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Highlights

e Maximum temperature is the most important predictor of climate-sensitive

peak load

e Dew point temperature significantly influences peak load both during sum-

mer and winter

e Maximum sustained wind speed lowers daily peak load

e Electricity price has a strong positive association with peak load

e Economic growth of the state is inversely associated with peak load



Assessing climate sensitivity of peak electricity load for
resilient power systems planning and operation: A study
applied to the Texas region

Abstract

Accurate forecasting of peak electricity load has long been an active area
of research in electricity markets, and power systems planning and operation.
Unanticipated climate-induced surges in peak load can lead to supply shortages
causing frequent brownouts and blackouts, and large-scale socioeconomic im-
pacts. In this paper, the climate sensitivity of daily peak load is characterized by
leveraging advanced statistical machine learning algorithms. More specifically, a
rigorously tested and validated predictive model based on the Bayesian additive
regression trees algorithm is proposed. Results from this study revealed that max-
imum daily temperature followed by mean dew point temperature are the most
important predictors of the climate-sensitive portion of daily peak load. Among
the non-climatic predictors, electricity price was found to have a strong positive
association with the daily peak load. Economic growth was observed to have an
inverse association with the daily peak load. While the proposed framework is
established for the state of Texas, one of the most energy-intensive states with
geographic and demographic susceptibility to climatic change, the methodology
can be extended to other states/regions. The model can also be used to make

short-term predictions of the climate-sensitive portion of daily peak load.
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temperature, statistical learning theory

1. Introduction

Ensuring the resilience of the grid, considering a multi-dimensional perspec-
tive [1], is of utmost importance to minimize the socio-economic impacts in face of
extreme events [2]. Accurate estimates of peak electricity load is an integral com-
ponent of electric power system adequacy planning, contributing to its resilience
[3]. Unlike many other commodities, electricity cannot be stored. Thus, supply
and demand have to be matched in real-time to ensure that power is available to
the consumers when the switch is turned on [4]. Adequate generation capacity
and demand-side resources have to be specifically planned and built, not only
to meet the maximum load and minimize blackout risks [5], but also for efficient
policy planning and implementation [6]. Accurate forecasts of daily peak load can
help electric utilities and energy professionals make optimal resource allocation
decisions, assess the security of power systems, and adequately schedule mainte-
nance plans. Over- or under-estimation of daily peak load will result in either
excess or inadequate supply respectively, resulting in inefficient investments and
expenditure patterns. The evolution of daily peak load is not deterministic and
depends on many uncertain, stochastic factors [7|— including climate variability,
socioeconomic condition, technology change, and population growth as well as
infrastructure and building types [8].

In this paper, a generalized, probabilistic predictive framework is proposed,
using a state-of-the-art Bayesian ensemble-of-trees algorithm. The proposed
framework is used to characterize the sensitivity of daily peak load to climate,

as climate variability and change has been projected to have significant impacts



on the evolution of peak electricity load [9]. While the proposed data-centric
framework can be applied to any geographical area (contingent on data avail-
ability), geographical scope of the proposed analysis is focused on a single state.
The rationale for limiting the spatial scope of this analysis is that the consump-
tion patterns of electricity consumers are generally a function of where and how
they live [10], and is influenced by regional differences in climate, infrastructure
systems, policies, and societal norms [11].

The state of Texas is selected as a case study due to a number of reasons
such as the state’s infrastructure vulnerability to climate and weather [12]. The
climate variance in Texas is attributed to its unique location and is considered to
be the consequence of interactions between several weather and climate factors
such as the movement of seasonal air masses (e.g., Arctic fronts) from Canada,
subtropical west-winds from the Pacific Ocean and Northern Mexico, tropical
cyclones or hurricanes from the Gulf of Mexico, a high pressure system in the
Atlantic Ocean (aka the Bermuda High) and the movement of jet streams [13].

According to the U.S. Energy Information Administration (EIA), Texas pro-
duces more electricity than any other state, generating almost twice as much as
Florida which is the second highest electricity-producing state [14]. More than
three-quarter of the state’s electricity is generated by independent power produc-
ers and industrial generators [14]. It is noteworthy that not only is Texas the
largest electricity generating state in the country, but also one of the largest elec-
tricity consuming states, and has experienced rapid growths in both electricity
demand and generation in recent years [14]. Texas experienced a notable popu-
lation increase of around four million people, making the state rank among the

top five largest growing states in the U.S. [14]. With rapid population growth in



© Atlantic
Ocean

Figure 1: A schematic of the weather and climate systems in the state of Texas [13].

Dallas, Houston, Austin and San Antonio metropolitan areas, the state of Texas
has led the nation in terms of annual population growth since 2006 [14].

The largest share of retail electricity sales in Texas belongs to the residen-
tial sector [14], which is most sensitive to climate variability and change [15]. A
significant fraction of the households in the state use electricity as their primary
heating fuel in the winter [14]. The demand for air conditioning is also substan-
tially higher during the hot summer months. In recent years, Texas has observed
multiple episodes of unexpected demand surge during periods of heatwaves. The
Electric Reliability Council of Texas (ERCOT) region broke all previous records
of peak demand during the 2016 hot summer months across the state [14]. Texas,
therefore, exhibits a very interesting case study for understanding the nexus be-
tween climate variability and peak electricity load to inform adequate investment

decisions related to electric infrastructure capacity expansions and/or reliable



power systems planning and operation .

The proposed data-centric predictive framework goes beyond the existing de-
terministic models with linear architecture, and uses the state-of-the-art statisti-
cal learning techniques to probabilistically assess the climate sensitivity of daily
peak load in the state of Texas. The models’ performance is evaluated based on
both goodness-of-fit and out-of-sample predictive accuracy to ensure high gen-
eralization performance as well as its ability to explain the variance in the his-
torical data. Then, the ‘best model’, selected based on both the generalizablity
and goodness-of-fit principles, was used to characterize the climate-sensitivity of
daily peak load in Texas.

The structure of this paper is as follows. In Section 2, a brief overview of
the existing literature is presented, highlighting the current knowledge gaps. The
data used in the analyses is discussed in Section 3. Sections 4 and 5 outline the
methodologies and results. Section 6 concludes the paper by summarizing the

key findings and delineating the future research directions.

