
On Limitations of Modern Static
Analysis Tools

Andrew Walker, Michael Coffey, Pavel Tisnovsky and Tomas Cerny

Abstract Static analysis is one of the most important tools for developers in the
modern software industry. However, due to limitations by current tools, many devel-
opers opt out of using static analysis in their development process. Some of these
limitations include the lack of a concise, coherent overview, missing support for mul-
tiple repository applications and multiple languages and lastly a lack of standardized
integrationmechanisms for third-party frameworks.We propose an evaluationmetric
for static analysis tools and offer a comparison ofmany common static analysis tools.
To demonstrate the goal of our metric we introduce the Fabric8-Analytics Quality
Assurance Tool as a benchmark of a tool which successfully passes our evaluation
metric. We demonstrate usage of this tool via a case study on the Fabric8-Analytics
Framework, a framework for finding vulnerabilities in application dependencies. We
issue a challenge to developers of modern static analysis tools to make their tools
more usable and appealing to developers.

Keywords Static · Analysis ·Multi-repository · Automation

1 Introduction

Static analysis is the process of automatically analyzing source code using methods
such as rule checking, lexical analysis and pattern matching [1]. It should be an
important part of the developmental process as performing static analysis on a given
project can find issues, potential vulnerabilities and improve quality assurance (QA)
[2]. However, static analysis is anumbrella term that can be split up into amultitude of
diverse processes.Most of these processes are run on different tools, so the developer

A. Walker (B) ·M. Coffey · T. Cerny (B)
Computer Science, Baylor University, Waco, TX 76798, USA
e-mail: Andrew_Walker2@baylor.edu

M. Coffey
e-mail: Michael_Coffey@baylor.edu

P. Tisnovsky
Red Hat Czech, FBC-Purkyova 99, Brno 612 00, Czechia

© Springer Nature Singapore Pte Ltd. 2020
K. J. Kim and H.-Y. Kim (eds.), Information Science and Applications,
Lecture Notes in Electrical Engineering 621,
https://doi.org/10.1007/978-981-15-1465-4_57

577

578 A. Walker et al.

needs to run an array of tools to show enough results for the static analysis to be
worth the time. Because of this, a large amount of developers does not believe the
static analysis process to be worth the time and effort it takes to find and run all the
tools needed.
In order for the static analysis process to be appealing to developers it needs

to address three main issues we’ve identified with current static analysis methods.
Current static analysis tools are well suited to one specific task; however, a large
repository may use many tools that will generate a large volume of output. A static
analysis tool needs a way to (1) show results in a concise, comprehensive way. This
way the developer can look at one screen and determine the results from multiple
static analysis tests. Furthermore, many static analysis tools only perform the static
analysis on a given file or repository. Static analysis tools must offer (2) native
multiple repository support. By extension to the previous issue, static analysis tools
must be able to (3) integrate into third-party dashboards and frameworks. Currently,
no tools offer standardized integration support for frameworks.Lastly a static analysis
tool should (4) support multiple languages as no application is usually written in a
single language.
In this paper we show that the current approach by static analysis tools is insuffi-

cient for many use cases faced by modern developers. The problems of integration,
multi-repository support and a centralized view remain unsolved by the vast major-
ity of static analysis tools. We compare multiple static analysis tools and define an
evaluation framework for existing features and advantages for readers to consider.
We present a solution to the problems discussed above by applying our evaluation
framework in analyzing a case study on one tool we identified to support most of the
considered features.
The rest of the paper is outlined as follows. Section 2 provides background infor-

mation and compares existing static analysis tools, Sect. 3 is a case study considering
a tool we identified to be most promising, Sect. 4 presents the conclusion and future
work.

