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Optimal residential battery storage operations using
robust data-driven dynamic programming
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Abstract—In this paper, we consider the problem of operating
a battery storage unit in a home with a rooftop solar photovoltaic
(PV) system so as to minimize expected long-run electricity costs
under uncertain electricity usage, PV generation, and electricity
prices. Solving this dynamic program using standard techniques
is computationally burdensome, and is often complicated by
the difficulty of estimating conditional distributions from sparse
data. To overcome these challenges, we implement a data-driven
dynamic programming (DDP) algorithm that uses historical data
observations to generate empirical conditional distributions and
approximate the cost-to-go function. Then, we formulate two
robust data-driven dynamic programming (RDDP) algorithms
that consider the worst-case expected cost over a set of conditional
distributions centered at the empirical distribution, and within
a given Chi-square or Wasserstein distance, respectively. We test
our algorithms using data from homes with rooftop PV in Austin,
Texas. Numerical results reveal that DDP and RDDP outperform
common existing methods with acceptable computational effort.
Finally, we show that implementation of these superior opera-
tional algorithms significantly raises the break-even battery cost
under which a homeowner is incentivized to invest in a residential
battery rather than participate in a feed-in tariff or net energy
metering program.

Index Terms—Battery, energy storage, solar PV, robust opti-
mization, dynamic programming, stochastic control

I. INTRODUCTION

D ISTRIBUTED renewable energy technologies are play-

ing an increasingly important role in electricity gener-

ation due to benefits such as energy cost savings, reduced

carbon emissions, and greater customer autonomy over energy

choices [1]. Among distributed renewable generation options,

solar photovoltaic (PV) systems have been widely deployed at

the residential level [2], and residential PV capacity in the U.S.

is projected to grow at a 10–15% annual rate between 2018 and

2022 [3]. However, unlike traditional, dispatchable generation

facilities, the power output of a PV system is uncertain.

Therefore, energy storage technologies that can be operated

cost-effectively will be crucial for mitigating intermittency

issues and enabling the continued expansion of PV generation.

This paper focuses on developing and testing algorithms for

efficiently operating residential distributed energy systems that

couple rooftop PV with battery storage (PV-battery systems).

While residential PV ownership has grown rapidly, the capital

cost of battery storage remains high. Clearly, formulating a

more effective operational strategy for PV-battery systems will
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significantly improve their generation usage efficiency and

reduce electricity bills, which in turn will accelerate market

uptake of PV-battery systems and amplify their cost and

emissions reduction benefits.

We consider an individual household with a self-owned PV-

battery system already installed. In each period, the household

consumes a random quantity of electricity. Part of the demand

is supplied from the PV system directly or by discharging the

battery. The rest is obtained from the grid with a stochastic,

time-varying electricity price. Our goal is to minimize the

electricity bill by optimizing the stochastic control of battery

operations under uncertain electricity usage, PV generation,

and electricity prices.

The literature on energy storage operations is quite large.

In [4], the authors developed an hourly-discretized optimiza-

tion algorithm to find the optimal daily operational control of

a wind-hydro power plant. Two-stage stochastic programming

models were formulated in [5] and [6] to maximize profit by

jointly optimizing wind generation and pumped hydroelectric

storage. In [7], the authors used particle swarm optimiza-

tion to maximize customers’ net benefits by scheduling their

distributed energy resources. In [8], researchers proposed

an infinite-horizon stochastic control model to minimize the

imbalance between available renewable power and load with

small storage capacity. They represented the imbalance as

a Laplace distributed process. The authors of [9] optimized

demand-side management in a smart grid as a noncooperative

game, and proved the existence of Nash equilibria.

A number of previous studies have applied dynamic pro-

gramming to energy storage problems. In [10], an adaptive

dynamic programming algorithm was constructed for grid

management to deal with uncertain market conditions and cus-

tomer behavior. In [11], a dynamic programming model with

a priori forecasting was used to improve the performance of a

hybrid system featuring wind and solar PV generation coupled

with compressed air energy storage. A stochastic dynamic

programming model was developed in [12] to co-optimize a

distributed battery storage unit that provides multiple services

which compete for its capacity. In [13], researchers studied

an electricity storage problem with inelastic demand, and

constructed an algorithm using approximate dynamic program-

ming with a Markov transition matrix trained by real-world

data. Online algorithms based on Lyapunov optimization with

thresholds were proposed in [14] and [15] to optimize storage

device scheduling, and these methods achieved asymptotic

optimality. In [16], the author proposed Lyapunov optimiza-

tion to optimize load scheduling and energy storage control

simultaneously. In [17], a finite-horizon dynamic programming
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model with an online stochastic algorithm combined with reg-

ularization was designed for storage utilization in a smart grid.

In [18], the authors established a threshold structure for the

optimal energy storage operational policy, which performed

efficiently in a setting with random electricity prices.

In this paper, we formulate the problem in a data-driven

manner and develop two robust data-driven dynamic program-

ming algorithms to optimize PV-battery system operations.

Our paper makes the following novel contributions.

1) To the best of our knowledge, we are the first researchers

to apply data-driven dynamic programming (DDP) to

the problem of optimizing the operations of residential

energy systems with rooftop PV and battery storage.