2. Literature Review

There exists a significant body of literature in power system load forecasting.
The bulk of the existing research in this area has primarily focused on short-term
load forecasting (STLF). The goal of STLF is to predict the future hourly and
daily loads for a service area of interest, and plays a key role in various electricity
system operations planning such as identifying optimum spinning reserve capacity
as well as conducting reliability analysis and security assessment.

STLF has been modeled using a wide range of approaches including (a) sim-

ulation; (b) time series models; (c) regression analysis and statistical machine



learning; and (d) and hybrid models. Below is a brief outline of the current state
of knowledge in short-term load forecasting. The review starts with highlighting
studies based on simpler generalized linear regression and time-series models and
then progresses to more complex approaches based hybrid modeling techniques
as well as machine learning techniques.

Haida and Muto [16] presented a regression-based daily peak load forecast-
ing method consisting of a regression model to predict the nominal load, and a
learning method to predict the residual load. Haida et al. [17] expanded this
model by introducing two trend processing techniques designed to reduce errors
in transitional seasons. Ramanathan et al. [18] leveraged multivariate regression
modeling using historical data for the Puget Sound Power and Light Company.
In this research, the statistical models were trained using the hourly load and
weather observations during the fall and winter months of 1983-1990, in order
to estimate short-term peak load. More specifically, a number of multiple linear
regression (MLR) models were developed for each hour of the day. The lead-time
for the forecast models ranged from 16-40 hours into the future.

Alfares and Nazeeruddin [19] presented a regression-based daily peak load
forecasting method for a whole year, including holidays. To forecast load precisely
throughout a year, various seasonal factors were considered. In the winter season,
average wind chill factor was also added as an explanatory variable. In the
transitional seasons (e.g., spring and fall), a transformation technique was used,;
and for holidays, a holiday effect load was deducted from the normal load.

Papalexopoulos et al. [20] developed a hybrid regression-based approach to
improve the short-term system load forecasting for the Pacific Gas and Electric

Company in California. The initial model consisted of an autoregressive inte-



grated moving average (ARIMA) peak load model and a MLR peak load model,
which used historical data from last 15 days in the inland valley and mountain
regions. The results from these two models were combined using a weighted aver-
age scheme in the initial model. The improved model removed the ARIMA peak
forecast model and only relied on the MLR model. Amjady [21] proposed a time
series model for short-term hourly forecasting of peak load. The results revealed
that the proposed ARIMA model provided a better fit to the actual hourly peak
load compared to the artificial neural network (ANN) models. Aufthammer et
al. [9] used a time-series model to parameterize the relationship between peak
electricity load and temperature, and estimated temperature response functions
for daily peak load and total daily energy consumption for the entire U.S. They
found peak load, at both the daily and annual levels, to be more sensitive to
climate change than the total daily consumption. Their results showed that the
impacts of climate variability on peak load varied substantially across geograph-
ical space, driven by differences in the distribution of heating and cooling degree
days as well as differences in heating and cooling technologies.

Fan et al. [22] used a MLR methodology along with eight other models—
including ARIMA, support vector regression (SVR), random forests (RF), multi-
layer perceptron (MLP), boosting tree (BT), multivariate adaptive regression
splines (MARS), and k-nearest neighbors (kNN)—for predicting the next-day
commercial energy consumption and peak electricity loads for the tallest buildings
in Hong Kong. The authors concluded that SVR and RF models outperformed
traditional statistical models such as MLR and ARIMA models. The analysis
identified the peak power demand and daily energy consumption of seven days

and fourteen days before the prediction day as the top four most important inputs



for the predictive models based on the random forest algorithm.

Sigauke and Chikobvu [23] developed a predictive model for daily peak de-
mand in South Africa, using the multivariate adaptive regression splines (MARS)
methodology. They demonstrated the model’s capability of yielding a signifi-
cantly lower root mean square error (RMSE) when compared to piecewise regression-
based models. Liu et al. [24] developed a semi-parametric, two-component mod-
eling procedure for forecasting hourly load in the eastern United States. The de-
veloped model consisted of a nonparametric component and a parametric ARIMA
component. The model estimation was carried out using a modified back-fitting
algorithm and was found to have a high predictive performance.

Lusis et al. [25] assessed the effects of calendar dates and forecast granularity
(length of each forecast interval) on the accuracy of day-ahead household load
forecast using various statistical learning techniques. Their statistical analysis
demonstrated that the model based on regression trees yielded a better overall
ability to predict the household load for the next 24 hours.

Chen et al. [26] applied a hybrid SVR model, both with and without multi-
resolution wavelet decomposition (MWD) pre-processing, to predict hourly elec-
tric power load in a hotel building. With 15-dimensional parameters of 29 clus-
tered days as the training sample, a nonlinear SVR model was developed. Al-
Musaylh et al. [27] evaluated the performance of data-driven models based on
MARS, SVR and ARIMA algorithms, for predicting short-term electricity de-
mand using Queensland area’s aggregated demand data from the Australian En-
ergy Market Operator. For identifying significant inputs for the three prediction
horizons (0.5h, 1.0h, and 24.0h), they changed the electricity demand data by ap-

plying partial autocorrelation functions. They found that the model based on the



MARS algorithm yielded the most accurate results for 0.5h and 1.0h forecasts,
whereas the SVR model was better for a 24.0h horizon.

Beccali [28] used Elman’s recurrent ANN algorithm to predict (with a one
hour lead time) the intensity of the electric power supplied to households in a
suburban area of Palermo (Italy) between June 1, 2002 and September 10, 2003.
The forecasting performance of the model was tested by comparing the model
predictions with the electric current intensity recorded during a summer week.
The research pointed out the importance of a thermal discomfort index for a
simple but effective evaluation of the conditions affecting the occupant behavior,
and thus influencing the household electricity consumption related to the use of
heating, ventilation and air conditioning (HVAC) appliances.

Saini and Soni [29] predicted daily peak load using a feed forward neural net-
work (FFNN) based upon the conjugate gradient (CG) back propagation meth-
ods. They incorporated the effects of previous day peak load information, the
type of day, and eleven weather parameters. The training dataset was selected
using a growing window concept. To reduce the redundancies in the input space,
principal component analysis (PCA) was leveraged. The resulting dataset was
used to train a 3-layered neural network (NN). By comparing four different tech-
niques, they concluded one-step secant back propagation algorithm (OSS-BP) to
be the best learning technique for peak load forecasting.

