On Automated Role-Based Access)
Control Assessment in Enterprise Chech o
Systems

Andrew Walker, Jan Svacina, Johnathan Simmons and Tomas Cerny

Abstract Software system security gets a lot of attention from the industry for
its crucial role in protecting private resources. Typically, users access a system’s
services via an application programming interface (API). This API must be protected
to prevent unauthorized access. One way that developers deal with this challenge
is by using role-based access control where each entry point is associated with a
set of user roles. However, entry points may use the same methods from lower
layers in the application with inconsistent permissions. Currently, developers use
integration or penetration testing which demands a lot of effort to test authorization
inconsistencies. This paper proposes an automated method to test role-based access
control in enterprise applications. Our method verifies inconsistencies within the
application using authorization role definitions that are associated with the API entry
points. By analyzing the method calls and entity accesses on subsequent layers,
inconsistencies across the entire application can be extracted. We demonstrate our
solution in a case study and discuss our preliminary results.

Keywords Access control + Microservices * Security + REST - Verification

1 Introduction

With software industry growth the dependency on software engineers increases,
which also expands the need to secure systems from outside manipulation. The
trends are to move toward the representational state transfer (REST) application
programming interfaces (API) [1]. Serving clients with REST-based infrastructures
is beneficial in its ease of access by users but can become notoriously complex,
particularly when interacting between services. When a system is hard for a user to
understand—considering that cogency is an important attribute for software suites
[2]—writing functionality and security tests becomes challenging.

A. Walker - J. Svacina - J. Simmons - T. Cerny (B<)
Computer Science, Baylor University, 76798 Waco, TX, USA

A. Walker
e-mail: Andrew_Walker2 @baylor.edu

© Springer Nature Singapore Pte Ltd. 2020 375
K. J. Kim and H.-Y. Kim (eds.), Information Science and Applications,

Lecture Notes in Electrical Engineering 621,

https://doi.org/10.1007/978-981-15-1465-4_38

376 A. Walker et al.

Testing a system’s security is not only a challenge requiring a lot of effort; the
confusion surrounding the topic of testing can spawn more vulnerabilities in the
system due to false positives and poor coding practices: complexity produces vul-
nerability [3]. In fact, in a survey conducted by the International Data Group (IDG)
in 2014 pertaining to security [3], it was revealed that approximately 63% of appli-
cations have not been tested for critical security vulnerabilities or violations. These
vulnerabilities can be addressed by implementing standard security features within
the system during the development lifecycle [4] itself rather than when it is already
too late.

Security vulnerabilities are not cheap either; security violations or breaches can
cost companies billions. For example, in 2004, three billion dollars were allocated
toward funding security integration. In 2001, loss due to security breaches cost the
market over thirteen billion dollars in one year [5]. The discrepancy between preven-
tative measures and asset loss is unfathomable, particularly when considering that
such loss was suffered by up to 90% of large corporations and government systems
internationally [5]. The National Institute of Standards and Technology found that
around $60 billion dollars a year are wasted due to faults in software [6]. Specifically,
concerning security violations, an average of $2.1 billion is lost on the market value
for large corporations two days after major security breaches which cause outages [6].
Clearly, security vulnerabilities should be taken seriously and dealt with swiftly; the
costs involved with a vulnerability found after deployment costs four to eight times
more than when they are found and dealt with prior to deployment [6]. Such prob-
lems remain challenging as demonstrated by Equifax or Marriott breaches involving
hundreds of millions of accounts. Specifically, the total costs for the Equifax incident
in 2017 has accrued to over $1.35 billion this year [7].

One of the methods of securing software, particularly with REST APIs, is by
using Role-Based Access Control (RBAC); wherein each user in the system has one
or multiple roles assigned that grant defined privileges into the system [8]. Roles
are applied in enterprise systems via multiple ways such as by annotations, by con-
figuration files, etc. This paper considers the annotation-based role restrictions. A
well-defined security role policy would protect from many possible vulnerabilities
by minimizing overlap in privilege between roles so no single leak in privilege could
cause disaster to the suite [8]. However, writing a bullet-proof security definition is
no easy task, particularly when attempting to create one for a complex work environ-
ment with hundreds of employees all needing access to disparaging components in a
unified system. There is no documentation or methodology for consistently writing
tests for a system that guarantees useful information, and similarly, writing security
definitions for a system is equally ambiguous and relative to the needs and environ-
ment established [9]. Therefore, there is an apparent need to continually verify the
security of a system automatically to help developers with the arduous process of
securing their software.