Our model directly leverages observed historical data, in

contrast to most other dynamic programming approaches

that use given or fitted distributions. This property gives

our method an advantage for dealing with the residential

battery storage operations problem, which has multiple

stages, high-dimensional uncertainty, and often limited

historical data that provide little or no prior knowledge

about the true parameter distributions.

2) We construct two robust data-driven dynamic program-

ming (RDDP) algorithms designed to help the DDP

approach achieve better performance in out-of-sample

circumstances. One algorithm uses Chi-square distance,

and the other uses Wasserstein distance, to define the

confidence set of distributions over which robust op-

timization minimizes the worst-case cost. Notably, our

use of Wasserstein distance within a DDP framework is

the first such attempt in the literature. Numerical results

show that our RDDP algorithms perform significantly

better than a state-of-the-art heuristic and approximate

dynamic programming, with acceptable computational

effort. Our RDDP scheme incorporating Wasserstein

distance performs nearly as well as that with Chi-square

distance, while substantially reducing computation time.

3) We analyze whether a household with rooftop PV should

invest in a residential battery storage unit, or partici-

pate in a feed-in tariff or net metering program. By

maximizing the value of a battery, implementation of

our RDDP algorithms raises the break-even battery cost

under which a household would find it optimal to install

a battery. Therefore, our results quantify the impact

that superior operational efficiency achieved through the

RDDP control algorithms can have on accelerating the

adoption of residential battery systems as their costs

decline. We find that the impact is large.

The rest of the paper proceeds as follows. Section II introduces

the generic dynamic programming model for battery storage

operations, and then Section III outlines our DDP formulation.

Section IV describes how we incorporate robustness to form

the RDDP model. In Section V, we conduct numerical exper-

iments using real-world data to compare the performance of

our algorithms against previously proposed methods, and to

investigate some factors that affect performance. In Section

VI, we analyze the implications of our algorithms for the

break-even battery cost under which a household would be

better off investing in a residential battery than participating

in a feed-in tariff or net metering program. We conclude in

Section VII with a summary of our most important findings

and contributions.

II. PROBLEM FORMULATION

In this section, we describe the operation of a residential

PV-battery system over T time periods and formulate a math-

ematical optimization model for the dynamic decision-making

problem.

The residential unit is equipped with a PV panel that may

supply additional energy to satisfy the household consumption

and reduce the amount purchased from the grid. There is also

a battery that can be utilized to store any excess energy for

use at later times, with imperfect efficiency. Note that power

flow between the home and grid is not explicitly modeled.

The operation of the residential PV-battery system takes

place as follows. At the beginning of period t, there are st
units of energy stored in the battery. Throughout the period,

the PV panel generates wt units of energy while the household

consumes ut units. These quantities may vary stochastically

over time. Any unmet demand will be satisfied by discharging

xt units from the battery and by purchasing gt units from

the grid at a time-varying, per-unit price πt. The system

then transitions to the next time period t + 1 with a new

battery storage level st+1, and the process is repeated until

the terminal time T .

We now formalize the mathematical optimization model that

represents the dynamic decision-making problem. To this end,

we define by ξt := (πt, ut, wt) the triplet of exogenous pa-

rameters consisting of the grid electricity price, the household

energy consumption, and the electricity generated by the PV

panel in period t, respectively. Let ξt = (ξ1, . . . , ξt) denote the

vector of historical exogenous parameters up to and including

time t. The values of these parameters are independent of the

decisions made by the system operator (i.e., the household).

In contrast, the battery level st depends on the decisions made

prior to time t and is often referred to as the endogenous state.

The system operator’s objective is to determine a sequence

of purchasing and battery operation policies that minimize

the total expected cost E[
∑

t πtgt] over the entire planning

horizon T , where the decisions gt and xt are adapted to the

state (st, ξt), for all t = 1, . . . , T . This formulation gives rise

to a stochastic optimal control problem whose parameters and

decision variables are delineated in Table I.

The stochastic optimal control problem can be solved via

a dynamic programming procedure, as follows. For any fixed

battery storage level st and exogenous state ξt, the cost-to-go

at time t is given by the optimal value of the optimization

problem
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TABLE I
PARAMETERS AND DECISION VARIABLES

Deterministic parameters:

ρc charging efficiency

ρd discharging efficiency

ρs storage efficiency

Smax battery energy storage capacity

S0 storage level at the beginning of the cycle

C battery charging capacity per period

D battery discharging capacity per period

Stochastic parameters:

πt grid electricity price in period t

ut electricity usage in period t

wt electricity generated by the PV panel in period t

ξt triplet of exogenous parameters in period t,
ξt := (πt, ut, wt)

Decision variables:

gt electricity purchased from the grid in period t
xd
t electricity discharged from the battery in period t

xc
t electricity charged to the battery in period t
st electricity stored in the battery at the beginning of

period t

Vt(st, ξt) = min πtgt + E [Vt+1(st+1, ξt+1)|ξt] (1a)

s. t. wt + xd
t − xc

t + gt ≥ ut (1b)

gt ∈ R+ (1c)

xc
t ∈ [0, C], xd

t ∈ [0, D] (1d)

st+1 ∈ [0, Smax] (1e)

st+1 ≤ ρsst −
xd
t

ρd
+ ρcx

c
t . (1f)

Constraint (1b) stipulates that the demand ut must be

satisfied via electricity supplied by the PV panel wt, the battery

xt ≡ xd
t − xc

t , and the grid gt. (1c) restricts the power drawn

from the grid to be non-negative (i.e., selling electricity back

to the grid is not allowed). (1d) enforces maximum charge

and discharge rates for the battery, and (1e) specifies its

maximum energy storage capacity. (1f) models the evolution

of the storage level over one time period, including losses due

to imperfect storage, charging, and discharging efficiencies.