Mukherjee and Nateghi [10] investigated the predictive performance of several
different parametric and non-parametric statistical learning methods—e.g., gen-
eralized linear model (GLM), generalized additive model (GAM), multivariate
adaptive regression splines (MARS), random forest (RF) and Bayesian additive

regression trees (BART)—to investigate the nexus between total electricity con-
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sumption and climate variability. They found that the model based on the BART
algorithm outperformed all the other statistical learning methods.

Despite the significant recent advances in the field, as outlined above, some
knowledge gaps remain. More specifically, many of the existing models focus pri-
marily on forecasting the load (with various lead times), and do not necessarily
focus on characterizing the climate-demand nexus, which is the focus of this study.
In addition, the models that focus on capturing the sensitivity of daily peak load
to climate variability either (a) are based on ‘rigid” modeling assumptions (e.g.,
based on multiple linear regression and/or time series modeling); which while
interpretable, tend to underperform in terms of predictive accuracy [30], or (b)
focus primarily on developing accurate predictive models with very little empha-
sis on model inferencing and interpretation. This paper aims to bridge these gaps
by proposing a generalized, probabilistic predictive framework—grounded in sta-
tistical learning theory to (a) develop an accurate predictive model, based on both
in-sample-fit and out-of-sample predictive accuracy, (b) identify the key predic-
tors of the climate-sensitive portion of daily peak demand, and (c) characterize
and interpret the relationship between the key climate predictors and the daily
peak load. While the state of Texas is selected as a case study to demonstrate
the applicability of the proposed framework, the methodologies presented in this

paper are generalizable to other regions.

3. Data source, description, and visualization

This section summarizes the data used to train, test and validate our daily
peak load prediction models. The explanatory variables are discussed in Section

3.1, the response variable is summarized in Section 3.2, and the full data-set is
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presented in Section 3.3.

3.1. Input data (explanatory variables) preparation
The two categories of explanatory variables, namely, the weather time-series,
and the socio-economic data are used as input variables in this analysis. The

datasets are described in the following subsections.

3.1.1. Weather data

Daily weather data was obtained from the National Climatic Data Cen-
ter (NCDC) ranging from 01-January-2002 to 31-December-2017 from multiple
weather stations across the geographical area of Texas. The various weather vari-
ables (see Table 1) include: daily mean temperature (TEMP), mean dew point
temperature for the day (DEWP), daily mean sea level pressure (SLP), mean visi-
bility for the day (VISB), daily mean wind speed for the day (WDSP), maximum
daily sustained wind speed (MXSPD), maximum daily temperature (TMAX),

minimum daily temperature (TMIN), and daily total precipitation (PRCP).

Table 1: Weather variables description

Field Description Unit

TEMP Mean temperature for the day Fahrenheit

DEWP Mean dew point temperature for the day Fahrenheit

SLP Mean sea level pressure for the day Millibars to tenths
VISB Mean visibility for the day Miles to tenths
WDSP Mean wind speed for the day knots to tenths

MXSPD  Maximum sustained wind speed of the day  knots to tenths

TMAX Maximum daily temperature Fahrenheit
TMIN Minimum daily temperature Fahrenheit
PRCP Total daily precipitation Inches

12



3.1.2. Socio-economic data

Socio-economic data was obtained from the U.S. Bureau of Labor Statistics
(BLS) [31]. The data include variables such as per capita real gross state product
(GSP) and unemployment percentage for the state of Texas as observed in a
particular year. Monthly electricity price for the state of Texas was obtained
from the U.S. Energy Information Administration (form EIA-826). The socio-
economic variables are added to the analysis to serve as control variables in the
models. Such non-climatic variables control for the socio-economic changes in the
state of Texas over the period of analysis (2002-2017), and thus help to isolate

the climate-induced effects on the electricity demand [10].

3.2. Response variable preprocessing

Hourly load data for the state of Texas was obtained from the “Hourly Load
Data Archives” reported by the Electric Reliability Council of Texas (ERCOT)
[32]. Also, the daily electricity sales data was extracted for the state of Texas
from the U.S. Energy Information Administration (EIA) database [14]. To ob-
tain the daily peak load data, maximum of the hourly loads recorded in a day,
over the period of 01 January 2002—31 December 2017 was estimated. Similar
to previous studies [33], the estimated daily peak load time-series data was de-
trended. Detrending was performed to remove the effect of population increase
and technological growth over the years, and thus isolating the influence of cli-
mate factors on the daily peak electricity load. In order to detrend the response
variable, the yearly average of the daily peak load P(y) was first calculated for

the entire period of study in the following way [33]:
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2017 365

P= 2 > E(dy) (1)

y=2002 d=1

The adjustment factor F,q4 for each year was calculated from:

365

Fogj = P(y)™ Z E(d,y) (2)

Daily peak load data was adjusted by dividing it by the adjustment factor for

that year, i.e.,

E(d,y)
Fadj

Eagi(d, y) = (3)

In all the equations above, y denotes the variable “year” and d denotes the

variable “day”. The final analysis and model development were conducted with

the trend-adjusted daily peak load data.

Daily Peakload (GW)

Figure 2:
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Daily peak electricity load (a) before detrending (left), (b) after detrending (right).

Figures 2 (a) and (b) show the raw and detrended daily peak loads, respec-

tively. It is evident that the slight upward linear trend in Figure 2 (a) is removed

after applying the de-trending methodology (Figure 2 (b)). The trend-adjusted

14



daily peak load time-series varies seasonally over the months, signaling climate
sensitivity of the daily peak electricity load (Figure 3).

Figure 3 shows the violin plot of daily peak electricity load across the months.
A violin plot combines a box-plot and a kernel density plot in one graph. More
specifically, in a violin plot, a rotated kernel density plot is overlain on the two
sides of a box-plot. Figure 3 shows that there is significant seasonal variations in
peak electricity load. It is observed that in TX, the daily peak load is much higher
during the summer months, which is expected since the use of air-conditioning
is highest during the hottest days of summer, and lowest during the temperate

winter months and intermediate seasons (i.e., fall and spring).
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Figure 3: Violin-plot of response variable for different months.

3.53. Final data-set

The final dataset was created by combining the daily peak electricity load,
weather variables, and socio-economic information, as described in Sections 3.1

and 3.2 above. Also, the days of the week is included as a control variable since

15



there are important differences in electricity load patterns between weekdays
and weekends. The load on different weekdays can also be quite different. For
example, Mondays and Fridays (adjacent to weekends) may have structurally
different loads than Tuesday through Thursday. This is particularly true during

the summer season. The summary statistics of the response data is presented in

Table 2.

