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Abstract

We study robust convex quadratic programs where the uncertain problem parameters can contain

both continuous and integer components. Under the natural boundedness assumption on the uncertainty

set, we show that the generic problems are amenable to exact copositive programming reformulations of

polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite

programming (SDP) approximation that can be solved efficiently. We prove that the popular approxi-

mate S-lemma method—which is valid only in the case of continuous uncertainty—is weaker than our

approximation. We also show that all results can be extended to the two-stage robust quadratic opti-

mization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP

reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances

of least squares, project management, and multi-item newsvendor problems.

1 Introduction

A wide variety of decision making problems in engineering, physical, or economic systems can be formulated

as convex quadratic programs of the form

minimize ‖A(x)ξ‖2 + b(x)⊤ξ + c(x)

subject to x ∈ X .
(1)

Here, X ⊆ R
D is the feasible set of the decision vector x and is assumed to be described by a polytope,

ξ ∈ R
K is a vector of exogenous problem parameters, A(x) : X → R

M×K and b(x) : X → R
K are

matrix- and vector-valued affine functions, respectively, while c(x) : X → R is a convex quadratic function.

The objective of problem (1) is to determine the best decision x ∈ X that minimizes the quadratic function

‖A(x)ξ‖2+b(x)⊤ξ+c(x). The generic formulation (1) includes the class of linear programming problems [42]

as a special case (whenA = 0), and has numerous important applications, e.g., in portfolio optimization [37],
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least squares regression [26], supervised classification [15], optimal control [41], etc. In addition to their

exceptional modeling power, quadratic optimization problems of the form (1) are attractive as they can be

solved efficiently using standard off-the-shelf solvers.

In many situations of practical interest, the exact values of the parameters ξ are unknown when the

decisions are made and can only be estimated through limited historical data. Thus, they are subject to

potentially significant errors that can adversely impact the out-of-sample performance of an optimal solu-

tion x. One popular approach to address decision problems under uncertainty is via robust optimization [2].

In this setting, we assume that the vector of uncertain parameters ξ lies within a prescribed uncertainty set

Ξ and we replace the objective function of (1) with the worst-case function given by

sup
ξ∈Ξ
‖A(x)ξ‖2 + b(x)⊤ξ + c(x). (2)

This optimization problem yields a solution x ∈ X that minimizes the quadratic objective function under

the most adverse uncertain parameter realization ξ ∈ Ξ.

Robust optimization models are appealing as they require minimal assumptions on the description of the

uncertain parameters and because they often lead to efficient solution schemes. In a linear programming

setting, the resulting robust optimization problems are tractable for many relevant uncertainty sets and have

been broadly applied to problems in engineering, finance, machine learning, and operations management [4,

6, 27]. Tractable reformulations for robust quadratic programming problems are derived in [25, 36] for the

particular case when the quadratic functions (in x) exhibit a concave dependency in the uncertain parameters

ξ. When the functions are convex in both x and ξ as we consider in this paper, the corresponding robust

problems are generically NP-hard if the uncertainty set is defined by a polytope, but become tractable—by

virtue of the exact S-lemma—if the uncertainty set is defined by an ellipsoid [4, 23]. Tractable approximation

schemes have also been proposed for the standard setting that we consider in this paper. If the uncertainty

set is described by a finite intersection of ellipsoids then a conservative semidefinite programming (SDP)

reformulation is obtained by leveraging the approximate S-lemma [5]. In [7], a special class of functions

is introduced to approximate the quadratic terms in (2). The arising robust optimization problems are

tractable if the uncertainty sets are defined through affinely transformed norm balls. In [36], conservative

and progressive SDP approximations are devised by replacing each quadratic term in (2) with linear upper

and lower bounds, respectively.

Most of the existing literature in robust optimization assume that the uncertain problem parameters are

continuous and reside in a tractable conic representable set Ξ. However, certain applications require the use

of mixed-integer uncertainty. Such decision problems arise prominently in the supply chain context where

demands of non-perishable products are more naturally represented as integer quantities and in the discrete

choice modeling context where the outcomes are chosen from a discrete set of alternatives. Other pertinent

examples include robust optimization applications in logistic regression [43], classification problems with
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noisy labels [13, 51] and network optimization [1, 48]. If the uncertain parameters contain mixed-integer

components then the problem becomes computationally formidable even in the simplest setting. Specifically,

if all functions are affine in ξ and the uncertain problem parameters are described by binary vectors, then

computing the worst-case values in (2) is already NP-hard [21]. The corresponding robust version of (1) is

tractable only in a few contrived situations, e.g., when the uncertainty set possesses a total unimodularity

property or is described by the convex hull of polynomially many integer vectors [4]. Perhaps due to these

limitations, there are currently very few results in the literature that provide a systematic and rigorous

way to handle generic robust optimization problems with mixed-integer uncertainty. In this paper, we first

reformulate the original problem as an equivalent finite-dimensional conic program of polynomial size, which

absorbs all the difficulty in its cone, and then replace the cone with tractable inner approximations. An

alternate way to handle integer uncertain parameters can be to solve the problem by simply ignoring the

integrality assumption. However, doing so adds undesired conservativeness to the uncertainty set. Indeed,

in our numerical experiments, we demonstrate that ignoring the integrality assumption on the uncertain

parameters leads to overly conservative solutions.

Optimization problems under uncertainty may also involve adaptive recourse decisions which are taken

once the uncertain parameters are realized [2, 46]. This setting gives rise to difficult min-max-min opti-

mization problems which are generically NP-hard even if both the first- and the second-stage cost functions

are affine in x and ξ [3]. Thus, they can only be solved approximately, either by employing discretization

schemes which approximate the continuum of the uncertainty space with finitely many points [28, 31, 45]

or by employing decision rule methods, which restrict the set of all possible recourse decisions to simpler

parametric forms in ξ [3, 22, 24]. We refer the reader to [17] for a comprehensive review of recent results

in adaptive robust optimization. In this paper, we consider two-stage robust optimization problems with

quadratic first- and second-stage objective function and a mixed-integer uncertainty set. We show that if

the problem has complete recourse, then it can be reformulated as a conic program—which is amenable to

tractable approximations.

The conic programming route that we take here to model optimization problems under uncertainty

has previously been traversed. In [39], completely positive programming reformulations are derived to

compute best-case expectations of mixed zero-one linear programs under first- and second-order moment

information on the joint distributions of the uncertain parameters. This result has been extended and

applied to other pertinent settings such as in stochastic appointment scheduling problems, discrete choice

models, random walks and sequencing problems [32, 34, 38]. Recently, equivalent copositive programming

reformulations are derived for generic two-stage robust linear programs [29, 50]. The resulting optimization

problems are amenable to conservative semidefinite programming reformulations which are often stronger

than the ones obtained from employing quadratic decision rules on the recourse function. In [20], the authors
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provide completely positive reformulation for a two-stage distributionally robust supply chain risk mitigation

problem. They allow some components of ξ to be binary, but assume precise knowledge of the first- and

the second-order moments of the distribution of ξ. The objective function that they consider is quadratic in

the second-stage decision variables but affine in ξ. In contrast to [20], we assume no information about the

distribution of ξ, other than the support. Furthermore, we allow the objective function to be quadratic in

the decision variables, as well as in ξ, which helps us model a more general class of robust problems, e.g.,

robust least squares [23].

In this paper, we advance the state-of-the-art in robust optimization along several directions. We sum-

marize our main contributions as follows:

1. We prove that any robust convex quadratic program can be reformulated as a copositive program of

polynomial size if the uncertainty set is given by a bounded mixed-integer polytope. We further show

that the exactness result can be extended to the two-stage robust quadratic optimization setting if the

problem has complete recourse.

2. By employing the hierarchies of semidefinite representable cones to approximate the copositive cones,

we obtain sequences of tractable conservative approximations for the robust problem. These approx-

imations can be made to have any arbitrary accuracy. We prove that even the simplest of these

approximations is stronger than the well-known approximate S-lemma method if the problem instance

has only continuous uncertain parameters. Furthermore, when some uncertain parameters are re-

stricted to take integer values, the approximate S-lemma method is not applicable, while our method

still generates a high-quality conservative solution.

3. We compare our approximation method to other state-of-the-art approximation schemes through ex-

tensive numerical experiments. We show that our approximation method generates better estimates of

worst-case cost and yields less conservative solutions. We also demonstrate that ignoring the integrality

assumption on the uncertainty set may lead to inferior solutions to the robust problem.

4. To the best of our knowledge, we are the first to provide an exact conic programming reformulation and

to propose tractable semidefinite programming approximations for well-established classes of one-stage

and two-stage robust quadratic programs.