The objective function (1a) is defined as the sum of the

purchase cost for time period t and the conditional expectation

of the cost-to-go at time t + 1. By Bellman’s principle of

optimality, this objective function coincides with the expected

cost over the time periods t, . . . , T . Thus, the total expected

cost over the entire planning horizon is given by V1(s1, ξ1),
which is obtained by solving the problem (1) backwards for

t = T, ..., 1, with a terminal condition VT+1 ≡ 0.

The dynamic programming procedure outlined above solves

the stochastic optimal control problem exactly. The scheme

is convex in the sense that i) for every fixed st and ξt,

the optimization problem (1) is convex, and ii) for every

fixed ξt, the cost-to-go Vt(st, ξt) is a convex function in

st. Despite these appealing properties, the scheme suffers

from two major shortcomings. First, it is computationally

challenging due to the requirement of solving the problem (1)

for the continuum of all states (st, ξt). Also, evaluating the

conditional expectation exactly is generally intractable as it

involves multidimensional integration. Second, distributional

knowledge about the exogenous parameters is typically incom-

plete. The decision maker solely has at his or her disposal a

sequence of historical trajectories {ξT }Ni=1 that can be utilized

to infer the conditional distribution of ξt+1, and to estimate

the conditional expectation in (1a). In the following section,

we develop a data-driven scheme that addresses these two

shortcomings.

III. DATA-DRIVEN DYNAMIC PROGRAMMING

In the DDP formulation, the conditional expectation in (1a)

is replaced with its empirical estimate given by

N
∑

i=1

p̂ti(ξt)Vt+1(st+1, ξ
i
t+1). (2)

The sample conditional probabilities (p̂ti(ξt))
N
i=1 in (2) are

determined via the nearest-neighbor learning algorithm [19],

which assigns positive mass only to the K closest observa-

tions to the reference point ξt, and simply neglects others.

The nearest-neighbor learning algorithm enables us to select

“good” trajectories automatically and improves the efficiency

of the algorithm. The algorithm also utilizes a Gaussian

smoother S(y) = exp(‖y‖2/2)/
√
2π so that data points

nearer to ξt have larger weights. Specifically, we have

p̂ti(ξt) =











S(ξt − ξit)
∑

j∈N(ξt,Kt)
S(ξt − ξ

j
t )

if i ∈ N(ξt,Kt)

0 otherwise,
(3)

where N(ξt,Kt) denotes the set of indices of the Kt closest

data points to ξt. Since the distribution of candidate points in

{ξt}Ni=1 varies significantly with t, instead of a fixed value,

we set a dynamic Kt depending on the dispersion of data for

each t. In other words, Kt is determined by a given similarity

threshold θ as

Kt = min

{

k :

∑

j∈N(ξt,k)
S(ξt − ξ

j
t )

∑

j∈N(ξt,N) S(ξt − ξ
j
t )

≥ θ

}

. (4)

Replacing the conditional expectation in (1a) with the

estimate (2) yields the formulation

V̂t(st, ξt) = min πtgt +
N
∑

i=1

p̂ti(ξt)V̂t+1(st+1, ξ
i
t+1)

s. t. gt ∈ R+

xc
t ∈ [0, C], xd

t ∈ [0, D]
st+1 ∈ [0, Smax]

wt + xd
t − xc

t + gt ≥ ut

st+1 ≤ ρsst −
xd
t

ρd
+ ρcx

c
t .

The DDP scheme solves this problem backwards for t =
T, ..., 1 to arrive at an approximation V̂1(s1, ξ1) of the true to-

tal expected cost V1(s1, ξ1), i.e., V̂1(s1, ξ1) ≈ V1(s1, ξ1). This
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scheme was originally studied in [20], where the conditional

expectation is approximated via the Nadaraya-Watson kernel

regression [21], [22]. In this paper, we provide an extension

by incorporating nearest-neighbor learning, which enables a

more efficient implementation when the data points are heavily

clustered.
The DDP scheme is attractive because it is asymptoti-

cally consistent, meaning that the true total expected cost

is recovered as the data size grows. It also results in a

significant improvement in computational tractability as it only

requires evaluating the cost-to-go function at the historical

data points {ξit}Ni=1. To further alleviate the intractability of

evaluating the cost-to-go function for all endogenous states

st ∈ [0, Smax], we discretize the state space into m points

{0, 1
m−1Smax,

2
m−1Smax, . . . , Smax} and evaluate the func-

tion only at these points. The cost-to-go function is then

approximated by a convex piecewise linear function where

the interpolation points are given by the discretized points.

Since the endogenous state is univariate and the cost-to-go

function is convex in st, this piecewise linear architecture

does not severely impact the computational complexity or the

approximation quality of the DDP scheme.

