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Abstract—In this paper, we consider the problem of operating
a battery storage unit in a home with a rooftop solar photovoltaic
(PV) system so as to minimize expected long-run electricity costs
under uncertain electricity usage, PV generation, and electricity
prices. Solving this dynamic program using standard techniques
is computationally burdensome, and is often complicated by
the difficulty of estimating conditional distributions from sparse
data. To overcome these challenges, we implement a data-driven
dynamic programming (DDP) algorithm that uses historical data
observations to generate empirical conditional distributions and
approximate the cost-to-go function. Then, we formulate two
robust data-driven dynamic programming (RDDP) algorithms
that consider the worst-case expected cost over a set of conditional
distributions centered at the empirical distribution, and within
a given Chi-square or Wasserstein distance, respectively. We test
our algorithms using data from homes with rooftop PV in Austin,
Texas. Numerical results reveal that DDP and RDDP outperform
common existing methods with acceptable computational effort.
Finally, we show that implementation of these superior opera-
tional algorithms significantly raises the break-even battery cost
under which a homeowner is incentivized to invest in a residential
battery rather than participate in a feed-in tariff or net energy
metering program.

Index Terms—Battery, energy storage, solar PV, robust opti-
mization, dynamic programming, stochastic control

I. INTRODUCTION

ISTRIBUTED renewable energy technologies are play-

ing an increasingly important role in electricity gener-
ation due to benefits such as energy cost savings, reduced
carbon emissions, and greater customer autonomy over energy
choices [1]. Among distributed renewable generation options,
solar photovoltaic (PV) systems have been widely deployed at
the residential level [2], and residential PV capacity in the U.S.
is projected to grow at a 10-15% annual rate between 2018 and
2022 [3]. However, unlike traditional, dispatchable generation
facilities, the power output of a PV system is uncertain.
Therefore, energy storage technologies that can be operated
cost-effectively will be crucial for mitigating intermittency
issues and enabling the continued expansion of PV generation.
This paper focuses on developing and testing algorithms for
efficiently operating residential distributed energy systems that
couple rooftop PV with battery storage (PV-battery systems).
While residential PV ownership has grown rapidly, the capital
cost of battery storage remains high. Clearly, formulating a
more effective operational strategy for PV-battery systems will
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significantly improve their generation usage efficiency and
reduce electricity bills, which in turn will accelerate market
uptake of PV-battery systems and amplify their cost and
emissions reduction benefits.

We consider an individual household with a self-owned PV-
battery system already installed. In each period, the household
consumes a random quantity of electricity. Part of the demand
is supplied from the PV system directly or by discharging the
battery. The rest is obtained from the grid with a stochastic,
time-varying electricity price. Our goal is to minimize the
electricity bill by optimizing the stochastic control of battery
operations under uncertain electricity usage, PV generation,
and electricity prices.

The literature on energy storage operations is quite large.
In [4], the authors developed an hourly-discretized optimiza-
tion algorithm to find the optimal daily operational control of
a wind-hydro power plant. Two-stage stochastic programming
models were formulated in [5] and [6] to maximize profit by
jointly optimizing wind generation and pumped hydroelectric
storage. In [7], the authors used particle swarm optimiza-
tion to maximize customers’ net benefits by scheduling their
distributed energy resources. In [8], researchers proposed
an infinite-horizon stochastic control model to minimize the
imbalance between available renewable power and load with
small storage capacity. They represented the imbalance as
a Laplace distributed process. The authors of [9] optimized
demand-side management in a smart grid as a noncooperative
game, and proved the existence of Nash equilibria.

A number of previous studies have applied dynamic pro-
gramming to energy storage problems. In [10], an adaptive
dynamic programming algorithm was constructed for grid
management to deal with uncertain market conditions and cus-
tomer behavior. In [11], a dynamic programming model with
a priori forecasting was used to improve the performance of a
hybrid system featuring wind and solar PV generation coupled
with compressed air energy storage. A stochastic dynamic
programming model was developed in [12] to co-optimize a
distributed battery storage unit that provides multiple services
which compete for its capacity. In [13], researchers studied
an electricity storage problem with inelastic demand, and
constructed an algorithm using approximate dynamic program-
ming with a Markov transition matrix trained by real-world
data. Online algorithms based on Lyapunov optimization with
thresholds were proposed in [14] and [15] to optimize storage
device scheduling, and these methods achieved asymptotic
optimality. In [16], the author proposed Lyapunov optimiza-
tion to optimize load scheduling and energy storage control
simultaneously. In [17], a finite-horizon dynamic programming
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model with an online stochastic algorithm combined with reg-
ularization was designed for storage utilization in a smart grid.
In [18], the authors established a threshold structure for the
optimal energy storage operational policy, which performed
efficiently in a setting with random electricity prices.