Table 2: Descriptive statistics of daily peak load (GW) during 01,/01/2002-12/31/2017.

Mean Median Std. Dev. Kurtosis Skewness Min. Max.

36.26  34.27 9.02 0.44 0.89 19.27  71.09

Figure 4 depicts the correlation among all the selected predictors as well as
the trend-adjusted response variable. In this figure, each of the variables included
in the analysis is shown on the diagonal. At the bottom of the diagonal, the bi-
variate scatter plots with a fitted line, and at the top of the diagonal, the value
of the correlation with the associated significance levels (as stars) are displayed.
The significance level is denoted by stars, representing p-values of 0.001 (***),
0.01 (**), and 0.05 (*). The size of the numbers in the top diagonal represent the
degree of correlation, with larger numbers (and sizes) indicating higher correla-
tion levels and smaller numbers (and sizes) representing lower correlation levels.
Figure 4 reveals that the relationship between most of the predictors and the

daily peak load (response variable) is not linear. Thus, analyzing the sensitivity
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Figure 4: Correlation matrix plot.

of daily peak load using linear regression models will likely miss the potentially
statistically significant non-linear relationships. Significant linear correlations
are observed between the WDSP (mean wind speed) and MXSPD (maximum
sustained wind speed)—with a Pearson correlation of 0.78—and between the

PC.Real.GDP (per capita gross domestic product) and the PCT.Unemployment

17



(percentage of unemployment)—with a Pearson correlation of -0.48. Moreover,
the temperature variables DEWP, TMAX, TEMP and TMIN are highly corre-
lated with one another (Pearson correlation coefficient: p > 0.8). Therefore, to
reduce masking effects due to correlation, three separate models are developed:
a model with DEWP and TMAX, a second model using TMIN, a third model
using TEMP, keeping all the other predictor variables same in all the models

(details described in Section 5).

4. Methodology

This section presents the generalized research framework proposed in this
study, and provides a brief theoretical background of the models developed to

evaluate the climate sensitivity of the daily peak load for the state of Texas.

4.1. Research framework

In this research, a generalized, probabilistic predictive framework is leveraged
to evaluate the climate sensitivity of the daily peak load. Figure 5 describes
the various steps and flow of the proposed research. As discussed before, data
on hourly electricity demand (from which the daily peak load was calculated)
was collected for the state of Texas, together with various climate and weather
variables as well as socio-economic information. Several types of data transfor-
mation techniques were implemented including (i) trend-adjustment of the peak
load data, (ii) spatiotemporal aggregation for the climate and weather data, and
(iii) inflation-adjustment on the socio-economic data, as needed. The datasets
were then aggregated from various sources using year, month, and day as the key

variables to generate the “Final Dataset”. This step was followed by the model
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development phase which is described in the subsequent subsections. As evident
from this framework, while data specific to the state of Texas was used to demon-

strate the applicability of the proposed research, the approach and methodology

is transferable and can be extended to other geographical regions.

State-level hourly load information
[Hourly Load Data Archives (ERCOT)]

Time-scale: Hourly
Time period: Jan 1990-Dec 2017 (16 years)

v

State-level climate & weather information
[NOAA, NCDC]

State-level socio-economic information
[BEA, U.S. Census, EIA-826]

Predictors:

* Daily mean temperature (TEMP)

* Mean dew point temperature for the day (DEWP)
* Daily mean sea level pressure (SLP)

Predictors:

+ Per capita real gross domestic product (PC.Real.GDP)
* Unemployment percentage (PCT.Unempt)

« Electricity price (Tot.Price.Monthly)

Response variable:
Daily peak load time series
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+ Daily mean wind speed for the day (WDSP) Time-scale: Yearly, Monthly

* Maximum daily sustained wind speed (MXSPD) Time period: Jan 2002-Dec 2017 (16 years)
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- Daily total precipitation (PRCP)
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Figure 5: Research Framework

4.2. Statistical learning and model development

Supervised learning theory is leveraged to characterize the climate-daily peak
load nexus. Broadly speaking, the goal of supervised learning is to estimate
a function capable of predicting a statistical moment of a target variable (e.g.,
daily peak load) conditioned on one or more predictor variables (e.g, various cli-
mate variables), such that the loss function of interest (measuring the distance
between the predictions and the observed values) is minimized. Supervised sta-

tistical learning methods can be parametric, semi-parametric or non-parametric.

Parametric models generally assume a particular functional form that relates the
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input variables to the response. The assumed functional forms help with ease of
estimation and model interpretability, but come at the cost of predictive accuracy
since the assumptions (such as normality and linearity) often do not hold for real
data. Non-parametric models do not make many assumptions about the distri-
bution of the response variable or the shape of the function relating the response
to the predictors. Instead, they use the data in novel ways to approximate the
dependencies. Their predictive power is generally superior to parametric models
owing to their better approximation of the true functional forms. Moreover, non-
parametric methods are data-intensive and highly dependent on data quality. In
this research, the data is trained with a range of parametric and non-parametric
supervised learning models to investigate the sensitivity of daily peak load to
climate change. More specifically, the data is trained with generalized linear
models (GLM), generalized additive models (GAM), multi-adaptive regression
splines (MARS), and ensemble tree based models including random forest (RF),
Bayesian additive regression trees (BART) and neural network (NN). While the
overview of each of these algorithms is discussed in Appendix A, a brief expla-
nation of the BART algorithm is provided in the following section since it was

found to best capture the daily peak load—climate nexus.

4.2.1. Bayesian Additive Regression Trees (BART)
BART is a non-parametric, Bayesian, sum-of-trees model as shown in the

equation below [34].

Yy = Zg(x; T, M;) +¢ where €~ N(0, a?) (4)

=1

g(x; T, M) is the function which assigns the parameters of the terminal nodes
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of trees to the predictors x. Regularization priors are used to control model’s
complexity and restrict the overwhelming influence of the large tree components.
Regularization priors eliminate an individual tree’s effect of being unduly influ-

ential on the sum-of-trees model [34].

