
Noname manuscript No.
(will be inserted by the editor)

Variable order metrics for decision diagrams in system verification

Elvio G. Amparore · Susanna Donatelli · Gianfranco Ciardo

Received: date / Accepted: date

Abstract Decision diagrams (DDs) are widely used in sys-
tem verification to compute and store the state space of fi-
nite discrete events dynamic systems (DEDSs). DDs are or-
ganized into levels and it is well known that the size of a
DD encoding a given set may be very sensitive to the or-
der in which the variables capturing the state of the system
are mapped to levels. Computing optimal orders is NP-hard.
Several heuristics for variable order computation have been
proposed and metrics have been introduced to evaluate these
orders. However, we know of no published evaluation that
compares the actual predictive power for all these metrics.

We propose and apply a methodology to carry out such
an evaluation, based on the correlation between the metric
value of a variable order and the size of the DD generated
with that order. We compute correlations for several metrics
from the literature, applied to many variable orders built us-
ing different approaches, for 40 DEDSs taken from the liter-
ature. Our experiments show that these metrics have correla-
tions ranging from “very weak or non-existing” to ‘strong”.

We show the importance of highly correlating metrics
on variable order heuristics, by defining and evaluating two
new heuristics (an improvement of the well-known FORCE

heuristic and a metric-based simulated annealing), as well
as a meta-heuristic (that uses a metric to select the “best”
variable order among a set of different variable orders).

Keywords Decision diagrams · variable order metric ·
variable order computation

This work was supported in part by the National Science Foundation
under grant ACI-1642397

Elvio G. Amparore, Susanna Donatelli
Dipartimento di Informatica, Università di Torino
E-mail: amparore,susi@di.unito.it

Gianfranco Ciardo
Computer Science Department, Iowa State University, IA, USA
E-mail: ciardo@iastate.edu

1 Introduction

Decision diagrams (DDs), which include binary and multi-
valued decision diagrams (BDDs [12] and MDDs [27]), are a
powerful data structure to store large structured data and are
used in many system verification tools [3,13,15,34,35] to
store the state space and the transition system of the discrete-
state system under study. It is well-known [12] that the size
of the DD encoding the state space of a system can be ex-
ponentially affected by the order in which state variables are
mapped to DD levels, and this exponential factor is often
encountered in practical applications: indeed the User Man-
ual of the widely used NuSMV tool [15, page 103] states
“In particular, the order of variables is critical to control the
memory and the time required by operations over BDDs”.
Unfortunately, finding an optimal order (yielding a minimal
BDD for a given function) is an NP-complete problem [10].
Two standard approaches to mitigate the DD growth are to
perform a dynamic reordering of the DD variables during
its construction, typically when the memory requirements
reach a given threshold, or to use a static ordering aimed
at determining a “good” variable order before starting the
DD construction, by either relying on the user, or applying
heuristics. Dynamic and static approaches can be combined:
if the chosen static order leads to a large DD, dynamic re-
ordering can be applied during its construction. In this paper,
we concentrate on static ordering, as it provides a starting
point and in general it is difficult to have an effective dy-
namic reordering if the initial order is poor (an “efficiency
concern” of the developers of the DD library BuDDY [26]).

But how can we identify a good heuristic for variable or-
dering? Are there heuristics that work (almost) always well?
In previous work [5] we benchmarked 18 different algorithms
to compute variable orders on a set of 386 DEDS, Petri net
models from the Model Checking Contest (MCC) held at
the annual Petri Net conference [31]. The results indicate

2 Elvio G. Amparore et al.

that, while some algorithms tend to perform significantly
better than others, we can always find DEDSs for which a
“bad” algorithm finds the best order and performs much bet-
ter than the “good” algorithms. This suggests that relying on
a single algorithm is unwise; however, if we consider multi-
ple algorithms, how do we choose a heuristic when tackling
a new system? Given enough resources, we could concur-
rently build the DD for each candidate variable order, and
retain only the best one (producing the smallest DD), but this
is rarely feasible for DEDS with many variables, as the num-
ber of exhaustive orders for which to build the DD equals
|V |! if we have |V | variables.

Variable order metrics can be a viable alternative, as we
can simply select, among the candidate variable orders, the
one giving the smallest value for the metric. Moreover, the
value of such a metric can also be used as an objective func-
tion to devise new heuristics. Of course, this approach is ef-
fective only if the metric positively correlates with the size
of the DD (the lower the value of the metric for a variable or-
der, the lower the size of the DD generated with that order).
This calls for the computation of a correlation coefficient
(CC) between metrics and DD sizes. Thus, we investigate
three research questions:

Q1 Which correlation coefficients are adequate to evalu-
ate variable orders metrics, and on which set of orders
should they be computed?

Q2 Do metrics have significantly different predictive power?
Q3 Can knowledge of each metric correlation help improve

the state space construction of DEDS?

A first contribution of this paper is to define a methodol-
ogy to define and evaluate the correlation between variable
order metrics and the resulting DD size, and to evaluate the
metrics on a statistically significant set of models. This re-
quires the identification of a CC, a set of metrics, a set of
models, and, for each of them, a set of variable orders, so
that we can build the corresponding DDs and evaluate the
correlation. The methodology takes into account the goal of
computing a correlation: as we shall see, different objectives
require us to consider different sets of variable orders on
which the correlation is computed. We use metrics and mod-
els from the literature, and a set of orders that are either the
full set (in the few cases where this is possible), the orders
computed by a set of heuristics for variable ordering com-
putation [5], a set of randomly generated orders, or a set of
“modified” random orders. As far as we know this is the first
work devoted to an extensive experimental evaluation of the
predictive power of a significant set of metrics, answering
questions Q1 and Q2 above.

A second contribution is the application of metrics cor-
relation to define new heuristics and meta-heuristics. In par-
ticular, we show how to: 1) use one of the evaluated metrics
to improve FORCE [1], an iterative procedure for variable
order computation used in many verification tools; 2) define

a simulated-annealing procedure that uses the metrics as the
objective of the optimization; 3) use the CC of the metrics to
drive a meta-heuristic that selects, among a set of available
orders, one to use when building the DD. We show that even
a moderately correlated metric can improve FORCE perfor-
mance, and that the higher the index of correlation of the
metric used in simulated annealing and the meta-heuristics,
the better the computed variable orders. This suggests that
developing new metrics with better correlation and adapting
the computation of the CCs to the specific use of a metric
can lead to better heuristics and meta-heuristics. This second
contribution provides an answer to question Q3. To compare
heuristics and meta-heuristics, we employ a notion of score
that allows us to compare DDs even if they arise from DEDS
with state spaces differing by orders of magnitude.

As with any experimental evaluation, we had to choose
a setting that is significant and general enough, yet manage-
able. We employ the GreatSPN tool [2,3], therefore DEDS
are specified as Petri nets and the decision diagrams con-
sidered are multivalued decision diagrams generated using
the Meddly library [6]. Since our decision diagrams are in
canonical form and we consider only the number of nodes
in the DD once it is completely built (i.e., its final size), our
results do not strictly depend on the specific library used.
The models considered are taken from the annual model-
checking contest [31]. Although some of the heuristics and
metrics considered are tied to the system being specified as
a Petri net, others are not. Our methodology is fully gen-
eral and can be easily used in other contexts with different
heuristics, metrics, or formalisms for system specification.

The paper is organized as follows: Section 2 introduces
necessary background, Section 3 reviews the state of the art
on variable order for decision diagrams, Section 4 presents
the considered metrics, Section 5 defines the methodology
proposed to evaluate the correlation coefficient of variable
orders metrics, Section 6 applies the methodology to study
the considered metrics on a large set of models, Section 7
presents three different applications of the evaluated met-
rics (improvement of FORCE heuristic, definition of a new
heuristic based on simulated annealing, and definition of a
meta-heuristic for variable order selection), and Section 8
concludes the paper and identifies future work.

2 Background

Table 1 lists the acronyms we use in this paper.

Discrete-state models. We assume a discrete-state model
defined by a set V of discrete variables (w.l.o.g. taking val-
ues over the natural numbers N) and a set E of events whose
occurrence can modify these variables. Given event e ∈ E,
let V (e) be the set of variables that affect or are affected by
e and, given variable v ∈V , let E(v) be the set of events that

Variable order metrics for decision diagrams in system verification 3

Table 1 Table of Acronyms used throughout the paper

Acronym Meaning
BDD Binary Decision Diagram
BR Bandwidth Reduction
CC Correlation Coefficient
DD Decision Diagram
DEDS Discrete Events Dynamic System
MCC Model Checking Context [31]
MDD Multi-valued Decision Diagram
Variable order heuristics
ACM Advanced Cuthill-Mckee method for BR
BFS Breadth-First Search
CM Cuthill-Mckee method for BR
DFS Depth-First Search
GP Gradient-P variable order heuristics
GPS Gibbs-Poole-Stockmeier method for BR
KING King method for BR
MCL Markov Clustering based on the MCL library
NOACK Noack variable order heuristics
PC P-chaining variable order heuristics
SLO Sloan algorithm for graph linearization
TOV Tovchigrecko variable order heuristics
Variable order metrics
AVGWFA Average Wavefront metric of matrix A
BWA Bandwidth metric of matrix A
MAXWFA Maximum Wavefront metric of matrix A
NES Normalized sum of Events Spans metric
PROFA Profile metric of matrix A
PSF P-semiflows based metric
PTS Point-Transition Spans metric
PTSP PTS with P-semiflows metric
RMSWFA Root Mean Square Wavefront metric of matrix A
SOT Sum of Tops metric
SOUPS Sum of Unique and Productive Spans metric
WES Weighted variant of NES
Correlation coefficients on a bivariate series
BCC “Best” correlation coefficient
ECC Exact correlation coefficient
ICC Improved correlation coefficient
RCC Random correlation coefficient
SCC Stratified correlation coefficient

affect of are affected by v. In our experiments, we use Petri
nets [37], where V is the set of places, E is the set of tran-
sitions, V (e) is the set of places with input or output arcs
connected to transition e, and E(v) is the set of transitions
with input or output arcs connected to place v. Figure 1(A)
shows a sample DEDS model expressed using the Petri net
formalism: places x1 through x7 are the variables, while the
transitions (the rectangular white boxes) define the events.
A state of the system is the collection of values assumed by
the state variables and, given an initial state, the (reachable)
state space of the model is defined as the set of states that
can be reached from this initial state through a sequence of
events. The DEDS in Figure 1(A) has an initial state with x1
set to 2 and x6 set to 1. The number of reachable states is 17.

Invariants. A model may be subject to invariants con-
straining the combination of values the state variables may
assume in any reachable state. For Petri nets, P-semiflows

have been extensively studied [37]: they capture an invari-
ant constraint of the form ∑v∈π wv · vx = constant, where π

is the set of places forming the support of the invariant, vx
the value of the variable in a state x, wv a positive integer
weight, and the equation is true for any reachable state x
of the net. While computing P-semiflows can be expensive
in pathological cases, it is usually quite fast for most Petri
nets, so we assume that this information (in particular, the
set Π of supports of the P-semiflows, i.e., the set of places
involved in each P-semiflow) is available if needed. Three
invariants for the model in Figure 1(A) are: x1+x2+x3 = 2,
x6 + x7 = 1, and x1 + x4 + x5 +2 · x7 = 2.

Decision diagrams. We employ Multi-valued DDs (MDD,
natively supported in the Meddly library [6], not encoded as
BDDs) to store sets of states and transition relations between
states, and generate the state space using the Saturation [14]
algorithm. This requires us to specify a variable order, i.e., a
bijection l : V →{1, ..., |V |} between the state variables and
the DD levels. We define final(l) as the number of nodes
in the DD encoding the state space of the model, when the
levels are ordered according to l. The maximum number of
nodes stored at any one time during state-space generation,
peak(l), is obviously at least as large as final(l), and can
sometimes be much larger, but here we concentrate on the
final DD size, as the peak DD size is strongly influenced
not only by the variable order but also by the technique em-
ployed for DD construction (e.g., breadth-first iterations vs.
Saturation) and even on finer details such as the order in
which the children of a DD node are explored.