In this paper, we formulate the problem in a data-driven
manner and develop two robust data-driven dynamic program-
ming algorithms to optimize PV-battery system operations.
Our paper makes the following novel contributions.

1) To the best of our knowledge, we are the first researchers
to apply data-driven dynamic programming (DDP) to
the problem of optimizing the operations of residential
energy systems with rooftop PV and battery storage.
Our model directly leverages observed historical data, in
contrast to most other dynamic programming approaches
that use given or fitted distributions. This property gives
our method an advantage for dealing with the residential
battery storage operations problem, which has multiple
stages, high-dimensional uncertainty, and often limited
historical data that provide little or no prior knowledge
about the true parameter distributions.

2) We construct two robust data-driven dynamic program-
ming (RDDP) algorithms designed to help the DDP
approach achieve better performance in out-of-sample
circumstances. One algorithm uses Chi-square distance,
and the other uses Wasserstein distance, to define the
confidence set of distributions over which robust op-
timization minimizes the worst-case cost. Notably, our
use of Wasserstein distance within a DDP framework is
the first such attempt in the literature. Numerical results
show that our RDDP algorithms perform significantly
better than a state-of-the-art heuristic and approximate
dynamic programming, with acceptable computational
effort. Our RDDP scheme incorporating Wasserstein
distance performs nearly as well as that with Chi-square
distance, while substantially reducing computation time.

3) We analyze whether a household with rooftop PV should
invest in a residential battery storage unit, or partici-
pate in a feed-in tariff or net metering program. By
maximizing the value of a battery, implementation of
our RDDP algorithms raises the break-even battery cost
under which a household would find it optimal to install
a battery. Therefore, our results quantify the impact
that superior operational efficiency achieved through the
RDDP control algorithms can have on accelerating the
adoption of residential battery systems as their costs
decline. We find that the impact is large.

The rest of the paper proceeds as follows. Section II introduces
the generic dynamic programming model for battery storage
operations, and then Section III outlines our DDP formulation.
Section IV describes how we incorporate robustness to form
the RDDP model. In Section V, we conduct numerical exper-
iments using real-world data to compare the performance of
our algorithms against previously proposed methods, and to
investigate some factors that affect performance. In Section
VI, we analyze the implications of our algorithms for the
break-even battery cost under which a household would be

better off investing in a residential battery than participating
in a feed-in tariff or net metering program. We conclude in
Section VII with a summary of our most important findings
and contributions.

II. PROBLEM FORMULATION

In this section, we describe the operation of a residential
PV-battery system over 7' time periods and formulate a math-
ematical optimization model for the dynamic decision-making
problem.

The residential unit is equipped with a PV panel that may
supply additional energy to satisfy the household consumption
and reduce the amount purchased from the grid. There is also
a battery that can be utilized to store any excess energy for
use at later times, with imperfect efficiency. Note that power
flow between the home and grid is not explicitly modeled.

The operation of the residential PV-battery system takes
place as follows. At the beginning of period ¢, there are s;
units of energy stored in the battery. Throughout the period,
the PV panel generates w; units of energy while the household
consumes u; units. These quantities may vary stochastically
over time. Any unmet demand will be satisfied by discharging
z; units from the battery and by purchasing ¢; units from
the grid at a time-varying, per-unit price m;. The system
then transitions to the next time period ¢t + 1 with a new
battery storage level s;1, and the process is repeated until
the terminal time 7.

We now formalize the mathematical optimization model that
represents the dynamic decision-making problem. To this end,
we define by & := (m, us, wy) the triplet of exogenous pa-
rameters consisting of the grid electricity price, the household
energy consumption, and the electricity generated by the PV
panel in period ¢, respectively. Let & = (&1, ..., ;) denote the
vector of historical exogenous parameters up to and including
time ¢. The values of these parameters are independent of the
decisions made by the system operator (i.e., the household).
In contrast, the battery level s; depends on the decisions made
prior to time ¢ and is often referred to as the endogenous state.
The system operator’s objective is to determine a sequence
of purchasing and battery operation policies that minimize
the total expected cost [}, m;g;] over the entire planning
horizon 7', where the decisions g; and x; are adapted to the
state (s¢, &), for all t = 1,...,7T. This formulation gives rise
to a stochastic optimal control problem whose parameters and
decision variables are delineated in Table I.