The remainder of the paper is structured as follows. We formulate and discuss the generic robust quadratic

programs in Section 2. We then derive the copositive programming reformulation in Section 3. Section 4

develops a conservative SDP reformulation and provides a theoretical comparison with the popular approx-

imate S-lemma method. In Section 5, we extend the results of Section 3 along several directions including

two-stage robust quadratic optimization. We demonstrate the impact of our proposed reformulation via

numerical experiments in Section 6, and finally, we conclude in Section 7.
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Notation: We use Z (Z+) to denote the set of (non-negative) integers. For any positive integer I, we use

[I] to denote the index set {1, . . . , I}. We use ‖.‖p to denote the lp-norm. We drop the subscript and write

‖.‖ when referring to the l2-norm. The identity matrix and the vector of all ones are denoted by I and e,

respectively. The dimension of such matrices will be clear from the context. We denote by tr(M) the trace

of a square matrix M . For a vector v, diag(v) denotes the diagonal matrix with v on its diagonal; whereas

for a square matrix M , diag(M) denotes the vector comprising the diagonal elements of M . We define

P ◦ Q as the Hadamard product (element-wise product) of two matrices P and Q of the same size. For

any integer Q ∈ Z+, we define vQ = [20 21 · · · 2Q−1]⊤ as the vector comprising all q-th powers of 2, for

q = 0, 1, . . . , Q−1. We define by S
K (SK+ ) the space of all symmetric (positive semidefinite) matrices in R

K×K .

The cone of copositive matrices is denoted by C = {M ∈ S
K : ξ⊤Mξ ≥ 0 ∀ξ ≥ 0}, while its dual cone, the

cone of completely positive matrices, is denoted by C∗ = {M ∈ S
K : M = BB⊤ for some B ∈ R

K×g(K)
+ },

where g(K) = max{
(

K+1
2

)

− 4,K} [44]. For any P ,Q ∈ S
K , the relations P � Q, P �C Q, and P �C∗ Q

indicate that P −Q is an element of SK+ , C, and C∗, respectively.

2 Problem Formulation

We study robust convex quadratic programs (RQPs) of the form

minimize sup
ξ∈Ξ
‖A(x)ξ‖2 + b(x)⊤ξ + c(x)

subject to x ∈ X ,
(3)

where the set X and the functions A(x) : X → R
M×K , b(x) : X → R

K , and c(x) : X → R have the

same definitions as those in (1). The vector ξ ∈ R
K comprises all the uncertain problem parameters and is

assumed to belong to the uncertainty set Ξ given by a bounded mixed-integer polyhedral set

Ξ =







ξ ∈ R
K
+ :

Sξ = t

ξℓ ∈ Z ∀ℓ ∈ [L]







, (4)

where S ∈ R
J×K and t ∈ R

J . We assume without loss of generality that the first L elements of ξ are integer,

while the remaining K − L are continuous. Since Ξ is bounded, we may further assume that there exists a

scalar integer Q ∈ Z+ such that ξl ∈ {0, · · · , 2Q − 1} for every ℓ ∈ [L]. Note that the quantity Q is bounded

by a polynomial function in the bit length of the description of S and t.

Example 1 (Robust Portfolio Optimization). Consider the classical Markowitz mean-variance portfolio

optimization problem

minimize x⊤Σx− λµ⊤x

subject to x ∈ ∆K ,
(5)
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where ∆K is the unit simplex in R
K , λ ∈ [0,∞) is the prescribed risk tolerance level of the investor, while

µ ∈ R
K and Σ ∈ S

K are the true mean and covariance matrix of the asset returns, respectively. The

objective of this problem is to determine the best vector of weights x ∈ ∆K that maximizes the mean portfolio

return µ⊤x and that also minimizes the portfolio risk that is captured by the variance term x⊤Σx. Here,

the trade-off between these two terms is controlled by the scalar λ in the objective function.

In practice, the true values of the parameters µ and Σ are unknown and can only be estimated by using

the available N historical asset returns {ξ̂n}n∈[N ], as follows:

µ̂ =
1

N

∑

n∈[N ]

ξ̂n and Σ̂ =
1

N − 1

∑

n∈[N ]

(

ξ̂n − µ̂
)(

ξ̂n − µ̂
)⊤

.

In the robust optimization setting, we assume that the precise location of each sample point ξ̂n is uncertain

and is only known to belong to a prescribed uncertainty set Ξn containing ξ̂n. To bring the resulting problem

into the standard form (3), we introduce the expanded uncertainty set

Ξ =







(

(ξ̂n)n∈[N ], (χ̂n)n∈[N ]

)

∈ R
NK+NK
+ : ξ̂n ∈ Ξn, χ̂n = ξ̂n −

1

N

∑

n′∈[N ]

ξ̂n′ ∀n ∈ [N ]







comprising the terms ξ̂n and ξ̂n − µ̂, n ∈ [N ]. Using this uncertainty set, we arrive at the following robust

version of (5):

minimize sup
((ξ̂n)n,(χ̂n)n)∈Ξ





1

N − 1

∑

n∈[N ]

(χ̂⊤
nx)

2 − λ

N

∑

n∈[N ]

ξ̂⊤n x





subject to x ∈ ∆K .

This problem constitutes an instance of (3) with the input parameters

A(x) =
1√

N − 1





























0⊤ · · · 0⊤ 0⊤ · · · 0⊤

...
. . .

...
...

. . .
...

0⊤ · · · 0⊤ 0⊤ · · · 0⊤

0⊤ · · · 0⊤ x⊤ · · · 0⊤

...
. . .

...
...

. . .
...

0⊤ · · · 0⊤ 0⊤ · · · x⊤





























, b(x) = − λ

N





























x

...

x

0

...

0





























, and c(x) = 0.

Example 2 (Robust Project Crashing). Consider a project that is described by an activity-on-arc net-

work N (V,A), where V is the set of nodes representing the events, while A is the set of arcs representing

the activities. We assume that that node with index 1 represents the start of the project and the node with

index |V| represents the end of the project. We define dij ∈ [0, 1] to be the nominal duration of the activity

(i, j) ∈ A. Here, we assume that the durations dij, (i, j) ∈ A, are already normalized so that they take values

in the unit interval.
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The goal of project crashing is to determine the best resource assignments xij, (i, j) ∈ A, on the activities

that minimize the project completion time or makespan. If the activity duration dij−xij represents the length

of the arc (i, j), then the project completion time can be determined by computing the length of the longest

path from the start node to the end node. We can formulate project crashing as the optimization problem

minimize sup
z∈Z

∑

(i,j)∈A

(dij − xij)zij

subject to x ∈ X ,

where

Z =



















z ∈ {0, 1}|A| :
∑

j:(i,j)∈A

zij −
∑

j:(j,i)∈A

zji =



















1 if i = 1

−1 if i = |V|
0 if otherwise

, ∀i ∈ V



















.

If the task durations d are uncertain and are only known to belong to the prescribed uncertainty set D ⊆
[0, 1]|A|, then we arrive at the robust optimization problem

minimize sup
d∈D



sup
z∈Z

∑

(i,j)∈A

(dij − xij)zij





subject to x ∈ X .
(6)

By combining the suprema over D and Z, and linearizing the bilinear terms dijzij, (i, j) ∈ A, we can

reformulate the objective of this problem as

sup
d∈D

sup
z∈Z

∑

(i,j)∈A

(dij − xij)zij = sup
(d,z,q)∈Ξ

e⊤q − x⊤z, (7)

where

Ξ =
{

(d, z, q) ∈ D × Z × R
|A|
+ : q ≤ z, q ≤ d, q ≥ d− e+ z

}

. (8)

Using the new objective function (7) and uncertainty set (8), the resulting robust optimization problem

constitutes an instance of (3) with the input parameters A(x) = 0, b(x) = [0⊤ − x⊤ e⊤]⊤, and c(x) = 0.

In the remainder of the paper, for any fixed x ∈ X , we define the mixed-integer quadratic program

Z(x) = sup
ξ∈Ξ
‖A(x)ξ‖2 + b(x)⊤ξ + c(x), (9)

which corresponds to the inner subproblem in the objective of (3). We may therefore represent (3) as

minimize Z(x)

subject to x ∈ X .

In the next section, we derive exact copositive programming reformulation for evaluating Z(x). By sub-

stituting Z(x) with the emerging copositive program, we obtain an equivalent finite-dimensional convex

reformulation for the RQP (3) that is principally amenable to numerical solution.
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3 Copositive Programming Reformulation

In this section, we derive an equivalent copositive programming reformulation for (3) by adopting the fol-

lowing steps. For any fixed x ∈ X , we first derive a copositive upper bound on Z(x). We then show that

the resulting reformulation is in fact exact under the boundedness assumption on the uncertainty set Ξ.

3.1 A Copositive Upper Bound on Z(x)

To derive the copositive reformulation, we leverage the following result by Burer [11] which enables us to

reduce a generic mixed-binary quadratic program into an equivalent conic program of polynomial size.

Theorem 1 ([11, Theorem 2.6]). The mixed-binary quadratic program

maximize ξ⊤Qξ + r⊤ξ

subject to ξ ∈ R
P
+

Fξ = g

ξℓ ∈ {0, 1} ∀ℓ ∈ L

(10)

is equivalent to the completely positive program

maximize tr(ΩQ) + r⊤ξ

subject to ξ ∈ R
P
+, Ω ∈ S

P
+

Fξ = g, diag(FΩF⊤) = g ◦ g
ξℓ = Ωℓℓ ∀ℓ ∈ L




Ω ξ

ξ⊤ 1



 �C∗ 0,

where L ⊆ [P ], and it is implicitly assumed that ξℓ ≤ 1, ℓ ∈ L, for any ξ ∈ R
P
+ satisfying Fξ = g.

We also rely on the following standard result which allows us to represent a scalar integer variable using

only logarithmically many binary variables [47].