+1

-1

+2 +1

-1

-1

+1

-2

-1

-1

+1

+1

-1

+1

+1

-1

t5 t2 t4 t3 t0 t1

x1

x4

x2

x5

x3

x6

x7

2

0

0

0

0

1

0

m0 bnd

-

-

-

-

-

-

-

RS

20

3

3

1

3

6

2

2

MDD

0 1 2

0 1 2 0 10

2 10 1 00

0 1 2 0 10

0 2 1 0

1 0

0 1+1

-1

+2 +1

-1

-1

+1

-2

-1

-1

+1

+1

-1

+1

+1

-1

t5 t2 t4 t3 t0 t1

x1

x4

x2

x5

x3

x6

x7

2

0

0

0

0

1

0

m0 bnd

-

-

-

-

-

-

-

RS

20

3

3

1

3

6

2

2

MDD

0 1 2

0 1 2 0 10

2 10 1 00

0 1 2 0 10

0 2 1 0

1 0

0 1

-1

+1

+1

+1

-1

-2

+1

-1

-1

+2

+1

-1

+1

-1

+1

-1

t2 t0 t4 t5 t1 t3

x1

x4

x2

x5

x3

x6

x7

2

0

0

0

0

1

0

m0 bnd

-

-

-

-

-

-

-

RS

43

6

9

3

9

1

3

12

MDD

0 1 2

0 1 0 1 0 1

0 0 1 2 0 0 10 0

00 1 2 0 1 00 0 1 2 0 10 0 1 2

10 00 0 0 01 0 01 0

0 2 1 1 0 02 12

2 1 0

-1

+1

+1

+1

-1

-2

+1

-1

-1

+2

+1

-1

+1

-1

+1

-1

t2 t0 t4 t5 t1 t3

x1

x4

x2

x5

x3

x6

x7

2

0

0

0

0

1

0

m0 bnd

-

-

-

-

-

-

-

RS

43

6

9

3

9

1

3

12

MDD

0 1 2

0 1 0 1 0 1

0 0 1 2 0 0 10 0

00 1 2 0 1 00 0 1 2 0 10 0 1 2

10 00 0 0 01 0 01 0

0 2 1 1 0 02 12

2 1 0

(A) Model. (B) Order and MDD. (C)
x1

x2 x3

x4 x5

x6 x7

lB lC

Fig. 1 A Petri net model and two variable orders with their MDDs.

Figures 1(B) and 1(C) show two MDDs that encode, us-
ing two different variable orders, the state space of the model
in Figure 1(A). In both cases, a single variable is assigned to
each place and a path of the MDD from the root node to a
bottom node corresponds to a reachable state. The different
orders have a significant impact on the size of the MDD,
with final(lB) = 43 and final(lC) = 20.

Model set for the tests.
The test models are taken from the 817 Petri nets of the

MCC model set [31]. These Petri nets are generated by set-

4 Elvio G. Amparore et al.

ting different initial markings for a set of 77 different model
structures. Since the correlation evaluation we present in this
paper requires to generate thousands of DDs for each con-
sidered model, we only consider the subset of the 77 models
for which we can build the DD of the state space for 10000
different orders in less than 10×10000 CPU seconds. This
leads to the 43 “test” models listed in Section 6 (Table 4). Of
these, we discard three models whose DD size is insensitive
to the variable order, for a total of 40 considered models. Of
these, we have identifies three “easy” models with |V |< 10
variables, for which we can build the DD for all the |V |!
variable orders.

Metrics. Let S(V) be the set of permutations of the vari-
ables V . A variable order metric is a function m :S(V)→R
assigning a “goodness” to each variable order, where lower
is better. Section 4 describes 12 such metrics, nine taken
from [5], one from [42] and two new ones we define to cap-
ture invariant information, when available.

3 State of the art

Literature on metrics is limited and we do not know of any
extensive evaluation of their predictive power. The next sec-
tion presents a review of available metrics and defines some
new ones. Here, we discuss instead if and how some well-
known DD libraries and verification tools exploit metrics for
variable ordering. The choice of the libraries and of the tools
to survey is driven by their popularity, but we also include
less popular Petri net tools that have been entered in the
MCC, since they target the same set of models we consider.

We consider two dimensions in the state of the art: static
vs. dynamic ordering and verification tool vs. DD library. As
stated in the introduction, static ordering is a procedure to
define a “good” variable order prior to actual DD construc-
tion, while dynamic ordering (or, better, reordering) is a pro-
cedure to improve the variable order during DD construc-
tion, typically to cope with an excessively large DD given
the available memory. Procedures for dynamic ordering are
typically provided at the DD library level, i.e., the compu-
tation of an improved order is provided by the same library
that provides DD creation and manipulation, although it may
be triggered by the verification tool, to set various parame-
ters or to disable it altogether. Procedures for static order-
ing are instead typically provided by the verification tool,
which allows the user to choose among a set of predefined
heuristics or to load a pre-computed order, usually based on
structural characteristics of the model.

DD libraries and dynamic reordering heuristics. Well-
known DD libraries include CUDD [43] and BuDDy [26],
while Meddly [6] and LibDDD [44] are more recent libraries

that also cover new forms of DDs. A survey and a com-
parison of currently maintained DD libraries can be found
in [17]. Of the DD libraries listed above, CUDD, BuDDY,
and Meddly offer dynamic reordering, while LibDDD does
not support this feature at the moment. CUDD is a widely
used library offering a rich set of dynamic reordering tech-
niques: various forms of sifting (based on the seminal work
of Rudell [38]), window permutation [20], a simulated an-
nealing approach, a genetic algorithm one, and an exact ap-
proach based on dynamic programming. Sifting and window
permutation are also included in BuDDy. Meddly provides
both a variable reordering capability that changes the current
DD variable order into one specified by the user, as well as
the traditional dynamic variable ordering based on sifting. A
characteristic of all dynamic reordering algorithms that we
have studied is that the comparison among potential new or-
ders is based on the actual size of the DD built using those
orders, and no metric is used. Thus, the computational cost
of dynamic reordering may be significant, even if the DD
with the new order is generated efficiently as a modifica-
tion of the DD with the current order, since the reordering
is within the library itself. On the other hand, if the initial
order is not good enough, reordering is the only choice.

Static ordering heuristics. Static variable order genera-
tion is typically performed using heuristics, specialized al-
gorithms that, given a model, compute a “good” (although
likely sub-optimal) variable order l using some criteria.

One of the most used heuristic is the iterative algorithm
FORCE [1], but heuristics can be rather trivial, such as a
simple Depth-first (DFS) or Breadth-first (BFS) visit of the
DEDS structure, or can be based on some local proximity of
the variables in the DEDS structure, like Noack (NOACK)
and Tovchigrecko (TOV), defined in [23], or can exploit some
structuring of the model, like Gradient-P (GP), defined in [4],
P-chaining (PC) and Markov Clustering (MCL), both de-
fined in [5]. A number of heuristics are built on the idea, first
suggested in [36], that variable order optimization can be
reduced to bandwidth optimization of a matrix accounting
for the dependencies among DEDS variables.; these include
Sloan (SLO), Sloan-16 (SLO-16), Advanced CM (ACM),
King (KING), Gibbs-Poole-Stockmeier (GPS), and Cuthill-
Mckee (CM, when taken from the Boost-C++ library; CM2,
when taken from ViennaCL library). Finally, any of these
14 heuristics can be used to compute an initial order for the
FORCE iterations. We do not instead consider heuristic de-
fined for circuits, which assume a clear input/output flow.

An in-depth analysis of the above heuristics is outside
the scope of the paper, and more info can be found in [4,5,
23,36]. Here, we consider heuristics in relation to metrics, as
often heuristic have the goal of minimizing a target metric,
and to show the contribution that correlation knowledge can
give to the definition of new or modified heuristics. We only

Variable order metrics for decision diagrams in system verification 5

provide a short description of the FORCE heuristic, since it
is used extensively in the rest of the paper.

The FORCE heuristic is a n-dimensional graph layout
technique [1] based on the idea that variables form a hyper-
graph, such that variables connected by the same event are
subject to an “attractive” force, while variables not directly
connected by an event are subject to a “repulsive” force.
Events and variables are positioned over a real-valued line,
and then sorted to get the ordering.

Algorithm 1 Pseudocode of the FORCE(l0) heuristic.
l0← linit
repeat for i starting from 1:

for each event e ∈ E:
compute center of gravity coge =

1
|e| ∑v∈e li−1(v)

for each variable v ∈V :
compute hyper-position p(v) = 1

E(v) ∑e∈E(v) coge

li = vertices sorted according the their p(v) value.
Compute PTSi = ∑e∈E ∑v∈e

∣∣coge− p(v)
∣∣.

until series of PTSi values monotonically decreases.
return the variable order li(v) that had the smallest PTSi value.

Algorithm 1 gives the general skeleton of the FORCE

heuristics. It starts by shuffling the variable set, then it iter-
ates trying to achieve a convergence of a metric. Usually, dif-
ferent initial orders produce different final orders, so FORCE

can be seen as a transformation function of variable orders.
The metric is the total distance between transition points and
variable points, known as Point-Transition Spans (PTS).

Variable order in verification tools. Many verification
tools use DDs to build the state space and verify properties
on it. Tools often include other verification approaches, but
we focus on DD-based features and their variable order.

One of the best known DD-based tools is NuSMV [15],
which uses the library CUDD. NuSMV allows the user to
specify a static variable order in input. Alternatively, it can
compute an order using a built-in heuristic that creates groups
of variables with mutual dependencies, according to the def-
inition of the transition relation for the DEDS, but the man-
ual does not specify whether this grouping is based on some
form of metric optimization. If no heuristic is used, the user
may choose among six different ways of computing an or-
der. There are three basic orderings: input variables are or-
dered before or after state and frozen variables, or all vari-
ables are ordered as they appear in the input file. The total
is six since each ordering can be implemented in two ways:
as NuSMV uses BDDs, variables are translated into bit se-
quences and all bits of a variable may appear in adjacent
levels or interleaved. Again, it appears that no variable order
metric is used. Dynamic reordering is also possible, based
on the dynamic reordering provided by CUDD.

CADP [21] is a tool for the design and analysis of asyn-
chronous concurrent systems. It includes symbolic verifi-
cation using BDDs through the package caesar.bdd, which
takes a Lotos specification, translates it into a “structured
Petri net”, and performs various structural analysis steps be-
fore checking properties on a symbolic state space built us-
ing the CUDD library. Variable ordering is only dynamic,
again as provided by CUDD, and no metrics is considered.

ITS-Tools [44] features a symbolic model checker for
DEDS models specified in a variety of formalisms, using
GAL (Guarded Action Language) as common language. The
tool uses the LibDDD library, which supports hierarchical
DDs. The user can choose whether to specify a variable or-
der, use a lexicographic order, or run FORCE. Since FORCE

has an associated metrics, we can say that there is some con-
sideration for metrics.

LTSMin [36] also features a language-independent sym-
bolic model checker built on the Sylvan DD library [18],
designed to support multi-core execution at the DD level.
LTSMin includes various heuristics for static variable order
(SLO, KING, CM, CM2, ACM, GPS, and FORCE).

Tina [8] is a toolbox for (timed) Petri net verification.
It includes a symbolic verifier, Tina.tedd, based on a built-
in library for hierarchical DDs that includes several variable
ordering heuristics based on “net traversal, semiflows, flows,
or names” [32]. FORCE can also be run to (possibly) im-
prove the obtained orders. Unfortunately, no further infor-
mation is available about the Tina.tedd heuristics, and the
tool is not open-source, thus it is not known whether the
heuristics are based on a metric optimization.

Marcie [39,23] is a symbolic model checker for Petri
nets based on a native implementation of Interval DDs. It in-
cludes two heuristics based on the Petri net structure (NOACK
and TOV), as well as FORCE. There is no explicit metric as-
sociated to the two heuristics: the algorithms are greedy and
add a variable at each step according to its “distance” (de-
fined differently by NOACK and TOV) from the variables
already added.

GreatSPN [3] is another Petri net tool featuring a sym-
bolic verifier, based on the library Meddly. It includes many
variable ordering options. In particular, since it is the tool
we use for our experiments, it implements all heuristics and
metrics considered in this paper.

SMART [13] is a tool for logic, timing, and stochas-
tic analysis, which includes a symbolic model checker built
on top of the Meddly [6] library, and uses Petri nets as its
main input type. Several static variable ordering approaches
are provided by SMART: simulated annealing to find or-
ders with small values for several of the metrics used in
this paper (in particular SOUPS [42]), and FORCE. None
of the dynamic reordering techniques provided by Meddly
is exploited in SMART, nor in GreatSPN, as dynamic vari-
able reordering is not easily integrated with Saturation [14],

6 Elvio G. Amparore et al.

the default algorithm for state-space generation and model
checking in both SMART and GreatSPN.

ITS-Tools, LTSMin, Tina.ted, Marcie, GreatSPN, and
Smart are model checkers that competed in the MCC 2017
contest (whose models we use for our experiments).

4 The metrics considered

In this section we briefly describe the 12 metrics considered.
Two of them are newly defined (PSF and PTSP), while the
other ten are taken from the literature.

The NES, WES, and SOT metrics. The Normalized sum
of Events Spans (NES) is a simple metric based on event
“spans” [40]. Given an event e and a variable order l, let
topl(e) = maxv∈V (e) l(v) and botl(e) = minv∈V (e) l(v) be the
maximum and minimum levels of variables on which e de-
pends. The event span spanl(e) of e for variable order l is
then topl(e)−botl(e)+1. The NES score is obtained as the
sum of the span of each event, normalized by the number of
variables and events:

NES(l) =
1

|E| · |V | ∑e∈E
span(e).