IV. ROBUST DATA-DRIVEN DYNAMIC PROGRAMMING

When the historical data are sparse, the DDP scheme

is known to generate an optimistically biased solution that

overfits the given data points and performs poorly in out-of-

sample tests. To mitigate this overfitting effect, we reinforce

the scheme with tools from robust optimization. To this

end, we relax the assumption that the empirical conditional

expectation (2) constitutes a precise estimate of the true

conditional expectation in (1a), and construct an uncertainty

set of plausible conditional probabilities that are close to the

nominal one in (3):

PΦ
ǫ (p̂t) =

{

p ∈ R
N
+ :

N
∑

i=1

pi = 1, Φ(p, p̂t) ≤ ǫ

}

. (5)

Here, Φ is a prescribed metric that measures the distance

between two probability distributions, while ǫ is a parameter

that controls the degree of robustness.
The proposed RDDP scheme optimizes in view of the most

adverse outcome from within the uncertainty set (5). Thus, in

the formulation, the conditional expectation is replaced with

the worst-case estimate

max
p∈PΦ

ǫ
(p̂t)

N
∑

i=1

piVt+1(st+1, ξ
i
t+1).

Solutions to the resulting min-max problem are more con-

servative and thereby less vulnerable to estimation errors

in the empirical conditional probabilities. As with its DDP

counterpart, the RDDP scheme is asymptotically consistent

under an appropriate scaling of the robustness parameter ǫ.
Furthermore, by the pointwise supremum property of convex

functions, one can establish that the scheme is convex and

also amenable to the same piecewise linear approximation

architecture described in Section III. We now discuss two

alternative methods to construct the distance function Φ that

lead to tractable reformulations.

A. The Chi-square Distance

A natural way to define distances between two probabil-

ity distributions is via the φ-divergences [23], [24]. In this

paper, we adopt a class of φ-divergences specified by the

Chi-square
(

χ2
)

distance, where the distance between the

probability vector p and a reference vector p̂ is given by

C(p, p̂) =
∑N

i=1(pi − p̂i)
2/pi. Here, the uncertainty set

PC
ǫ (p̂t) corresponds to the set of probability vectors p whose

distance to p̂t is no greater than the prescribed level ǫ with

respect to the χ2 distance. Using this uncertainty set, the

emerging robust problem is amenable to a tractable conic

programming reformulation.

Proposition 1 (Theorem 4.1 in [20]): The RDDP formu-

lation with the uncertainty set PC
ǫ (p̂t) is equivalent to the

second-order cone program

V̂ C
t (st, ξt) = min πtgt + 2λ+ ǫλ− µ+

N
∑

i=1

p̂ti(ξt)yi

s. t. gt ∈ R+

xc
t ∈ [0, C], xd

t ∈ [0, D]
st+1 ∈ [0, Smax]
µ ∈ R, λ ∈ R+, z,y ∈ R

N

wt + xd
t − xc

t + gt ≥ ut

st+1 ≤ ρsst −
xd
t

ρd
+ ρcx

c
t

V̂ C
t (st+1, ξ

i
t+1) ≤ zi ∀i

zi + µ ≤ λ ∀i
‖(yi, zi + µ)‖ ≤ 2λ− zi − µ ∀i.

B. The Wasserstein Distance

The Wasserstein distance has recently become popular for

determining robust solutions to one- and two-stage decision

problems under uncertainty [25]. In this paper, we incorporate

the Wasserstein distance into our RDDP scheme to compute

robust solutions to the multi-stage battery operation problem.

Formally, the Wasserstein distance between two distributions

p and p̂ supported on the same discrete set {ξ1, . . . , ξN} is

defined as the optimal value of the linear program

W(p, p̂) = min
∑

i,j∈[N ]

Πij‖ξi − ξj‖

s. t. Π ∈ [0, 1]N×N

∑

i,j∈[N ]

Πij = 1

∑

j∈N

Πij = pi ∀i,
∑

i∈N

Πij = p̂j ∀j.

(6)

The decision variable Π := (Πij)i,j∈[N ] in (6) defines a

joint probability distribution on the product space Ξ×Ξ. The

constraint system on the last line of (6) indicates that the joint

distribution has marginals p and p̂, respectively. The objective

of the problem is to minimize the total cost of transporting a

probability mass described by p to one described by p̂. Here,

the norm ‖ξi − ξj‖ specifies the cost of transporting a Dirac

point mass from ξi to ξj , while the decision variable Πij

encodes the transportation plan.
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Using the uncertainty set PW
ǫ (p̂t), the emerging robust

problem is amenable to a more tractable linear programming

reformulation.

Proposition 2: The RDDP formulation with the uncertainty

set PW
ǫ (p̂t) is equivalent to the linear program

V W
t (st, ξt) = min πtgt + λǫ− µ+

N
∑

i=1

p̂ti(ξt)yi

s. t. gt ∈ R+

xc
t ∈ [0, C], xd

t ∈ [0, D]
st+1 ∈ [0, Smax]
µ ∈ R, λ ∈ R+, z,y ∈ R

N

wt + xd
t − xc

t + gt ≥ ut

st+1 ≤ ρsst −
xd
t

ρd
+ ρcx

c
t

V̂ W
t (st+1, ξ

i
t+1) + µ ≤ zi ∀i

zi − λ||ξit − ξ
j
t || ≤ yj ∀i, j.

Table II summarizes the numbers of variables and con-

straints in the Chi-square RDDP (CRDDP), Wasserstein

RDDP (WRDDP), and DDP formulations.