4.2.2. Predictive accuracy vs. model interpretability

As mentioned earlier, flexible non-parametric methods generally have higher
predictive power than the parametric models. The improved predictive power,
however, comes at the cost of ease of interpretability. Partial dependence plots
(PDPs) are efficient methods of conducting variable inference for non-parametric
models. PDPs help in understanding the individual effects of the predictor vari-
ables (x;) on the response variable in a ceteris paribus condition (i.e. controlling
for all the other predictors). Mathematically, the estimated partial dependence

function is given as [35]:

Flaj,x_j,4) (5)

1

flay) =

n

S|

1

Here, f denotes the statistical model; n denotes the number of observations
in the training dataset; x_; denotes all the variables except z; . The estimated
PDP of the predictor x; provides the average value of the function f when xj is

fixed and x_; varies over its marginal distribution.

4.2.8. Bias variance trade off

The generalization performance of a predictive model hinges on the ability
to simultaneously minimize the bias and variance of the model. Cross validation
is one of the most widely used methods for balancing bias and variance [30].

The method of k-fold cross validation is used to estimate predictive accuracy.
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K-fold cross-validation involves randomly dividing the data into k equally-sized
subsets. In each iteration, the model is fitted to all the data subsets except the k™
held-out subset, and the predictive accuracy is calculated based on the model’s
performance on the k™ held-out subset. In this paper, the out-of-sample model
performance was estimated using a 20% holdout cross validation approach. The
out-of-sample mean square error (MSE) and mean absolute error (MAE) are then

calculated using the following formula [10]:

1212 N
MSEout—of—sample = %[Z E(Z(yz,k - yl,k)2)] (6)
k=1 i=1
121 & .
MAEout—of—sample = E[Z E| Z(yz,k’ - ?Jm)H (7)

B
Il
e
-
Il
—

k= number of times cross validation is performed; m=number of holdouts during
each cross validation y; ,=ith actual observation that was randomly holdout dur-
ing the k™ cross-validation ; ;= predicted i*" observation during the k' cross
validation using the model developed using the training set data during the k"
cross validation

The model selection is conducted based on both in-sample fit and out-of-
sample predictive accuracy. The in-sample error is measured using the in-sample
MSE, MAE, and adjusted R? while the out-of-sample error was measured using

the out-of-sample MSE and MAE as discussed above.

5. Results

Using each algorithm described in the methodology section, three sets of

models are developed, namely, one using TMAX and DEWP (Model 1) [i.e.,
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not including TEMP and TMIN], one using TEMP (Model 2) [i.e., excluding
DEWP, TMAX, and TMIN], and finally a model using TMIN (Model 3) alone
li.e., excluding DEWP, TMAX, and TEMP]|, while keeping the non-temperature
variables the same in all the models. The rationale for the development of three
separate models are: 1) including highly correlated variables within the same
model could mask the individual effects of the variables while inferencing; and 2)
assessing separate models can help identify which temperature variable(s) best
capture(s) the climate sensitivity of daily peak load. The results showed that the
model with DEWP and TMAX outperformed the other two models. This is not
surprising since (1) DEWP accounts for humidity which has been shown to be a
key predictor of the electricity demand for space conditioning [10]; and (2) using
TMAX can help capture temperature extremes in Texas which have occurred
with a higher frequency in recent years leading to unanticipated demand surges

during the hot spells [36].

5.1. Model Performance

Table 3 summarizes the goodness-of-fit and predictive performance of each of
the trained models. The percentage improvement (%imp) metric is also provided
in Table 4, indicating the percentage improvement yielded by each of the trained
models over having no statistical model and using the historical average as a

predictor (i.e., the ‘mean-only’ model) .
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Table 3: Comparative assessment of the model performance.

# | Models R? | In-sample err. | Out-of-sample err.
RMSE | MAE | RMSE MAE
1 | Mean-only | -NA -NA -NA 9.399 8.202
2 GLM 0.526 | 6.499 5.375 6.494 5.363
3 GAM 0.874 | 3.337 2.626 3.379 2.660
4 MARS-1 | 0.861 | 3.518 2.761 3.530 2.772
5 MARS-2 | 0.880 | 3.264 2.542 3.274 2.545
6 MARS-3 | 0.886 | 3.186 2.487 3.239 2.515
7 MARS-4 | 0.886 | 3.186 2.487 3.240 2.516
8 RF 0.980 1.350 1.044 3.112 2.441
9 BART 0.930 | 2.500 1.928 2.866 2.213
10 NN 0.899 | 3.000 2.316 3.382 2.641

The predictive model is selected based on the BART algorithm as the final
model, since it outperformed all the other models in terms of out-of-sample pre-
dictive accuracy (Tables 3-4). In terms of in-sample goodness of fit, the model

based on the Random Forest algorithm ranked top, indicating potential over-

fitting of the data (Table 3).

To further examine the performance of the final best model (based on BART),
the model predictions versus observed values of daily peak load (Figure 6) is plot-
ted. The 95% credible intervals provide 56.09% coverage for all the observations

(Figure 6a) whereas the 95% prediction interval offers a 97.09% coverage (Figure

6b).

The observed deviations at the tails of the Q—Q plot of the residuals (Figure
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Table 4: Models’ percentage improvement over the ‘null’ (i.e., mean-only) model.

Models | Out-of-sample error (%imp)
RMSE MAE
GLM 31 35
GAM 64 68
MARS-1 62 66
MARS-2 65 69
MARS-3 66 69
MARS-4 65 69
RF 67 70
BART 69 73
NN 64 68
In-Sample Fitted vs. Actual Values In-Sample Fitted vs. Actual Values
with 95% Cred. Int.'s (56.09% coverage) with 95% Pred. Int.'s (97.09% coverage)
0 w 0 M
Actual Values Actual Values

Figure 6: a. In-Sample fitted vs. actual values using 95% Credible Intervals. b. In-Sample

fitted vs. actual values using 95% Prediction Intervals.

7) is attributable to other unobserved variables (probably non-climatic factors)

that influence the daily peak load demand, but are not captured in the climate-

25



BART: Residuals Q-Q Plot

e}

10

Residuals (GW)

Norm Quantiles

Figure 7: QQ-plot of the BART model (the red dashed lines in the QQ-plot represent 95%

confidence intervals)

peak load nexus model presented in this paper.

5.2. Model Inference

The ranking of the important predictors influencing daily peak electricity load
is given in Figure 8. The figure helps identify maximum temperature (TMAX) as
the most important predictor followed by mean dew point temperature (DEWP),
total monthly electricity price (Tot.Price.Monthly), and per capita real gross state
product (PC.Real.GDP).
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Figure 8: The ranking of the importance of the explanatory variables in contributing to the

accuracy of the final best model.