Lemma 1. If ξ is a scalar integer decision variable taking values in {0, · · · , 2Q − 1}, with Q ∈ Z+, then we

can reformulate it concisely by employing Q binary decision variables χ1, · · · , χQ ∈ {0, 1}, as follows:

ξ =
∑

q∈[Q]

2q−1χq = v⊤
Qχ.

Using Theorem 1 and Lemma 1, we are now ready to state our first result.
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Proposition 1. For any fixed decision x ∈ X the optimal value of the quadratic maximization problem (9)

coincides with the optimal value of the completely positive program

Z(x) = sup tr
(

A(x)ΩA(x)⊤
)

+ b(x)⊤ξ′ + c(x)

s.t. ξ′ ∈ R
K′

+ , Ω ∈ S
K′

+

Sξ′ = t, diag(SΩS
⊤) = t ◦ t

ξ′ℓ = Ωℓℓ ∀ℓ ∈ [LQ]




Ω ξ′

ξ′⊤ 1



 �C∗ 0,

(11)

where

S =



































0 · · · 0 0 · · · 0 S

−v⊤
Q · · · 0⊤ 0⊤ · · · 0⊤ e⊤1

...
. . .

...
...

. . .
...

...

0⊤ · · · −v⊤
Q 0⊤ · · · 0⊤ e⊤L

I · · · 0 I · · · 0 0

...
. . .

...
...

. . .
...

...

0 · · · I 0 · · · I 0



































∈ R
J ′×K′

, t =



































t

0
...

0

e

...

e



































∈ R
J ′

,

A(x) =
[

0 · · · 0 0 · · · 0 A(x)
]

∈ R
M×K′

and

b(x) =
[

0⊤ · · · 0⊤ 0⊤ · · · 0⊤ b(x)⊤
]⊤

∈ R
K′

,

(12)

with

J ′ = LQ+ J + L and K ′ = 2LQ+K.

Proof. Lemma 1 enables us to reformulate the mixed-integer quadratic program (9) equivalently as the

mixed-binary quadratic program

Z(x) = sup ‖A(x)ξ‖2 + b(x)⊤ξ + c(x)

s.t. ξ ∈ R
K
+ , χℓ ∈ {0, 1}Q ∀ℓ ∈ [L]

Sξ = t

ξℓ = v⊤
Qχℓ ∀ℓ ∈ [L].

(13)

We now employ Theorem 1 to derive the equivalent completely positive program for (13). To this end, we

first bring the above quadratic program into the standard form (10). We introduce the redundant linear

constraints χℓ ≤ e, ℓ ∈ [L], which are pertinent for the exactness of the reformulation, and we define new

auxiliary slack variables ηℓ, ℓ ∈ [L], to transform these inequalities into the equality constraints χℓ+ηℓ = e,
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∀ℓ ∈ [L]. This yields the equivalent problem

Z(x) = sup ‖A(x)ξ‖2 + b(x)⊤ξ + c(x)

s.t. ξ ∈ R
K
+ , ηℓ ∈ R

Q
+, χℓ ∈ {0, 1}Q ∀ℓ ∈ [L]

Sξ = t

ξℓ = v⊤
Qχℓ ∀ℓ ∈ [L]

χℓ + ηℓ = e ∀ℓ ∈ [L].

(14)

We next define the expanded vector

ξ′ =
[

χ⊤
1 · · · χ⊤

L η⊤
1 · · · η⊤

L ξ⊤
]⊤

∈ R
K′

+

that comprises all decision variables in (14). Together with the augmented parameters (12), we can refor-

mulate (14) concisely as the problem

Z(x) = sup ‖A(x)ξ′‖2 + b(x)⊤ξ′ + c(x)

s.t. ξ′ ∈ R
K′

+

Sξ′ = t

ξ′ℓ ∈ {0, 1} ∀ℓ ∈ [LQ] .

(15)

The mixed-binary quadratic program (15) already has the desired standard form (10) with inputs P = K ′,

Q = A(x)⊤A(x), r = b(x), F = S, g = t, and L = [LQ]. We may thus apply Theorem 1 to obtain the

equivalent completely positive program (11). This completes the proof.

We remark that in view of the concise representation in Lemma 1, the size of the completely positive

program (11) remains polynomial in the size of the input data. This completely positive program admits a

dual copositive program given by

Z(x) = inf c(x) + t
⊤ψ + (t ◦ t)⊤φ+ τ

s.t. τ ∈ R, ψ,φ ∈ R
J ′

, γ ∈ R
LQ





S
⊤ diag(φ)S −A(x)⊤A(x)− diag

(

[γ⊤ 0⊤]⊤
)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)⊤

τ



 �C 0.

(16)

By weak conic duality, the optimal value of this copositive program constitutes an upper bound on Z(x).

Proposition 2. For any fixed decision x ∈ X we have Z(x) ≥ Z(x).

3.2 A Copositive Reformulation of RQP

In this section, we demonstrate strong duality for the primal and dual pair (11) and (16), respectively,

under the natural boundedness assumption on the uncertainty set Ξ. This exactness result enables us to

reformulate the RQP (3) equivalently as a copositive program of polynomial size.
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Theorem 2 (Strong Duality). For any fixed decision x ∈ X we have Z(x) = Z(x).

We would like to mention that a similar result is proved in a recent paper (Theorem 8 in [9]). However,

the two proofs are quite different from one another. While the proof in [9] establishes strong duality by

proving the existence of a Slater point for a general copositive program, we show explicitly how to construct

a Slater point for the copositive program (16) from input parameters. Because of its constructive nature,

we believe our proof is interesting on its own and sheds some light on the geometry of the feasible region

of (16).

We note that the primal completely positive program (11) never has an interior [12]. In order to prove

Theorem 2, we construct a Slater point for the dual copositive program (16). The construction of the Slater

point for problem (16) relies on the following two lemmas. We observe that by construction the boundedness

of the uncertainty set Ξ means that the lifted polytope

Ξ′ = {ξ′ ∈ R
K′

: Sξ′ = t, ξ′ ≥ 0} (17)

is also bounded. This gives rise to the following lemma on the strict copositivity of the matrix S
⊤
S.

Lemma 2. We have S
⊤
S ≻C 0.

Proof. The boundedness assumption implies that the recession cone of the set Ξ′ coincides with the point 0,

that is, {ξ′ ∈ R
K′

+ : Sξ′ = 0} = {0}. Thus, for every ξ′ ≥ 0, ξ′ 6= 0, we must have Sξ′ 6= 0, which further

implies that ξ′
⊤
S

⊤
Sξ′ > 0 for all ξ′ ≥ 0 such that ξ′ 6= 0. Hence, the matrix S

⊤
S is strictly copositive.

The next lemma, which was proven in [29, Lemma 4], constitutes an extension of the Schur complements

lemma for matrices with a copositive sub-matrix. We include the proof here to keep the paper self-contained.

Lemma 3 (Copositive Schur Complements). Consider the symmetric matrix

M =





P Q

Q⊤ R



 .

We then have M ≻C 0 if R−Q⊤P−1Q ≻C 0 and P ≻ 0.

Proof. Consider a non-negative vector [ξ⊤ ρ⊤]⊤ ∈ R
P+Q
+ satisfying e⊤ξ + e⊤ρ = 1. We have

[ξ⊤ ρ⊤]M [ξ⊤ ρ⊤]⊤ = ξ⊤Pξ + 2ξ⊤Qρ+ ρ⊤Rρ

= (ξ + P−1Qρ)⊤P (ξ + P−1Qρ) + ρ⊤(R−Q⊤P−1Q)ρ ≥ 0.

The final inequality follows from the assumptions P ≻ 0, R − Q⊤P−1Q ≻C 0 and ρ ≥ 0. In fact, the

inequality will be strict, which can be shown by considering the following two cases:

1. If ρ = 0, then e⊤ξ = 1. Therefore ξ 6= 0, which implies that (ξ + P−1Qρ)⊤P (ξ + P−1Qρ) > 0.

11



2. If ρ 6= 0, then the assumption R−Q⊤P−1Q ≻C 0 implies that ρ⊤(R−Q⊤P−1Q)ρ > 0.

Therefore, in both cases, by rescaling we have [ξ⊤ ρ⊤]M [ξ⊤ ρ⊤]⊤ > 0 for all [ξ⊤ ρ⊤]⊤ ∈ R
P+Q
+ such that

[ξ⊤ ρ⊤]⊤ 6= 0. Hence, M ≻C 0.

Using Lemmas 2 and 3, we are now ready to prove the main strong duality result.

Proof of Theorem 2. We construct a Slater point (τ,ψ,φ,γ) for problem (16). Specifically, we set γ = 0,

ψ = 0, and φ = ρe for some ρ > 0. Problem (16) then admits a Slater point if there exist scalars ρ, τ > 0,

such that




ρS⊤
S −A(x)⊤A(x) − 1

2b(x)

− 1
2b(x)

⊤ τ



 ≻C 0. (18)

Lemma 2 implies that for a sufficiently large ρ the matrix ρS⊤
S −A(x)⊤A(x) is strictly copositive. Thus,

we can choose a positive τ to ensure that

ρS⊤
S −A(x)⊤A(x)− 1

4τ
b(x)b(x)⊤ ≻C 0.