The stochastic optimal control problem can be solved via
a dynamic programming procedure, as follows. For any fixed
battery storage level s; and exogenous state &;, the cost-to-go
at time ¢ is given by the optimal value of the optimization
problem
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TABLE I
PARAMETERS AND DECISION VARIABLES

Deterministic parameters:
p.  charging efficiency
pa  discharging efficiency
Ps storage efficiency
Smax  battery energy storage capacity
Sp  storage level at the beginning of the cycle
C  battery charging capacity per period
D battery discharging capacity per period
Stochastic parameters:
m  grid electricity price in period t
u;  electricity usage in period t
wy  electricity generated by the PV panel in period t
& triplet of exogenous parameters in period ¢,
Et = (Tl't, U, wt)
Decision variables:
g electricity purchased from the grid in period ¢
x$  electricity discharged from the battery in period ¢
xy  electricity charged to the battery in period ¢
s¢  electricity stored in the battery at the beginning of

period ¢

Vi(st,&) = min mg + E[Vig1(se41,&41)1&) (1)
s. t. wt—l—x?—xf—i—gtzut (1b)
gt € Ry (1o
x5 € [0,C), 2 € [0, D] (1d)
St+1 S [07Smax] (le)

ay c
St41 < PsSt — — + Py (1f)

Pd

Constraint (1b) stipulates that the demand wu; must be
satisfied via electricity supplied by the PV panel w;, the battery
r; = x¢ — 5, and the grid g;. (1c) restricts the power drawn
from the grid to be non-negative (i.e., selling electricity back
to the grid is not allowed). (1d) enforces maximum charge
and discharge rates for the battery, and (le) specifies its
maximum energy storage capacity. (1f) models the evolution
of the storage level over one time period, including losses due
to imperfect storage, charging, and discharging efficiencies.

The objective function (la) is defined as the sum of the
purchase cost for time period ¢ and the conditional expectation
of the cost-to-go at time ¢ + 1. By Bellman’s principle of
optimality, this objective function coincides with the expected
cost over the time periods t,...,T. Thus, the total expected
cost over the entire planning horizon is given by Vj(s1, &1),
which is obtained by solving the problem (1) backwards for
t="1T,...,1, with a terminal condition Vry; = 0.

The dynamic programming procedure outlined above solves
the stochastic optimal control problem exactly. The scheme
is convex in the sense that i) for every fixed s; and &,
the optimization problem (1) is convex, and ii) for every
fixed &;, the cost-to-go V(s &;) is a convex function in
s¢. Despite these appealing properties, the scheme suffers

3

from two major shortcomings. First, it is computationally
challenging due to the requirement of solving the problem (1)
for the continuum of all states (s, &;). Also, evaluating the
conditional expectation exactly is generally intractable as it
involves multidimensional integration. Second, distributional
knowledge about the exogenous parameters is typically incom-
plete. The decision maker solely has at his or her disposal a
sequence of historical trajectories {7}, that can be utilized
to infer the conditional distribution of &;,1, and to estimate
the conditional expectation in (la). In the following section,
we develop a data-driven scheme that addresses these two
shortcomings.

III. DATA-DRIVEN DYNAMIC PROGRAMMING

In the DDP formulation, the conditional expectation in (1a)
is replaced with its empirical estimate given by

N

Zﬁti(ft)vtﬂ(stﬂyﬁzﬂ)- 2

=1

The sample conditional probabilities (py;(&;))~., in (2) are
determined via the nearest-neighbor learning algorithm [19],
which assigns positive mass only to the K closest observa-
tions to the reference point &;, and simply neglects others.
The nearest-neighbor learning algorithm enables us to select
“good” trajectories automatically and improves the efficiency
of the algorithm. The algorithm also utilizes a Gaussian
smoother S(y) = exp(||y||?/2)/v2r so that data points
nearer to &; have larger weights. Specifically, we have

SE—-€)
ﬁti(ﬁt) = zjeN(Et,Kt) S(& — 6{)
0

if i e N(&, K,

otherwise,

3)
where N(&;, K;) denotes the set of indices of the K closest
data points to &;. Since the distribution of candidate points in
{&}f\il varies significantly with ¢, instead of a fixed value,
we set a dynamic K; depending on the dispersion of data for
each t. In other words, K; is determined by a given similarity

Djene ) S& — &)

threshold 6 as
- > 9} . 4)
ZjeN(st,N) S(& — &)

Replacing the conditional expectation in (la) with the
estimate (2) yields the formulation

Kt:min{k:

N
Vilsi,&) = min mge+ Y pri(€)Vipa(ser1,€i41)
i=1
s. t. gt € R+

z$ €10,C), 2 € [0, D]
St+1 S [O7Smax]

wy + g — 2§+ g0 >y
d

< pasy — 2t o
St+1 < PsSt + pcxy.
Pd

The DDP scheme solves this problem backwards for ¢ =
T, ...,1 to arrive at an approximation V1 (s1,&1) of the true to-
tal expected cost Vi (s1,&1), i.e., Vi(s1,&1) = Vi(s1,&1). This
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scheme was originally studied in [20], where the conditional
expectation is approximated via the Nadaraya-Watson kernel
regression [21], [22]. In this paper, we provide an extension
by incorporating nearest-neighbor learning, which enables a
more efficient implementation when the data points are heavily
clustered.