The Weighted Normalized sum of Event Spans (WES) is a
variation [40] of NES to account for the specificity of a state
space generation based on Saturation [14]: events closer to
the top of the variable order have more weight, since Satura-
tion performs better when most events have spans positioned
close to the bottom of the order:

WESα(l) =
1

|E| · |V | ∑e∈E
span(e) ·

(
2 · top(e)
|V |

)α

,

where α is suggested to be 1. A third metric, again based on
the events, is the Sum of Tops (SOT). The SOT metric [13] is
defined as the sum of the topl(e) values of each event. The
intuition is that the top level at which an event is activated is
a key factor.

The PSF metric. The work in [4] defines a heuristic called
Gradient-P (GP), which generates variable orders by con-
catenating P-semiflows. The paper shows that GP produces
good variable orders. We have therefore extracted from GP
a metric, named P-semiflows spans metric (PSF), implicitly
minimized by GP. The PSF value for variable order l is

PSF(l) = ∑
π∈Π

(
max

{
l(v) | v ∈ π

}
−min

{
l(v) | v ∈ π

}
+1
)
.

For models with no P-semiflows, or with just one P-semiflow
covering the entire set of variables (π = V), the PSF metric
has the same value for any order l, thus it is not meaningful.

The PTS metric. Another metric playing an important
role in variable ordering algorithms is the point-transition
spans (PTS), which the FORCE algorithm [1] uses as conver-
gence criterion. FORCE is an iterative algorithm for multi-
dimensional clustering of graphs that has been adapted to
variable order generation. The center of gravity of event e
is cogl(e) =

1
|V (e)| ∑v∈V (e) l(v), while the hyper-position of

variable v is pl(v) = 1
|E(v)| ∑e∈E(v) cogl(e). The PTS value of

the variable order l is then

PTSl = ∑
e∈E

∑
v∈V (e)

|cogl(e)− pl(v)|.

FORCE iteratively generates a new variable order l(i+1) from
a variable order l(i) based on the hyper-position pl(i)(v) of
each variable, continuing while PTSl(i+1) < PTSl(i) . As Sec-
tion 7.2 shows, and as confirmed in the literature, the initial
variable order l(0) plays a significant role.

The PTSP metric. We introduce a variation of PTS called
PTSP, which considers both the events and the P-semiflows.
For a P-semiflow π ∈Π , let cogl(π) =

1
|π| ∑v∈π l(v). Then

PTSP
l = PTSl + ∑

π∈Π

∑
v∈π

|cogl(π)− p′l(v)|

where p′l(v) =
1

Π(v) ∑π∈Π(v) cogl(π), and Π(v) is the subset
of P-semiflows with variable v in their support. The PTSP

metric can be used inside the FORCE heuristic instead of the
PTS metric. We study this variation in Section 7.2.

Bandwidth reduction (BR) metrics: Bandwidth, Profile,
and Wavefront. BR metrics have been recently applied
[36] to variable order evaluation. They are defined over a
symmetric N×N matrix A, related to the model. In this pa-
per we adopt the definition of A in [5], where N = |V | and
Ai, j is nonzero iff there is at least an event that connects
variables i and j. Other ways of defining A can be found
in [36]. The i-th bandwidth βi(A) of A is defined as: βi(A) =
i−min{ j | Ai, j 6= 0}. The bandwidth (BW) and the profile
(PROF) of A are then defined as:

BWA = max{βi(A) | 1≤ i≤ N}, PROFA =
N

∑
i=1

βi(A).

Also important for BR methods is the wavefront of the j-th
column, ω j(A) = {k | k > j∧∃ l ≤ j s.t. Ak,l 6= 0}. Three
metrics are defined: the average wavefront (AVGWF), the
maximum wavefront (MAXWF) and the root-mean-square wa-
vefront (RMSWF):

AVGWFA =
1
N

N

∑
j=1

ω j(A), MAXWFA = max
1≤ j≤N

ω j(A),

RMSWFA =

√√√√ N

∑
j=1

ω j(A)2

N
.

Variable order metrics for decision diagrams in system verification 7

We use Boost-C++ [11] to compute these functions. Some
of our 28 heuristics are connected to BR metrics: Sloan is a
profile and wavefront minimization algorithm [41], CM and
KING minimize the bandwidth [16,30], while GPS mini-
mizes both the bandwidth and the profile [22]. It is therefore
of interest to understand if minimizing these metrics reduces
the DD size; a preliminary analysis can be found in [28].

The Sum of Unique and Productive Spans (SOUPS) met-
ric. The metrics discussed so far can be fooled by introduc-
ing additional copies of an event e (which has then greater
impact, even if these copies affect neither the state space nor
the DD size) or a new event e′ that tests but does not change
the state, e.g., a transition with the same input and output
arcs in a Petri net (which does not lead to new states, but
affects the metric, incorrectly suggesting that the variables
in V (e′) should be close to each other).

While these examples are of course extreme and eas-
ily recognizable, cases where multiple events have the same
effect on some variables or where an event is affected by
some variables but does not change them are common. The
SOUPS metric is then a variation of NES that considers only
the unique and productive portions of the event spans: com-
mon portions of the effect of different events are counted
once, and only the portion of the span of an event leading to
the creation of new substates is counted. This variation not
only aims at solving the two abovementioned anomalies, but
also reflects the way in which the cache in a DD library re-
duces the cost of DD operations. The algorithm to compute
the SOUPS metric is somewhat involved and its description
is beyond the scope of this paper, but its computational com-
plexity is still low. More details are available in [42].

5 Correlation evaluation: the methodology

To study the correlation of metrics and DD size we need
to define what a “good” metric is. The scope of our evalu-
ation is delimited by our desire to employ metrics for two
purposes: to choose the “best” order among a set of pre-
computed orders, and to select the best metric for new heuris-
tics based on metric minimization. We then say that metric
m is a perfect predictor of the (final) DD size if

m(l1)≤ m(l2) ⇒ final(l1)≤ final(l2) (1)

for any l1, l2 ∈S(V). As far as we know, no efficiently com-
putable metric satisfies (1); in other words, we can assess
the quality of different variable orders only a-posteriori, by
generating the state space and observing the size of its DD
encoding, but this is not of practical use when wanting to
analyze a given model. However, a metric m satisfying (1)
in most cases, i.e., such that m(l) has high correlation with
final(l), could lead to good orders in most cases.

Our objective is to evaluate to which extent a metric re-
spects the monotonicity expressed by Eq. 1, and to this end
we can use the Spearman rank correlation coefficient [25].
The Spearman rank CC estimates, for a metric m, the corre-
lation among m(l) and final(m) by computing the weighted
Pearson correlation ρX ,Y,W (see Appendix A for a complete
definition), among the ranked lists of DD sizes (X) and met-
ric values (Y) with sample weights W (equal to 1 if left spec-
ified). Thus, the Spearman CC quantifies how well a metric
that has the i-th largest value of the metric correlates with
the i-th largest value of the DD size. We do not employ the
Pearson correlation directly between DD sizes and metric
values, since we do not require such correlation to be linear.

Given a set of variable orders V ⊆ S(V), we indicate
with Sm(V)=

{
〈final(l),m(l)〉 | l ∈ V

}
the bivariate series

of the metric value and the DD size, for each order l ∈ V ,
and with ρ̂m(V) the CC for metric m computed from Sm(V).

We can define different ways of computing the correla-
tion coefficient depending on the set of variable orders con-
sidered. Ideally, we would like to compute the exact coeffi-
cient ρm using the entire S(V) dataset, but this is feasible
only for small models, since |S(V)|= |V |!. For larger mod-
els, we must resort to computing the correlation coefficient
ρ̂m(V) for some appropriately chosen subset V ⊆S(V).

5.1 Data set selection

We consider five strategies to generate V :

1. VEXH =S(V), the exhaustive set of orders. This is fea-
sible only for small models.

2. VRND, a set of random orders. The set of orders is gen-
erated by randomly assigning variables to order posi-
tions, based on standard algorithms to generate random
permutations. Ideally, we would like to generate a set of
random orders that statistically represents the distribu-
tion of the DD size for the entire set VEXH , but this is
unfeasible, since this distribution is not known.

3. VSEL, a set of selected orders. We consider the variable
orders obtained by running the 28 heuristics listed in
Section 2. These orders are qualitatively different from
an average random order, as one would hope they tend
to be “better than random”.

4. VIMPR, a set of improved orders. Unfortunately, random
orders are almost always quite poor for most models.
Worse yet, as we will show, even a large number of ran-
dom orders does not cover the range of DD sizes for
most models, since we tend to altogether miss any of
the good orders that result in small DDs. Therefore, we
introduce a variation process that, given variable order
l(i), attempts to find an improved variable order l(i+1) =
h(l(i)) satisfying final(l(i+1)) < final(l), using a muta-
tion function h. An improved variable order sequence

8 Elvio G. Amparore et al.

t(l) = l(0), l(1), . . . , l(n) is a sequence of improved vari-
able orders, such that each order l(i), i > 0 in the se-
quence is known to be an improvement over l(i−1), and
l(0) = l. Given a set of initial orders V ′, VIMPR is the set
of orders {k | k∈ t(l)∧ l ∈V ′}, that is, the orders appear-
ing in any of the sequences starting from the elements of
V ′. We indicate with Tmax the maximum length among
all computed sequences: Tmax = maxl∈V ′

{
|t(l)|

}
.

5. VBEST, the set of best observed orders. This includes
the last variable order generated for each variable order
sequence t(l) considered for the generation of VIMPR.

To generate VIMPR, we adopt a procedure similar to that
proposed in [9] which, at each call, produces a different or-
der where a randomly chosen variable v in position x is
moved to a new random position y 6= x without changing
the relative order of the other variables. The following al-
gorithm generates a sequence t(l) = l(0), l(1), . . . , l(n), where
function h is as in the sifting algorithm of [38]:

for i from 1 to max sequence length
for n from 1 to max attempts

l′← h(l(i)) // New candidate variable order
if final(l′)< final(l(i))

l(i+1)← l′

start new iteration of the outer loop
could not improve l(i), end the sequence

(2)

To contain computational costs, our experiments con-
sider 10000 random orders (|VRND| = 10000), while, for
VIMPR, we populate V ′ with 1000 random orders, and fix
max sequence length = 300 and max attempts = 50 (the
generation of a single sequence t(l) ends by either failing
max attempts attempts at improving an order, or when the
sequence reaches length max sequence length).

Figure 2 shows the bivariate series for the MCC model
“SmallOperatingSystem-PT-MT0016DC0008” and the NES
metric, described in Section 4. The model has nine places,
|V | = 9, therefore there are |VEXH| = 9! = 362880 possi-
ble variable orders. The state space has 16 587 states. Plots
in Figure 2 depict, left to right, the series for VEXH, VRND,
VIMPR, and VBEST respectively. The DD sizes are plotted on
a logarithmic scale and, in all plots, red crosses identify the
bivariate series for VSEL. It should be noted that the relation
between the metric values and the DD size is non linear,
which justifies the use of the Spearman rank CC.

Plot [A] shows SNES(VEXH), the bivariate series relat-
ing the metric NES with the final DD size for all possible
variable orders. For this model, the DD size can differ by
two orders of magnitude. Plot [B] shows the SNES(VRND)
bivariate series for 10 000 random samples1. Plot [C] shows

1 It could be slightly less than 10 000, since the same permutation
may be randomly generated multiple times, but this is extremely un-
likely except for small models.

the SNES(VIMPR) bivariate series, starting from the first 1 000
random orders of VRND. In this case |VIMPR| has 5906 sam-
ples, generated using Algorithm 2 by performing 85 474 at-
tempts, thus computing 85 474 DDs. The value of Tmax is
14. Plot [D] shows the SNES(VBEST) bivariate series, which
therefore includes 1000 orders (the final points of the paths
built by Algorithm 2) plus the 28 orders computed by the
considered heuristics. We observe that different plots have a
different coverage of the red crosses, since the red crosses,
resulting from heuristics for variable order computation, tend
to be located closer to the minimal value of the DD size.

This phenomenon, and the relationships between the var-
ious orders, are better observed on models with a larger num-
ber of variables, although on such models the cost of build-
ing |VEXH| DDs is too high, thus VEXH is not part of the
comparison. Figure 3 shows the bivariate series for the MCC
model “CircularTrains-PT-012”. This model has 24 places,
thus its 6.24×1023 possible variable orders cannot be con-
sidered exhaustively. The model has many variables, but only
195 states and the size of the observed DDs varies from 180
to 2 046 nodes. Again, red crosses identify the SNES(VSEL)
bivariate series. Plot [A] shows the SNES(VRND) for 10 000
random samples. Each blue point is a pair 〈final(l),m(l)〉,
with the value of the metric on the y axis, and the final DD
size on the x axis (with a logarithmic scale). We can eas-
ily observe that random orders are concentrated in a “bad”
area of the plot, whereas the VSEL tend to be much better. In
other words, Plot [A] shows a case where random orders do
not provide a good coverage of the sample space, because al-
most all the random samples are “bad” orders. Observe that
this might have undesired consequences when evaluating a
heuristic: if we consider the set of orders in VRND to eval-
uate the heuristic indicated with the arrow in plot [A], then
we could conclude that this is a good heuristic, but the com-
parison with the DDs generated by either VIMPR (plot [B])
or VSEL (red crosses in all plots) or with VBEST (plot[C]) in-
dicate that this heuristic has built a fairly poor order. Thus,
having an indication of the minimal size of a DD for a given
model is important when comparing different heuristics.