Using Lemma 3, we may conclude that the strict copositivity constraint in (18) is satisfied by the constructed

solution (τ,ψ,φ,γ). Thus, problem (16) admits a Slater point and strong duality indeed holds for the primal

and dual pair (11) and (16), respectively.

The exactness result portrayed in Theorem 2 enables us to derive the equivalent copositive programming

reformulation for (3).

Theorem 3. The RQP (3) is equivalent to the following copositive program.

minimize c(x) + t
⊤ψ + (t ◦ t)⊤φ+ τ

subject to x ∈ X , τ ∈ R, ψ,φ ∈ R
J ′

, γ ∈ R
LQ, H ∈ S

K′

+




I A(x)

A(x)⊤ H



 � 0





S
⊤ diag(φ)S −H − diag

(

[γ⊤ 0⊤]⊤
)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)⊤

τ



 �C 0

(19)

The proof of Theorem 3 relies on the following lemma, which linearizes the quadratic term A(x)⊤A(x)

in the left-hand side matrix of problem (16).

Lemma 4. Let M ∈ S
R be a symmetric matrix and A ∈ R

P×Q be an arbitrary matrix with Q ≤ R. Then

the copositive inequality

M �C





A⊤A 0

0 0



 (20)

12



is satisfied if and only if there exists a positive semidefinite matrix H ∈ S
Q
+ such that

M �C





H 0

0 0



 and





I A

A⊤ H



 � 0. (21)

Proof. The only if statement is satisfied immediately by settingH = A⊤A. To prove the converse statement,

assume that there exists such a positive semidefinite matrix H ∈ S
Q
+. Then by the Schur complement the

semidefinite inequality in (21) implies that H � A⊤A and, a fortiori, H �C A
⊤A. Combining this with

the copositive inequality in (21) then yields (20). Thus, the claim follows.

Proof of Theorem 3. Applying Theorem 2, we may replace the objective function of (3) with the correspond-

ing copositive reformulation, we thus find that problem (3) is equivalent to

minimize c(x) + t
⊤ψ + (t ◦ t)⊤φ+ τ

subject to x ∈ X , τ ∈ R, ψ,φ ∈ R
J ′

, γ ∈ R
LQ





S
⊤ diag(φ)S −A(x)⊤A(x)− diag

(

[γ⊤ 0⊤]⊤
)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)⊤

τ



 �C 0.

Next, we apply Lemma 4 to linearize the quadratic terms A(x)⊤A(x), which gives rise to the desired

copositive program (19). This completes the proof.

4 Conservative Semidefinite Programming Approximation

The copositive program (19) is intractable due to its equivalence with generic RQPs over a polyhedral

uncertainty set [4]. In the copositive reformulation, however, all the difficulty of the original problem (3)

is shifted into the copositive cone C, which has been well-studied in the literature. Specifically, there exists

a hierarchy of increasingly tight semidefinite representable inner approximations that converge in finitely

many iterations to C [40, 10, 16, 33]. The simplest of these approximations is given by the cone

C0 =
{

M ∈ S
K :M = P +N , P � 0, N ≥ 0

}

,

which contains all symmetric matrices that can be decomposed into a sum of positive semidefinite and non-

negative matrices. For dimensions K ≤ 4 it can be shown that C0 = C [18], while for K > 4, C0 is a strict

subset of C.
Replacing the cone C in (19) with the inner approximation C0 gives rise to a tractable conservative

approximation for the RQP (3). In this case, however, the resulting optimization problem might have no

interior or even become infeasible as the Slater point constructed in Theorem 2 can fail to be a Slater point to

the restricted problem. Indeed, the strict copositivity of the matrix S
⊤
S is in general insufficient to ensure

that the matrix is also strictly positive definite. To remedy this shortcoming, we suggest the following simple
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modification to the primal completely positive formulation of Z(x) in (11). Specifically, we assume that there

exists a non-degenerate ellipsoid centered at c ∈ R
K′

+ with radius r ∈ R++ and shape parameter Q ∈ S
K′

++

given by

B(r,Q, c) =
{

ξ′ ∈ R
K′

: ‖Q(ξ′ − c)‖ ≤ r
}

that contains the lifted set Ξ′ in (17). We then consider the following augmented completely positive

programming reformulation for the maximization problem (9).

Z(x) = sup tr
(

A(x)ΩA(x)⊤
)

+ b(x)⊤ξ′ + c(x)

s.t. ξ′ ∈ R
K′

+ , Ω ∈ S
K′

+

Sξ′ = t, diag(SΩS
⊤) = t ◦ t

ξ′ℓ = Ωℓℓ ∀ℓ ∈ [LQ]

tr
(

QΩQ⊤
)

− 2c⊤Q⊤Qξ′ + c⊤Q⊤Qc ≤ r2




Ω ξ′

ξ′
⊤

1



 �C∗ 0

(22)

Here, we have added the redundant constraint tr
(

QΩQ⊤
)

− 2c⊤Q⊤Qξ′ + c⊤Q⊤Qc ≤ r2 to (11), which

arises from linearizing the quadratic constraint

‖Q(ξ′ − c)‖2 = tr
(

Qξ′ξ′
⊤
Q⊤
)

− 2c⊤Q⊤Qξ′ + c⊤Q⊤Qc ≤ r2,

where we have set Ω = ξ′ξ′
⊤
. The dual of the augmented problem (22) is given by the following copositive

program.

Z(x) = inf c(x) + t
⊤ψ + (t ◦ t)⊤φ+ λr2 − λ‖Qc‖2 + τ

s.t. τ ∈ R, λ ∈ R+, ψ,φ ∈ R
J′

, γ ∈ R
LQ, h ∈ R

K′





λQ⊤Q+ S
⊤ diag(φ)S −A(x)⊤A(x)− diag

(

[γ⊤ 0⊤]⊤
)

1
2h

1
2h

⊤ τ



 �C 0

h = S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤ − 2λQ⊤Qc

(23)

Note that we have Z(x) = Z(x) since all the new additional terms are redundant for the original reformula-

tions. Nevertheless, since the ellipsoid B(r,Q, c) is non-degenerate, we find that the matrix Q⊤Q is positive

definite. We can thus set all eigenvalues of the scaled matrix λQ⊤Q to any arbitrarily large positive values

by controlling the scalar λ ∈ R+. This suggests that replacing the cone C with its inner approximation C0

in (23) will always yield a problem with a Slater point.

Apart from helping us prove the existence of a Slater point, adding an ellipsoidal constraint to the

description of the uncertainty set can also be of help numerically. Although, the constraint is redundant for

the exact problem, it might not be redundant for the conservative approximation obtained by replacing C
with C0. Adding the constraint results in an additional variable λ in the SDP approximation, which can

14



improve the objective value. Ideally, we would like the volume of the ellipsoid to be as small as possible to

get more improvement. However, determining the parameters of the ellipsoid having minimum volume that

encloses the set Ξ is NP-hard. A feasible ellipsoid that can be generated tractably is {ξ ∈ R
K : ‖ξ‖ ≤ ‖r‖},

where

rk = sup
ξ∈Ξ

ξk, ∀k ∈ [K].

Note that the parameter r of the ellipsoid can be determined by solving K linear programs. Depending on

the specific uncertainty set at hand, it might be possible to find other tighter ellipsoidal approximations.

4.1 Comparison with the Approximate S-lemma Method

Next, we show that solving the problem by replacing C with the simplest inner approximation C0 is better

than the approximate S-lemma method. Since the latter is only valid in the case of continuous uncertain

parameters, we restrict the discussion to the case where the bounded uncertainty set contains no integral

terms and is given by the polytope Ξ =
{

ξ ∈ R
K
+ : Sξ = t

}

. Here, the extended parameters (12) simplify to

S = S, t = t, A(x) = A(x), and b(x) = b(x),

while the maximization problem (9) reduces to

Z(x) = sup
ξ∈Ξ
‖A(x)ξ‖2 + b(x)⊤ξ + c(x). (24)

The copositive programming reformulation (23) can then be simplified to

Z(x) = inf c(x) + t⊤ψ + (t ◦ t)⊤φ+ λr2 − λ‖Qc‖2 + τ

s.t. τ ∈ R, λ ∈ R+, ψ,φ ∈ R
J





λQ⊤Q+ S⊤ diag(φ)S −A(x)⊤A(x) 1
2

(

S⊤ψ − b(x)− 2λQ⊤Qc
)

1
2

(

S⊤ψ − b(x)− 2λQ⊤Qc
)⊤

τ



 �C 0.

(25)

Replacing the cone C in (25) with its inner approximation C0, we obtain a tractable SDP reformulation whose

optimal value Z
C0

(x) constitutes an upper bound on Z(x). Alternatively, we describe the approximate S-
lemma method below, which provides a different conservative SDP approximation for (24).

Proposition 3 (Approximate S-lemma Method [4]). Assume that the uncertainty set is a bounded polytope

and there is an ellipsoid centered at c ∈ R
K
+ of radius r given by B(r,Q, c) = {ξ ∈ R

K : ‖Q(ξ − c)‖ ≤ r}
that contains the set Ξ. Then, for any fixed x ∈ X , the maximization problem (9) is upper bounded by the

optimal value of the following semidefinite program:

Z
S
(x) = inf c(x) + t⊤θ + ρr2 − ρ‖Qc‖2 + κ

s.t. κ ∈ R, ρ ∈ R+, θ ∈ R
J , η ∈ R

J
+





ρQ⊤Q−A(x)⊤A(x) 1
2

(

S⊤θ − b(x)− η − 2ρQ⊤Qc
)

1
2

(

S⊤θ − b(x)− η − 2ρQ⊤Qc
)⊤

κ



 � 0.