The DDP scheme is attractive because it is asymptoti-
cally consistent, meaning that the true total expected cost
is recovered as the data size grows. It also results in a
significant improvement in computational tractability as it only
requires evaluating the cost-to-go function at the historical
data points {&}Y ;. To further alleviate the intractability of
evaluating the cost-to-go function for all endogenous states
st € [0, Smax], we discretize the state space into m points
{0, == Smax, =27 Smax - - - » Smax} and evaluate the func-
tion only at these points. The cost-to-go function is then
approximated by a convex piecewise linear function where
the interpolation points are given by the discretized points.
Since the endogenous state is univariate and the cost-to-go
function is convex in s;, this piecewise linear architecture
does not severely impact the computational complexity or the
approximation quality of the DDP scheme.

IV. ROBUST DATA-DRIVEN DYNAMIC PROGRAMMING

When the historical data are sparse, the DDP scheme
is known to generate an optimistically biased solution that
overfits the given data points and performs poorly in out-of-
sample tests. To mitigate this overfitting effect, we reinforce
the scheme with tools from robust optimization. To this
end, we relax the assumption that the empirical conditional
expectation (2) constitutes a precise estimate of the true
conditional expectation in (la), and construct an uncertainty
set of plausible conditional probabilities that are close to the
nominal one in (3):

N
PPp) =<pERY:> pi=1,0(pp)<ep. ()
i=1
Here, ® is a prescribed metric that measures the distance
between two probability distributions, while € is a parameter
that controls the degree of robustness.

The proposed RDDP scheme optimizes in view of the most
adverse outcome from within the uncertainty set (5). Thus, in
the formulation, the conditional expectation is replaced with
the worst-case estimate

N

sz'Vt+1(5t+1a€Z+1)-

i=1

Solutions to the resulting min-max problem are more con-
servative and thereby less vulnerable to estimation errors
in the empirical conditional probabilities. As with its DDP
counterpart, the RDDP scheme is asymptotically consistent
under an appropriate scaling of the robustness parameter e.
Furthermore, by the pointwise supremum property of convex
functions, one can establish that the scheme is convex and
also amenable to the same piecewise linear approximation
architecture described in Section III. We now discuss two
alternative methods to construct the distance function ® that
lead to tractable reformulations.

max
PEPE (P1)

A. The Chi-square Distance

A natural way to define distances between two probabil-
ity distributions is via the ¢-divergences [23], [24]. In this
paper, we adopt a class of ¢-divergences specified by the
Chi-square (x?) distance, where the distance between the
probability vector p and a reference vector p is given by
C(p,p) = Z;N:l(pi — p;)?/p;. Here, the uncertainty set
'PS (pt) corresponds to the set of probability vectors p whose
distance to p; is no greater than the prescribed level e with
respect to the x? distance. Using this uncertainty set, the
emerging robust problem is amenable to a tractable conic
programming reformulation.

Proposition 1 (Theorem 4.1 in [20]): The RDDP formu-
lation with the uncertainty set PC(p;) is equivalent to the
second-order cone program

N
VE(s,&) = min mgi+ 2N+ ed—p+ Y P&y
i=1
s. t. gi € R+
zg €[0,C], af € [0, D]
St+1 S [O7Smax]
peER, NeR,, z,y c RV

wy+af -+ g >
d

< pesy — 2t e
St+1 < PsSt + Pcy
Pd

VE(st41,€141) < 2 Vi
Zi+p <A Vi
[(yis2zi + )| < 2N — 2z — Vi

B. The Wasserstein Distance

The Wasserstein distance has recently become popular for
determining robust solutions to one- and two-stage decision
problems under uncertainty [25]. In this paper, we incorporate
the Wasserstein distance into our RDDP scheme to compute
robust solutions to the multi-stage battery operation problem.
Formally, the Wasserstein distance between two distributions
p and p supported on the same discrete set {€*,... &N} is
defined as the optimal value of the linear program

W(p,p) = min Y I;E ¢
i,5€[N]
s.t. ITe [0, 1]V
>, My=1
4,jE[N]
ZH”‘ =p; Vi, Zﬂzj =p; VJ.
JEN ieN
(6)
The decision variable IT := (Il;;); jeqn] in (6) defines a

joint probability distribution on the product space = x =. The
constraint system on the last line of (6) indicates that the joint
distribution has marginals p and p, respectively. The objective
of the problem is to minimize the total cost of transporting a
probability mass described by p to one described by p. Here,
the norm ||£° — &7|| specifies the cost of transporting a Dirac
point mass from &' to &7, while the decision variable II;;
encodes the transportation plan.
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Using the uncertainty set PYV(p;), the emerging robust
problem is amenable to a more tractable linear programming
reformulation.

