterize the climate sensitivity of the daily
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peak load, it can also be leveraged for short-term (daily) peak load predictions

as it outperforms all the other models in regards to explaining the variations in

data as well as out-of-sample predictions.

The results revealed that maximum daily temperature followed by mean dew

point temperature of a day are the most important predictors of the climate

sensitive portion of the daily peak load in the state of Texas. Moreover, it is

observed that when the maximum temperatures lie in the range of 67◦F (19◦C) —

74◦F(23◦C) and dew point temperatures in the range of 30◦F(-1◦C) — 40◦F(4◦C),

the peak load is relatively temperature-insensitive. The results also indicated an

inverse relationship between sustained wind speeds and daily peak load, with peak

daily loads decreasing at higher sustained wind speeds. This inverse relationship

is attributable to the cooling effect of the sustained winds.

Among the non-climatic predictors, the socio-economic variables such as elec-

tricity price, per capita gross domestic product, and percentage of unemployed

populations were found to have a strong association with the daily peak load.

The results indicated a strong positive association between the daily peak load

and the electricity price, whereas the association between percent unemployed

and the daily peak load was more uncertain. Economic growth was observed

to have an inverse association with the peak load, mostly attributable to in-

creased investments in energy efficient equipment as well as a move away from

manufacturing-heavy industry to service/cyber industry.

The proposed framework in this study is transferable to other service areas,

and can be used by utility planners and operators across the country to char-

acterize the climate sensitivity of peak load. Moreover, the inferences from the

Texas case study is of particular interest to the stakeholders in the ERCOT re-
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gion that have faced frequent supply inadequacy risks during the more frequent

episodes of heatwaves over the past decade. The study results demonstrate that

the existing approaches based on parametric models (prevalent in many regions

of the country including ERCOT) underperform in terms of predictive accuracy

and thereby might underestimate the requisite reserve margins. Moreover, the

existing approaches based on air temperature alone (that do not account for hu-

midity levels) lead to understating the climate-sensitivity of peak load in the

state, with big implications for grid resilience in the ERCOT region.
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GAM Generalized Additive Model

GLM Generalized Linear Model

GDP Gross Domestic Product (millions of USD measured in 2009 real dollars)
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MARS Multi Adaptive Regression Spline
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VISB Mean Visibility for the Day

WDSP Mean Wind Speed for the Day

Appendix A.

Appendix A.1. Methodology Description

Appendix A.1.1. Generalized Linear Model

Generalized linear models (GLMs) extend linear regression, by relaxing the

normality assumption; allowing the response to be generated from the exponential

family distribution and be related to the predictors through a link function [40].

A generalized linear model is characterized by:
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A dependent variable Y whose distribution is of the class of normal, binomial

and Poisson or gamma or Inverse-Gaussian as shown in the equations below:

yi ∼ fyi

Fyi
(yi) = exp

yiθi − b(θi)
a(φ) + c(yi, φ) (A.1)

That θ and φ are the location and scale parameters respectively.

A set of independent variables xi.

A link function g(.) tying the parameters of the response to the linear com-

bination of the input variables.

Appendix A.1.2. Generalized Additive Model

A Generalized Additive Model (GAM) is considered a semi-parametric tech-

nique. It relaxes the linearity assumption of generalized linear model, allowing

for local non-linarites. The model assumes that response y has a distribution

with the mean µ=[E|x1, x2, ....xp]. Where each fj is a smoothing function of a

specified class of functions estimated non-parametrically, like regression splines

and tensor product splines. Multivariate Adaptive Regression Splines

g(µi) = α +
p∑

j=1
fi(xi) (A.2)

Appendix A.1.3. Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is semi-parametric, adap-

tive procedure for regression, well suited for high dimensional problems [41]. It

can be viewed as a generalization of stepwise linear regression. A MARS model

consists of sum-of-splines that allow the response to vary non-linearly with the
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input variables as shown in the equation below.

f(x) = β0 +
M∑

m=1
Bmhm(x) (A.3)

Where each hm(x) represents the linear splines, β0 represents the intercept and

βm represents the vector of the coefficients. m coefficients are estimated by min-

imizing the sum of square errors.

Appendix A.1.4. Random Forest

Random Forest (RF) is a non-parametric, tree-based ensemble data-miner [?

]. The method consists of B bootstrapped regression trees (Tb); with B selected

based on cross-validation. Regression trees are low-bias high variance techniques.