2 Related Work

It is important to catch errors in code early in the development process as the cost of
fixing the errors drastically increases the further along the bug is [3]. Specifically, the
costs involved with a vulnerability found after deployment costs four to eight times
more than when they are found and dealt with prior to deployment [4]. The National
Institute of Standards and Technology estimated that around $60 billion dollars a
year is wasted due to faults in software [4]. Clearly errors in the code should be
taken seriously and dealt with swiftly. Studies on analysis techniques [5], noted that
using static code analysis to discover violations can reduce production costs up to
potentially even 23%. Static code analysis is also beneficial in that the same research
also showed an increase of discovered violations over previous methods by 2.6 times
[5].

On Limitations of Modern Static Analysis Tools 579

One way that developers seek to find violations in code is to enforce good pro-
gramming practice through the use of tools that use a standard coding style [6–10]
to analyze their source code for deviations from the accepted standard. These tools
vary in their implementation [11, 12] and their method of analysis so deciding which
tool to use to analyze a repository is equivalent to picking the standard to adhere to.
One such tool, CheckStyle [7], written for Java, focuses on design level errors

rather than finding errors in the details. It can find problems within the class and
method design as well as checking the layout and formatting of the code. While
this tool is good for a higher-level analysis, design decisions oftentimes propagate
throughout the entire project, not just a single class or method. CheckStyle is limited
to analysis of a single file at a time. To analyze an entire application or integrate into
existing continuous integration pipelines would require significant overhead from
the developer. This vastly limits the usefulness of this tool for development. Like
many of the tools discussed in this paper, this tool is not packaged with a graphical
user-interface (GUI) which makes interpretation more difficult for the developer.
Furthermore, this tool requires significant configuration and explicit definition of
what errors to check for. If a developer misconfigured this tool, errors would persist
without any warning.
FindBugs [6, 13, 14] is a static analysis tool written for Java which aims to fix

some of the issues present in the CheckStyle tool. For starters, it uses bug pattern
matching with over 60+ patterns to find many common occurring bugs [14, 15]which
means FindBugs does not require out-of-the-box configuration, but rather is already
configured for three categories of code violations. These violation categories are cor-
rectness bug, bad practice and lastly dodgy. Each of these violation categories offer
different suggestions on how to handle the violation.A correctness bug is likely a pro-
gramming error that should be addressed, a bad practice violation is a deviation from
standard coding practice and could be addressed and dodgy violations are code that
is merely confusing. The grouping of issues helps address the issue of a lack of cen-
tralized view in CheckStyle and FindBugs also comes with a GUI and can be run as
an application, instead of via the command line. One of the most important improve-
ments of FindBugs is that it is not limited to a single file like CheckStyle, however
FindBugs does not offer any native support for multi-repository applications. Lastly,
FindBugs does offer command line utilities and better continuous integration support
but lacks a standardized API for integration with third-party frameworks. Another
drawback of this tool is that it only supports Java and is no longer supported. A spiri-
tual successor SpotBugs [10] has continued support and added plugin support which
makes it more usable in the development process. The analysis of Spot-Bugs comes
in the form of a list of errors and warnings, usually in an integrated development
environment (IDE) window which still lacks the quick overview that is often desired
for a repository. It is not always necessary to know every detailed error but rather
a holistic overview of the code. Lastly, like FindBugs, SpotBugs is limited to only
Java code analysis.
While Java remains one of the most popular languages today, scripting languages

like Python are consistently becoming more apparent in the development of large-
scale project. Python adds its own set of issues in static analysis due to the lack of