Proposition 2: The RDDP formulation with the uncertainty
set PV (py) is equivalent to the linear program

N
VW (s1,6) = min mg +Xe—p+ Y puilér)ys
i=1
s. t. gt € R+
x$ €10,0], x € [0, D]
St+1 S [07 Smax]
peR, NeER,, z,y € RN

we + ] = + g0 >y
d

It c
St41 < PsSg — — + Py
AW . Pd _
Vi ($t+1; &) tu<z Vi
zi = A& — &l <y; Vi,
Table II summarizes the numbers of variables and con-

straints in the Chi-square RDDP (CRDDP), Wasserstein
RDDP (WRDDP), and DDP formulations.

TABLE I
NUMBERS OF CONSTRAINTS AND VARIABLES IN THE FORMULATIONS
Formulation CRDDP WRDDP  DDP
Variables O(N) O(N) O(N)
Linear Constraints O(N) O(N?)  O(N)
Second Order Cone Constraints | O(N) 0 0

V. ALGORITHM PERFORMANCE COMPARISON

In this section, we conduct numerical experiments using
real-world data to compare the performance of our DDP and
RDDP algorithms against previously proposed schemes for
battery storage operations, and to investigate the factors that
most meaningfully affect performance.

A. Data Sources

We use empirical data from ten homes in the Mueller neigh-
borhood of Austin, Texas that have been collected and pro-
vided by Pecan Street, Inc. [26]. These homes all have rooftop
solar PV panels and detailed household-level electricity us-
age monitoring equipment, but do not have battery storage
systems. The data include the hourly electricity consumption
and PV generation of each household in 2016 and 2017. We
also obtain the time-varying, wholesale electricity prices in
Austin during those years from the Electric Reliability Council
of Texas (ERCOT) [27]. Prices are reported for 15-minute
intervals, and we average these prices over each hour. We
implicitly assume that for each household, the data from 2016
and the data from 2017 follow the same distribution, and thus
we can use the former to train our models and the latter to test
them. All data are separated by season so that, for example,
application of our algorithms to summer battery operations
only uses historical training data from the previous summer.
We set the cycle length to 7" = 24 hours and the number of
trajectories to N = 90 for each season. For battery parameters,
we set the storage capacity to Syax = 10 kWh, the maximum
charge and discharge rates to C' = D = S;.x/2, and the

efficiency coefficients to p. = pq = 0.99 and ps = 1 [13],
[15]. We set the initial storage level to Sog = Sp.x/2 and
assume there are no operating costs for the battery.

B. Numerical Results

We conduct experiments on the ten selected homes to
compare the performances of our algorithms as well as various
benchmarks. Previous work [14] showed that the optimal
operational policy can be characterized by two thresholds.
That is, if the net demand is higher than the upper threshold,
discharge the battery to satisfy such demand; if the net demand
is smaller than the lower threshold, charge the battery greedily;
if the demand lies between them, do nothing. We compare our
algorithms to one previously proposed heuristic based on such
a policy.

A well-defined heuristic for the storage problem is
the Threshold-Based Approximation (TBA) algorithm, con-
structed in [13]. TBA, as a kind of model predictive control
method, uses the expectation of uncertainty data to obtain the
optimal storage level s; in each period ¢, then sets both thresh-
olds and uses fixed operational policies as described above.
We select TBA as a benchmark for comparison because TBA
follows the simple guidelines of a threshold-based optimal
control policy, with demonstrated good performance and fast
solution speed relative to other similar heuristics [13].

We also implement an approximate dynamic programming
(ADP) method as a benchmark, which is more complex than
TBA. In the ADP, we discretize the uncertainties {§; =
T, Up — wt}le with & possible discrete values each and
model their evolution as a two-dimensional Markov chain.
We assume that the storage level is discrete, within the set
{0, ﬁsmax, %Smax, .«y Smax}. Since the evolution of
the storage level is uniquely determined by charging and
discharging actions, the actions in one period can be viewed as
the difference between the current storage level and the level
in the next period, accounting for efficiency losses. Thus, the
cardinality of the action space in each period is exactly m. We
train the 62 x §2 transition probability matrices for each period
using historical observations. We set 6 = 10 to achieve balance
between avoiding sparsity in transition probability matrices
and maintaining the validity of historical data.

As additional benchmarks, we include the case where no
battery storage system is installed (No Battery), and the
case where the household has perfect information (PI). In
the former case, the household must always purchase its net
demand from the grid, and excess PV generation is wasted, as
often happens in reality. In the latter case, the household starts
off knowing the future values of all parameters with certainty,
and optimizes deterministically. The PI objective value serves
as a lower bound on the costs achieved by our algorithms.
In our RDDP algorithms, € is determined via cross-validation.
The key outcome metrics we focus on for comparison are the
average daily electricity cost in 2017, and the 95" percentile
of the daily cost distribution. These numerical results are
presented in Table III.