Being able to iteratively and automatically verify security roles applied inside
of a REST API would be of remarkable benefit, not only for reducing downtime
when errors are retroactively found but for also lowering financial costs by reducing
the risk of break-ins down the line and subsequently the need for hiring specialized

On Automated Role-Based Access Control Assessment in Enterprise ... 377

penetration testers. Other cost reduction factors, found by research studies [10],
noted that using static code analysis to discover security vulnerabilities can reduce
production costs up to potentially even 23%. Static code analysis is also beneficial in
that the same research also showed an increase of discovered security vulnerabilities
over previous methods by 2.6 times [10]. Furthermore, using penetration testing
over static analysis techniques can become intrusive, causing an accidental denial of
service attacks to the system in question.

System administrators should be wise when choosing which methodology of
testing they wish to implement when considering the intrusiveness and potential
risks attributed with penetration testing and the fact that a static analysis tool is only
as powerful as its model it is based on [10]. However, with the benefits outlined
above, our motivations for developing a static analysis tool are evident.

The experiment presented below focuses on a single proprietary microservice
named QMS, developed separately but re-purposed here as a benchmark for our
static analysis tool. QMS belongs to a family of microservices [11], however, the
static analysis tool provided only highlights the intra-microservice analysis whereas
the future research goal will include inter-microservice analysis including the other
microservices in the related family and the interactions therein. This paper will
introduce the subject of static analysis on a codebase with a provided security role
hierarchy and provide a list of potential or immediate security role violations and
vulnerabilities.

The paper is organized as follows. Section 2 describes related work. The proposed
method is outlined in Sect. 3, followed by a case study in Sect. 4. Finally, we conclude
the paper and describe our goals for future work and list the references.

2 Related Work

When it comes to API development, the two main choices are REST and SOAP
(Simple Object Access Protocol) [12]. What should be clarified is that while REST
is an architecture for API development, SOAP is merely a protocol. The prolific
nature of these two approaches toward API development draws comparison due to
their particular tendencies to evolve a system toward specific structures regardless
of their semantic differences. Major advantages toward REST include how easy it is
as a developer to learn, REST messages are lightweight and can run effectively on
mobile, REST calls are based on the standard hypertext transfer protocol (HTTP),
and parsing JavaScript Object Notation (JSON) is faster than parsing Extensible
Markup Language (XML) [13], making REST faster than SOAP [14].

REST was the most popular web API technology in 2014 with 69% being writ-
ten in REST [13]. Current corporations that use the REST architecture or have
implementations of it available include Docker and OpenStack [15].

Securing data is generally easy in REST, which is important given how important
security is described above. Several methods of securing a REST API include sep-
arating code into separate packages and only revealing relevant entry points, using

378 A. Walker et al.

prefixes and writing styles with enumeration to reveal only the methods which a
user should have access to, and writing metadata into the code in particular ways to
restrict access such as with annotations [16]. Organizing and enumerating code for
this purpose is both bulky and fragile, and certain metadata methodologies can cause
this kind of code murkiness [16]. Thus, as many developers choose to do in Java, we
shall focus on using annotations as metadata for security through Java EE Security
API [17].

REST APIs with RBAC are structured in such a way that users with given roles
only have access to such methods that their roles are intended to provide. Thus,
given a hierarchy such that there is an administrator role and a user role below that,
the administrator should be able to access any behavior and data that the user has
access to, however, the user should not be able to interact with the data and methods
exclusively available to the administrator.

Recent Java EE Security API Specification [17] recommends the use of annota-
tions to restrict access on each API endpoint of the application. Using Java annota-
tions, it could appear as follows: @AllowedRole administrator [16] With numerous
options to declare restrictions. In REST API annotations, such configurations in the
metadata exist over methods desiring access control. The use of annotations is the
easiest and most reasonable way.

Some APIs may prefer the use of custom annotations, such as @ AdminRole which
is a sufficient replacement for the previous example—or so that something like @ Cus-
tomerMethod could be used to describe a method that is for customers explicit use
[16]. We will focus on the Java EE Security API annotations. Custom annotations
would not affect our benchmark they represent an abstraction.