(26)
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Proof. The quadratic maximization problem in (24) can be equivalently reformulated as

Z(x) = sup ‖A(x)ξ‖2 + b(x)⊤ξ + c(x)

s.t. ξ ∈ R
K
+

Sξ = t

‖Q(ξ − c)‖2 ≤ r2.

Here, the last constraint is added without loss generality since Ξ ⊆ B(r,Q, c). Reformulating the problem

into its Lagrangian form then yields

Z(x)

= sup
ξ

inf
η≥0,ρ≥0,θ

‖A(x)ξ‖2 + b(x)⊤ξ + c(x) + t⊤θ − ξ⊤S⊤θ + ξ⊤η + ρr2 − ρ‖Q(ξ − c)‖2

≤ inf
η≥0,ρ≥0,θ

sup
ξ

‖A(x)ξ‖2 + b(x)⊤ξ + c(x) + t⊤θ − ξ⊤S⊤θ + ξ⊤η + ρr2 − ρ‖Q(ξ − c)‖2

= inf
η≥0,ρ≥0,θ

c(x) + t⊤θ + ρr2 − ρ‖Qc‖2

+sup
ξ

(

‖A(x)ξ‖2 + b(x)⊤ξ − ξ⊤S⊤θ + ξ⊤η − ρ‖Qξ‖2 + 2ρξ⊤Q⊤Qc
)

,

where the inequality follows from the weak Lagrangian duality. We next introduce an epigraphical variable κ

that shifts the supremum in the objective function into the constraint. We have

Z(x) ≤ inf c(x) + t⊤θ + ρr2 − ρ‖Qc‖2 + κ

s.t. θ ∈ R
J , η ∈ R

K
+ , ρ ∈ R+, κ ∈ R

sup
ξ

(

‖A(x)ξ‖2 + b(x)⊤ξ − ξ⊤S⊤θ + ξ⊤η − ρ‖Qξ‖2 + 2ρξ⊤Q⊤Qc
)

≤ κ.

Reformulating the semi-infinite constraint as a semidefinite constraint then yields the desired reformula-

tion (26). This completes the proof.

The next proposition shows that the approximation resulting from replacing the copositive cone C in (25)

with its coarsest inner approximation C0 is stronger than the state-of-art approximate S-lemma method.

Proposition 4. The following relation holds.

Z(x) = Z(x) ≤ Z
C0

(x) ≤ Z
S
(x)

Proof. The equality and the first inequality hold by construction. To prove the second inequality, we consider

the following semidefinite program that arises from replacing the cone C with the inner approximation C0

in (25).

Z
C0

(x) = inf c(x) + t⊤ψ + (t ◦ t)⊤φ+ λr2 − λ‖Qc‖2 + τ

s.t. τ ∈ R, , λ, h ∈ R+, ψ,φ ∈ R
J , F ∈ R

K×K
+ , g ∈ R

K
+





λQ⊤Q+ S⊤ diag(φ)S −A(x)⊤A(x) 1
2

(

S⊤ψ − b(x)− 2λQ⊤Qc
)

1
2

(

S⊤ψ − b(x)− 2λQ⊤Qc
)⊤

τ



 �





F g

g⊤ h





(27)
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Next, we show that any feasible solution (κ, ρ,θ,η) to (26) can be used to construct a feasible solution

(τ, λ, h,ψ,φ,F , g) to (27) with the same objective value. Specifically, we set τ = κ, λ = ρ, h = 0, ψ = θ,

φ = 0, F = 0, and g = η. The feasibility of the solution (κ, ρ,θ,η) in (26) then implies that the constructed

solution (τ, λ, h,ψ,φ,F , g) is also feasible in (27). One can verify that these solutions give rise to the same

objective function value for the respective problems. Thus, the claim follows.

Next, we demonstrate that the inequality in Z
0
(x) ≤ Z

S
(x) in Proposition 4 can often be strict. This

affirms that the proposed SDP approximation (27) is indeed stronger than the approximate S-lemma method.

Example 3. Consider the following quadratic maximization problem:

Z(x) = sup ξ21

s.t. ξ ∈ R
2
+

2ξ1 + ξ2 = 2.

(28)

A simple analysis shows that Z(x) = 1, which is attained at the solution (ξ1, ξ2) = (1, 0). The problem (28)

constitutes an instance of problem (24) with the parameterizations

A(x) =
[

1 0
]

, b(x) = 0, and c(x) = 0.

Here, the uncertainty set is given by the polytope Ξ = {ξ ∈ R
2
+ : 2ξ1 + ξ2 = 2}, which corresponds to

the inputs S = [2 1] and t = 2. Replacing the cone C with its inner approximation C0 in the copositive

programming reformulation of (28), we find that the resulting semidefinite program yields the same optimal

objective value of Z
C0

(x) = 1. Meanwhile, the corresponding approximate S-lemma method yields an optimal

objective value ZS(x) = 4. Thus, while the SDP approximation of the copositive program (25) is tight, the

approximate S-lemma generates an inferior objective value for the simple instance (28).

5 Extensions

In this section, we discuss several extensions to the RQP (3) which are also amenable to exact copositive

programming reformulation. In Section 5.1, we study two-stage robust optimization with mixed-integer

uncertainty set where the objective is quadratic in the first- and the second-stage decision variables. In

Section 5.2, we develop an extension to the case when the model has robust quadratic constraints. Finally,

in Section 5.3, we discuss the case where the objective function contains quadratic terms which are not

convex in the uncertain parameter vector ξ.
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5.1 Two-Stage Robust Quadratic Optimization

In this section, we study the two-stage robust quadratic optimization problems of the form

minimize sup
ξ∈Ξ
‖A(x)ξ‖2 + b(x)⊤ξ + c(x) +R(x, ξ)

subject to x ∈ X .
(29)

Here, for any fixed decision x ∈ X and uncertain parameter realization ξ ∈ Ξ, the second-stage cost R(x, ξ)
coincides with the optimal value of the convex quadratic program given by

R(x, ξ) = inf ‖Py‖2 + (Rξ + r)
⊤
y

s.t. y ∈ R
D2

T (x)ξ + h(x) ≤Wy,

(30)

where T (x) : X → R
T×K and h(x) : X → R

T are matrix- and vector-valued affine functions, respectively.

Example 4 (Support Vector Machines with Noisy Labels). Consider the following soft-margin support vector

machines (SVM) model for data classification.

minimize λ‖w‖2 +
∑

n∈[N ]

max
{

0, 1− ξ̂n(w
⊤χ̂n − w0)

}

subject to w ∈ R
K , w0 ∈ R

(31)

Here, for every index n ∈ [N ], the vector χ̂n ∈ R
K is a data point that has been labeled as ξ̂n ∈ {−1, 1}. The

objective of problem (31) is to find a hyperplane {χ ∈ R
K : w⊤χ = w0} that separates all points labeled +1

with the ones labeled −1. If the hyperplane satisfies ξ̂n(w
⊤χ̂n − w0) > 1, n ∈ [N ], then the data points are

linearly separable. In practice, however, these data points may not be linearly separable. We thus seek the best

linear separator that minimizes the number of incorrect classifications. This non-convex objective is captured

by employing the hinge loss term
∑

n∈[N ] max
{

0, 1− ξ̂n(w
⊤χ̂n − w0)

}

in (31) as a convex surrogate. Here,

the term λ‖w‖2 in the objective function constitutes a regularizer for the coefficient w.

If the labels {ξ̂n}n∈[N ] are erroneous, then one could envisage a robust optimization model that seeks the

best linear separator in view of the most adverse realization of the labels. To this end, we assume that the

vector of labels ξ is only known to reside in a prescribed binary uncertainty set Ξ ⊆ {−1, 1}N . Then an SVM

model that is robust against uncertainty in the labels can be formulated as

minimize λ‖w‖2 + sup
ξ∈Ξ
R(w, w0, ξ)

subject to w ∈ R
K , w0 ∈ R,

where

R(w, w0, ξ) = inf e⊤y

s.t. y ∈ R
N
+

yn ≥ 1− ξn(w
⊤χ̂n − w0) ∀n ∈ [N ].
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This problem constitutes an instance of (29) with the decision vector x = (w, w0), and the input parameters

A(x) = 0, b(x) = 0, c(x) = λ‖w‖2, P = 0, R = 0, r = e,

T (x) = − diag





















w⊤χ̂1

...

w⊤χ̂N





















− w0I, h(x) = e, and W = I.

The exactness result portrayed in Theorems 2 and 3 can be extended to the two-stage robust optimization

problem (29). Specifically, if the problem has a complete recourse1 then, by employing Theorem 2 and

extending the techniques developed in [29, Theorem 4], the two-stage problem (29) can be reformulated as

a copositive program of polynomial size.