In Section 7, heuristics will be compared on a “score”: a
measure of the size of the DD produced by a given heuristic
relative to known minimum and maximum DD sizes for a
given model. Our experiments often show that “good” or-
ders are rare and hard to find by random sampling, thus
we cannot build a statistically significant sample because
we have no clue about the distribution of the orders and
because we need to limit the number of random samples
considered to 10000 orders to contain computational costs
(for this model, the ratio between |VEXH| and |VRND| is over
1019). Plot [B] shows the plot for SNES(VIMPR), which spans
a wider portion of the sample space. The first 1 000 random
orders generated for VRND (shown in blue) are used as start-
ing orders for the improved sequences, while improved ran-

Variable order metrics for decision diagrams in system verification 9

N
E

S

final DD size (logscale)

NES metric value vs Final DD size for the SmallOperatingSystem-PT-MT0016DC0008 model.

final DD size (logscale) final DD size (logscale)

0

2

4

6

8

10

12

14

final DD size (logscale)

Step
[A] [B] [D][C]

(362880 samples)
The SNES(VBEST) set.The SNES(VRND) set. The SNES(VIMPR) set.The SNES(VEXH) set.

(10000 samples) (5906 samples) (1000 samples)

Fig. 2 The bivariate series for the various V orders for a small model.

N
E

S

final DD size (logscale)final DD size (logscale)

N
E

S

N
E

S

final DD size (logscale)

AV
G

W
F

N
E

S

final DD size (logscale)

[A] [B] [D] The SAVGWF(VIMPR) set.[C] The SNES(VBEST) set.The SNES(VRND) set. The SNES(VIMPR) set.
(10000 samples) (32036 samples) (1000 samples) (same samples as [B] for another metric)

Fig. 3 The random and improved bivariate series for the CircularTrains-PT-012 model.

dom orders are shown in a color that progressively fades to
green. In this model Tmax is 60, and |VIMPR|= 32036. VIMPR
appears to be more representative than VRND because it cov-
ers a wider area, and it is certainly more informative about
“good” orders. However, for the purpose of approximating
of the exact correlation, VIMPR suffers from a bias problem,
as discussed later in this section. Plot [C] shows the results
for SNES(VBEST), which includes 1000 orders. The compar-
ison with plot [A] indicates that, while only a few random
orders produce DDs of less than 1000 nodes, the (expensive)
computation of VIMPR allows us to retain a set of best orders
producing DDs that are always below (or significantly be-
low) 1000 nodes.

Had we used a different metric, we would have obtained
a different distributions of the samples along the y axis, but
not on the x axis, since the final DD size is common to all
bivariate series, independently of the metric. This is because
the improvements made by Algorithm 2 are not driven by
any specific metric. For instance, plot [D] shows the bivari-
ate series set SAVGWF(VIMPR) for the AVGWF metric, and the
same set of variable orders VIMPR. The plot has a different
spread of samples from plot [B], which uses the NES metric.

To better understand the relationships among the set of
variable orders and how CCs computed on those sets could
be used, it is helpful to return to the “easy” model, for which
we can consider all possible variable orders. The plots in
Figure 4 [A], [B], [C], and [D] are the same as in Figure 2.
Plots [E], [F] and [G] show the histogram of the distribu-

tion of the final DD sizes obtained from the VEXH, VRND,
and VIMPR datasets, respectively. For each of the three sets
of variable orders, the corresponding histogram has the DD
size on the x axis, partitioned in fixed size bins (on the same
log-scale), and on the y axis the percentage of variable orders
whose size falls in that bin. Plot [E] clearly shows that the
distribution is not uniform: “good” variable orders (resulting
in a small final DD size) are rare, while most variable orders
result in a medium or large final size. Plot [F], built on a
random subset of orders, is a close approximation of [E],
which is built on the entire set of orders. Plot [G], built on a
set of improved orders, is instead skewed towards good or-
ders and, while this reflects the pleasant fact that improved
orders are indeed better with respect to the goal of reduc-
ing the DD size, it does raise the issue of sample bias. We
stress that, even if the distributions [E] and [F] are similar,
this does not imply that the CC computed on VRND is a good
approximation of the CC on the full set of orders VEXH.

To summarize, VRND is purely random and thus perfectly
fair, but suffers from a critical limitation: it is highly likely
that the dataset VRND has few or even no points in the left
side of the plot (where the rare “good” orders lie). On the
other hand, the improved dataset VIMPR has a higher chance
of including data points that span the entire sample space,
but the improvement process employed to generate this set
alters the sample distribution: the sample density of VIMPR
(plot [G] in the example) is quite different from that of the
exhaustive set, since the frequency of the “good” variable

10 Elvio G. Amparore et al.

Legend of plots [I, J, K, L]:

100 1000 10000

final DD size (logscale)
100 1000 10000

final DD size (logscale)

Exhaustive
(362880 samples)

N
E

S

final DD size (logscale)

NES metric value vs Final DD size for the SmallOperatingSystem-PT-MT0016DC0008 model.

Density plots [A], [B] and [C].

[A] [B] [C]

[I] [J] [K]

[E]

Fi
na

l D
D

 s
iz

e
fre

qu
en

ci
es

100 1000 10000

final DD size (logscale)

N
E

S

Density

0 0.005

0.010

0.015

0.020

0.025

0.00 0.010 0.020 0.025
Legend of plot [C]:

final DD size (logscale) final DD size (logscale)

[F] [G]

Random
(10000 samples)

Improved
(5906 samples)

100 1000 10000

final DD size (logscale)

Stratified sampling

Improvement sequence step

0 2 4 6 8 10 12 14

[L]

0

6%

12%

0

6%

12%

0

6%

12%

[M]

Fi
na

l D
D

 s
iz

e
fre

qu
en

ci
es

[P][N] [O]

0

6%

12%

0

6%

12%

0

6%

12%

0

6%

12%

Histogram distributions of the final DD sizes of [A], [B] and [C].

Histogram distributions of [A], [B] and [C] using dynamic stratification boundaries.

[H]

0

6%

12%

Weighted density
plot of [K]

Weighted histogram
distribution of [O]

Plot [F] with weights.

final DD size (logscale)

Best
(1000 samples)[D]

(data set of [C] with weights)

Fig. 4 A complete example of correlation evaluation on an “easy” model.

orders is artificially amplified. Plots [I], [J], and [K] show
the density plot of the bivariate series for the NES metric
depicted in plots [A], [B], and [C] respectively. The sample
space is discretized in a grid of uniform-size squares. Each
square in the plot shows the number of samples falling in it,
using light blue for high density and dark red for a density
close to zero, while white squares contain no samples. All
plots indicate that there is a wide range of metric values for
which the DDs have a rather large size (above 1000 vs. a
best DD size below 100).

Stratified sampling of the improved dataset. We can re-
duce bias in the VIMPR dataset by weighting its elements. To
do so, we use random stratified sampling [24][29], which
partitions the sample space of the DD size (i.e., the x axis)
into a set S of strata, and then weights the samples in each
stratum using a probability taken from a fair dataset. Let
b : S(V)→ S be the function that gives the stratum con-
taining final(l). Let HV : S → R be the sample probability
distribution over S for set V , defined as HV (s) = Pr

{
l ∈

s | l ∈V
}

. The distribution HVEXH can be computed for small
models such as the example of Figure 4 (histogram [E]), but
not for larger models. Thus, we use the distribution HVRND

Variable order metrics for decision diagrams in system verification 11

(histogram [F]) of the random dataset VRND to weight the
elements of VIMPR: variable order l ∈ VIMPR receives weight

W (l) = HVRND

(
b(l)

)
/ HVIMPR

(
b(l)

)
. (3)

The histogram of the improved set VIMPR weighted by W ,
shown in plot [H], is close to plot [F], but has more points
in the “low-probability” regions. Plot [L] shows the density
plot of the bivariate series [K] weighted using the frequen-
cies of the random samples (from plot [F]). Stratified sam-
pling reduces the bias observed in plot [K], where the fre-
quencies of the improved samples is amplified.

Dynamic determination of strata boundaries. Using his-
togram bins of fixed size to compute distributions is a poor
approach in practice, since there may be strata with few or
no samples, which could lead to some weights in (3) being
zero. This degenerate condition can be avoided by defining
dynamic strata boundaries. We adopt the Kozak method [33],
which computes the strata boundaries so that each stratum
of VRND has a “sufficient” number of samples inside. A de-
tailed description of the method can be found in [33,7].

Plot [N] shows distribution HVRND for the random sam-
ples using dynamically sized bins. The stratification bound-
aries are computed from the VRND set. Plots [M,O] show the
distributions HVEXH and HVIMPR using the same strata bound-
aries of [N]. The weights assigned to the improved samples
result in a histogram density [P] similar to the random sam-
ples [N], and both are close to the exact frequencies [M],
while, as before, the unweighted frequencies [O] are not.

This raises several questions, which we address next:
What are the implications of the above observations on the
definition and use of the CCs? How should one use the Spear-
man rank CC computed on VEXH, VRND, and VIMPR, and
VBEST? Under which conditions can one use the bivariate
series built on VIMPR as representative of VEXH?

5.2 Definition and evaluation of the correlation coefficients.

Given a metric m, we can define five CCs. Each CC is com-
puted by considering either a different bivariate series Sm(Vx)
or different weights W . We can then define:

– Exact correlation coefficient (ECC): defined on the bi-
variate series Sm(VEXH). All samples are treated alike
(W is constant).

– Random correlation coefficient (RCC): defined on the bi-
variate series Sm(VRND). All samples are treated alike
(W is constant).

– Improved correlation coefficient (ICC): defined on the
Sm(VIMPR) bivariate series without weights. All samples
are treated alike (W is constant).

– Stratified correlation coefficient (SCC): also defined on
Sm(VIMPR), but samples are weighted using the stratified
sampling weights computed through Eq. (3).

– “Best” correlation coefficient (BCC): defined on the bi-
variate series Sm(VBEST). All samples are treated alike
(W is constant).

For their evaluation, we consider the 12 metrics described in
Section 4. Each table reports the number of orders in each
dataset (Orders row) and, for each metric, the Spearman CC
computed for the five settings. The Spearman CCs are com-
puted using the wCorr package in R [45], and stratified sam-
pling uses the stratification library in R [7] to determine the
optimal stratification boundaries with Kozak method [33].
We use 25 dynamic bins and an expected coefficient of vari-
ation of 0.1 for strata determination. Strata boundaries are
estimated from the VRND set. Table 2 shows the values of
the five CCs for each of the 12 metrics for three “easy” mod-
els for which exhaustive exploration of the variable orders is
possible. The last row reports the average over all metrics
of the relative error with respect to the ECC, again, for each
model. The typical interpretation of the Spearman CC is:
[0.8,1] means very strong correlation, [0.6,0.8] strong cor-
relation, [0.4,0.6] moderate correlation, [0.2,0.4] weak cor-
relation, [0,0.2] very weak to non-existent correlation, while
negative values mean anti-correlation. The relative error for
a single metric m and a single set of variable orders, for ex-
ample VRND, it is computed as |RCCm−ECCm|

ECCm
. The last row re-

ports the average error relative to ECC: for example, a value
of 0.124 for RCC means that, on average, the 12 metrics
provide a ranking of the orders in VRND whose average CC
differ by 12.4% from the exact CC (built from the ranking
based on VEXH).

Table 3 shows the values of CC (other than ECC) for
each of the 12 metrics for three “large” models. These are
models with more than 20 variables, for which exhaustive
exploration of the variable orders is not possible, thus ECC
is unknown, the common situation in practical applications.
Since ECC is not available, we compute the average relative
error in two ways, relative to RCC (second to the last row)
and relative to SCC (last row).

We can now provide a first answer to questions Q1 and
Q2. The above analysis settings is what we propose for Q1,
while for the predictive power of the metrics (Q2) we can
already observe that metrics provide rather diverse correla-
tions, ranging from very weak (e.g., 0.1158 for the metric
BW on ECC in Table 2), to very strong (e.g., 0.8616 for the
metric PTSP on ECC in the same table), so their predictive
power differs significantly. Moreover, the correlation is not
uniform over the considered sets, meaning that some met-
rics have better prediction performance than others on spe-
cific sets, which seems to indicate that the choice of a metric
should be influenced by the type of application we are con-
sidering. This topic is more thoroughly investigated in the
next sections. We also observe that the average error relative
to ECC (last row of Table 2) and to either RCC or SCC (last
two rows of Table 2) indicates that, for the considered ex-

12 Elvio G. Amparore et al.

Table 2 Comparison between the correlation coefficients on the three “easy” models.