Due to the prolific nature of security role issues, plenty of research and devel-
opment has gone into the areas surrounding role violations or tool-assisted security
role development. One such tool developed and described by Ciuciu et al. [18] was
implemented in order to help developers get recommendations of appropriate secu-
rity annotations based on the context via a large ontology created from provided
business information. Since the tool works independently from any source code, if
the business knowledge provided is faulty then the recommendations provided by
the tool will also be faulty. All that both this oracle and our tool can do is make
sure the security roles represented in code and those defined by the developer are
cooperative.

Similar research to our own includes the development of a security violation
finding oracle that intends for access control within an API system [19]. The major
difference with our research is that they not only are currently capable of analyzing
multiple microservices at once, but they also require more than one in order for the
oracle to find discrepancies at all [19]. This inter-microservice analysis style is a
future target for our research as a whole, however, our success in intra-microservice
analysis stands on its own. Another benefit to our system over this oracle is faster static
analysis [19] and thus our tool could be run much more frequently on a codebase.

A similar research study [20] described a method of statically analyzing RBAC
for the criteria of consistency, completeness, and redundancy. It checked whether
an access control rule set is consistent across the methods, covers all subsets of

On Automated Role-Based Access Control Assessment in Enterprise ... 379

permissions, and whether permissions are unnecessarily repeating permissions in
subsets of methods. The coverage of a hierarchy with respect to access control over
a set of methods is not necessarily always correlated with security. However, if
a method has RBAC defined but incomplete ad preventing user from making an
action, it is more of a flaw with the system than a potential security breach. Our idea
of completeness reflects more on the topic of security: whether a method has RBAC
when it should.

The FixMeUp tool [21] is a static analyzer for access control testing, however, the
main differences being that their focus is on PHP instead of Java and that FixMeUp
edits the code as well as analyzes. As intriguing as it is to edit the code automat-
ically, this introduces potential syntax errors or unintended effects on the methods
in question. Though both our tool and FixMeUp could be prone to false positives,
our tool could not affect the codebase negatively as it never modifies the code it is
observing.

3 Proposed Method

Enterprise applications are often structured into three distinct layers—the controller
layer, the services layer, and the repository layer. Some commonly known termi-
nology may denote the layers as the presentation layer, business layer, persistence
layer, and database layer. In this case, presentation would be the controller as they
both represent the frontend of the API for the users. The business layer handles the
requests, so it is referred to here as the service layer. Lastly, the persistence layer
contains the data access object logic for interaction with the database layer. For gen-
eralization, both layers are condensed and referred to here as the repository layer
[2, 22]. In an RBAC enterprise application, each endpoint is secured with required
roles through annotations [16], configuration or some other system. At the controller
layer, where the endpoints are defined, the authorization is easy to control. Config-
uration in an RBAC system will focus on security for the endpoints, with defined
roles for each, however, often will not define roles for functions in lower layers. Due
to this lack of explicit control, as you move into the lower layers, the authorization
becomes less clear. This potential tangling of roles renders current authorization
checks insufficient.

We propose a static analysis method to identify areas of inconsistencies in role
access definition, especially with access to data. These areas are identified using a
hierarchy of roles given by the operator. These roles are structured into a tree, with
the highest permission role as the root. This role tree must be prepared before the use
of our system and must be prepared by the operator since the roles in the hierarchy
must match those used in the enterprise system. Using the structure of the tree, the
roles are organized into a distinctive ordering and it becomes trivial to see when a
lower access role is conflicting with a higher access role. Below we will go through
our process for aggregating the violations from the examination of the enterprise
application.

380 A. Walker et al.

Fig. 1. A model to Heirarchy Roles Code Base
aggregate security roles and
code metadata to discover Sggg?
violations

| Admin I | Moderator I

Metadata
A y
User Reviewer /
Security Warnings
Potential Security Violations and Seci:if: \r}uthaEtg:;sand
Threats Threats

\

Our proposed method is divided into two phases, the discovery phase and the
weaving phase. The discovery phase introspects the relevant security meta-data from
the application itself. The metadata is then used to create consistent discrete structures
representing each endpoint for use in the next phase. The weaving phase aggregates
the discrete security structures to discover the violations in the application. In addition
to the metadata from the codebase, this phase also uses the role hierarchy tree (see
Fig. 1). By dividing the analysis into two phases, the amount of information needed
to be introspected from the system can be reduced and more complex calculations
can occur in the weaving phase instead of the discovery phase which can slow down
the introspection process.

The discovery phase of our system extracts the needed information from the
system and encapsulates it into manageable structures for analysis. At this point, the
scraped information is discrete instead of holistic. The bulk of the information is
extracted from the REST endpoints of the system since the endpoints are the places
in which the user can directly access the system and also serve as the establishment
points for security roles within the system.