In Table III, we see that our DDP algorithm achieves a
lower average daily cost than TBA and ADP in all ten homes.
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Metric Algorithm 1 2 3 4 5 6 7 8 9 10
CRDDP 2.641 3550 7.638 2865 1242 4664 2376 2.646 4406  7.938
WRDDP 2655 3.643 7.683 2888 1242 4680 2493 2.656 4417 17972
DDP 2766  3.690 7790 2960 1.352 4956 2494 2.860 4.530  8.082
Average Daily Cost ADP 3.028 4353 7953 3517 1756  5.126 3228 3.028 4.606  8.092
TBA 3435 5269 8323 4106 1.842 5727 3576 3435 4845  8.556
No Battery | 4.054 5590 9.599 4918 2.067 6.606 4.009 4.054 5540  9.599
PI 2.165 2.891  6.606 2373 0945  3.958 1.966 2.165 3.781  6.881
CRDDP 6.052 4780 14.062 6.433 3241 9429 5689 6.052 7.809 14.507
WRDDP 6.079 4991 14.017 6.443 3318 9503 6.045 6.079 8324 14.632
DDP 6.206 5.140 14370 6.617 3551 10.014 6.054 6207 8451 14.721
95™ Percentile Daily Cost ADP 6.653 5554 14.673 7.458 3901 10.000 6914 6.653 8.043 14.872
TBA 7.154 7334 14660 8970 4.749  9.996 7401 7.154 8389 15.070
No Battery | 8.114 6.778 17.695 9341 4749 12387 8.013 8.114 9.809 17.695
PI 4726 3998 11.563 5444 2392 8376 4404 4726 6322 11.893

TABLE III

NUMERICAL RESULTS COMPARING OUR ALGORITHMS AND VARIOUS BENCHMARKS IN TEN HOMES

Moreover, our two RDDP algorithms outperform DDP. The
CRDDP scheme achieves slightly lower costs than its WRDDP
counterpart, but as we will show below, the WRDDP variant
requires significantly less computation time. The advantages
of the RDDP schemes relative to DDP are generally more
substantial for the 95" percentiles of the daily electricity
costs than for their means. This highlights a major advantage
of incorporating robustness, as it reduces the likelihood of
realizing very high costs.

C. Factors Affecting Performance

In this subsection, we investigate the factors which appear
to exert the strongest influence on the performance of our
algorithms.

The main challenges for residential battery storage opera-
tions are the high degrees of uncertainty in electricity usage
and PV generation. These uncertainties are very seasonally
dependent. Therefore, we separated both training and test
data by season. Even though the data may be automatically
clustered in the training process if we set an appropriate sim-
ilarity threshold # in nearest-neighbor learning, the seasonal
categorization can still help us by reducing the size of the
training data.

10

Average Daily Cost ($)

Summer Fall Winter

Season

Spring

Fig. 1. Algorithm performance comparison, by season.

Fig. 1 illustrates the algorithm performance comparison
for one sample home in each of the four seasons. We see

that the performance advantages of our RDDP algorithms
are greater in spring and summer than in the other two
seasons. The reasoning behind this is two-fold. First, in Austin,
PV output is higher relative to electricity consumption in
the spring and summer. With more excess PV output, the
operational strategy for the battery is more important. Second,
the uncertain parameters exhibit less variability in the fall and
winter. With lower variability, our approximation of the cost-
to-go function is relatively accurate, leaving little room to
improve performance by incorporating robustness.

In addition to external factors such as the season, there are
several internal factors within our model which might have
a substantial impact on the performance of the algorithms.
By inspecting the model outputs, we find that the cost in the
final hour of the battery operational cycle comprises a large
fraction of the total cost. This is a result of our policy that
forces the battery to return to its initial storage level at the
end of the cycle. In practical operations, it would be more
reasonable to set the battery operational cycle 7' to a much
longer duration, such as one week, and re-solve the dynamic
program at more frequent intervals so that each solution is
never actually implemented through its time horizon. However,
increasing 1" would necessitate more historical observations
as sample data to train the empirical conditional distribution
for each period, because the dependencies between data from

; leDDP different days are not strong enough. In addition, using a
8- EEm WRDDP longer cycle duration would raise the computation time of the

= DDP algorithm.

Il No Battery

Another important factor is the battery storage capacity
Smax, Whose impact on algorithm performance relative to the
PI lower bound is plotted in Fig. 2. As expected, TBA and
DDP perform worse relative to PI when the battery capacity is
larger. With a larger battery, the cost of charging or discharging
the battery at inappropriate times is exaggerated due to a wider
action space. By contrast, the performances of our CRDDP and
WRDDP algorithms relative to PI do not appear to decline
with the battery capacity. This can be viewed as evidence
that the robustness incorporated into our RDDP algorithms
successfully mitigates the negative effects of poor forecasting.