In other words, they can capture the structure of the data really well (low bias),

but are highly sensitive to outliers (high variance). RF leverages model averaging

as a variance reduction technique. The final estimate is therefore, the average of

predictions across all trees as shown in the equation below.

f̂B
rf (x) = 1

B

B∑
b=1

Tb(x) (A.4)

Appendix A.1.5. Neural network

Artificial Neural Networks (ANNs) are inspired by the biological nervous sys-

tem to model the learning behavior of human brain and is a non-parametric

model. The first artificial neuron was produced in 1943 by the neurophysiologist

Warren McCulloch and the logicial Walter Pits [42]. A single neuron in a multi-

layer neural network. The various weighted inputs are fed into the single neuron.

There are two functions that come into play inside a neuron; namely, Transfer

function and Activation function.
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The transfer function (or we could call it the aggregator) sums up all these

weighted inputs. Let us denote the transfer function as z given as

z =
n∑

x=1
wixi + wbb (A.5)

The activation function (or the squash function) squashes the output value of

the transfer function into a defined range. It is used define the rate of firing from

the neuron. Activation functions could be linear and non-linear. A straightfor-

ward activation function could be f(z) = z which preserves the input as it is.

However the limits are not defined in this function. In order to better denote

the rate of firing, the activation function commonly used in the sigmoid function.

The type of the neuron is defined from its activation function as well. Neurons

with sigmoid activation functions are called sigmoid neurons. Let us denote the

activation function as α and the sigmoid activation function is given as:

α = σ(Z) = 1
1 + e−z

(A.6)

The sigmoid function has the property of differentiability throughout and a

defined boundary in both the extremes. Another reason why we chose sigmoid

is because of having a mathematical convenience. Let us see why that is by

differentiating the sigmoid function:

σ′ = d

dz

1
(1 + e−z) (A.7)

= 1
(1 + e−z)

d

dz
(e−z) (A.8)

= e−z

(1 + e−z)
1

(1 + e−z) (A.9)
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= e−z + 1− 1
(1 + e−z)

1
(1 + e−z) (A.10)

= ((1 + e−z)
(1 + e−z) −

1
(1 + e−z)) 1

(1 + e−z) (A.11)

Appendix A.2. Results

In this section, the results of the models − Model 2 (using TEMP as the only

temperature variable and excluding DEWP, TMAX, TMIN) and Model 3 (using

TMIN as the only temperature variable and excluding DEWP, TMAX, TEMP)

− that we have not explained in the main text of the paper are presented.

Appendix A.2.1. Model 1

Table A.5: Comparative assessment of the models’ in-sample and out-of-sample predictive

performances (Model 1).

# Models Tuning parameters R2 In-sample err. Out-of-sample err.

RMSE MAE RMSE MAE

1 Mean-only -NA -NA -NA -NA 9.399 8.202

2 GLM k=2.0, Both, Dist.=Gaussian 0.526 6.499 5.375 6.494 5.363

3 GAM Stepwise update 0.874 3.337 2.626 3.379 2.660

4 MARS-1 pMethod: backward; nfold: 10; ncross=5 0.861 3.518 2.761 3.530 2.772

5 MARS-2 pMethod: cv; nfold: 10; ncross=5; degree=2 0.880 3.264 2.542 3.274 2.545

6 MARS-3 pMethod: cv; nfold: 10; ncross=5; degree=3 0.886 3.186 2.487 3.239 2.515

7 MARS-4 pMethod: backward; nfold: 10; ncross=5; degree=3, penalty 2 0.886 3.186 2.487 3.240 2.516

8 RF mtry=p/3 =4; ntree=3867 0.980 1.350 1.044 3.112 2.441

9 BART k=2,nu=3,q=0.99,m=200 0.930 2.500 1.928 2.866 2.213

10 NN Hidden units (size)=9; Weight decay (Decay)=0.001 0.899 3.000 2.316 3.382 2.641

Model 1 is explained in details in the main body of the paper. However, we

have included this table in the Appendix again to indicate the tuning parameters
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of the models that we leveraged to explain the climate−peak load nexus.

Appendix A.2.2. Model 2

Table A.6: Comparative assessment of the models’ in-sample and out-of-sample predictive

performances (Model 2).