580 A. Walker et al.

types and the more restrictive formatting rules. Pyflakes [8] is a Python only static
analysis tool which aims to provide a thorough analysis of Python applications. This
tool works by parsing the source code file into an Abstract Syntax Tree (AST). It
works filebyfile, building the tree and then analyzing it. Errors are found bysearching
through the nodes of theAST for certain patterns that denote errors. Due to the nature
of only checking the AST, this tool is limited in finding errors that would be present
in an AST, e.g. unused imports, unused variables. Additionally, this tool does not
check the style of the Python code. Overall this tool lacks many features present in
tools for other languages and does not offer any support for multiple repositories or
framework integration.
Pylint [9] is an attempt at solving the issues present in Pyflakes by offering a more

thorough and robust static analysis tool. It fills in the static analysis gaps present in
Pyflakes by offering code style checking as well as more exhaustive error checking.
Pylint also provides UML diagram generation and extensibility features for creating
plugins for an IDE. In an effort to offer more complete integration support, Pylint
offers full continuous integration support however like the other tools mentioned,
lacks a standard API for third-party framework support. Pylint still lacks support
for any language other than its native Python. PMD [16] is a static analysis tool
which is different than the previously mentioned tools in that it natively supports
multiple languages. The tool is configured for rule-based code analysis and also
comes packaged with Copy-Paste Detector (CPD) [17] which is an additional library
for finding Type-1 [18] code duplication. PMD also offers continuous integration
support and an API for developers to extend PMD’s rule-set, however not an API for
integration into third-party frameworks.
We have identified one tool which offers a variety of features. The Fabric8-

Analytics (F8A) [19] Quality Assurance Tool runs multiple static analysis tools
and displays the results aggregated into a centralized web portal. This tool combines
other static analysis tools to perform broad static analysis. It can perform the analysis
on multiple repositories in a given project. The tool’s architecture support extension
into various languages with the primary tool being Python.

Table 1 Comparison of static analysis tools

Tool Centralized
overview

Framework
integration

Multi-repository Multiple
language
support

CheckStyle

Pyflakes

Pylint X

SpotBugs X X

FindBugs X X

PMD X

Fabric8-analytics X X X X

On Limitations of Modern Static Analysis Tools 581

In Table 1we summarize considered tools and compare themwhether they support
the features such as centralized overview from various features, enable integration
with other tools, supports multi-repository evaluation and could be extended for
various programming languages.

3 Case Study

While the tools discussed above provide varying levels of code analysis and intro-
spection, we identified only one tool that natively supports multi-repository analysis
and has support for multiple languages. The majority of tools either focus on spe-
cific aspects of code, like type checking or coding style and lack support for many
other important aspects that need to be checked during development or the tools lean
towards holistic continuous integration support and are difficult to interpret and use
on a large scale project. A lot of development effort goes towards application artifacts
like documentation and an analysis tool for an application should cover analysis of
these artifacts as well. Furthermore, an application is not usually limited to one spe-
cific language. Any analysis tool for use with an application should be able to handle
multiple languages with minimal configuration. Lastly, a detailed report which lists
the errors in an application is not easy to manage or interpret by a developer when
an application covers many repositories, especially when those repositories grow
large. A static analysis tool should provide an easy way to grade the aspects of the
application and provide a quick overview for developers. Below we will introduce
Fabric8-Analytics static analysis tool and walk through a use case for the tool.

3.1 Introducing Fabric8-Analytics

One tool we have found to address the evaluation topics from Table 1 is the Fabric8-
Analytics QATool (F8AQA). It has been developed for managing Fabric8-Analytics
Framework (F8AF), a framework meant for vulnerability checking on dependencies
for Openshift.io languages (Java, Javascript, Python). This framework also checks
the licenses of application’s dependencies against your application’s license for dis-
crepancies. Due to the large number of repositories needed for this framework, an
additional product was produced in order to manage quality assurance of the frame-
work. This F8A QA shows the code coverage, documentation results, linter results,
dead code, common issues, cyclomatic complexity, maintainability index, and over-
all status for all the repositories in a given project. Below we briefly discuss the
F8AF, however, the focus of our case study is on F8A QA.
The F8AF is a framework to detect vulnerabilities in repositories and to detect

vulnerabilities in the dependencies of an application. The problem with most vul-
nerability dependency checkers is that they will only run for one language. F8AF
was developed for a number of languages to specifically target this problem within