TABLE II
NUMBERS OF CONSTRAINTS AND VARIABLES IN THE FORMULATIONS

Formulation CRDDP WRDDP DDP
Variables O(N) O(N) O(N)

Linear Constraints O(N) O(N2) O(N)
Second Order Cone Constraints O(N) 0 0

V. ALGORITHM PERFORMANCE COMPARISON

In this section, we conduct numerical experiments using

real-world data to compare the performance of our DDP and

RDDP algorithms against previously proposed schemes for

battery storage operations, and to investigate the factors that

most meaningfully affect performance.

A. Data Sources

We use empirical data from ten homes in the Mueller neigh-

borhood of Austin, Texas that have been collected and pro-

vided by Pecan Street, Inc. [26]. These homes all have rooftop

solar PV panels and detailed household-level electricity us-

age monitoring equipment, but do not have battery storage

systems. The data include the hourly electricity consumption

and PV generation of each household in 2016 and 2017. We

also obtain the time-varying, wholesale electricity prices in

Austin during those years from the Electric Reliability Council

of Texas (ERCOT) [27]. Prices are reported for 15-minute

intervals, and we average these prices over each hour. We

implicitly assume that for each household, the data from 2016

and the data from 2017 follow the same distribution, and thus

we can use the former to train our models and the latter to test

them. All data are separated by season so that, for example,

application of our algorithms to summer battery operations

only uses historical training data from the previous summer.

We set the cycle length to T = 24 hours and the number of

trajectories to N = 90 for each season. For battery parameters,

we set the storage capacity to Smax = 10 kWh, the maximum

charge and discharge rates to C = D = Smax/2, and the

efficiency coefficients to ρc = ρd = 0.99 and ρs = 1 [13],

[15]. We set the initial storage level to S0 = Smax/2 and

assume there are no operating costs for the battery.

B. Numerical Results

We conduct experiments on the ten selected homes to

compare the performances of our algorithms as well as various

benchmarks. Previous work [14] showed that the optimal

operational policy can be characterized by two thresholds.

That is, if the net demand is higher than the upper threshold,

discharge the battery to satisfy such demand; if the net demand

is smaller than the lower threshold, charge the battery greedily;

if the demand lies between them, do nothing. We compare our

algorithms to one previously proposed heuristic based on such

a policy.

A well-defined heuristic for the storage problem is

the Threshold-Based Approximation (TBA) algorithm, con-

structed in [13]. TBA, as a kind of model predictive control

method, uses the expectation of uncertainty data to obtain the

optimal storage level st in each period t, then sets both thresh-

olds and uses fixed operational policies as described above.

We select TBA as a benchmark for comparison because TBA

follows the simple guidelines of a threshold-based optimal

control policy, with demonstrated good performance and fast

solution speed relative to other similar heuristics [13].

We also implement an approximate dynamic programming

(ADP) method as a benchmark, which is more complex than

TBA. In the ADP, we discretize the uncertainties {ξt =
πt, ut − wt}Tt=1 with δ possible discrete values each and

model their evolution as a two-dimensional Markov chain.

We assume that the storage level is discrete, within the set

{0, 1
m−1Smax,

2
m−1Smax, . . . , Smax}. Since the evolution of

the storage level is uniquely determined by charging and

discharging actions, the actions in one period can be viewed as

the difference between the current storage level and the level

in the next period, accounting for efficiency losses. Thus, the

cardinality of the action space in each period is exactly m. We

train the δ2×δ2 transition probability matrices for each period

using historical observations. We set δ = 10 to achieve balance

between avoiding sparsity in transition probability matrices

and maintaining the validity of historical data.

As additional benchmarks, we include the case where no

battery storage system is installed (No Battery), and the

case where the household has perfect information (PI). In

the former case, the household must always purchase its net

demand from the grid, and excess PV generation is wasted, as

often happens in reality. In the latter case, the household starts

off knowing the future values of all parameters with certainty,

and optimizes deterministically. The PI objective value serves

as a lower bound on the costs achieved by our algorithms.

In our RDDP algorithms, ǫ is determined via cross-validation.

The key outcome metrics we focus on for comparison are the

average daily electricity cost in 2017, and the 95th percentile

of the daily cost distribution. These numerical results are

presented in Table III.

In Table III, we see that our DDP algorithm achieves a

lower average daily cost than TBA and ADP in all ten homes.
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Metric Algorithm 1 2 3 4 5 6 7 8 9 10

Average Daily Cost

CRDDP 2.641 3.550 7.638 2.865 1.242 4.664 2.376 2.646 4.406 7.938
WRDDP 2.655 3.643 7.683 2.888 1.242 4.680 2.493 2.656 4.417 7.972

DDP 2.766 3.690 7.790 2.960 1.352 4.956 2.494 2.860 4.530 8.082
ADP 3.028 4.353 7.953 3.517 1.756 5.126 3.228 3.028 4.606 8.092
TBA 3.435 5.269 8.323 4.106 1.842 5.727 3.576 3.435 4.845 8.556

No Battery 4.054 5.590 9.599 4.918 2.067 6.606 4.009 4.054 5.540 9.599
PI 2.165 2.891 6.606 2.373 0.945 3.958 1.966 2.165 3.781 6.881

95th Percentile Daily Cost

CRDDP 6.052 4.780 14.062 6.433 3.241 9.429 5.689 6.052 7.809 14.507
WRDDP 6.079 4.991 14.017 6.443 3.318 9.503 6.045 6.079 8.324 14.632