Model: ResAllocation SmallOperatingSystem SwimmingPool
Correlation

coefficient
Exact Random Improved Best Stratified Exact Random Improved Best Stratified Exact Random Improved Best Stratified

Metric:
Orders: 40350 10000 5121 1000 5121 362880 10000 5906 1000 5906 362880 10000 7057 1000 7057

PTS P 0.8616 0.8680 0.9215 0.7754 0.8814 0.7038 0.7271 0.7919 0.8330 0.6802 0.4372 0.4628 0.4407 0.1594 0.4598
SOUPS 0.7368 0.7870 0.8756 0.7348 0.7758 0.5524 0.5735 0.6755 0.6642 0.5469 0.3140 0.3360 0.2620 0.1268 0.3128
PSF 0.7262 0.7380 0.8852 0.7821 0.7476 0.5969 0.6083 0.7791 0.6129 0.5701 0.2410 0.3216 0.5161 0.1029 0.3443
PTS 0.7127 0.7571 0.8486 0.6430 0.7591 0.4500 0.4989 0.6362 0.7832 0.4295 0.3845 0.4073 0.3731 0.2122 0.3905
NES 0.7021 0.7569 0.8510 0.6595 0.7564 0.4511 0.4864 0.6380 0.7514 0.4384 0.3110 0.3282 0.2780 0.1458 0.3081
WES1 0.6402 0.7128 0.7949 0.5906 0.6905 0.4112 0.4327 0.6013 0.7557 0.3824 0.2608 0.2691 0.2356 0.1258 0.2516
PROF 0.6225 0.6308 0.6664 0.3323 0.6501 0.3795 0.4328 0.5680 0.6337 0.3614 0.2236 0.2503 0.1390 -0.063 0.2461
SOT 0.4547 0.5613 0.5672 0.3264 0.5135 0.3036 0.3293 0.4092 0.4845 0.2850 0.2054 0.2356 0.1734 0.0524 0.2147
MAXWF 0.3443 0.3111 0.2589 -0.145 0.3583 0.3739 0.4424 0.6128 0.6673 0.4025 0.1552 0.1721 0.0194 -0.103 0.1469
AVGWF 0.3807 0.3611 0.2730 0.0001 0.4036 0.4598 0.5372 0.7103 0.7593 0.4889 0.1937 0.1985 0.0975 -0.023 0.1781
RMSWF 0.3889 0.3678 0.2730 -0.010 0.4098 0.4632 0.5392 0.7111 0.7668 0.4939 0.2008 0.2057 0.0876 -0.028 0.1835
BW 0.1158 0.1962 0.0353 -0.124 0.1578 0.0794 0.0938 0.2600 0.5259 0.0490 0.0685 0.0824 0.0991 -0.032 0.0831
Average relative error 0.124 0.247 0.556 0.085 0.104 0.565 0.969 0.077 0.103 0.372 0.893 0.094

Table 3 Comparison between the correlation coefficients on three large models.

Model: MAPK FMS RwMutex
Correlation

coefficient
Random Improved Best Stratified Random Improved Best Stratified Random Improved Best Stratified

PSF 0.7661 0.8437 0.8672 0.5956 0.8484 0.8109 0.8033 0.5604 0.2509 0.8991 0.3375 0.3263
PTS P 0.5642 0.8570 0.8208 0.5920 0.6741 0.9093 0.8220 0.7446 0.5447 0.9450 0.5427 0.5747
PROF 0.4852 0.8716 0.8254 0.5744 0.5572 0.8691 0.7100 0.6713 0.5228 0.9472 0.5515 0.5420
SOUPS 0.4514 0.8873 0.7829 0.6754 0.5549 0.9140 0.7981 0.7462 0.5116 0.8532 0.2046 0.5258
RMSWF 0.4339 0.7862 0.7923 0.3366 0.4464 0.7873 0.6738 0.4774 0.4920 0.9062 0.3246 0.5106
AVGWF 0.4247 0.7865 0.8023 0.3364 0.4374 0.7847 0.6797 0.4689 0.4531 0.9119 0.3645 0.4694
NES 0.4008 0.8064 0.7898 0.4840 0.5168 0.8960 0.7837 0.7090 0.5133 0.8510 0.2202 0.5060
PTS 0.3945 0.7974 0.7915 0.4743 0.4578 0.8797 0.7718 0.6826 0.4526 0.8442 0.2809 0.4769
MAXWF 0.3779 0.7027 0.6496 0.2651 0.3945 0.7181 0.5514 0.4276 0.3942 0.7460 0.2375 0.4569
WES1 0.3770 0.7901 0.7780 0.4953 0.5124 0.8838 0.7837 0.7066 0.3971 0.6837 0.0635 0.3878
SOT 0.2612 0.6937 0.6432 0.4646 0.3894 0.7347 0.5451 0.5766 0.3608 0.5692 0.0496 0.3297
BW 0.1080 0.4833 0.6671 0.1264 0.1381 0.4170 0.5313 0.1890 0.0445 0.0730 -0.1169 0.0188
Avg w.r.t. RCC - 1.097 1.178 0.280 - 0.772 0.619 0.276 - 0.917 0.685 0.117
Avg w.r.t. SCC 0.247 0.940 1.013 - 0.226 0.456 0.335 - 0.175 0.995 0.972 -

amples, RCC and SCC are relatively close to ECC, and to
each other.

6 Numerical assessment of metric correlations

The 12 metrics considered focus on different model aspects,
thus we can expect them to have different predictive power
for different models. For example, for the three models of
Table 2, PTSP is always the best metric for the exhaustive
set (highest ECC), but the second best depends on the model.
For the three models of Table 3, PTSP is not always the best
metric for the different CCs, but it is always among the best
three for any set V in any of the three models. Clearly, it is
not enough to compute the correlation between a metric and
a single or a few Petri nets. If we want to pick a metric to
rank variable orders for an unknown model, it is more useful
to study the mean value or the distribution and value of the
four CCs for each metric over a wide range of models. This
section uses the methodology just introduced to evaluate the

predictive power of the metrics by computing the distribu-
tion and the mean value of the CCs on 43 models, selected
so that we can generate 10000 random orders for each of
them. The only modification to the methodology of the pre-
vious section is that now ECC cannot be evaluated because
the number of variables in almost all models is too large to
allow an exhaustive exploration of the variable orders.

Table 4 summarizes the experiments. For each of the 43
models, it lists the model name and parameters, the number
of variables |V |, events |E|, and P-semiflows |Π |, the size
of the improved dataset |VIMPR|, the number of DDs gen-
erated to compute VIMPR (“Attempts”), and the maximum
length Tmax of the improved sequences. Recalling that Al-
gorithm 2 was run with max sequence length = 300 and
max attempts = 50, and that we consider 1000 initial or-
ders, we can observe that the models have quite different
behavior. Models have different size in terms of places and
transitions (variables and events) and of their ratio. In no
case the improvement algorithm stops due to the limit on the
sequence length (300). The parameters used for computing

Variable order metrics for decision diagrams in system verification 13

Table 4 The 43 models considered for the evaluation.
Model Parameters |V | |E| |Π | |VIMPR| Attempts Tmax
AirplaneLD 10 89 88 36 97 030 394 485 99
Angiogenesis 1 39 64 8 64 700 945 577 99
AutoFlight 1a 32 30 11 39 303 317 431 70
BridgeAndVehicles V4P5N2 28 52 7 47 853 373 191 88
CircadianClock 10 14 16 7 10 741 122 284 21
CircularTrains 12 24 12 42 32 036 283 278 54
CSRepetitions 2 23 28 6 28 558 252 503 53
DatabaseWithMutex 2 38 32 18 52 051 418 277 87
Dekker 10 50 120 40 81 342 606 663 136
Diffusion2D D5N010 25 144 1 1 000 51 000 1
DotAndBoxes 2 66 164 280 74 474 479 716 129
DrinkVendingMachine 2 24 72 12 19 692 183 762 34
Eratosthenes 50 49 108 15 1 000 51 000 1
ERK 1 11 11 5 8 806 115 742 20
FlexibleBarrier 06a 75 154 8 119 439 827 434 179
FMS 2 22 20 6 22 443 209 058 41
GPPP C1N1 33 22 19 51 084 398 458 85
GlobalResAllocation 3 33 4 791 75 53 471 425 817 102
HexagonalGrid 110 31 42 15 33 889 294 352 57
HypertorusGrid d2k1p8b00 13 16 0 32 879 287 425 57
HouseConstruction 2 26 18 7 11 754 126 875 24
JoinFreeModules 3 16 25 4 21 054 207 656 41
Kanban 5 16 16 6 14 095 148 062 27
LamportFastMutEx 2 69 96 17 118 212 761 658 178
MAPK 8 22 30 7 27 969 251 491 63
NeighborGrid d2n3m1c12 9 40 1 1 000 51 000 1
Parking 104 65 97 17 103 215 680 327 157
Peterson 2 102 126 14 167 482 952 859 221
PhaseVariation D2CS10 14 65 5 15 072 157 206 32
Philosophers 5 25 25 10 14 899 151 257 72
PhilosophersDyn 3 30 84 12 45 708 363 574 77
Raft 2 28 52 4 34 789 297 549 56
Referendum 10 31 21 10 26 848 236 261 58
ResAllocation R2C2 8 6 4 5 121 84 261 13
RobotManipulation 5 15 11 9 15 041 162 529 34
RwMutex r10w10 50 40 30 64 059 461 675 109
SafeBus 3 57 91 265 106 788 739 699 170
SharedMemory 5 41 55 11 63 594 457 191 105
SimpleLoadBal 2 32 45 16 47 233 382 440 81
SmallOperatingSystem MT16DC8 9 8 4 5 906 85 474 14
SwimmingPool 1 9 7 3 7 057 97 903 15
TokenRing 5 36 156 6 54 603 424 925 96
TriangularGrid 1200 16 12 9 16 132 157 377 38

the sets VRND,VIMPR,VSEL, and VBEST are the same as in the
previous section. For this analysis, we generated 14 476 702
DDs (sum of the “Attempts” column) to have 1 859 422 sam-
ples (sum of the VIMPR column), plus another 430 000 DDs
for each VRND, which is also used for strata boundaries de-
termination. Three models of Table 4 have |VIMPR|= 1000,
meaning that none of the attempts were able to produce a
smaller DD: a closer inspection reveals that their DD size
is insensitive to the variable order. These three models were
therefore excluded from the rest of the analysis, since the
Spearman correlation coefficient cannot be computed, thus
leaving 40 models for the correlation analysis. The analy-
sis was performed by running the state space generation of
GreatSPN [3], with parallel independent runs on a 16 cores
Xeon E5 machine at 2.4GHz, and it required about 10 days.
State space generation is based on the Saturation algorithm
implemented in the Meddly library [6].

Figure 5 shows the distribution and the mean value of
the CCs for the 40 models. Rows correspond to each metric
m and columns report distribution and mean for RCC, ICC,
BCC, and SCC. The x axis corresponds to the CC values,
from −1 to +1 partitioned into 20 bins, while the y axis de-
scribes the number of models whose CC falls into each bin.
The scale of the y axis is different for different metrics, but

In[383]:= GG

Out[383]=

@AD RCC HRandomL @BD ICC HImprovedL @CD BCC HBestL @DD SCC HStratifiedL
Metric Distribution Mean Distribution Mean Distribution Mean Distribution Mean

PSF 0.486 0.798 0.538 0.498

PTS_P 0.485 0.753 0.408 0.497

SOUPS 0.459 0.767 0.489 0.479

NES 0.435 0.742 0.440 0.452

PTS 0.415 0.673 0.363 0.427

PROF 0.405 0.679 0.339 0.420

WES1 0.399 0.697 0.415 0.414

SOT 0.287 0.551 0.321 0.302

RMSWF 0.284 0.552 0.243 0.300

AVGWF 0.279 0.556 0.252 0.295

MAXWF 0.236 0.468 0.178 0.252

BW 0.077 0.206 0.135 0.062
-1 0 1 -1 0 1 -1 0 1 -1 0 1

Fig. 5 Correlation coefficient distributions for the tested metrics.
Higher is better. Red bar height is fixed to 15 for all rows.

Table 5 Comparison of the average CC vs the metrics.