The partial dependencies between the top six key predictors and daily peak
load are plotted in the following sub-sections to characterize the marginal influ-

ence of the key predictors on the daily peak electricity demand.

5.2.1. Influence of mazximum temperature and dew point temperature

The PDP of daily peak electricity load versus the maximum temperature
(TMAX) (Figure 9a) shows an initial inverse relationship between load and in-
creasing temperatures until 70°F/21°C and then an increasing trend thereafter.
The marginal plot indicates that for a 30°F /-1°C increase in TMAX (70°F/21°C
— 100°F /38°C), the daily peak load increases by 20 GW. Peak load is relatively
insensitive to maximum temperature in the range of 67°F/19°C to 74°F/23°C

since the need for space heating or cooling is minimum during temperate ranges.
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The increasing trend associated with temperatures less than 67°F /19°C indicates
increasing peak load due to increased space heating during colder winter days.

Figure 9b illustrates the PDP of daily peak electricity load versus the average
daily dew point temperature. Three distinct regions are apparent in the figure.
For days with colder dew point temperatures (i.e., colder and humid winter days
with temperatures below 30°F/-1°C) the daily peak load increases as the dew
point temperature decreases. This can be attributed to increased demand for
space heating with decreasing temperatures. The peak load is minimum for
DEWP in the range of 30°F/-1°C — 40°F /4°C and rapidly increases for warmer
days (i.e. DEWP above 40°F /4°C)

Partial Dependence Plot Partial Dependence Plot

Partial Effect

Partial Effect

42 44 46 48
L |

40

TMAX plotted at specified quantiles (°F). DEWP plotted at specified quantiles (°F).

Figure 9: a. Influence of mean dew point temperature and b. Influence of maximum tempera-

ture on daily peak load.

5.2.2. Relationship with electricity price

Electricity price is found to be one of the most important non-climatic pre-

dictor of daily peak load. As discussed before, electricity price (along with other
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socio-economic variables) is used as a ‘control variable’ to isolate the effect of
climate on daily peak demand. However, since it is found to be among the key
predictors of daily peak demand, a brief discussion of its relationship with the
response variable is included. Figure 10 shows that the daily peak electricity
load exhibit a positive correlation with the monthly mean electricity price which
is in line with the existing literature [37] that indicates higher prices are charged

during times of peak demands.

Partial Dependence Plot

Partial Effect
46 50
|

42
|

38
|

| T 1 T
7 8 9 10

Electricity price (monthly) plotted at specified
quantiles (cents/KWh).

Figure 10: Influence of total monthly electricity price on daily peak load

5.2.3. Relationship with per capita gross state product

Figure 11 shows that the peak electricity load is decreasing with the economic
growth in terms of per capita real gross domestic product (PC.Real. GDP). Eco-
nomic growth is positively associated with socio-technical advancements such as

more investments in new energy-efficient equipment. Moreover, with the signifi-

29



cant growth of cyber infrastructure and development of IOTs (internet of things),
the key driver of economy has shifted away from heavy manufacturing industries
to cyber business and service-oriented industry. A recent study by the American
Council for an energy efficient economy argued that since the mid-1990s, much of
the observed downward trend in the energy demand intensity associated with the
economic growth can be attributed to the growth of such less energy-intensive

cyber businesses [38].

Partial Dependence Plot

Partial Effect
40 42 44 46 48 50

44000 48000 52000

PC.Real.GDP plotted at specified quantiles
(dollars).

Figure 11: Influence of per capita gross state product on daily peak load.

5.2.4. Relationship of unemployment with peak load

The association of unemployment with the daily peak load (Figure 12) shows
a random fluctuation. Although there is no significant upward or downward
trend in the marginal peak load with increasing unemployment rates, the levels

of uncertainty changes. The uncertainty bands (shaded gray area) are wider at
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the higher percentage of unemployment, indicating a higher variability in peak

loads associated with higher unemployment rates.

Partial Dependence Plot

Partial Effect
42 43 44 45 46
|

| 1 1 1
5 6 7 8

PCT.Unempt plotted at specified quantiles (%).

Figure 12: Influence of PCT.Unemployment (%) on daily peak load.

5.2.5. Influence of mazimum sustained wind speed

Daily peak electricity load has an inverse relationship with increasing max-
imum sustained wind speeds (Figure 13). This is intuitive, as sustained winds
lower the feels-like temperature, and increase the rate of evaporation from the
human body as well as the built environment, and therefore, creating a cooling
effect. Thus, during breezy/windy days the lower daily peak loads is attributable

to lower electricity demands for space cooling [39].
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Figure 13: Influence of maximum sustained wind speed (Knots to tenth) reported for the day

on daily peak load.

6. Conclusion

Effective adequacy planning in the electricity sector is requisite for achieving
grid resilience, as it helps minimize significant supply surplus/shortages and thus
mitigates unpredictable electricity price hikes and rolling blackouts, which often
result in large-scale socio-economic losses. Effective adequacy planning hinges
on access to accurate forecasts of demand patterns, particularly under exogenous
shocks such as climate variability and change.

In this paper, the climate sensitivity of daily peak load is investigated using
advanced machine learning algorithms. A generalized probabilsitic predictive
framework is proposed—based on a Bayesian tree-ensemble algorithm—to assess
the climate sensitivity of peak load and to identify its key predictors. Although

the proposed model is used to characterize the climate sensitivity of the daily
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peak load, it can also be leveraged for short-term (daily) peak load predictions
as it outperforms all the other models in regards to explaining the variations in
data as well as out-of-sample predictions.

The results revealed that maximum daily temperature followed by mean dew
point temperature of a day are the most important predictors of the climate
sensitive portion of the daily peak load in the state of Texas. Moreover, it is
observed that when the maximum temperatures lie in the range of 67°F (19°C) —
74°F(23°C) and dew point temperatures in the range of 30°F(-1°C) — 40°F(4°C),
the peak load is relatively temperature-insensitive. The results also indicated an
inverse relationship between sustained wind speeds and daily peak load, with peak
daily loads decreasing at higher sustained wind speeds. This inverse relationship
is attributable to the cooling effect of the sustained winds.