Theorem 4. Assume that P has full column rank. Then the two-stage robust optimization problem (29) is

equivalent to the copositive program

minimize c(x)− 1

4
r⊤(P⊤P )−1r + t

⊤ψ + (t ◦ t)⊤φ+ τ

subject to x ∈ X , τ ∈ R, ψ,φ ∈ R
J′

, γ ∈ R
LQ, H ∈ S

K′

+




I A(x)

A(x)⊤ H



 � 0









S
⊤ diag(φ)S −H −P(x)− diag

(

[γ⊤ 0⊤]⊤
)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)⊤

τ









�C 0,

(32)

where

S =



































0 · · · 0 0 · · · 0 S 0

−v⊤
Q · · · 0⊤ 0⊤ · · · 0⊤ e⊤1 0⊤

...
. . .

...
...

. . .
...

...
...

0⊤ · · · −v⊤
Q 0⊤ · · · 0⊤ e⊤L 0⊤

I · · · 0 I · · · 0 0 0

...
. . .

...
...

. . .
...

...
...

0 · · · I 0 · · · I 0 0



































∈ R
J ′×K′

, t =



































t

0
...

0

e

...

e



































∈ R
J ′

,

P(x) =























0 · · · 0 0 · · · 0 0 0

...
. . .

...
...

. . .
...

...
...

0 · · · 0 0 · · · 0 0 0

0 · · · 0 0 · · · 0 − 1
4R

⊤(P⊤P )−1R 1
2

(

T (x) + 1
2W (P⊤P )−1R

)⊤

0 · · · 0 0 · · · 0 1
2

(

T (x) + 1
2W (P⊤P )−1R

)

− 1
4W (P⊤P )−1W⊤























∈ S
K′

,

1The two-stage problem (29) has complete recourse if there exists y+ ∈ RD2 with Wy+ > 0, which implies that the

second-stage subproblem is feasible for every x ∈ RD1 and ξ ∈ RK .
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A(x) =
[

0 · · · 0 0 · · · 0 A(x) 0

]

∈ R
M×K′

, and

b(x) =
[

0⊤ · · · 0⊤ 0⊤ · · · 0⊤ (b(x)− 1
2R

⊤(P⊤P )−1r)⊤ (h(x)− 1
2W (P⊤P )−1r)⊤

]⊤

∈ R
K′

,

with

J ′ = LQ+ J + L and K ′ = 2LQ+K + T.

Proof. Since P has full column rank, the matrix P⊤P is positive definite. Thus, for any fixed x ∈ X and

ξ ∈ Ξ, the recourse problem (30) admits a dual quadratic program given by

R(x, ξ) = sup −1

4

(

(W⊤θ −Rξ − r)⊤(P⊤P )−1(W⊤θ −Rξ − r)
)

+ h(x)⊤θ + ξ⊤T (x)⊤θ

s.t. θ ∈ R
T
+.

(33)

Strong duality holds as the two-stage problem (29) has complete recourse. Substituting the dual formula-

tion (33) into the objective of (29) yields

sup
ξ∈Ξ
‖A(x)ξ‖2 + b(x)⊤ξ + c(x) +R(x, ξ)

= sup
ξ∈Ξ,θ∈R

T
+

‖A(x)ξ‖2 + b(x)⊤ξ + c(x)− 1

4

(

(W⊤θ −Rξ − r)⊤(P⊤P )−1(W⊤θ −Rξ − r)
)

+h(x)⊤θ + ξ⊤T (x)θ.

Thus, for any fixed x ∈ X , the objective value of the two-stage problem (29) coincides with the optimal

value of a quadratic maximization problem, which is amenable to an exact completely positive programming

reformulation similar to the one derived in Proposition 1. We can then follow the same steps taken in the

proofs of Theorems 2 and 3 to obtain the equivalent copositive program (32). This completes the proof.

Remark 1. The assumption that P has full column rank in Theorem 4 can be relaxed. If P does not have

full column rank then the symmetric matrix P⊤P is not positive definite but admits the eigendecomposition

P⊤P = UΛU−1, where U is an orthogonal matrix whose columns are the eigenvectors of P⊤P , while Λ is

a diagonal matrix with the eigenvalues of P⊤P on its main diagonal. We assume without loss of generality

that the matrix Λ has the block diagonal form





Λ+ 0

0 0



 ,

where Λ+ is a diagonal matrix whose main diagonal comprises the non-zero eigenvalues of P⊤P . Next,

by using the constructed eigendecomposition and performing the change of variable z ← U−1y, we can

reformulate the recourse problem (30) equivalently as

R(x, ξ) = inf z⊤+Λ+z+ + (Rξ + r)
⊤
U+z+ + (Rξ + r)

⊤
U0z0

s.t. (z+, z0) ∈ R
D2

T (x)ξ + h(x) ≤WU+z+ +WU0z0,
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where U = [U+ U0] and z = [z⊤+ z⊤0 ]⊤. The dual of this problem is given by the following quadratic

program with a linear constraint system:

R(x, ξ) = sup −1

4

(

(W⊤θ −Rξ − r)⊤U⊤
+Λ−1

+ U+(W
⊤θ −Rξ − r)

)

+ h(x)⊤θ + ξ⊤T (x)⊤θ

s.t. θ ∈ R
T
+

U⊤
0 (Rξ + r) = U⊤

0 W
⊤θ.

We can then repeat the same steps in the proof of Theorem 4 to obtain an equivalent copositive programming

reformulation. We omit this result for the sake of brevity.

5.2 Robust Quadratically Constrained Quadratic Programming (RQCQP)

The setting that we consider can be extended to the case where, in addition to the robust quadratic objective

function, there are several robust quadratic constraints of the form

sup
ξ∈Ξ

{

‖Ai(x)ξ‖2 + bi(x)⊤ξ + ci(x)
}

≤ 0 ∀i ∈ [I]. (34)

In this case, the goal is to find a decision x ∈ X which minimizes the worst-case objective function, while

ensuring that the quadratic constraints are satisfied for all possible uncertain parameter vectors in Ξ.

For every i ∈ [I], we define Ai(x) and bi(x) similarly to the definitions of the extended parameters A(x)

and b(x) in (12). By applying Theorem 2, the quadratic maximization problem in the i-th constraint of (34)

can be replaced with a copositive minimization problem, which yields the constraint

0 ≥ inf ci(x) + t
⊤ψi + (t ◦ t)⊤φi + τi

s.t. τi ∈ R, ψi,φi ∈ R
J′

, γi ∈ R
LQ





S
⊤ diag(φi)S −Ai(x)

⊤Ai(x)− diag
(

[γ⊤
i 0⊤]⊤

)

1
2

(

S
⊤ψi − bi(x) + [γ⊤

i 0⊤]⊤
)

1
2

(

S
⊤ψi − bi(x) + [γ⊤

i 0⊤]⊤
)⊤

τi



 �C 0.

The constraint is satisfied if and only if there exist decision variables τi ∈ R, ψi, φi ∈ R
J ′

, and γi ∈ R
LQ

such that the constraint system

ci(x) + t
⊤ψi + (t ◦ t)⊤φi + τi ≤ 0,





S
⊤ diag(φi)S −Ai(x)

⊤Ai(x)− diag
(

[γ⊤ 0⊤]⊤
)

1
2

(

S
⊤ψi − bi(x) + [γ⊤

i 0⊤]⊤
)

1
2

(

S
⊤ψi − bi(x) + [γ⊤

i 0⊤]⊤
)⊤

τi



 �C 0
(35)

is satisfied. Therefore the i-th constraint of (34) can be replaced by the constraint system (35). The

procedure for linearization of the quadratic terms Ai(x)
⊤Ai(x) is analogous to the method presented in

Theorem 3.
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5.3 Non-Convex Terms in the Objective Function

All exactness results in this paper extend immediately to the setting where the objective function in (3)

involves non-convex quadratic terms in the uncertainty ξ. Specifically, we consider the objective function

Z(x) = sup
ξ∈Ξ
‖A(x)ξ‖2 + ξ⊤D(x)ξ + b(x)⊤ξ + c(x),

whereD(x) : X → S
K is a matrix-valued affine function of x. We can still use Theorem 1 to reformulate Z(x)

as the optimal value of a copositive program. By following the steps of Proposition 1 and Theorem 3, the

copositive programming reformulation is obtained by replacing the last constraint in (19) with the copositive

constraint





S
⊤ diag(φ)S −H −D(x)− diag

(

[γ⊤ 0⊤]⊤
)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)

1
2

(

S
⊤ψ − b(x) + [γ⊤ 0⊤]⊤

)⊤

τ



 �C 0,

where

D(x) =

















0 · · · 0 0 · · · 0 0

...
. . .

...
...

. . .
...

...

0 · · · 0 0 · · · 0 0

0 · · · 0 0 · · · 0 D(x)

















∈ S
K′

.

We omit the details for the sake of brevity.

6 Numerical Experiments

In this section, we assess the performance of the SDP approximations presented in Section 4. All optimization

problems are solved using the YALMIP interface [35] on a 16-core 3.4 GHz computer with 32 GB RAM.

We use MOSEK 8.1 to solve SDP formulations, and CPLEX 12.8 to solve integer programs and non-convex

quadratic programs.