DDP 6.206 5.140 14.370 6.617 3.551 10.014 6.054 6.207 8.451 14.721
ADP 6.653 5.554 14.673 7.458 3.901 10.000 6.914 6.653 8.043 14.872
TBA 7.154 7.334 14.660 8.970 4.749 9.996 7.401 7.154 8.389 15.070

No Battery 8.114 6.778 17.695 9.341 4.749 12.387 8.013 8.114 9.809 17.695
PI 4.726 3.998 11.563 5.444 2.392 8.376 4.404 4.726 6.322 11.893

TABLE III
NUMERICAL RESULTS COMPARING OUR ALGORITHMS AND VARIOUS BENCHMARKS IN TEN HOMES

Moreover, our two RDDP algorithms outperform DDP. The

CRDDP scheme achieves slightly lower costs than its WRDDP

counterpart, but as we will show below, the WRDDP variant

requires significantly less computation time. The advantages

of the RDDP schemes relative to DDP are generally more

substantial for the 95th percentiles of the daily electricity

costs than for their means. This highlights a major advantage

of incorporating robustness, as it reduces the likelihood of

realizing very high costs.

C. Factors Affecting Performance

In this subsection, we investigate the factors which appear

to exert the strongest influence on the performance of our

algorithms.
The main challenges for residential battery storage opera-

tions are the high degrees of uncertainty in electricity usage

and PV generation. These uncertainties are very seasonally

dependent. Therefore, we separated both training and test

data by season. Even though the data may be automatically

clustered in the training process if we set an appropriate sim-

ilarity threshold θ in nearest-neighbor learning, the seasonal

categorization can still help us by reducing the size of the

training data.
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Fig. 1. Algorithm performance comparison, by season.

Fig. 1 illustrates the algorithm performance comparison

for one sample home in each of the four seasons. We see

that the performance advantages of our RDDP algorithms

are greater in spring and summer than in the other two

seasons. The reasoning behind this is two-fold. First, in Austin,

PV output is higher relative to electricity consumption in

the spring and summer. With more excess PV output, the

operational strategy for the battery is more important. Second,

the uncertain parameters exhibit less variability in the fall and

winter. With lower variability, our approximation of the cost-

to-go function is relatively accurate, leaving little room to

improve performance by incorporating robustness.

In addition to external factors such as the season, there are

several internal factors within our model which might have

a substantial impact on the performance of the algorithms.

By inspecting the model outputs, we find that the cost in the

final hour of the battery operational cycle comprises a large

fraction of the total cost. This is a result of our policy that

forces the battery to return to its initial storage level at the

end of the cycle. In practical operations, it would be more

reasonable to set the battery operational cycle T to a much

longer duration, such as one week, and re-solve the dynamic

program at more frequent intervals so that each solution is

never actually implemented through its time horizon. However,

increasing T would necessitate more historical observations

as sample data to train the empirical conditional distribution

for each period, because the dependencies between data from

different days are not strong enough. In addition, using a

longer cycle duration would raise the computation time of the

algorithm.

Another important factor is the battery storage capacity

Smax, whose impact on algorithm performance relative to the

PI lower bound is plotted in Fig. 2. As expected, TBA and

DDP perform worse relative to PI when the battery capacity is

larger. With a larger battery, the cost of charging or discharging

the battery at inappropriate times is exaggerated due to a wider

action space. By contrast, the performances of our CRDDP and

WRDDP algorithms relative to PI do not appear to decline

with the battery capacity. This can be viewed as evidence

that the robustness incorporated into our RDDP algorithms

successfully mitigates the negative effects of poor forecasting.

Battery storage capacity has a significant effect on the

utilization efficiency of PV output. We calculate the daily

curtailed (i.e., wasted) energy using different algorithms and
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Fig. 3. Impact of the robustness parameter ǫ.

storage capacities. We observe that our RDDP schemes outper-

form TBA and ADP on reducing energy curtailment. Particu-

larly, compared to the No Battery benchmark, the utilization

efficiencies of TBA and ADP decline slightly with increasing

storage capacity, while the RDDP algorithms tend to perform

better. These results are consistent with the relative perfor-

mance of the algorithms in terms of the cost minimization

objective, since limiting wasted energy is aligned with the

overall goal of reducing grid electricity purchases.

Hyperparameter settings also play an important role in our

algorithms. The uncertainty set in RDDP, which is governed

by robustness parameter ǫ, can be seen to represent the risk

attitude of the household. A relatively smaller ǫ implies that

the household is more confident about its knowledge of future

uncertainty based on past observations. We conduct sensitivity

analysis to explore how ǫ can affect the performance of the

algorithms using data from a single home and season, which

can help us find near-optimal ǫ values when our algorithms are

applied in different contexts. As shown in Fig. 3, for CRDDP,

ǫ is fairly easy to calibrate via cross-validation. For WRDDP,

it may be hard to find optimal ǫ values since the robustness is

also measured by the geometric properties of the sample data,

which vary with time index t. A dynamic setting of ǫ(t) could

be implemented with affordable time complexity.

Lastly, we investigate the impact of the similarity threshold

θ. Table IV reports the electricity costs achieved using our

algorithms as well as their corresponding computational time

consumption. We observe that time consumption increases

sharply as θ approaches 1, with only slight improvements

in performance. Although we cannot guarantee theoretical

properties when θ < 1, it would seem preferable to set

θ ≈ 0.99 in order to balance performance against computation

time.