RCC metric ICC metric BCC metric SCC metric
0.486 PSF 0.798 PSF 0.538 PSF 0.498 PSF
0.485 PTS P 0.767 SOUPS 0.489 SOUPS 0.497 PTS P
0.459 SOUPS 0.753 PTS P 0.440 NES 0.479 SOUPS
0.435 NES 0.742 NES 0.415 WES1 0.452 NES
0.415 PTS 0.697 WES1 0.408 PTS P 0.427 PTS
0.405 PROF 0.679 PROF 0.363 PTS 0.420 PROF
0.399 WES1 0.673 PTS 0.339 PROF 0.414 WES1
0.287 SOT 0.556 AVGWF 0.321 SOT 0.302 SOT
0.284 RMSWF 0.552 RMSWF 0.252 AVGWF 0.300 RMSWF
0.279 AVGWF 0.551 SOT 0.243 RMSWF 0.295 AVGWF
0.236 MAXWF 0.468 MAXWF 0.178 MAXWF 0.252 MAXWF
0.077 BW 0.206 BW 0.135 BW 0.062 BW

the red bar shown at x = 0 always always corresponds to 15,
to allow a comparison among rows. For example, the dis-
tribution of RCCPSF has significantly fewer than 15 models
in each bin, while for RCCBW metric the bin correspond-
ing to the lowest positive correlation is well above 15. Rows
are sorted in decreasing order of the average RCCm. With
respect to the predictive power, we can observe that ICC is
the best, with most metrics having an average between 0.5
and 0.8 (moderate to strong correlation). This means that
the use of the metrics is more likely to be effective when the
set of observed orders has good coverage of all possible or-
ders, with a bias towards better orders, while metrics are less
correlating when considering only random orders (RCC col-
umn) or only good orders (BCC column). As expected SCC,
the stratified CC computed over VIMPR is very close to RCC.
Table 5 reports instead the average CCs of Figure 5, but with
each column individually sorted in decreasing order.

Figure 5 and Table 5 answer Q2 based on a larger set
of models than in the previous section. PSF is consistently
the best metric (on average, it correlates more than any other
metric for any of the four definitions of CC), while the sec-
ond best is either SOUPS or PTSP. Five metrics (SOT, RM-
SWF, AVGWF, MAXWF, and BW) are consistently in the
lowest positions, with BW being always the worst. We are
not aware of any published work highlighting this lack of

14 Elvio G. Amparore et al.

correlation for BW, which is used by heuristics like KING
and CM, and, partially, by GPS.

The PTSP and PSF metrics exhibit high correlation with
the final DD size: they exploit knowledge of the P-semiflows,
which identify sets of connected variables, thus the good
correlation is not totally unexpected.

The WES metric, proposed in [40] as an improvement to
NES, is actually worse in terms of correlation, for all def-
initions of CC. Its performance in [40] was likely due to a
limited or unfortunate choice of models.

PTS and PROF, used by FORCE and Sloan (very popular
algorithms for variable order computation), are not the most
correlating metrics, raising the question of whether these al-
gorithms could be improved by using other metrics.

7 Applications

The previous sections investigated the metrics “per se”. Now,
we investigate instead the possible relationships between met-
rics and heuristics, to answer question Q3: Can knowledge
of each metric correlation help improve the state space con-
struction of DEDS? This first requires a way to “score” the
performance of the different heuristics, so that we can in-
vestigate the behavior of the heuristics listed in Section 2
and their interplay with the considered metrics. Then, we
define and evaluate 1) a modification of the FORCE heuris-
tic, to consider a metric with higher correlation than the PTS
used by FORCE, 2) a new heuristic based on the simulated
annealing optimization of a given metric, and 3) a new meta-
heuristic based on metrics. All experiments are performed in
the same setting: we use the 40 models from Table 4, and the
same V sets as before.

7.1 A score to evaluate metrics and heuristics.

To study the use of metrics within heuristics or define meta-
heuristics, we need to be able to compare their behavior
based on the DD size generated from a given variable or-
der, where the smaller the DD, the better the order. Given a
heuristic a producing a variable order la for a model N , we
can define a score for a as

SCN (a) = 1− log(final(la))− log(minN)

log(maxN)− log(minN)
, (4)

where min and max are the smallest and largest DD sizes
built for N over VEXH. We choose logarithms in this for-
mula because the DD sizes for the same model but different
variable orders may exhibit exponential variations. In partic-
ular, this avoids the risk of deeming equally good two vari-
able orders that result in a significantly different number of
DD nodes, but such that this difference is instead very small
relative to the min−max interval.

Of course, Equation 4 is not applicable in practice since,
on most models, VEXH is too large. We then use instead the
set of Improved Random orders, giving rise to:

SCN (a) = 1− log(final(la))− log(min{R})
log(max{R})− log(min{R})

, (5)

with R = {final(l′) | l′ ∈ VIMPR}. For this analysis VIMPR
presents the interesting feature of covering “good” orders
with a higher probability than other sets (including VRND).
For performance reasons we are not explicitly searching to
optimize the worst order, thus we assume that max{R} is a
good representative of a model’s worst orders.

Eq. (5) defines a score “by heuristic and by model” rela-
tive to all observed DD sizes for that model. Eq. (5) defines
a scale that goes from 1 (best score for the smallest observed
DD) to 0 (worst score for the largest observed DD).

We consider the 14 heuristics briefly presented in Sec-
tion 2, not including FORCE, which is evaluated more thor-
oughly in the next subsection. Each heuristic a was run on
the 40 models of Table 4: for each model N , the heuris-
tic a computes a variable order la resulting in a DD of size
final(la). We then compute the score SCN (a) using Eq. (5).
Column A in Figure 6 reports, for each heuristic a, the dis-
tribution of the SCN (a), for each N in the set of 40 models
of Table 4. Each row also reports the mean value of SCN (a)
over all N . The average over all heuristics is at the bottom
of the table (“All” row), while the plot labeled “E[RND]” at
the bottom shows the distribution and average score of the
random orders (VRND) for each model.

Coming back to our question Q3, we can then draw the
following conclusions. Among the considered heuristics, GP
has the highest average score, confirming the observations
in [4]. This is consistent with the fact that GP minimizes
the PSF metric, which, from the analysis of Figure 5 and
Table 5, has the highest correlation. Sloan, a wavefront and
profile minimization algorithm, is the second best. Since our
correlation analysis suggests that profile (PROF) is a bet-
ter metric than the wavefront ones (AVGWF, MAXWF, and
RMSWF), we conjecture that profile minimization is more
important than wavefront minimization, and this could be
used to design a new heuristic resulting in better variable
orders. The BW reduction heuristics King and CM (all vari-
ations) show weaker performance, which is not surprising
given that the BW metric has weak correlation. DFS and
BFS, not based on any metric and considered only for com-
parison, are generally poor. Most heuristics are not very sta-
ble, in the sense that they sometimes produce exceptionally
bad variable orders (bars on the left of the score distribu-
tion). We are not aware of any specific heuristic based on
NES or SOUPS metrics.

Variable order metrics for decision diagrams in system verification 15
In[41]:= GG

Out[41]=

@AD Base @BD Force with PTS @CD Force with PTSP

Heuristics Distribution Mean Distribution Mean Distribution Mean

GP 0.815 0.787 0.800

SLO 0.686 0.775 0.785

SLO-16 0.683 0.774 0.784

PC 0.673 0.788 0.813

TOV 0.655 0.734 0.757

NOACK 0.640 0.719 0.760

GPS 0.617 0.753 0.782

CM 0.595 0.744 0.772

ACM 0.590 0.743 0.782

KING 0.587 0.749 0.763

CM2 0.497 0.748 0.776

MCL 0.485 0.754 0.786

DFS 0.333 0.693 0.756

BFS 0.327 0.696 0.768

All 0.585 0.747 0.777

E@RNDD 0.249

Fig. 6 Score distributions and averages of the tested variable ordering
heuristics. Higher is better.

7.2 Metrics and FORCE with PTSP.

We now focus on the popular FORCE heuristic for static
variable ordering, which takes a variable order l0 and mod-
ifies it iteratively, to minimize the PTS metric. FORCE was
not included in the list of heuristics evaluated in the previous
subsection, as it is known that its behavior heavily depends
on the initial order l0. The question we would like to an-
swer now is: What is the impact of changing the metric used
by FORCE in its iterative procedure? In other words, does a
metric with higher correlation than PTS produce better or-
ders? We do so for many different choices of the heuris-
tic used to produce l0; this allows us to gain insights into
which heuristic should be used to produce the initial order
for FORCE. We are not aware of other studies about the
choice of l0, and we believe this is an important practical
contribution. This is, again, an instance of Question Q3.

Column B of Figure 6 reports analogous results as col-
umn A but, for each heuristic a, the orders used to compute
the score distribution and the average are now produced run-
ning FORCE on an initial order produced by a. The results
confirm our experience that FORCE is an effective heuris-
tic: it is, on average over the 40 models, able to improve the
initial order l0 with the single exception of the GP case, a
heuristic that already produces an average score of 0.815,
quite high considering that overall average score produced
by the 14 heuristics is 0.585 and that the average score over
the 40000 random orders is 0.249. The behavior of FORCE

does indeed depend on the initial order, but it nevertheless
generally produces reasonably good variable orders, espe-
cially because it is able to significantly improve poor per-
forming orders (lower rows of the table).

Column C of Figure 6 reports instead the results of FORCE

modified to use PTSP instead of PTS, a more correlating
metric according to the experiments of Figure 5. On all sets
for which we computed the CC, PTSP was always slightly
better than PTS, and indeed the average score computed us-
ing FORCE with PTSP is indeed slightly better than PTS.
Moreover, not only the average over all models and all initial
variable orders is better, but also the average of the scores of
each single initial order (the average values in column C are
always higher than than in column B). Note that we cannot
run FORCE with a metric significantly more correlating than
PTS, since, among the metrics we consider, FORCE, by its
nature, can only use PTS or PTSP.

7.3 Heuristics based on metrics and simulated annealing

We now experiment how a metric m could be used inside
the definition of a new heuristic that searches an “optimal”
order through a simulated annealing procedure [19], aimed
at minimizing the value of m, resulting in a heuristic we
call m-annealing. Starting from an initial variable order for a
given model N , m-annealing evaluates possible alternative
orders obtained by exchanging a pair of variables randomly
selected and accepts or rejects the new order l with a deci-
sion procedure based on the value of m(l). Acceptance fol-
lows the rules of Boltzmann annealing with a temperature
which is equal to the metric value, decreased at each step of
1/10000 of its initial value, and a probability of acceptance
which follows the algorithm in [19, p.30–31].

To limit the possible bias generated by the choice of the
initial order, we consider the set of 1000 random orders (the
same used to build the VIMPR set) for N , and, for each order,
m-annealing produces a new order.

This procedure resembles the one used to build the VIMPR
set, but with the major difference that the selection of an or-
der l is based on knowledge of final(l), which requires build-
ing the DD, in the case of VIMPR, while m-annealing is based
only on m(l), which simply requires a metric evaluation.

We evaluate 12 m-annealing heuristics, one for each met-
ric m. Figure 7[A] reports the distribution and the mean of
the score for our set of 40 models, one row per heuristic.
Each distribution is built from the scores of 40×1000 DDs.
The relative value of the m-annealing heuristics is quite clear
from the distributions, indicating that correlation has an im-
pact: the m-annealing heuristics built out of the most cor-
relating metrics, like PSF, SOUPS, and PTSP, exhibit the
highest scores. However, none of the m-annealing heuris-
tics is very effective; for example, Figure 6[C] shows that
FORCE, with heuristic PC for the generation of l0, produces
a better average score than the best one in Figure 7[A] (0.813
for FORCE vs. 0.607 for PSF-annealing).

The above analysis investigates the influence of metric
correlation on the heuristic score. A practical application of

16 Elvio G. Amparore et al.
In[324]:= CCA

Out[325]=

Metric @AD Annealing Score Distrib. Mean @BD Metaheuristics Score Mean

PSF 0.607 0.719

SOUPS 0.590 0.731

PTS_P 0.584 0.716

NES 0.575 0.691

WES1 0.566 0.690

PTS 0.554 0.684

PROF 0.524 0.643

SOT 0.519 0.624

RMSWF 0.396 0.513

MAXWF 0.396 0.451

AVGWF 0.382 0.494

BW 0.364 0.477
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

SOT

PSF

NESWES1

BW

MAXWF

AVGWF

RMSWF

PROF

SOUPS

PTS

PTS_P

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Correlation Coefficient HImprovedL

M
ea
n
A
nn

ea
lin

g
D
is
tr
.S
co
re

SOT

PSF

NES
WES1

BW

MAXWF

AVGWF

RMSWF

PROF

SOUPS

PTS

PTS_P

0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

Correlation Coefficient HBestL

M
ea
n
M
et
ah
eu
ri
st
ic
s
Sc
or
e

[C] [D]

Fig. 7 Score distributions using both a metric-guided simulated annealing and a meta-heuristic selector.

m-annealing requires also a way to select one order among
the 1000 ones produced for a given model, that is to say
it is necessary to define a meta-heuristic that drives the se-
lection of the single order to use for the DD construction.
Figure 7[B] presents, on each row, the results of a meta-
heuristic called m-selector: the chosen order is the one with
the lowest m value among the 1000 produced by m-annealing.
The distribution in each row m is now over the 40 samples,
one per model, selected using m-selector. If multiple orders
tie for the the same best metric value, we take the average
score. A comparison of the mean values reported in the two
columns indicates, as expected, that a metric-based meta-
heuristic tends to select better orders. It is also remarkable
that the best two, SOUPS and PSF, invert their position in the
rank: PSF produces better orders than SOUPS (Figure 7[A]),
but SOUPS is more effective than PSF in selecting the best
ones (Figure 7[B]).