Each endpointis introspected to discover the security roles associated with it. Most
enterprise systems use annotation for this [16]. This information, along with later
tracing of the method call flow is enough to find most violations in the application.
For the remaining violations, more information from each method is needed. First,
the HTTP type of the endpoint is extracted into the security structure. The endpoints
can be one of the main HTTP types (GET, POST, PUT, etc.) [23]. Additionally,
our system stores the parameter lists and return types of each method. This security
structure is associated with the endpoint it was extracted from and the collection of
these structures is passed onto the next phase. At this point, our prototype is limited
to the Java platform, however, easy to transfer to other platforms that use RBAC.

The weaving phase receives the collection of discrete security structures repre-
senting each endpoint in the system. Additionally, the weaving phase takes the role
tree from the user which it will use to discover the violations. First, the system checks
each endpoint for any unknown roles and missing security definitions. Once those
violations have been found, each endpoint structure is then used as the starting point

On Automated Role-Based Access Control Assessment in Enterprise ... 381

to recursively traverse down its method flow, annotating each sub-method with its
parent’s security roles.

If an endpoint has multiple security roles associated with it, only the lowest role is
passed to its children. If a non-endpoint has multiple security roles associated with it,
then all of them are passed down to its child. After all methods have been annotated,
the system searches for any methods with multiple security roles associated with
it. Any method with multiple security roles is considered to be a violation and the
system uses the hierarchical role tree to distinguish between the types of violations.
Lastly, the system checks each endpoint for duplication of HTTP type, parameter
list and return type with conflicting roles. The system stores those violations with
the others and a collection of all violations found in the application is presented to
the user.

The violations that our system will discover fall into one of five categories that we
have defined: hierarchy access violations, unrelated access violations, entity access
violations, unknown role violations, and missing security definition violations. These
violations are discovered as the larger security context is aggregated from the security
structures provided from the discovery phase. The interpretation of each violation is
done using the role tree to understand the semantics of the security roles. This allows
our system to determine when parts of the system are accessed by conflicting roles.

The necessity of classifying the violations in the enterprise systems is rooted in
making violations of a potentially very large and complex system more manageable
to developers. These violations must be ultimately interpreted by the developers of
the system to determine if they are valid concerns or not. Organizing the violations
into categories helps the developers analyze them easier.

Using these violations, our proposed method covers all possible data access leaks
found in RBAC enterprise applications. Our system will discover unrestricted and
inconsistent data exposure as well as data exposure in a request with insufficient
permissions according to the business specification. Below we will walk through the
errors found in a benchmark enterprise application.

4 Case Study

The Question Management System (QMS) enterprise application was developed at
Baylor University as part of an NSF grant proposal for Central Texas Computational
Thinking, Coding and Tinkering. The application was built using Spring Boot [24]
with defined controller, service and repository layers and handles authorization using
pure RBAC with annotations on each endpoint of the API. The hierarchy of roles
for the QMS application can be seen in Fig. 2. In a blind study, a single mutant [25]
for each type of violation was introduced into the application which caused 10 total
violations. Our system was able to successfully locate all of the violations through
analysis of the mutated application. Below we discuss more details on the analysis
process go through the violations found in the mutated application.

382 A. Walker et al.

Fig. 2. Role hierarchy for a
testbed Admin f——pml User |——pul Guest

/'
SuperAdmin
)

Moderator f—— Reviewer

In Spring Boot applications, the layers of the application are defined with annota-
tions (@ Controller, @Service, and @Repository). For our purposes, we looked for
a subtype of @Controller, @ RestController, which denoted where the endpoints of
the API were located. The HTTP type was extracted from either @ RequestMappting
with a given parameter or from a subtype (@ GetMapping, @ PostMapping, etc.).
The parameter lists and return types were also extracted from each endpoint. For
extracting the security roles associated with each endpoint, we look for @RolesAl-
lowed annotations and their parameters that list allowed roles for a given endpoint,
which we extract and associate with each endpoint security structure. Each endpoint
is instrumented to find the control-flow starting at the endpoint tracing through the
service and repository layers.