6.1 Least Squares

The classical least squares problem seeks an approximate solution x to an overdetermined linear system

Ax = b which minimizes the residual ‖Ax− b‖2. This yields the following quadratic program:

minimize ‖Ax− b‖2

subject to x ∈ R
N .

The solution to this problem can be very sensitive to perturbations in the input data A ∈ R
M×N and

b ∈ R
M [19, 26]. To address the issue of parameter uncertainty, El Ghaoui and Lebret [23] recommend
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solving the following robust optimization problem:

minimize sup
(U ,v)∈U

‖(A+U)x− (b+ v)‖2

subject to x ∈ R
N .

(36)

Here, the goal is to find a solution x that minimizes the worst-case residual when the matrix U and the

vector v can vary within the prescribed uncertainty set U . A tractable SDP reformulation of this problem

is derived in [23] for problem instances where the uncertainty set is given by the Frobenius norm ball

B(r) =
{

(U ,v) ∈ R
M×N × R

M :
∥

∥

[

U⊤ v
]∥

∥

F
≤ r
}

.

We consider the case when the uncertainty set is a polytope, and compare our SDP scheme with the state-

of-the-art approximate S-lemma method described in Section 4.1. We also compare our method with the

approximation scheme proposed by Bertsimas and Sim [7], where the worst-case quadratic term in (2)

is replaced with an upper bounding function. Minimizing this upper-bounding function over x yields an

approximate solution to the RQP. We note that the robust least squares problem can be solved to optimality

using Benders’ constraint generation method [8]. However, doing so entails solving a non-convex quadratic

optimization problem at each step to generate a valid cut, which becomes intractable when M and N become

large.

In our experiment, we consider the case where the uncertainty affects only the right-hand side vector b

(i.e., U = 0). We assume that the uncertain parameter v depends affinely on Nf factors represented by

ξ ∈ R
Nf , where Nf < M . Specifically, we consider the uncertainty set

U =
{

v ∈ R
M : v = Fξ, ξ ∈ R

Nf , ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ ρNf

}

,

where F ∈ R
M×Nf is the factor matrix and ρ lies in the interval [0, 1]. By substituting U = 0 and

v = Fξ into (36), the resulting robust problem constitutes an instance of RQP (3) with the following input

parameters:

A(x) = F , b(x) = −2F⊤(Ax− b), c(x) = (Ax− b)⊤(Ax− b),
Ξ =

{

ξ ∈ R
Nf : ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ ρNf

}

.

In order to solve the problem using our method, we modify the formulation discussed in Section 4 slightly,

which leads to a tremendous reduction in the solution time. We discuss this modification in Appendix A.

We perform an experiment on problem instances of dimensions M = 200, N = 20 and Nf = 30. The

experimental results are averaged over 100 random trials generated in the following manner. In each trial,

we sample the matrix A and the vector b from the uniform distribution on [−0.5, 0.5]M×N and [−0.5, 0.5]N ,

respectively. Each row of the matrix F is sampled randomly from a standard simplex, and ρ is generated

uniformly at random from the interval [0.1, 0.25]. For problems of this size, we are unable to solve the

problem to optimality using Benders’ method as the solver runs out of memory. Therefore, we put a time
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limit of 120 seconds for each iteration of the Benders’ method. By doing so, Benders’ method yields a lower

bound to the optimal worst-case residual, which we use as a baseline to compute the objective gaps for the

approximation methods.

Table 1 summarizes the optimality gaps of the approximation methods. The results show that our

method significantly outperforms the other two approximations in terms of the estimates of the worst-case

residuals. While the other two approximations generate overly pessimistic estimates of the resulting worst-

case residuals (with a relative difference of about 100%), the worst-case residuals estimated using our method

have negligible objective gaps.

Table 2 reports the solution times of finding the exact solution (using Benders’ method) and the upper

bounds provided by various approximation methods. It can be observed that the improvement in solution

quality given by our method comes at the cost of longer solution times compared to other approximation

methods. However, our method is still significantly faster than the exact Benders’ method. We also note that

while the approximation scheme described in [7] can be solved quickly, it is only valid when the uncertainty

set is defined as a norm-bounded set (l1 ∩ l∞ norm in our experiment). Our method, on the other hand, is

applicable for general polyhedral uncertainty sets.

Objective gap

Statistic SDP S-lemma B&S

Mean 0.0% 108.4% 99.7%

10th Percentile 0.0% 93.9% 80.5%

90th Percentile 0.0% 119.6% 115.3%

Table 1. Numerical results comparing the proposed SDP approximation (‘SDP’), the approxi-

mate S-lemma method (‘S-lemma’) and the approximation scheme proposed by Bertsimas and

Sim [7] (‘B&S’) for the least squares problem. The ‘objective gap’ quantifies the increase in the

worst-case residuals estimated using the approximation methods relative to the Benders’ lower

bound.

Benders SDP S-lemma B&S

Mean solution time (in secs) 626.9 10.2 0.45 0.004

Table 2. Solution times for the Benders’ constraint generation method (‘Benders’), the pro-

posed SDP approximation (‘SDP’), the approximate S-lemma method (‘S-lemma’) and the ap-

proximation scheme proposed by Bertsimas and Sim [7] (‘B&S’) for the least squares problem.
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6.2 Project Management

In this experiment, we consider the project crashing problem described in Example 2, where the duration

of activity (i, j) ∈ A is given by the uncertain quantity dij = (1 + rij)d
0
ij . Here, d0ij is the nominal activity

duration and rij represents exogenous fluctuations. We consider randomly generated project networks of

size |V| = 30 and order strength 0.75,2 which gives rise to projects with an average of 67 activities. Let xij

be the amount of resources that are used to expedite the activity (i, j). We fix the feasible set of the resource

allocation vector to X = {x ∈ [0, 1]|A| : e⊤x ≤ 3
4 |A|}, so that at most 75% of the activities can receive the

maximum resource allocation. The uncertainty set of d is defined through a factor model as follows:

D =
{

d ∈ R
|A| : dij = (1 + f⊤

ijχ)d
0
ij for some χ ∈ [0, 1]Nf , ∀(i, j) ∈ A

}

,

where the factor size is fixed to Nf = |V|. We set the nominal task durations to d0 = e. In each trial, we

sample the factor loading vector fij from the uniform distribution on [− 1
2Nf

, 1
2Nf

]Nf , which ensures that the

duration of each activity can deviate by up to 50% of its nominal value. We can form the final mixed-integer

uncertainty set Ξ from D using the procedure described in Example 2 (Equation (8)).

In our experiment, we compare the performance of our proposed SDP approximation with linear decision

rules (LDR) approximation scheme discussed in [14, 48] which we describe below. In Example 2, for our

reformulation, we model the second stage problem as the maximization problem over the binary variables z

(See Equation (6)). Alternatively, the second-stage problem can be written as the following minimization

problem:

minimize ρ|V| − ρ1

subject to ρ ∈ R
|V|,

ρj − ρi ≥ dij − xij , ∀(i, j) ∈ A.
Here, ρ is second-stage variable which depends on the realization of the uncertain d. In the LDR ap-

proximation scheme, ρ is restricted to be an affine function of d, which yields a tractable conservative

approximation. To assess the suboptimality of our SDP and the LDR approximation scheme, we solve the

problem to optimality using Benders’ constraint generation method.

Table 3 presents the optimality gaps of the two approximation methods for 100 randomly generated

project networks. The solution times of all the methods are reported in Table 4. It can be observed that

our proposed SDP approximation consistently provides near-optimal estimates of the worst-case project

makespan (∼ 2.7% gaps). On the other hand, while the LDR bound can be computed quickly, the bounds

are too pessimistic (∼ 27% gaps). The 10th and 90th percentiles of the objective gaps further indicate that

the estimated makespan generated from our SDP approximation stochastically dominates the makespan

generated from the LDR approximation. In addition to a higher estimate of the worst-case makespan, the

2The order strength denotes the fraction of all |V|(|V| − 1)/2 possible precedences between the nodes that are enforced in

the graph (either directly or through transitivity).
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actual makespan of the resource allocation x generated by the LDR approximation is also higher than the

ones generated by our method, as shown in the “Suboptimality” column in Table 3. The experimental results

demonstrate that our method generates near-optimal solutions to the project crashing problem faster than

solving the problem to optimality using Benders’ method.

Objective gap Suboptimality

Statistic SDP LDR SDP LDR

Mean 2.7% 26.9% 1.7% 10.0%

10th Percentile 2.0% 23.8% 1.3% 7.1%

90th Percentile 3.2% 30.2% 2.2% 12.8%

Table 3. Numerical results for the proposed SDP approximation (‘SDP’) and the linear decision

rules approximation (‘LDR’) for the project crashing problem. The ‘objective gap’ quantifies

the increase in the worst-case makespan estimated using the approximation methods relative

to the optimal worst-case makespan. The ‘suboptimality’ quantifies the increase in the actual

worst-case makespan of the resource allocations found using the approximation methods relative

to the optimal worst-case makespan.

Benders SDP LDR

Mean solution time (in secs) 518.0 85.0 0.16

Table 4. Solution times for the Benders’ constraint generation method (‘Benders’), the pro-

posed SDP approximation (‘SDP’) and the linear decision rules approximation (‘LDR’) for the

project crashing problem.