Among the non-climatic predictors, the socio-economic variables such as elec-
tricity price, per capita gross domestic product, and percentage of unemployed
populations were found to have a strong association with the daily peak load.
The results indicated a strong positive association between the daily peak load
and the electricity price, whereas the association between percent unemployed
and the daily peak load was more uncertain. Economic growth was observed
to have an inverse association with the peak load, mostly attributable to in-
creased investments in energy efficient equipment as well as a move away from
manufacturing-heavy industry to service/cyber industry.

The proposed framework in this study is transferable to other service areas,
and can be used by utility planners and operators across the country to char-
acterize the climate sensitivity of peak load. Moreover, the inferences from the

Texas case study is of particular interest to the stakeholders in the ERCOT re-
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gion that have faced frequent supply inadequacy risks during the more frequent

episodes of heatwaves over the past decade. The study results demonstrate that

the existing approaches based on parametric models (prevalent in many regions

of the country including ERCOT) underperform in terms of predictive accuracy

and thereby might underestimate the requisite reserve margins. Moreover, the

existing approaches based on air temperature alone (that do not account for hu-

midity levels) lead to understating the climate-sensitivity of peak load in the

state, with big implications for grid resilience in the ERCOT region.
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Appendix A.

Appendixz A.1. Methodology Description

Appendix A.1.1. Generalized Linear Model

Generalized linear models (GLMs) extend linear regression, by relaxing the

normality assumption; allowing the response to be generated from the exponential

family distribution and be related to the predictors through a link function [40].

A generalized linear model is characterized by:
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A dependent variable Y whose distribution is of the class of normal, binomial

and Poisson or gamma or Inverse-Gaussian as shown in the equations below:

Yi ~ fyi
Futn) = eap™ 0 4 (0 (A1)

That 6 and ¢ are the location and scale parameters respectively.
A set of independent variables ;.
A link function g(.) tying the parameters of the response to the linear com-

bination of the input variables.

Appendixz A.1.2. Generalized Additive Model

A Generalized Additive Model (GAM) is considered a semi-parametric tech-
nique. It relaxes the linearity assumption of generalized linear model, allowing
for local non-linarites. The model assumes that response y has a distribution
with the mean pu=[FE|zi,zs,....x,]. Where each f; is a smoothing function of a
specified class of functions estimated non-parametrically, like regression splines

and tensor product splines. Multivariate Adaptive Regression Splines

g(p) = a+ zp: fi(w:) (A.2)

j=1
Appendixz A.1.3. Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is semi-parametric, adap-
tive procedure for regression, well suited for high dimensional problems [41]. Tt
can be viewed as a generalization of stepwise linear regression. A MARS model

consists of sum-of-splines that allow the response to vary non-linearly with the
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input variables as shown in the equation below.

f(z) = 5o+ % Bpho(2) (A.3)

Where each h,,(x) represents the linear splines, (3, represents the intercept and
Bm represents the vector of the coefficients. m coefficients are estimated by min-

imizing the sum of square errors.

Appendixz A.1.4. Random Forest

Random Forest (RF) is a non-parametric, tree-based ensemble data-miner [?
|. The method consists of B bootstrapped regression trees (T3); with B selected
based on cross-validation. Regression trees are low-bias high variance techniques.
In other words, they can capture the structure of the data really well (low bias),
but are highly sensitive to outliers (high variance). RF leverages model averaging
as a variance reduction technique. The final estimate is therefore, the average of

predictions across all trees as shown in the equation below.

P (@) = ;; Ti(x) (A1)

Appendix A.1.5. Neural network

Artificial Neural Networks (ANNs) are inspired by the biological nervous sys-
tem to model the learning behavior of human brain and is a non-parametric
model. The first artificial neuron was produced in 1943 by the neurophysiologist
Warren McCulloch and the logicial Walter Pits [42]. A single neuron in a multi-
layer neural network. The various weighted inputs are fed into the single neuron.
There are two functions that come into play inside a neuron; namely, Transfer

function and Activation function.
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The transfer function (or we could call it the aggregator) sums up all these

weighted inputs. Let us denote the transfer function as z given as

z = Z w;T; + wpb (A.5)

r=1

The activation function (or the squash function) squashes the output value of
the transfer function into a defined range. It is used define the rate of firing from
the neuron. Activation functions could be linear and non-linear. A straightfor-
ward activation function could be f(z) = z which preserves the input as it is.
However the limits are not defined in this function. In order to better denote
the rate of firing, the activation function commonly used in the sigmoid function.
The type of the neuron is defined from its activation function as well. Neurons
with sigmoid activation functions are called sigmoid neurons. Let us denote the

activation function as « and the sigmoid activation function is given as:

B 1
Cl4ez

a=o0(Z) (A.6)

The sigmoid function has the property of differentiability throughout and a
defined boundary in both the extremes. Another reason why we chose sigmoid
is because of having a mathematical convenience. Let us see why that is by

differentiating the sigmoid function:
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In this section, the results of the models — Model 2 (using TEMP as the only

temperature variable and excluding DEWP, TMAX, TMIN) and Model 3 (using

TMIN as the only temperature variable and excluding DEWP, TMAX, TEMP)

— that we have not explained in the main text of the paper are presented.

Appendixz A.2.1. Model 1

Table A.5: Comparative assessment of the models’ in-sample and out-of-sample predictive

performances (Model 1).

# | Models Tuning parameters R? | In-sample err. | Out-of-sample err.
RMSE | MAE | RMSE MAE
1 | Mean-only -NA -NA -NA -NA 9.399 8.202
2 GLM k=2.0, Both, Dist.=Gaussian 0.526 | 6.499 5.375 6.494 5.363
3 GAM Stepwise update 0.874 | 3.337 2.626 3.379 2.660
4 | MARS-1 pMethod: backward; nfold: 10; ncross=5 0.861 | 3.518 2.761 3.530 2.772
5 | MARS-2 pMethod: cv; nfold: 10; ncross=5; degree=2 0.880 | 3.264 2.542 3.274 2.545
6 | MARS-3 pMethod: cv; nfold: 10; ncross=5; degree=3 0.886 | 3.186 2487 | 3.239 2.515
7 | MARS-4 | pMethod: backward; nfold: 10; ncross=5; degree=3, penalty 2 | 0.886 | 3.186 2487 | 3.240 2.516
8 RF mtry=p/3 =4; ntree=3867 0.980 | 1.350 1.044 3.112 2.441
9 BART k=2nu=3,q=0.99,m=200 0.930 | 2.500 1.928 2.866 2.213
10 NN Hidden units (size)=9; Weight decay (Decay)=0.001 0.899 | 3.000 | 2.316 | 3.382 2.641

Model 1 is explained in details in the main body of the paper. However, we

have included this table in the Appendix again to indicate the tuning parameters
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of the models that we leveraged to explain the climate—peak load nexus.