582 A. Walker et al.

existing dependency analyzers. The framework was developed as an extension to
Openshift.io, a wrapper that Red Hat developed to encompass Kubernetes, making
deployment ofprojectsmore straightforward for the developers. Theprimary purpose
of F8AFwas to run dependency analysis on applications hosted within Openshift.io.
In addition to the Openshift.io support, F8AF is a plugin that can be downloaded in
Visual Studio Code (VS Code). The plugin reports dependencies that have a high
Common Vulnerabilities and Exposures (CVE) score, reports unknown or restrictive
licenses in dependencies, suggests dependencies to add and replace in the applica-
tion and shows the dependencies that have been analyzed based on popularity and
version.
While developing the F8AF the problems outlined previously with performing

static analysis for quality assurance quickly became apparent. The framework spans
30 repositories with each repository containing upwards of 170 source code files.
While there are tools that exist to look at files individually or a project individually to
run static analysis, therewere no tools that could run static analysis or provide a quick
overview of an applicationwith thatmany repositories. In order to solve this problem,
F8A QA was developed in parallel to the framework. This tool was developed as
a way of providing a centralized view on a multi-repository application running
multiple static analysis tools. Additionally, F8A QA was released as a completely
open-source project1 to support integration into other third-party frameworks. In this
case study we examine the results from usage of this tool on the F8AF.

3.2 Performing Common Tasks, the Case for a Framework

One of the problems that developers have with static analysis tools is that there are
somany of them and they each perform their own separate form of static analysis. As
mentioned in the related work section of this paper, static analysis tools are usually
experts on one type of static analysis but are not designed to do other types. This is
why there is a need for a static analysis framework that brings together an array of
static analysis tools in order to produce a single tool for the developer to run over
their source code. In order for modern developers to perform static analysis on their
software they are forced to find the multiple static analysis tools that best fit the
source code that they are writing. Once these tools are found the developer then must
run their source code through each tool individually and use the results of each tool
to piece together a diagnostic of the source code. This is not an appetizing process,
because it takes time away from the developer that they could have had dedicated to
other acts in the development process.
F8A QA uses multiple static analysis tools to give developers all the statistics

needed for a productive development. It performs static analysis on a given project by
running linter testing, docstyle testing, code coverage, dead code checking, common
issue checking, cyclomatic complexity testing, and maintainability testing.

1https://github.com/fabric8-analytics/fabric8-analytics-common.

On Limitations of Modern Static Analysis Tools 583

– Docstyle is a static analysis statistic used for checking the repositories compliance
to the language’s documentation conventions.
– Linter is the process of using static analysis to determine what code could be prone
to errors by checking the style of the code.
– Code coverage is the term used to describe the amount of code covered by unit
tests. An ideal repository would have 100% code coverage from unit tests which
would mean that the tests fully cover the code. Code coverage reports can be
generated in a number of ways but analyzing a large number of reports is quite
tedious for the developer.
– Cyclomatic complexity (CYC) is the count of the number of decisions in the source
code. The complexity of the source code increases as more decisions are made in
it. It is typically good practice to have a lower CYC number because simple source
code is easier to maintain than complex source code.
– Amaintainability index is used to show how maintainable, meaning how easily it
is to support and change, a system is. There are many different ways to calculate
this index, because maintainability is a vague term. In correlation to this, there
are many different tools used to calculate a maintainability index, the F8A QA
Tool currently uses Radon [20] for this purpose. Radon uses a complex algorithm
made up of the cyclomatic complexity, Halstead volume, and the number of lines
of source code in its calculation of maintainability [21, 22].