6.3 Multi-Item Newsvendor

We now demonstrate the advantage of using a mixed-integer uncertainty set over using a continuous uncer-

tainty set in a variant of the multi-item newsvendor problem, where an inventory planner must determine the

vector x ∈ R
N
+ of order quantities for N different raw-materials at the beginning of a planning period. The

raw materials are used to make K different types of products which are then sold to customers. The matrix

F ∈ R
N×K is such that Fnk represents the amount of raw material n required to make 1 unit of product k.

The demands ξ ∈ Z
K
+ for these products are uncertain and are assumed to belong to a prescribed discrete

uncertainty set Ξ. We assume that there are no ordering costs on the raw materials but the total order

quantity must not exceed a given budget B. Excess inventory of the n-th raw material incurs a per-unit

holding cost of gn, while the unmet demand incurs a quadratic penalty with coefficient λ. The quadratic
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penalty on the unmet demand is added to discourage stock-outs [30, 49].

For any realization of the demand vector ξ, the total cost of a fixed order x is given by

R(x, ξ) =

N
∑

n=1

gn

(

xn −
K
∑

k=1

Fnkξk

)+

+ λ

N
∑

n=1





(

K
∑

k=1

Fnkξk − xn

)+




2

= inf
y1∈RN ,y2∈RN

{

g⊤y1 + λy⊤
2 y2 : y1 ≥ x− Fξ, y1 ≥ 0, y2 ≥ Fξ − x, y2 ≥ 0

}

.

Here, we use the notation z+ to denote max{z, 0}. The objective of a risk-averse inventory planner is then

to determine a vector of order quantities x that minimizes the worst-case total cost supξ∈ΞR(x, ξ). This

gives rise to the optimization problem

minimize sup
ξ∈Ξ
R(x, ξ)

subject to x ∈ R
N
+

e⊤x ≤ B.

(37)

This problem constitutes an instance of the two-stage robust quadratic optimization problem (29) with

parameters

A(x) = 0, b(x) = 0, c(x) = 0, P =
√
λ





0 0

0 I



 , R = 0, r =





g

0



 ,

T (x) =

















−F
0

F

0

















, h(x) =

















x

0

−x
0

















, andW =

















I 0

I 0

0 I

0 I

















.

In this experiment, we compare the performance of the SDP approximation of the optimization prob-

lem (37) when ξ is explicitly modeled as a discrete vector versus the model where the integer restriction on ξ

is ignored. We consider problems with N = 8 raw materials and K = 5 products. We fix the vector of holding

costs to g = e, the ordering budget to B = 20, and the penalty constant to λ = 10. All experimental results

are averaged over 100 random trials generated in the following manner. We assume that every product uses

one unit each of two randomly chosen raw materials. In each trial, we generate every element of G ∈ R
2×K

uniformly at random from the interval [0, 1]. We define the actual discrete uncertainty set (ΞTrue) and the

set formed by ignoring the integrality assumption (ΞCont) as:

ΞTrue =
{

ξ ∈ Z
K
+ : ξ ≤ 15e, Gξ ≤ 0.75e

}

and ΞCont =
{

ξ ∈ R
K
+ : ξ ≤ 15e, Gξ ≤ 0.75e

}

,

and solve the SDP approximations of (37) with inputs ΞTrue and ΞCont. We use the Benders’ constraint

generation method to solve the problem to optimality.

The statistics of the optimality gaps generated by the models using ΞTrue and ΞCont are reported in

Table 5. The solution times of all the methods are presented in Table 6. We observe that the model using
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ΞTrue as the uncertainty set provides much better estimates of the worst-case cost (∼ 13% average gap) than

the model using ΞCont (∼ 85% average gap). Furthermore, our proposed SDP approximation can be solved

much faster than solving the problem exactly using Benders’ method. For problems with integer uncertainty,

these experimental results suggest that the SDP approximation which utilizes the integer restriction gives

high-quality solutions in comparison to the approximation which neglects these restrictions.

Objective gap Suboptimality

Statistic SDP True SDP Cont SDP True SDP Cont

Mean 13.1% 85.2% 13.0% 84.9%

10th Percentile 0.0% 25.8% 0.0% 25.7%

90th Percentile 28.4% 173.7% 27.6% 173.5%

Table 5. Numerical results for the SDP approximations for the newsvendor model with integer

uncertainty set (‘SDP True’) and the model that ignores the integrality restriction (‘SDP Cont’).

The ‘objective gap’ quantifies the increase in the worst-case cost estimated using the approxima-

tion methods relative to the optimal worst-case cost. The ‘suboptimality’ quantifies the increase

in the actual worst-case cost of the order quantities found using the approximation methods

relative to the optimal worst-case cost.

Benders SDP True SDP Cont

Mean solution time (in secs) 52.9 11.3 0.63

Table 6. Solution times for the Benders’ constraint generation method for the newsvendor

problem (‘Benders’), the SDP approximations for the model with integer uncertainty set (‘SDP

True’) and the model that ignores the integrality restriction (‘SDP Cont’).

7 Conclusion

The paper aims at developing a near-optimal approximation method for one- and two-stage robust quadratic

programs with mixed-integer uncertain parameters. The approximation method developed in the paper

is not only more general than the current state-of-the-art approximate S-lemma method—since the latter

only handles continuous uncertain parameters—but is guaranteed to yield a better estimate of the optimal

value. Furthermore, our numerical experiments show that the difference in the performance of the two

approximation method can be quite significant. Our experimental results also demonstrate the disadvantage

of ignoring the integer restrictions on the uncertain parameters. In the future, it would be interesting to
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extend the model to the distributionally robust setting, where additional information about the distribution

of the uncertain parameters is explicitly incorporated.
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A Implementation of Least Squares in Section 6.1

In this section, we limit the discussion to the case when there are no discrete uncertain parameters. In the

paper, we consider the uncertainty set to be of the standard form ΞS := {ξ ≥ 0 : Sξ = t}. However, in

some cases, the uncertainty sets are more naturally represented in the inequality form ΞI := {ξ : Sξ ≤ t}.
Transforming the uncertainty set in standard form involves introducing additional variables and constraints

which increases the problem size. As an example, in the least squares experiment in Section 6.1, we consider

the uncertainty set Ξ =
{

ξ ∈ R
Nf : ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ ρNf

}

. By lifting, the uncertainty set can be equiv-

alently written as ΞLS =
{

(ξ,γ) : ξ ∈ R
Nf , γ ∈ R

Nf , −ξ ≤ γ, ξ ≤ γ, γ ≤ e, e⊤γ ≤ ρNf

}

, which is of the

form ΞI . The paper [12] presents a generalized copositive programming (GCP) reformulation of non-convex

quadratic programs over conic representable sets. In [50], the authors consider a conservative approximation

when the cone is polyhedral, which is relevant for the polyhedral uncertainty sets that we consider. Utilizing

this GCP-based approximation, the robust least squares problem

minimize sup
ξ∈ΞI

‖Ax− (b+ Fξ)‖2

subject to x ∈ R
N

that we consider in Section 6.1 yields the following conservative SDP approximation:

minimize τ + (Ax− b)⊤(Ax− b)
subject to x ∈ R

N , µ ∈ R
J , N ∈ R

J×J , τ ∈ R

µ ≥ 0, N ≥ 0,




−F⊤F F⊤(Ax− b)
(Ax− b)⊤F 0



+





0 1
2S

⊤µ

1
2µ

⊤S τ − µ⊤t



 �





−S⊤

t⊤



N
[

−S t

]

.

(38)

We use this formulation with the uncertainty set ΞLS for our experiment in Section 6.1. Skipping the

conversion to the standard form generates same the objective value, but reduces the average solution time

from 85 seconds to about 10 seconds. We emphasize that this alternate formulation might not be valid

when some of the components of ξ are restricted to be integers. Therefore, it is not straightforward to apply

it to the project management and the newsvendor experiments, both of which contain discrete uncertain

parameters.
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[27] B. L. Gorissen, I. Yanıkoğlu, and D. den Hertog. A practical guide to robust optimization. Omega,

53:124–137, 2015.

[28] M. J. Hadjiyiannis, P. J. Goulart, and D. Kuhn. A scenario approach for estimating the suboptimality

of linear decision rules in two-stage robust optimization. In IEEE Conference on Decision and Control

and European Control Conference, pages 7386–7391, 2011.

[29] G. A. Hanasusanto and D. Kuhn. Conic programming reformulations of two-stage distributionally

robust linear programs over Wasserstein balls. Operations Research, 2018.

[30] G. A. Hay. Production, price, and inventory theory. The American Economic Review, 60(4):531–545,

1970.

[31] A. J. Kleywegt, A. Shapiro, and T. Homem de Mello. The sample average approximation method for

stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502, 2002.

32



[32] Q. Kong, C.-Y. Lee, C.-P. Teo, and Z. Zheng. Scheduling arrivals to a stochastic service delivery system

using copositive cones. Operations Research, 61(3):711–726, 2013.

[33] J. B. Lasserre. Convexity in semialgebraic geometry and polynomial optimization. SIAM Journal on

Optimization, 19(4):1995–2014, 2009.

[34] X. Li, K. Natarajan, C.-P. Teo, and Z. Zheng. Distributionally robust mixed integer linear programs:

Persistency models with applications. European Journal of Operational Research, 233(3):459–473, 2014.
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