Battery storage capacity has a significant effect on the
utilization efficiency of PV output. We calculate the daily
curtailed (i.e., wasted) energy using different algorithms and

1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2942932, IEEE
Transactions on Smart Grid

consumption. We observe that time consumption increases

90 ~*~ CRODP sharply as 6 approaches 1, with only slight improvements

WRDDP
_. 80 —&— DDP in performance. Although we cannot guarantee theoretical
8 —_— . .
z 704 TBA properties when 6 < 1, it would seem preferable to set
g 0 ~ 0.99 in order to balance performance against computation
© B .
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Fig. 3. Impact of the robustness parameter €.

storage capacities. We observe that our RDDP schemes outper-
form TBA and ADP on reducing energy curtailment. Particu-
larly, compared to the No Battery benchmark, the utilization
efficiencies of TBA and ADP decline slightly with increasing
storage capacity, while the RDDP algorithms tend to perform
better. These results are consistent with the relative perfor-
mance of the algorithms in terms of the cost minimization
objective, since limiting wasted energy is aligned with the
overall goal of reducing grid electricity purchases.

Hyperparameter settings also play an important role in our
algorithms. The uncertainty set in RDDP, which is governed
by robustness parameter ¢, can be seen to represent the risk
attitude of the household. A relatively smaller e implies that
the household is more confident about its knowledge of future
uncertainty based on past observations. We conduct sensitivity
analysis to explore how e can affect the performance of the
algorithms using data from a single home and season, which
can help us find near-optimal ¢ values when our algorithms are
applied in different contexts. As shown in Fig. 3, for CRDDP,
€ is fairly easy to calibrate via cross-validation. For WRDDP,
it may be hard to find optimal e values since the robustness is
also measured by the geometric properties of the sample data,
which vary with time index ¢. A dynamic setting of ¢(¢) could
be implemented with affordable time complexity.

Lastly, we investigate the impact of the similarity threshold
6. Table IV reports the electricity costs achieved using our
algorithms as well as their corresponding computational time

In conclusion, we find that CRDDP offers the best per-
formance, while WRDDP performs only slightly worse while
allowing substantial reductions in computation time.

VI. CASE STUDY

In this section, we assess the extent to which the per-
formance gains realized through implementation of our al-
gorithms can affect the decision of an individual household
to invest in a battery storage unit or participate in a feed-in
tariff (FIT) or net energy metering (NEM) program. In recent
years, many utilities have begun offering these programs to
encourage greater adoption of residential PV systems.

A FIT program allows households to sell all the electricity
generated by their own PV systems to the utility at a fixed
price. Meanwhile, households must pay for their entire elec-
tricity usage — even that which is obtained from their own PV
systems — at the standard utility electricity rates. FITs require
two power meters to independently measure the inflow and
outflow electricity of a household, allowing consumption and
generation to be priced separately. A FIT program was first
proposed in the U.S. in 1978, and subsequently adopted by
more than 60 countries in the past 40 years [28].

Unlike with a FIT, in a NEM program, households are
only charged for their net electricity consumption at standard
utility electricity rates. When the PV system generates surplus
electricity, the household can sell the excess back to the grid
to get credits, which are deducted from the electricity bill.
NEM only requires a single bidirectional meter to measure
power flowing in both directions, which is easier to implement
than the two meters needed for a FIT. NEM originated in the
U.S. in 1980 and has since been implemented in at least 38
states [29]. NEM programs across the U.S. differ in terms of
details such as the maximum monthly generation net-metered
or the deduction policy for credits earned by the household.

FIT and NEM are the two most common sell-back pro-
grams for residential electricity customers, and there are large
literatures analyzing their effects. In most settings, households
are forbidden from pairing battery electricity storage with
participation in these programs. Utilities clearly are not willing
to let households earn profit simply by charging their batteries
during periods of low electricity prices and discharging to the
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Fig. 4. Annual electricity cost, inclusive of annualized battery capital cost
for strategies featuring batteries, as a function of the per-kWh battery cost.

grid when prices are high. In some jurisdictions, like Mas-
sachusetts, pairing battery storage with a sell-back program is
tentatively accepted but strictly constrained; for instance, the
battery storage capacity is limited, or the battery is not allowed
to be charged from the grid [30].

From the perspective of a household with rooftop PV panels,
there are two ways to lower its electricity bill. Under typical,
flat retail electricity rates, there is little room to reduce costs by
using a battery, which means that participating in a sell-back
program will likely dominate investing in a battery at high
capital cost. However, under time-varying electricity prices,
it might be economical to invest in a battery rather than
participate in a sell-back program. The more effectively the
battery is operated, the more likely investing in it is the optimal
choice.