Appendixz A.2.2. Model 2

Table A.6: Comparative assessment of the models’ in-sample and out-of-sample predictive

performances (Model 2).

# Models Tuning parameters R? In-sample err. Out-of-sample err.
RMSE | MAE | RMSE MAE
1 | Mean-only -NA -NA -NA -NA 9.462 8.258
2 GLM k=2.0, Both, Dist.=Gaussian 0.566 6.221 5.106 6.187 5.094
3 GAM Stepwise update 0.900 2.963 2.329 2.996 2.355
4 MARS-1 pMethod: backward; nfold: 10; ncross=5 0.890 3.134 2.445 3.143 2.459
5 MARS-2 pMethod: cv; nfold: 10; ncross=5; degree=2 0.905 2.916 2.265 2.937 2.285
6 MARS-3 pMethod: cv; nfold: 10; ncross=5; degree=3 0.906 2.889 2.236 2.910 2.263
7 MARS-4 pMethod: backward; nfold: 10; ncross=5; degree=3, penalty 2 | 0.906 2.889 2.236 2.910 2.263
8 RF mtry=p/3 =3; ntree=3831 0.981 1.297 1.012 2.916 2.300
9 BART k=2,nu=3,q=0.9,m=200 0.938 2.345 1.798 2.609 2.010
10 NN Hidden units (size)=9; Weight decay (Decay)=0.001 0.910 2.831 2.187 2.886 2.233

From the above Table A.6 it is again observed that the BART model outper-
formed all the other models in terms of out-of-sample predictive accuracy, and
ranks second in terms of in-sample goodness of fit (after RF model). Thus, BART
was determined to be the final model in this case as well. The variable importance
plots (Figure A.14), residuals Q—Q plot (Figure A.15), credible and prediction
interval plots (Figure A.16), and the partial dependence plots of the top six im-
portant predictors (Figure A.17) (as identified from the variable importance plot)

are included in this subsection.
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Figure A.14: Importance of each of the explanatory variables used in the BART model for

predicting daily peak load (Model 2).
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BART: Residuals Q-Q Plot BART: Fitted vs. Actual
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Figure A.15: a. Residual plots of the fitted BART models. b. Plot of observed versus fitted
values of daily peak load for methods of BART (Model 2). The blue dashed lines in the QQ-plot

represent 95% confidence intervals.
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In-Sample Fitted vs. Actual Values In-Sample Fitted vs. Actual Values

with 95% Cred. Int.'s (52.45% coverage) with 95% Pred. Int.'s (96.2% coverage)
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Figure A.16: a. In-Sample fitted vs. actual values using 95% Credible Intervals. b. In-Sample

fitted vs. actual values using 95% Prediction Intervals (Model 2).
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Partial Dependence Plot
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Figure A.17: Partial dependencies of the top six key predictors of (a) Mean daily temperature

(in °F), (b) total monthly electricity price, (c) per capita real gross state product, (d) percentage

of unemployment, (e) Mean wind speed for the day (in knots to tenths) and (f) Mean sea level

pressure for the day (in Millibars to tenths), for the Model 2.
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Appendixz A.2.3. Model 3

Table A.7: Comparative assessment of the models’ in-sample and out-of-sample predictive

performances (Model 3).

# Models Tuning parameters R? In-sample err. Out-of-sample err.
RMSE | MAE | RMSE MAE
1 Mean-only -NA -NA -NA -NA 9.455 8.252
2 GLM k=2.0, Both, Dist.=Gaussian 0.565 6.228 5.152 6.270 5.175
3 GAM Stepwise update 0.836 3.804 2.989 3.858 3.029
4 MARS-1 pMethod: backward; nfold: 10; ncross=5 0.828 3.915 3.064 3.981 3.112
5 MARS-2 pMethod: cv; nfold: 10; ncross=5; degree=2 0.844 3.733 2.889 2.925 2.925
6 MARS-3 pMethod: cv; nfold: 10; ncross=5; degree=3 0.843 3.737 2.898 3.785 2.924
7 MARS-4 pMethod: backward; nfold: 10; ncross=>5; degree=3, penalty 2 | 0.843 3.737 2.898 3.785 2.924
8 RF mtry=p/3 =3; ntree=3879 0.971 1.613 1.253 3.594 2.812
9 BART k=2,1nu=10,q=0.75,m=200 0.905 2.904 2.256 3.274 2.538
10 NN Hidden units (size)=9; Weight decay (Decay)=0.001 0.856 3.586 2.761 3.701 2.851

From the above Table A.7 it is observed that the BART model outperformed
all the other models in terms of out-of-sample predictive accuracy, and ranks
second in terms of in-sample goodness of fit (after the RF model). Thus, similar
to Model 1 and Model 2, BART was determined to be the final model in this
case as well. The variable importance plots (Figure A.18), residuals Q—Q plots
(Figure A.19), credible and prediction interval plots (Figure A.20), and the partial
dependence plots of the top six important predictors (Figure A.21) (as identified

from the variable importance plot) are included in this subsection.
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Figure A.18: Importance of each of the explanatory variables used in the BART model for

predicting daily peak load (Model 3).
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BART: Residuals Q-Q Plot BART: Fitted vs. Actual
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Figure A.19: a. Residual plots of the fitted BART models. b. Plot of observed versus fitted
values of daily peak load for methods of BART. The blue dashed lines in the QQ-plot represent

95% confidence intervals. (Model 3).
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In-Sample Fitted vs. Actual Values In-Sample Fitted vs. Actual Values

with 95% Cred. Int.'s (52.29% coverage) with 95% Pred. Int.'s (96.6% coverage)
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Figure A.20: a. In-Sample fitted vs. actual values using 95% Credible Intervals. b. In-Sample

fitted vs. actual values using 95% Prediction Intervals (Model 3).
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Figure A.21: Partial dependencies of the top six key predictors of (a) Minimum daily temper-
ature (in °F), (b) total monthly electricity price, (¢) per capita real gross state product, (d)
percentage of unemployment, (e) Mean wind speed for the day (in knots to tenths) and (f)

Mean sea level pressure for the day (in Millibars to tenths), for the Model 3.
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