TABLE IV
ALGORITHM COMPARISON FOR DIFFERENT θ VALUES

θ Average Daily Cost ($) Time Consumption (s)
CRDDP WRDDP DDP CRDDP WRDDP DDP

0.95 2.3604 2.3634 2.4513 386 92 69
0.97 2.3443 2.3419 2.4403 630 94 71
0.99 2.3385 2.3417 2.4402 902 110 73

0.995 2.3229 2.3429 2.4363 1172 123 77
1 2.3180 2.3393 2.4359 1504 911 119

In conclusion, we find that CRDDP offers the best per-

formance, while WRDDP performs only slightly worse while

allowing substantial reductions in computation time.

VI. CASE STUDY

In this section, we assess the extent to which the per-

formance gains realized through implementation of our al-

gorithms can affect the decision of an individual household

to invest in a battery storage unit or participate in a feed-in

tariff (FIT) or net energy metering (NEM) program. In recent

years, many utilities have begun offering these programs to

encourage greater adoption of residential PV systems.

A FIT program allows households to sell all the electricity

generated by their own PV systems to the utility at a fixed

price. Meanwhile, households must pay for their entire elec-

tricity usage – even that which is obtained from their own PV

systems – at the standard utility electricity rates. FITs require

two power meters to independently measure the inflow and

outflow electricity of a household, allowing consumption and

generation to be priced separately. A FIT program was first

proposed in the U.S. in 1978, and subsequently adopted by

more than 60 countries in the past 40 years [28].

Unlike with a FIT, in a NEM program, households are

only charged for their net electricity consumption at standard

utility electricity rates. When the PV system generates surplus

electricity, the household can sell the excess back to the grid

to get credits, which are deducted from the electricity bill.

NEM only requires a single bidirectional meter to measure

power flowing in both directions, which is easier to implement

than the two meters needed for a FIT. NEM originated in the

U.S. in 1980 and has since been implemented in at least 38

states [29]. NEM programs across the U.S. differ in terms of

details such as the maximum monthly generation net-metered

or the deduction policy for credits earned by the household.

FIT and NEM are the two most common sell-back pro-

grams for residential electricity customers, and there are large

literatures analyzing their effects. In most settings, households

are forbidden from pairing battery electricity storage with

participation in these programs. Utilities clearly are not willing

to let households earn profit simply by charging their batteries

during periods of low electricity prices and discharging to the



1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2942932, IEEE

Transactions on Smart Grid

8

0 100 200 300 400 500 600
Battery Cost ($/kWh)

1000

1200

1400

1600

1800

2000

2200

2400

An
nu

al
 E

le
ct

ric
ity

 C
os

t (
$)

$488/kWh
No Battery

FIT
NEM

CRDDP
DDP
TBA
PI
FIT + CRDDP

Fig. 4. Annual electricity cost, inclusive of annualized battery capital cost
for strategies featuring batteries, as a function of the per-kWh battery cost.

grid when prices are high. In some jurisdictions, like Mas-

sachusetts, pairing battery storage with a sell-back program is

tentatively accepted but strictly constrained; for instance, the

battery storage capacity is limited, or the battery is not allowed

to be charged from the grid [30].

From the perspective of a household with rooftop PV panels,

there are two ways to lower its electricity bill. Under typical,

flat retail electricity rates, there is little room to reduce costs by

using a battery, which means that participating in a sell-back

program will likely dominate investing in a battery at high

capital cost. However, under time-varying electricity prices,

it might be economical to invest in a battery rather than

participate in a sell-back program. The more effectively the

battery is operated, the more likely investing in it is the optimal

choice.

In the following analysis, we compare battery investment

to virtual FIT and NEM programs in our Austin setting. For

the FIT, we set the sell-back price at 26.8¢/kWh, based on the

real sell-back price in Austin’s Value of Solar Tariff program

with a five-tiered price structure [31]. For the NEM program,

we assume that credits earned by a household are obtained

immediately upon sell-back at a discount on the real-time

electricity price. We assume that these credits are worth 75%

of the real-time prices.

We analyze a sample home with high PV output relative

to electricity consumption. Our reasoning is three-fold. First,

the relative performance gains realized by implementing our

algorithms are higher for such homes. Second, this home with

high PV output relative to electricity usage is actually fairly

representative of our full sample of homes. Third, for homes

with low PV generation, savings from battery storage are

unlikely to cover the battery capital cost, so they have less

incentive to install a storage system.

Fig. 4 shows how the annual electricity cost, inclusive of the

annualized battery capital cost for those strategies that feature

battery storage, varies with the per-kWh battery cost. The

different lines represent the household’s alternatives, ranging

from No Battery, to participating in the FIT or NEM program,

to investing in a battery and operating it using the TBA,

DDP, or CRDDP algorithm. The pink PI line indicates the

lower bound for all policy-free results, but this bound is not

applicable in the presence of a FIT or NEM policy. The

dashed vertical line, included for reference, indicates the per-

kWh capital cost of a Tesla Powerwall 2 battery unit [32], a

popular residential storage system. This unit has a 13.5 kWh

storage capacity and a capital cost of $6,600, implying a cost

of $488/kWh. To incorporate the cost of this system into the

annual electricity costs, we amortize it over a 15-year lifetime

(same as the warranty duration) at an assumed 2% interest

rate.