A hierarchy violation occurs when a part of the system is accessed by two directly
conflicting roles. We classify directly conflicting roles as the situation when one of
the roles is an ancestor of the other role. The application mutant [25] introduced for
this violation type was to create inconsistent roles for creating and deleting Category
objects. This mutant caused hierarchy access violations in the repository layer of
the application. Our system located the mutant and correctly identified the violating
sub-method. Figure 3 visualizes the control flow graph that caused the violation.
Interpreting hierarchy access violations is more complex than the other types due to
inherent ambiguity. With RBAC it is impossible to tell if a lower role is accessing
a higher privilege flow which would be a violation or if a higher role is accessing a
lower privilege flow which would not be a violation. Due to these limitations, our
system is unable to distinguish a potential hierarchy access violation from an actual
one.

In addition to the hierarchy access violations, our system identified unrelated
access violations stemming from a mutant. An unrelated access violation is very
similar to a hierarchy violation but occurs when two roles that are not directly linked
both access the same parts of a system. In the QMS system, the unrelated access
violation occurred when a moderator and user had access to the same method in the
repository layer. The method flows are similar to Fig. 3 hierarchy violation, however

CategoryController::createCategory CategoryController::deleteCategory
{user, ad:in/, superadmin})admin‘ superadmin}

<

Cat

iisave

) Y Ld i - Y
{user, admin}

‘ Cat yRepository::del c}
{admin}

Fig. 3. Control flow graph of a hierarchy access violation

On Automated Role-Based Access Control Assessment in Enterprise ... 383

neither role is a direct ancestor of the other. This violation highlights parts of the
system where overlapping concerns may be present, and refactoring could be needed.
Additionally, our system successfully identified an entity access violation stem-
ming from a mutant. This violation is slightly different than the preceding violations
as an entity access violation deals with access to operations on a specific entity. A
violation here occurs if two endpoints with the same HTTP type, parameter list, and
return value have differing security roles. This is a violation since the system is grant-
ing similar access to two different roles. Whereas the other violations focus on the
sub-system below the endpoints, this violation deals directly with the endpoints and
the access to the system. The QMS system had two endpoints, updateCategory and
updateCategoryName, both in the CategoryController. Each of these endpoints had
the same HTTP type, parameter list, and return type. The reason for the violation is
that the mutant granted the up-date Category endpoint admin access rights whereas
the updateCategoryName has user access rights. In the case of an entity access vio-
lation, the differing roles are enough to constitute a violation. That is to say that it
doesn’t matter to the system whether the conflicting roles are hierarchically related.
There are two more types of violations introduced into QMS which our system
successfully located. An unknown role violation occurs when a role is found on an
endpoint but is not found in the role tree. This usually happens in one of two cases.
The first case is due to the misspelling of the role in the endpoint definition or role
tree. The second is the accidental exclusion of the role from the role tree. In the case of
QMS, a mutant was introduced into an endpoint to misspell the “user” role as “uder”.
The mutant affected 4 total methods, the initial endpoint and the 3 methods it called.
Our system identified this as an unknown role and flagged all the children methods
as vulnerable. Lastly, our system will flag any exposed endpoint with no security
definition. With security definitions often being added at the end of development [3]
it is easy to overlook an endpoint which leaves resources unprotected. Our system
will warn the user when an endpoint is found without security definitions and flag
all sub-methods of the endpoint as vulnerable. A mutant was introduced into QMS
which removed the security constraints on a single endpoint. This mutant affected
3 total methods, the initial endpoint and the 2 child methods it called. Our system
successfully located the violation and flagged all 3 methods as vulnerable.

5 Conclusion

We proposed a novel solution for automatic role-based access control testing in
enterprise systems and proved the validity of the solution on the benchmark ex-
ample. Our method is based on static code analysis and traces the roles through-out
the control-flow graphs. It is able to detect the following security threats: hierarchy
access violations, unrelated access violations, entity access violations, unknown role
violations, and missing security definition violations. By preventing these violations,
we restrict unauthorized users or users with insufficient permission from accessing
resources within the system. Though the testbed was using Java annotations, our

384 A. Walker et al.

tool would not be restricted to this use case given time to develop new ways to
scrape access controller methods and other parsing tools for analyzing security access
violations in different programming languages.

In the future, our system will account for a multitude of ways to extract security
definitions. Our future work will include integration with Git repositories to check
only the methods that require re-scanning via the commit differences. In this way, we
can make our system faster and more harmonious with other continuous integration
processes. A microservice application deals with security consistency within itself
and with the other modules in the system. We will extend the introspection to include
inter-microservice flows. Our long-term goal is to develop this sort of complex and
dynamic feature.