In the following analysis, we compare battery investment
to virtual FIT and NEM programs in our Austin setting. For
the FIT, we set the sell-back price at 26.8¢/kWh, based on the
real sell-back price in Austin’s Value of Solar Tariff program
with a five-tiered price structure [31]. For the NEM program,
we assume that credits earned by a household are obtained
immediately upon sell-back at a discount on the real-time
electricity price. We assume that these credits are worth 75%
of the real-time prices.

We analyze a sample home with high PV output relative
to electricity consumption. Our reasoning is three-fold. First,
the relative performance gains realized by implementing our
algorithms are higher for such homes. Second, this home with
high PV output relative to electricity usage is actually fairly
representative of our full sample of homes. Third, for homes
with low PV generation, savings from battery storage are
unlikely to cover the battery capital cost, so they have less
incentive to install a storage system.

Fig. 4 shows how the annual electricity cost, inclusive of the
annualized battery capital cost for those strategies that feature
battery storage, varies with the per-kWh battery cost. The
different lines represent the household’s alternatives, ranging
from No Battery, to participating in the FIT or NEM program,
to investing in a battery and operating it using the TBA,

DDP, or CRDDP algorithm. The pink PI line indicates the
lower bound for all policy-free results, but this bound is not
applicable in the presence of a FIT or NEM policy. The
dashed vertical line, included for reference, indicates the per-
kWh capital cost of a Tesla Powerwall 2 battery unit [32], a
popular residential storage system. This unit has a 13.5 kWh
storage capacity and a capital cost of $6,600, implying a cost
of $488/kWh. To incorporate the cost of this system into the
annual electricity costs, we amortize it over a 15-year lifetime
(same as the warranty duration) at an assumed 2% interest
rate.

The vertical distances between the TBA, DDP, and CRDDP
lines correspond to the annual cost savings realized through
implementation of our algorithms. As shown, simply by using
CRDDP as opposed to TBA, this household would save
nearly $200 per year in electricity costs with a battery. At
the current battery cost represented by the dashed vertical
line, the household is better off participating in the sell-
back programs than investing in a battery. However, use of
the CRDDP scheme shifts the break-even points between the
battery alternatives and the sell-back programs to the right,
meaning that the household will be incentivized to adopt a
battery system sooner as the cost of battery storage continues
to decline. Using the TBA, DDP, and CRDDP algorithms, the
per-kWh battery cost would have to fall to $56, $111, and
$247, respectively, for battery investment to become superior
to the FIT program. The analogous break-even battery costs for
the NEM program are negative for TBA and DDP, and $122
for CRDDP. Clearly, our CRDDP algorithm raises the break-
even battery cost significantly, and its performance advantages
could thus have a significant impact on accelerating residential
battery uptake.

Lastly, we explore what happens if the household is allowed
to combine a battery with the FIT program, assuming that
the battery is operated according to our CRDDP algorithm.
This appears as the gray line in Fig. 4. Note that the FIT
is equivalent to the household selling its PV generation at a
fixed price independent of its consumption. Therefore, we can
analyze the combined scenario by simply running our model
without any solar generation, then subtracting the revenue
gained from selling the generation. Fig. 4 shows that the break-
even battery cost of the combined scenario with respect to
the FIT scenario is greater than the current battery cost of
$488/kWh. So, if battery investment were permitted under the
FIT scheme, this household would find it optimal to install
a battery at current cost rather than participate in the FIT
program without one.

VII. CONCLUSION

In this paper, we developed a DDP model that minimizes
long-run electricity costs by stochastically controlling the
operation of a residential battery storage unit under uncertain
electricity usage, PV generation, and grid electricity prices.
Our approach leverages actual historical data observations, in
contrast to most existing dynamic programming schemes that
rely on given or fitted distributions. To mitigate overfitting
and improve out-of-sample performance, we constructed two
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RDDP algorithms which consider the worst-case expected cost
over a confidence set of distributions centered at the empirical
conditional distribution. The CRDDP variant employs the 2
distance to establish this set, while the WRDDP version uses
the Wasserstein distance.

We tested our algorithms on real data from homes with
rooftop PV in Austin, Texas, and compared their performance
against a state-of-the-art heuristic and an approximate dy-
namic programming method. Numerical results show that our
DDP approach outperforms these other schemes, and that
the RDDP algorithms achieve even greater cost savings, with
affordable computational complexity. CRDDP offers the best
performance, but by using the Wasserstein distance, WRDDP
performs only slighty worse while substantially reducing com-
putation time.

We then explored how the choice of operational algorithm
influences the decision problem of a household deciding
whether to invest in a residential battery system or participate
in a FIT or NEM sell-back program. By operating the bat-
tery using CRDDP instead of the heuristic, a household can
save hundreds of dollars per year in electricity costs, which
significantly raises the break-even battery cost under which
battery investment is preferred to FIT or NEM participation.
Therefore, the performance advantages enabled by our algo-
rithms developed in this paper could meaningfully accelerate
the market uptake of residential battery storage.
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