The vertical distances between the TBA, DDP, and CRDDP

lines correspond to the annual cost savings realized through

implementation of our algorithms. As shown, simply by using

CRDDP as opposed to TBA, this household would save

nearly $200 per year in electricity costs with a battery. At

the current battery cost represented by the dashed vertical

line, the household is better off participating in the sell-

back programs than investing in a battery. However, use of

the CRDDP scheme shifts the break-even points between the

battery alternatives and the sell-back programs to the right,

meaning that the household will be incentivized to adopt a

battery system sooner as the cost of battery storage continues

to decline. Using the TBA, DDP, and CRDDP algorithms, the

per-kWh battery cost would have to fall to $56, $111, and

$247, respectively, for battery investment to become superior

to the FIT program. The analogous break-even battery costs for

the NEM program are negative for TBA and DDP, and $122

for CRDDP. Clearly, our CRDDP algorithm raises the break-

even battery cost significantly, and its performance advantages

could thus have a significant impact on accelerating residential

battery uptake.

Lastly, we explore what happens if the household is allowed

to combine a battery with the FIT program, assuming that

the battery is operated according to our CRDDP algorithm.

This appears as the gray line in Fig. 4. Note that the FIT

is equivalent to the household selling its PV generation at a

fixed price independent of its consumption. Therefore, we can

analyze the combined scenario by simply running our model

without any solar generation, then subtracting the revenue

gained from selling the generation. Fig. 4 shows that the break-

even battery cost of the combined scenario with respect to

the FIT scenario is greater than the current battery cost of

$488/kWh. So, if battery investment were permitted under the

FIT scheme, this household would find it optimal to install

a battery at current cost rather than participate in the FIT

program without one.

VII. CONCLUSION

In this paper, we developed a DDP model that minimizes

long-run electricity costs by stochastically controlling the

operation of a residential battery storage unit under uncertain

electricity usage, PV generation, and grid electricity prices.

Our approach leverages actual historical data observations, in

contrast to most existing dynamic programming schemes that

rely on given or fitted distributions. To mitigate overfitting

and improve out-of-sample performance, we constructed two
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RDDP algorithms which consider the worst-case expected cost

over a confidence set of distributions centered at the empirical

conditional distribution. The CRDDP variant employs the χ2

distance to establish this set, while the WRDDP version uses

the Wasserstein distance.

We tested our algorithms on real data from homes with

rooftop PV in Austin, Texas, and compared their performance

against a state-of-the-art heuristic and an approximate dy-

namic programming method. Numerical results show that our

DDP approach outperforms these other schemes, and that

the RDDP algorithms achieve even greater cost savings, with

affordable computational complexity. CRDDP offers the best

performance, but by using the Wasserstein distance, WRDDP

performs only slighty worse while substantially reducing com-

putation time.

We then explored how the choice of operational algorithm

influences the decision problem of a household deciding

whether to invest in a residential battery system or participate

in a FIT or NEM sell-back program. By operating the bat-

tery using CRDDP instead of the heuristic, a household can

save hundreds of dollars per year in electricity costs, which

significantly raises the break-even battery cost under which

battery investment is preferred to FIT or NEM participation.

Therefore, the performance advantages enabled by our algo-

rithms developed in this paper could meaningfully accelerate

the market uptake of residential battery storage.

ACKNOWLEDGMENT

Grani A. Hanasusanto is supported by the National Science

Foundation grant no. 1752125.

REFERENCES

[1] C. Schelly, “Residential solar electricity adoption: what motivates, and
what matters? a case study of early adopters,” Energy Research & Social

Science, vol. 2, pp. 183–191, 2014.
[2] P. Denholm, R. Margolis, B. Palmintier, C. Barrows, E. Ibanez, L. Bird,

and J. Zuboy, Methods for analyzing the benefits and costs of distributed

photovoltaic generation to the US electric utility system. National
Renewable Energy Laboratory, 2014.

[3] A. Perea, “Solar market insight report 2017 q4.” https://www.seia.org/
research-resources/solar-market-insight-report-2017-q4.

[4] E. D. Castronuovo and J. P. Lopes, “On the optimization of the daily
operation of a wind-hydro power plant,” IEEE Transactions on Power

Systems, vol. 19, no. 3, pp. 1599–1606, 2004.
[5] P. Mokrian and M. Stephen, “A stochastic programming framework

for the valuation of electricity storage,” in 26th USAEE/IAEE North

American Conference, pp. 24–27, Citeseer, 2006.
[6] J. Garcia-Gonzalez, R. M. R. de la Muela, L. M. Santos, and A. M. Gon-

zalez, “Stochastic joint optimization of wind generation and pumped-
storage units in an electricity market,” IEEE Transactions on Power

Systems, vol. 23, no. 2, pp. 460–468, 2008.
[7] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated

scheduling of residential distributed energy resources to optimize smart
home energy services,” IEEE Transactions on Smart Grid, vol. 1, no. 2,
pp. 134–143, 2010.

[8] H.-I. Su and A. El Gamal, “Modeling and analysis of the role of energy
storage for renewable integration: Power balancing,” IEEE Transactions

on Power Systems, vol. 28, no. 4, pp. 4109–4117, 2013.
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