By black-boxing the specific results from the user, F8A QA supports multiple
languages since the actual implementation does not matter in the statistic presented
to the user. For example, a repository with half Python and half Java source code files
could be analyzed in a cohesive way by F8A QA since the Java could be analyzed
with Java specific tools and the Python with Python specific tools with results that
are then aggregated into a single statistic for the user to process.
The results of all of these tests simplified are presented in a color-coded, tabular

format. An example of the dashboard for F8A QA can be seen in Fig. 1. This process

Fig. 1 Fabric8-analytics QA tool dashboard

584 A. Walker et al.

of simplifying results and grading specific files brings transforms the results of static
analysis tools into a simple to understand statistic that presents an easily compre-
hended overview of the repository. The Linter results, Pydoc-style results, and code
coverage sections are shown as breakdowns of number of files that pass, number of
files that fail and as a percentage of files that pass their respective tests. Dead code
and common issues sections show how many files failed their tests. The cyclomatic
complexity and maintainability index sections are shown as grade scales with the
determined number of files placed under the grade given to them. CYC grades run
fromA to F and maintainability index grades run fromA to C. Lastly, each repository
is given an overall grade from F to A+++ based on the previous statistics in addition
to remarks to the developer on how to improve the grade of the repository.

3.3 Sample Use Case

The use case we consider for F8A QA is the F8AF. The F8AF spans a total of 30
repositories which each must have static analysis however most static analysis tools
have no way of running on multiple repositories. For these static analysis tools to
be used on a multi-repository project the developer would need to run the tool on
every repository individually. This process would take an exhaustive amount of time
that the developer could have been using more efficiently. The F8A QA offers native
support for static analysis of a multi-repository system by running the tools on each
repository in the configuration. It is able to run this static analysis with relatively
fast speeds. For the 30 repositories in the F8AF, it only took 78 s to run all the static
analysis tools on every repository. This was achieved with an Intel i8 Quad Core
2.8 GHz and 8 GB of RAM. The results for some of the repositories of F8AF are
visible in Fig. 1.
Usage of F8A QA on the F8AF drastically increased the overall quality of the

application. Since applying the tool, documentation coverage has increased to an
average of 98% and passing linter results have increased to 99% across the reposito-
ries. The results from the dead code and common issues testing is where the usage
of F8A QA really shines. Figure 2 is a graph showing the total number of common
issues over time in fabric8-analytics-common, the largest repository in F8AF with
155 files and almost 20,000 LoC. Since usage of the F8A QA began, it took around
a month to fully identify and fix the common issues in the repository. Even as the
LoC steadily increased over the past two years, using F8A QA allowed developers
to maintain the high passing percentages in their repository. Results are similar for
dead code and these results can be seen similarly in almost all repositories. Currently
all but one repository has fully passing dead code and common issues remarks. Code
coverage is one of the hardest statistics to increase but with the tool, repositories
have seen a steady increase in coverage, with some repositories hitting 100% code
coverage. The use of F8A QA has clear, quantifiable benefits in the modern devel-
opment process and should serve as an example of what static analysis tools should
strive for.

On Limitations of Modern Static Analysis Tools 585

Fig. 2 Common issues in fabic8-analytics-common

4 Conclusion

We highlight the insufficiency, gaps and propose future direction for future static
analysis tools that are needed to assist with modern industry development especially
relevant to distributed systems and module-based applications. Most common static
analysis tools lack a centralized overview, standard framework integration, multi-
repository support and multiple language support. However, we identified one tool
which proposes solutions to those problems. F8A QA is a static analysis framework
with demonstrated validity via the F8AF testbed. F8A QA was able to run on 30
repositories with upwards of 170 source code files in about 78 s. By displaying all
these static analysis statistics in a manageable dashboard, it is easy for the developer
to extract a quick overview of a multi-repository application. Though the current
dashboard implementation is focused on Python, support exists in the modules for
other languages.
It is time for static analysis tools to adapt to the new methods modern developers

use in the field. Through this paper we are challenging the developers of these static
analysis tools to make their tools more appetizing to the developers who need them
most. As of this date F8A QA is the only open-source static analysis software of its
kind.

Acknowledgements This material is based upon work supported by the National Science
Foundation under Grant No. 1854049.