But what is the actual impact of the CCs? If we were to
choose a-priori one of the 12 m-selector, is selecting the one
with the highest CC our best bet? And when the selected
one happens not to be the best for a particular model, how
bad can it be? Remember that the CCs were computed w.r.t.
the final DD sizes, while scores are meant to provide a “rela-
tive” evaluation of the heuristics, so the relationship between
the two is not obvious. The plots in Figure 7 allow us to vi-
sualize this answer. Figure 7[C] plots the average score of
each m-annealing heuristic (on the y-axis) against ICCm (on
the x-axis); Figure 7[D] plots the average scores of the m-
selector meta-heuristic against BCCm; the values for ICCm
and BCCm are those reported in Figure 5. Indeed different
choices of the type of CC used in the comparison could
lead to different results. We choose ICC when the average
score is computed over all the orders produced by the sim-
ulated annealing procedure (values of column Mean in Fig-
ure 7[A]), because of the similarity between the algorithm
for computing VIMPR and the m−annealing procedure. We
choose instead BCC when the average score is that of the m-
selector, since it is a CC computed on a small set of “good”

orders, as a small set of presumably good orders is what is
produced by the meta-heuristic reported in (Figure 7[B]).
For these plots, again, metric m “is better” than metric m′ if
SCm > SCm′ . Then, the question is whether higher scores cor-
respond to higher CC, which can be translated on the plots
as: is it true that ym > ym′ ⇒ xm > xm′? For plot [C] this is
true for the 5 highest scores, while PTS has a higher score
than PROF, but ICCPROF is greater than ICCPT S. The other
peculiarity is that SOT, AVGWF, and RMSWF have about
the same ICC, but SOT has a much higher score.

With respect to question Q3 (Can knowledge of each
metric correlation help improve the state space construction
of DEDS?), we can conclude that, while the m-annealing
heuristics (each complemented by the m meta-heuristic) are
no better than the best instance of FORCE(see Figure 6),
knowledge of the correlation does make a difference, as a
more correlating metric m produces a more effective m-heuristic.
In particular, if we choose one of the best 5 metrics ac-
cording to ICC, the difference in average score of the m-
heuristics is less than 10%, while if we choose one of the
best 5 metrics on BCC, the difference in average score of
the m-meta-heuristics is less than 5%.

7.4 Use of metrics for meta-heuristics

We now focus on the question of whether more correlating
metrics are better for the definition of a meta-heuristic. This
is an instance of question Q3, and a positive answer would
have significant practical implications, as this is the typi-
cal situation a user has to face: how to select a single vari-
able order among a set of few (in the case of VSEL) or many
(in the case of VRND) possible candidates. For this evalua-
tion, we define 12 meta-heuristics, one for each metric m:
in each meta-heuristic, metric m is used to select the best
order to use for a given model, among a set of generated or-
ders. Again, we consider four sets of variable orders: VRND,
VIMPR, VBEST, and VSEL; from each, we select the best order
according to the meta-heuristic, build the DD, and compute

Variable order metrics for decision diagrams in system verification 17
In[357]:= MH

Out[357]=

@AD Random @BD Improved @CD Best @DD Selected
Metric Scores Mean Scores Mean Scores Mean Scores Mean

PTS_P 0.610 0.897 0.929 0.812

PTS 0.594 0.883 0.912 0.801

SOUPS 0.586 0.939 0.952 0.828

PSF 0.583 0.918 0.944 0.829

WES1 0.570 0.899 0.932 0.812

NES 0.562 0.900 0.930 0.811

PROF 0.533 0.863 0.912 0.783

SOT 0.520 0.838 0.894 0.754

RMSWF 0.479 0.791 0.883 0.739

AVGWF 0.461 0.792 0.885 0.752

MAXWF 0.448 0.784 0.885 0.743

BW 0.413 0.809 0.896 0.687

Baseline 0.277 0.591 0.868 0.703

In[368]:= CCSCMETA

PTS
PTS_P

WES1
NES

SOUPS

PSF

MAXWF

RMSWF
AVGWF

BW

PROF
SOT

0.1 0.2 0.3 0.4 0.5

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Correlation Coefficient HRandomL

M
et
ah
eu
ri
st
ic
sc
or
e

on
VH
Ra

nd
om

Ls
et

PTS
PTS_P

WES1
NES

SOUPS

PSF

MAXWF

RMSWF
AVGWF

BW

PROF
SOT

0.1 0.2 0.3 0.4 0.5

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Correlation Coefficient HStratifiedL

M
et
ah
eu
ri
st
ic
sc
or
e

on
VH
Ra

nd
om

Ls
et

PTS
PTS_PWES1

NES

SOUPS

PSF

MAXWF

RMSWF
AVGWF

BW
PROFSOT

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.7

0.8

0.9

1.0

Correlation Coefficient HImprovedL

M
et
ah
eu
ri
st
ic
sc
or
e

on
VH
Im

pr
ov
ed

Ls
et

PTS

PTS_PWES1

NES

SOUPS

PSF

MAXWF
RMSWF

AVGWF

BW PROF

SOT

0.2 0.3 0.4 0.5

0.75

0.80

0.85

0.90

0.95

1.00

Correlation Coefficient HBestL

M
et
ah
eu
ri
st
ic
sc
or
e

on
VH
Be
st

Ls
et

[E] [F]

[G] [H]

Fig. 8 Score distribution using a metric-based meta-heuristics.

a score. In other words, we consider the use of a m-meta-
heuristic over the different sets we introduced. For each met-
ric m, Figure 8[A] reports the distribution and the average of
the score for the DD of 40 models, where each DD is built
using the order selected by the mVRND -meta-heuristic. For
example, the distribution reported for SOUPS in column [A]
is built using, for each of the 40 models, the order with the
best SOUPS value in VRND. The last row reports instead the
distribution and the mean of the score over all orders in the
corresponding set and all 40 models. Thus, while the distri-
butions on the first 12 rows are built out of 40 scores, one per
model, the distributions of the baseline row are built over all
the scores in the corresponding set. These distributions are
our baseline for comparison, since in practical applications
and without a meta-heuristic, we would have taken one order
out of that set. For column [B], the distribution on the last
row is built out of the orders in VIMPR (a total of 1 859 422
samples for the 40 models); for column [C], out of of the
orders in VBEST (40×1000 samples); and for column [D],
out of the orders in VSEL (14×3×40 samples). As expected
following the observations in Section 5.1, the scores of the
VRND orders are bad (the distribution is concentrated on the
left), while the distribution of VIMPR tends to have both bad
and good orders and the the one for VBEST contains quasi-
optimal variable orders. The baseline of column [D] is built
out of the 14×3×40 orders produced by 14 heuristics plus
28 versions of FORCE with PTS or PTSP, and it does not
show a clear distribution, possibly because of the low num-
ber of samples but also because the heuristics, at least in our
experience, exhibit a very variable behavior.

The m-meta-heuristic is better than the baseline in all
cases except for the BWVSEL -meta-heuristic (0.687 vs. 0.703).
Most importantly, the best meta-heuristics significantly im-
prove the score over the baseline.

The plots in Figure 8[E,F,G,H] allow us to examine the
usefulness of the indications provided by the various CCs.

Each plot refers to the relationship between the value of the
CC for a metric m and the score of the meta-heuristic based
on m on the VCC Each point in the plots corresponds to a
meta-heuristic, where its y value is the score and its x axis is
the value of CC. Figures [E] and [F] plot the Mean of column
[A] against RCC and SCC. As already observed, SCC and
RCC have a similar behavior and for both of them the high-
est scores are obtained for metrics with higher correlation,
while the lowest four correlating metrics produce the low-
est scores. Figures [G] and [H] plot the Mean of column [B]
and [C] against ICC and SCC, respectively, as done for the
simulated annealing study. We observe again that the most
correlating metric produces the best score, although the or-
der is not strictly preserved, for example plot [H] shows the
same inversion between PSF and SOUPS that was present
in the plot of Figure 7[D].

With respect to question Q3, we now investigate whether
the ranking of a metric according to its CC computed over a
set of orders is effective to select the best order among that
set. The analysis of Figure 8 involves the sets of orders that
may not be significant or available in practice: VRND is easy
to generate, but, as we have seen, its coverage of good orders
is questionable; VIMPR and VBEST are typically not available
when employing a meta-heuristic (their definition requires
building the DDs for a very large number of orders); VSEL
is relatively easy to compute but includes a small number of
variable orders as input to the meta-heuristics.

We thus propose to evaluate the 14 meta-heuristics on
a different set of orders, that can be built in practice. The
requirement is to have more orders than VSEL and a better
coverage of good orders than VRND. This approach also al-
lows us to investigate the behavior of the metrics in a con-
text different from the one where the CCs were computed
(although still on the same set of models). We call this set
VFORCE, generated as follows: we start from the same 1000
initial orders considered for the construction of VIMPR, and

18 Elvio G. Amparore et al.
In[210]:= FORCEGG

Out[210]=

Metric RND+Force Score HfinalL Mean

SOUPS 0.842

PSF 0.829

PTS_P 0.813

NES 0.806

PTS 0.794

WES1 0.786

PROF 0.770

SOT 0.755

BW 0.746

AVGWF 0.732

MAXWF 0.729

RMSWF 0.717

Baseline 0.721
0 0.2 0.4 0.6 0.8 1

Fig. 9 Score distribution using a metric-guided selection from order-
ings obtained using FORCE.

apply on each of them the standard FORCE, thus producing
1000 (possibly) different orders.

Figure 9 (left) reports the results with the same format
as in Figure 8. These results can be compared with those
where we use FORCE directly (Figure 6) and with those for
VRND and VSEL in Figure 8. The average score of the best m-
meta-heuristic (the one based on SOUPS) is 0.842, higher
than 0.813, the best score of the heuristics reported in Fig-
ure 6 (FORCE with PTSP with an initial order computed us-
ing the PC heuristic). While the number of generated orders
is higher for Figure 9 than for Figure 6, this additional cost is
small compared to the savings due to even a small improve-
ment in the size of the DD being built for a model.

8 Conclusions

We have studied the predictive power of variable order met-
rics and we have investigated how this knowledge can be
used to produce new heuristics for good variable orders.

We have defined a methodology to compute several cor-
relation coefficients for decision diagrams’ metrics. By com-
bining a technique for variable order improvement (to avoid
using only “poor” random orders) with stratified sampling
(to reduce the sample bias), we obtained different sets of
orders (from purely random to a set of the best observed or-
ders) on which we have computed various coefficient of cor-
relations to evaluate the predictive power of the metrics in
different contexts. We considered ten existing metrics, cho-
sen since they directly or indirectly play a significant role
in some popular variable order heuristic algorithms, plus
two newly defined ones (PSF and PTSP). We then applied
this methodology to study the predictive power of the 12

metrics on the variable orders of a representative set of 40
Petri net models, a subset of the 77 models used in the 2017
Model Checking Contest at the annual Petri net conference.
We have chosen the models (and the associated parameters),
for which we could generate the sets of orders within the
given resource limits. The computation of the CC for the 12
metrics on the 40 models required us to generate 14 476 702
variable orders and build the associated DDs; indeed, a good
coverage of the order space (including very good orders, if
any, and very bad ones, if any) is a requirement to compute
significant indices. Our experiments show that the correla-
tion among the final DD size and the value of the tested
metrics may significantly differ from metric to metric, as
there are metrics like BW with “very weak to non-existing”
correlation, up to metrics like SOUPS and PSF that exhibit
a “strong” correlation. While the metric with the highest CC
on one set of orders may not be the best one on another set
of orders, the three best metrics (SOUPS, PSF, and PTSP)
occupy 11 of the 12 best positions for the four types of CCs
considered (CC on VRND,VIMPR,VBEST, and stratified CC
on VIMPR). The tests show that some of the variable metrics
are quite effective. Some other metrics, like that the popu-
lar PTS, provide more modest results. A number of other
metrics, although they seem to have intuitive justifications,
are not very good when compared all together. Therefore,
an interesting open problem is how to turn some of the best
metrics (like SOUPS and PSF) into an efficient algorithm
that searches for a variable order to optimize these metrics.

We have provided evidence of the positive impact of
highly correlating metrics on variable order heuristics by
defining and evaluating two new heuristics and a meta-heuristic.
To do so we have defined a notion of “score” to be able to
compare the DDs produced on the whole set of 40 models
and associated thousands of orders. The first heuristic is a
modification of FORCE in which the standard PTS metric
that FORCE optimizes is substituted by a more correlating
metric (PTSP). The experiments show that using a more cor-
relating metric produces better orders with better scores and,
even if the improvement is limited, FORCE is not only more
effective but also more stable when it minimizes PTSP in-
stead of PTS.