# Models Tuning parameters R2 In-sample err. Out-of-sample err.

RMSE MAE RMSE MAE

1 Mean-only -NA -NA -NA -NA 9.462 8.258

2 GLM k=2.0, Both, Dist.=Gaussian 0.566 6.221 5.106 6.187 5.094

3 GAM Stepwise update 0.900 2.963 2.329 2.996 2.355

4 MARS-1 pMethod: backward; nfold: 10; ncross=5 0.890 3.134 2.445 3.143 2.459

5 MARS-2 pMethod: cv; nfold: 10; ncross=5; degree=2 0.905 2.916 2.265 2.937 2.285

6 MARS-3 pMethod: cv; nfold: 10; ncross=5; degree=3 0.906 2.889 2.236 2.910 2.263

7 MARS-4 pMethod: backward; nfold: 10; ncross=5; degree=3, penalty 2 0.906 2.889 2.236 2.910 2.263

8 RF mtry=p/3 =3; ntree=3831 0.981 1.297 1.012 2.916 2.300

9 BART k=2,nu=3,q=0.9,m=200 0.938 2.345 1.798 2.609 2.010

10 NN Hidden units (size)=9; Weight decay (Decay)=0.001 0.910 2.831 2.187 2.886 2.233

From the above Table A.6 it is again observed that the BART model outper-

formed all the other models in terms of out-of-sample predictive accuracy, and

ranks second in terms of in-sample goodness of fit (after RF model). Thus, BART

was determined to be the final model in this case as well. The variable importance

plots (Figure A.14), residuals Q−Q plot (Figure A.15), credible and prediction

interval plots (Figure A.16), and the partial dependence plots of the top six im-

portant predictors (Figure A.17) (as identified from the variable importance plot)

are included in this subsection.
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Figure A.14: Importance of each of the explanatory variables used in the BART model for

predicting daily peak load (Model 2).
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Figure A.15: a. Residual plots of the fitted BART models. b. Plot of observed versus fitted

values of daily peak load for methods of BART (Model 2). The blue dashed lines in the QQ-plot

represent 95% confidence intervals.
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Figure A.16: a. In-Sample fitted vs. actual values using 95% Credible Intervals. b. In-Sample

fitted vs. actual values using 95% Prediction Intervals (Model 2).
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Figure A.17: Partial dependencies of the top six key predictors of (a) Mean daily temperature

(in ◦F), (b) total monthly electricity price, (c) per capita real gross state product, (d) percentage

of unemployment, (e) Mean wind speed for the day (in knots to tenths) and (f) Mean sea level

pressure for the day (in Millibars to tenths), for the Model 2.
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Appendix A.2.3. Model 3

Table A.7: Comparative assessment of the models’ in-sample and out-of-sample predictive

performances (Model 3).

# Models Tuning parameters R2 In-sample err. Out-of-sample err.

RMSE MAE RMSE MAE

1 Mean-only -NA -NA -NA -NA 9.455 8.252

2 GLM k=2.0, Both, Dist.=Gaussian 0.565 6.228 5.152 6.270 5.175

3 GAM Stepwise update 0.836 3.804 2.989 3.858 3.029

4 MARS-1 pMethod: backward; nfold: 10; ncross=5 0.828 3.915 3.064 3.981 3.112

5 MARS-2 pMethod: cv; nfold: 10; ncross=5; degree=2 0.844 3.733 2.889 2.925 2.925

6 MARS-3 pMethod: cv; nfold: 10; ncross=5; degree=3 0.843 3.737 2.898 3.785 2.924

7 MARS-4 pMethod: backward; nfold: 10; ncross=5; degree=3, penalty 2 0.843 3.737 2.898 3.785 2.924

8 RF mtry=p/3 =3; ntree=3879 0.971 1.613 1.253 3.594 2.812

9 BART k=2,nu=10,q=0.75,m=200 0.905 2.904 2.256 3.274 2.538

10 NN Hidden units (size)=9; Weight decay (Decay)=0.001 0.856 3.586 2.761 3.701 2.851

From the above Table A.7 it is observed that the BART model outperformed

all the other models in terms of out-of-sample predictive accuracy, and ranks

second in terms of in-sample goodness of fit (after the RF model). Thus, similar

to Model 1 and Model 2, BART was determined to be the final model in this

case as well. The variable importance plots (Figure A.18), residuals Q−Q plots

(Figure A.19), credible and prediction interval plots (Figure A.20), and the partial

dependence plots of the top six important predictors (Figure A.21) (as identified

from the variable importance plot) are included in this subsection.
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Figure A.18: Importance of each of the explanatory variables used in the BART model for

predicting daily peak load (Model 3).
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Figure A.19: a. Residual plots of the fitted BART models. b. Plot of observed versus fitted

values of daily peak load for methods of BART. The blue dashed lines in the QQ-plot represent

95% confidence intervals. (Model 3).
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Figure A.20: a. In-Sample fitted vs. actual values using 95% Credible Intervals. b. In-Sample

fitted vs. actual values using 95% Prediction Intervals (Model 3).
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Figure A.21: Partial dependencies of the top six key predictors of (a) Minimum daily temper-

ature (in ◦F), (b) total monthly electricity price, (c) per capita real gross state product, (d)

percentage of unemployment, (e) Mean wind speed for the day (in knots to tenths) and (f)

Mean sea level pressure for the day (in Millibars to tenths), for the Model 3.

55



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Conflict of Interest Statement 

 

There is no conflict of interest for this research. 