References

1. Li P, Cui B (2010) A comparative study on software vulnerability static analysis techniques and
tools. In: 2010 IEEE international conference on information theory and information security,
pp 521–524, Dec 2010. https://doi.org/10.1109/ICITIS.2010.5689543

586 A. Walker et al.

2. Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl JP, Vouk MA (2006) On the value of
static analysis for fault detection in software. IEEETrans Software Eng 32(4):240–253. https://
doi.org/10.1109/TSE.2006.38

3. Baca D, Carlsson B, Lundberg L (2008) Evaluating the cost reduction of static code analysis
for software security. In: Proceedings of the third ACM SIGPLAN workshop on programming
languages and analysis for security, pp 79–88. PLAS ’08, ACM, New York, NY, USA. https://
doi.org/10.1145/1375696.1375707

4. Telang R, Wattal S (2007) An empirical analysis of the impact of software vulnerability
announcements on firm stock price. IEEE Trans Softw Eng 33(8):544–557. https://doi.org/
10.1109/TSE.2007.70712

5. Bardas AG (2010) Static code analysis. Rom Econ Bus Rev 4(2):99–107. https://ideas.repec.
org/a/rau/journl/v4y2010i2p99107.html

6. Findbugs (2015) http://findbugs.sourceforge.net/
7. Checkstyle (2019) https://checkstyle.sourceforge.io/
8. Pyflakes (2019) https://pypi.org/project/pyflakes/
9. Pylint (2019) https://www.pylint.org/
10. Spotbugs (2019) https://spotbugs.github.io/
11. Manzoor N, Munir H, Moayyed M (2012) Comparison of static analysis tools for finding con-
currency bugs. In: 2012 IEEE 23rd international symposium on software reliability engineering
workshops, pp 129–133, Nov 2012. https://doi.org/10.1109/ISSREW.2012.28

12. Rutar N, Almazan CB, Foster JS (2004) A comparison of bug finding tools for java. In: 15th
International symposium on software reliability engineering, pp 245–256, Nov 2004. https://
doi.org/10.1109/ISSRE.2004.1

13. Ayewah N, Pugh W, Morgenthaler JD, Penix J, Zhou Y (2007) Using FindBugs on production
software. In: Companion to the 22nd ACMSIGPLAN conference on object-oriented program-
ming systems and applications companion, pp 805–806. OOPSLA’07. ACM, New York, NY,
USA. https://doi.org/10.1145/1297846.1297897

14. Vetro A,MorisioM, TorchianoM (2011) An empirical validation of FindBugs issues related to
defects. In: 15th Annual conference on evaluation assessment in software engineering (EASE
2011), pp 144–153, Apr 2011. https://doi.org/10.1049/ic.2011.0018

15. Ayewah N, Pugh W, Hovemeyer D, Morgenthaler JD, Penix J (2008) Using static analysis to
find bugs. IEEE Softw 25(5):22–29. https://doi.org/10.1109/MS.2008.130

16. Pmd: An extensible cross-language static code analyzer (2019). https://pmd.github.io/
17. Copy-paste detector (2019) https://pmd.sourceforge.io/pmd-4.2.5/cpd.html
18. Sheneamer A, Kalita J (2016) A survey of software clone detection techniques. Int J Comput
Appl 137(10):1–21

19. Fabric8-analytics (2019) http://fabric8.io/faq/
20. Radon (2019) https://radon.readthedocs.io/en/latest/intro.html
21. Coleman D, Oman P, Ash D, Lowther B (1994) Using metrics to evaluate software system
maintainability. Computer 27(08):44–49. https://doi.org/10.1109/2.303623

22. Oman P, Hagemeister J (1992) Metrics for assessing a software system’s maintainability. In:
Proceedings conference on software maintenance, pp 337–344, November 1992. https://doi.
org/10.1109/ICSM.1992.242525