Acknowledgements This material is based upon work supported by the National Science
Foundation under Grant No. 1854049.

References

1. Vural H, Koyuncu M, Guney S (2017) A systematic literature review on microservices. In:
Computational science and its applications—ICCSA 2017, pp 203-217. Springer, Cham

2. Steinegger R, Giessler P, Hippchen B, Abeck S (2017) Overview of a domain-driven design
approach to build microservice-based applications

3. AnwerMohd F, Mustafa N (2016) Security testing. Trends in software testing

4. McGraw G (2004) Software security. EEE Secur Priv 2:80-83. https://doi.org/10.1109/MSECP.
2004.1281254

5. Mercuri RT (2003) Analyzing security costs. Commun ACM 46(6)

6. Telang R, Wattal S (2007) An empirical analysis of the impact of software vulnerability
announcements on firm stock price. IEEE Trans Softw Eng 33(8):544-557. https://doi.org/
10.1109/TSE.2007.70712

7. Schwartz MJ (2019) Equifax’s data breach costs hit $1.4 billion. https://www.bankinfosecurity.
com/equifaxs-data-breach-costs-hit-14-billion-a-12473

8. Dinh KKQ, Truong A (2019) Automated security analysis of authorization policies with con-
textual information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58808-6
'5

9. Felderer M, Zech P, Breu R, Bchler M, Pretschner A (2016) Model-based security testing: a
taxonomy and systematic classification. Softw Test Verif Reliab 26(2):119-148. https://doi.
org/10.1002/stvr.1580

10. Bardas AG (2010) Static code analysis. Romlan Econ Bus Rev 4(2):99—-107. https://ideas.
repec.org/a/rau/journl/v4y2010i2p99-107.html

11. Cerny T, Donahoo MJ, Trnka M (2018) Contextual understanding of microservice architecture:
current and future directions. SIGAPP Appl Comput Rev 17(4):29-45. https://doi.org/10.1145/
3183628.3183631

12. Tihomirovs J, Grabis J (2016) Comparison of soap and rest based web services using software
evaluation metrics. Inf Technol Manage Sci 19(1):92-97. https://doi.org/10.1515/itms-2016-
0017

13. Levin G (2015) The rise of rest API. https://blog.restcase.com/

14. Aihkisalo T, Paaso T (2012) Latencies of service invocation and processing of the rest and soap
web service interfaces. In: 2012 IEEE eighth world congress on services. pp 100-107. https://
doi.org/10.1109/SERVICES.2012.55

On Automated Role-Based Access Control Assessment in Enterprise ... 385

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

Li L, Chou W, Zhou W, Luo M (2016) Design patterns and extensibility of rest API for
networking applications. IEEE Trans Netw Serv Manage 13(1):154—167. https://doi.org/10.
1109/TNSM.2016.2516946

Bodkin R (2004) Enterprise security aspects

Will Hopkins AT (2017) Java EE security API specification (jsr 375). https://javaee.github.io/
security-spec/

Ciuciu I, Tang Y, Meersman R (2012) Towards evaluating an ontology-based data matching
strategy for retrieval and recommendation of security annotations for business process models.
In: Aberer K, Damiani E, Dillon T (eds) Data-driven process discovery and analysis. pp 103—
119. Springer, Cham

Srivastava V, Bond MD, McKinley KS, Shmatikov V (2011) A security policy oracle: detecting
security holes using multiple API implementations. In: Proceedings of the 32Nd ACM SIG-
PLAN conference on programming language design and implementation. pp 343-354. PLDI
11, ACM, New York, USA. https://doi.org/10.1145/1993498.1993539

XuD, Thomas L, Kent M, Mouelhi T, Le Traon Y (2012) A model-based approach to automated
testing of access control policies. In: Proceedings of the 17th ACM symposium on access control
models and technologies, pp 209-218. SACMAT’ 12, ACM, New York, USA. https://doi.org/
10.1145/2295136.2295173

Son S, Mckinley KS, Shmatikov V (2013) Fix me up: repairing access-control bugs in web
applications. In: Network and distributed system security symposium

Richards M (2015) Software architecture patterns. O’Reilly Media, Inc

Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T (1999) Hypertext
transfer protocol. https://tools.ietf.org/html/rfc2616

Software P (2019) Spring framework. https://spring.io/

Jia Y, Harman M (2010) An analysis and survey of the development of mutation testing. IEEE
Trans Softw Eng 37(5):649-678