The second heuristic is a metric-based simulated anneal-
ing in which a metric m is used to drive a simulating an-
nealing optimization procedure, actually 1000 procedures
started from 1000 different initial orders for each one of the
40 models. The same metric m is then used to select the
best order for each model. The resulting scores are lower
than the ones obtained with the FORCE based heuristic, but
they clearly show that the annealing procedures that use the
best correlating metrics produce the best set of orders. The
results also show that annealing, which is an important opti-
mization technique for NP-hard problems, does not perform
very well on variable orders, producing poor results when it

Variable order metrics for decision diagrams in system verification 19

starts from a random order instead of an already good order.
We conjecture that the limit is in the mutation function h,
which is able to perform only local changes. Since this is
the same function used by dynamic reordering techniques,
it remains an open problem to assess the effectiveness of
such reordering techniques against some of the static order-
ing techniques tested in this paper.

Finally we have defined a meta-heuristic in which a met-
ric m is used to drive the selection of the “best” variable or-
der among a set of variable orders produced with different
techniques: the set of orders defined in the methodology for
the CC evaluation, plus a new set of “improved” orders built
using FORCE from an initial set of 1,000 random orders.
Again, we observe that, when a highly correlating metric
is used as the basis for the meta-heuristics, we get better
scores (in particular the three best average scores are ob-
tained, again, for SOUPS, PSF, and PTSP). Since the con-
struction of improved set of orders based on FORCE does
not require the construction of any DD (unlike the construc-
tion of VIMPR), the meta-heuristic based on a combination
of random order improved with FORCE and selected using a
highly correlating metric is a meta-heuristic that can be ap-
plied in practice for the construction of the DD of the state
space of large models.

We stress that, while all models used for our experi-
ments are Petri nets from the Petri net Model Checking Con-
test, our methodology to evaluate correlation is fully gen-
eral. Moreover most of the 12 metrics and the defined heuris-
tics can be applied to many other discrete-state formalisms,
as long as their behavior is captured by a set of asynchronous
events and can be analyzed using DDs. This is true even for
the metrics PSF and PTSP, which rely on knowledge of the
P-semiflows, a notion defined specifically for Petri nets, but
which can be easily extended to other formalisms, since a P-
semiflow simply identifies a set of variables that must satisfy
a linear constraint.

The study of the CC of various metrics paves the way
to different lines of future work. A first research question
is whether metrics can be used to drive dynamic reordering
heuristics. While it is true that dynamic reordering works
at the library level, where typically the information on the
structure of the model is not directly available, it would nev-
ertheless be interesting to see whether an extension to in-
clude such knowledge and the metrics computation can lead
to more effective dynamic reordering procedures.

A second research question is to improve the current set
of metrics: indeed none of the metrics reaches a very high
correlation (what is usually defined as “very strong” corre-
lation). On the other hand, there are always cases (although
very few) in which metrics with very low correlation are
able to select good orders. The challenge is then whether it
is possible to define a metric that can take into account the
positive characteristics of different metrics to boost the be-

havior of the constituent metrics, while avoiding the risk of
resulting in an average, unsatisfactory, behavior.

Appendix: Weighted Spearman correlation

We summarize the formulas used to compute the weighted
Spearman correlation coefficient from a weighted bivariate
series (X ,Y,W) used by the “wCorr” package [45]. A more
detailed explanation can be found in [46]. The Pearson cor-
relation coefficient σP(X ,Y) is defined as σX ,Y

σX σY
where σX ,Y

is the covariance between X and Y , and σX and σY are the
standard deviations of X and Y , respectively. The weighted
Pearson correlation coefficient is defined as:

σP(X ,Y,W) =
∑

n
i=1 [wi(xi− x̄)(yi− ȳ)]√

∑
n
i=1 (wi(xi− x̄)2)∑

n
i=1 (wi(yi− ȳ)2)

, (6)

where x̄ and ȳ are the weighted means of X and Y :

x̄ =
1

∑
n
i=1 wi

n

∑
i=1

wixi, ȳ =
1

∑
n
i=1 wi

n

∑
i=1

wiyi,

using wi as the weights. The Spearman coefficient σS(X ,Y)
is defined as the Pearson coefficient over the ranks X ′ and
Y ′ of X and Y , i.e., the values of X and Y are replaced with
their relative position. The weighted Spearman coefficient
σS(X ,Y,W) is computed as the weighted Pearson coefficient
σP(X ′,Y ′,W) where X ′ and Y ′ are the weighted ranks X ′ and
Y ′ of X and Y , defined so that the j-th element of X has rank

rank j = ∑
xk∈X ′
xk<x j

wk +
n j +1

2
w̄ jS,

where n j is the number of entries in X having value x j,
and w̄ j is the average weight of those entries. The weighted
ranks Y ′ of Y are defined analogously. Note that σS(X ,Y,W)
equals σS(X ,Y) when all weights W are equal.

References

1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: A fast and
easy-to-implement variable-ordering heuristic. In: Proc. of
GLSVLSI, pp. 116–119. ACM, NY (2003)

2. Amparore, E.G.: A New GreatSPN GUI for GSPN Editing and
CSLTA Model Checking. In: QEST, pp. 170–173. Springer (2014)

3. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Frances-
chinis, G.: 30 Years of GreatSPN, chap. In: Principles of Perfor-
mance and Reliability Modeling and Evaluation: Essays in Honor
of Kishor Trivedi, pp. 227–254. Springer, Cham (2016)

4. Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based vari-
able ordering of decision diagrams for systems with structural
units. In: Automated Technology for Verification and Analysis,
pp. 184–200. Springer (2017)

5. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.:
Decision diagrams for Petri nets: A comparison of variable order-
ing algorithms. Transactions on Petri Nets and Other Models of
Concurrency XIII pp. 73–92 (2018)

20 Elvio G. Amparore et al.

6. Babar, J., Miner, A.: Meddly: Multi-terminal and edge-valued de-
cision diagram library. In: Quantitative Evaluation of Systems,
International Conference on, pp. 195–196. IEEE Computer Soci-
ety, Los Alamitos, CA, USA (2010)

7. Baillargeon, S., Rivest, L.P.: The construction of stratified designs
in R with the package stratification. Survey Methodology 37(1),
53–65 (2011)

8. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA. con-
struction of abstract state spaces for petri nets and time petri nets
(2004)

9. Bollig, B., Löbbing, M., Wegener, I.: On the effect of local
changes in the variable ordering of ordered decision diagrams. In-
formation Processing Letters 59(5), 233 – 239 (1996)

10. Bollig, B., Wegener, I.: Improving the variable ordering of OB-
DDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002
(1996)

11. The Boost-C++ library. http://www.boost.org/
12. Bryant, R.E.: Graph-based algorithms for boolean function ma-

nipulation. IEEE Transactions on Computers 35, 677–691 (1986)
13. Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: Logical and

stochastic modeling with SMART. Perf. Eval. 63, 578–608 (2006)
14. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An effi-

cient iteration strategy for symbolic state-space generation. In:
TACAS’01, pp. 328–342 (2001)

15. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV:
A new symbolic model verifier. In: 11th Int. Conf. on Computer
Aided Verification, pp. 495–499. Springer (1999)

16. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmet-
ric matrices. In: Proc. of the 1969 24th National Conference, pp.
157–172. ACM, New York (1969)

17. van Dijk, T., Hahn, E.M., Jansen, D.N., Li, Y., Neele, T., Stoelinga,
M., Turrini, A., Zhang, L.: A comparative study of bdd packages
for probabilistic symbolic model checking. In: X. Li, Z. Liu,
W. Yi (eds.) Dependable Software Engineering: Theories, Tools,
and Applications, pp. 35–51. Springer International Publishing,
Cham (2015)

18. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for de-
cision diagrams. International Journal on Software Tools for Tech-
nology Transfer 19(6), 675–696 (2017)

19. Du, K.L., Swamy, M.N.S.: Search and Optimization by Meta-
heuristics. Basel, Springer (2016)

20. Fujita, M., Matsunaga, Y., Kakuda, T.: On variable ordering of
binary decision diagrams for the application of multi-level logic
synthesis. In: Proceedings of the conference on European design
automation, EURO-DAC’91, Amsterdam, The Netherlands, 1991,
pp. 50–54 (1991)

21. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: Cadp 2011: a
toolbox for the construction and analysis of distributed processes.
International Journal on Software Tools for Technology Transfer
15(2), 89–107 (2013)

22. Gibbs, N.E., Poole Jr, W.G., Stockmeyer, P.K.: An algorithm for
reducing the bandwidth and profile of a sparse matrix. SIAM Jour-
nal on Numerical Analysis 13(2), 236–250 (1976)

23. Heiner, M., Rohr, C., Schwarick, M., Tovchigrechko, A.A.: MAR-
CIE’s secrets of efficient model checking. In: Transactions on Petri
Nets and Other Models of Concurrency XI, pp. 286–296. Springer,
Heidelberg (2016)

24. Hocevar, D.E., Lightner, M.R., Trick, T.N.: A study of variance
reduction techniques for estimating circuit yields. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems 2(3), 180–192 (1983)

25. Hollander, M., Wolfe, D.A.: Nonparametric statistical methods.
Wiley-Interscience (1999)

26. Jorn Lind-Nielsen: BuDDy Manual. http://http://buddy.

sourceforge.net/manual/main.html (2003)
27. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli,

A.: Multi-valued decision diagrams: theory and applications.
Multiple-Valued Logic 4(1), 9–62 (1992)

28. Kamp, E.: Bandwidth, profile and wavefront reduction for static
variable ordering in symbolic model checking. Tech. rep., Univer-
sity of Twente (June, 2015)

29. Keramat, M., Kielbasa, R.: A study of stratified sampling in vari-
ance reduction techniques for parametric yield estimation. IEEE
Transactions on Circuits and Systems II: Analog and Digital Sig-
nal Processing 45(5), 575–583 (1998)

30. King, I.P.: An automatic reordering scheme for simultaneous
equations derived from network systems. Journal of Numerical
Methods in Eng. 2(4), 523–533 (1970)

31. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F.,
Berthomieu, B., Ciardo, G., Colange, M., Dal Zilio, S., Am-
parore, E., Beccuti, M., Liebke, T., Meijer, J., Miner, A., Rohr,
C., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.: Com-
plete Results for the 2017 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2017/results.php (2017)

32. Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel,
L., Hulin-Hubard, F., Amparore, E., Beccuti, M., Berthomieu, B.,
Evrard, H., Jensen, P.G., Botlan, D.L., Liebke, T., Meijer, J., Srba,
J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.: MCC2017 - The
Seventh Model Checking Contest. Accepted for publication at
TopNoC, Springer (2017)

33. Kozak, M.: Optimal stratification using random search method in
agricultural surveys. Statistics in Transition 6(5), 797–806 (2004)

34. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic
Model Checking for Performance and Reliability Analysis. Per-
formance Evaluation 36(4), 40–45 (2009)

35. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic
Publishers, Norwell, MA, USA (1993)

36. Meijer, J., van de Pol, J.: Bandwidth and wavefront reduction
for static variable ordering in symbolic reachability analysis. In:
NASA Formal Methods, 2016, pp. 255–271. Springer, Cham
(2016)

37. Murata, T.: Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE 77(4), 541–580 (1989)

38. Rudell, R.: Dynamic variable ordering for ordered binary de-
cision diagrams. In: Proceedings of the 1993 IEEE/ACM In-
ternational Conference on Computer-aided Design, ICCAD ’93,
pp. 42–47. IEEE Computer Society Press, Los Alamitos, CA,
USA (1993). URL http://dl.acm.org/citation.cfm?id=

259794.259802

39. Schwarick, M., Heiner, M., Rohr, C.: Marcie - model checking and
reachability analysis done efficiently. In: Quantitative Evaluation
of Systems (QEST), 2011 Eighth International Conference on, pp.
91–100 (2011)

40. Siminiceanu, R.I., Ciardo, G.: New metrics for static variable or-
dering in decision diagrams. In: 12th Int. Conf. TACAS 2006, pp.
90–104. Springer, Heidelberg (2006)

41. Sloan, S.W.: An algorithm for profile and wavefront reduction of
sparse matrices. International Journal for Numerical Methods in
Engineering 23(2), 239–251 (1986)

42. Smith, B., Ciardo, G.: SOUPS: A variable ordering metric for the
saturation algorithm. In: 18th International Conference on Appli-
cation of Concurrency to System Design, ACSD 2018, Bratislava,
Slovakia, June 25-29, 2018, pp. 1–10. IEEE Computer Society
(2018)

43. Somenzi, F.: Efficient manipulation of decision diagrams. STTT
3(2), 171–181 (2001)

44. Thierry-Mieg, Y.: Symbolic model-checking using its-tools. In:
TACAS, Lecture Notes in Computer Science, vol. 9035, pp. 231–
237. Springer (2015)

45. The wCorr library by Ahmad Emad and Paul Bailey. https:

//cran.r-project.org/web/packages/wCorr/wCorr.pdf

46. The wCorr formulas. https://cran.r-project.org/web/

packages/wCorr/vignettes/wCorrFormulas.html

