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Abstract—Federated learning aims to jointly learn statistical
models over massively distributed remote devices. In this work,
we propose FedDANE, an optimization method that we adapt
from DANE [8, 9], a method for classical distributed optimization,
to handle the practical constraints of federated learning. We
provide convergence guarantees for this method when learning
over both convex and non-convex functions. Despite encouraging
theoretical results, we find that the method has underwhelming
performance empirically. In particular, through empirical simula-
tions on both synthetic and real-world datasets, FedDANE consis-
tently underperforms baselines of FedAvg [7] and FedProx [4]
in realistic federated settings. We identify low device participation
and statistical device heterogeneity as two underlying causes of
this underwhelming performance, and conclude by suggesting
several directions of future work.

I. INTRODUCTION

Federated learning is a distributed learning paradigm that
considers training statistical models in heterogeneous networks
of remote devices [5, 7]. Learning a model while keeping data
localized can provide both computational and privacy benefits
compared to transmitting raw data across the network.

To handle heterogeneity and high communication costs in
federated networks, a popular approach for federated optimiza-
tion methods involves allowing for local updating and low
participation [5]. One method along these lines is FedAvg [7],
which has demonstrated robust empirical performance in non-
convex settings. FedAvg assumes only a small subset of
devices (e.g., 1% out of thousands to millions) participate
in training at each communication round. Each selected device
then performs variable amounts of local work before sending
model updates back to the server, which can enable a flexible
trade-off between communication and computation.

Although FedAvg performs well empirically, it can diverge
when the data is statistically heterogeneous (i.e., generated in
a non-identically distributed manner across the network) [4, 7].
A recent approach, FedProx [4], has attempted to mitigate
this issue by adding a proximal term to the subproblem on each
device, which helps to improve the stability of the method.

In this work, we take a similar approach to FedProx,
and draw inspiration from DANE and variants [8, 9], which
are popular methods developed for the distributed data center
setting. In particular, Reddi et al. [8] propose inexact-DANE,
a variant of DANE that allows for local updating, which is
beneficial when communication is a bottleneck. Compared
with FedAvg, DANE and inexact-DANE use a different local
subproblem which includes two additional terms—a gradient
correction term and a proximal term. As data is statistically het-
erogeneous in federated networks, these terms can potentially

improve convergence by forcing model updates to be closer
to the current global model, making the method more stable
and amenable to theoretical analysis. Including the gradient
correction term also allows the update to take on the form of an
approximate Newton-type method, which can lead to provably
improved convergence for certain well-behaved objectives [9].

Despite the merits of (inexact) DANE, the method has not
been analyzed in settings with statistically heterogeneous
data or low participation amongst the devices, which are
critical challenges in realistic federated networks. Indeed, at
each communication round, DANE requires every device to
collectively evaluate the gradient of the global function. This
is prohibitive in federated networks as it requires the server
to communicate with each device in a potentially massive
network, and does not allow for the case of devices dropping
out. A natural way to address this issue is to approximate the
gradient via a subsample of the devices. Based on this idea, we
propose FedDANE, a variant of inexact DANE for federated
learning.1 Similar to inexact DANE, FedDANE inexactly solves
an approximate Newton-type subproblem, but only collects
gradient updates from a subset of devices at each round.

We provide convergence guarantees for FedDANE for both
convex and non-convex functions in low participation settings,
and allow for the scenario that each device generates data from a
possibly differing distribution. Despite encouraging theoretical
results, our empirical evaluation indicates that while FedDANE
is more expensive as it needs two rounds of communication
for one update, it consistently underperforms FedAvg and
FedProx due to the inexact estimation of the full gradient and
the statistical heterogeneity in the network. Our study highlights
the drawbacks of the gradient correction term in FedDANE, and
suggests the superiority of FedProx which leverages just the
proximal term to achieve improved performance for federated
optimization. Our work also suggests several directions of
future work in federated optimization.

II. RELATED WORK

DANE and Other Communication-efficient Distributed
Methods. Methods that employ local updating (i.e., computing
and applying a variable number of updates locally, rather
than just evaluating the gradients once and sending them
back for aggregation) are a popular approach for improv-
ing communication-efficiency in distributed optimization. By

1We note that the gradient correction term in FedDANE was explored briefly
in prior work of FedProx [4] (Appendix B), though this work is the first
to theoretically analyze FedDANE and provide a systematic evaluation of the
method in federated settings.



solving the local subproblems inexactly at each round, such
schemes enable a flexible trade-off between communication and
computation. For example, COCOA [11] is a communication-
efficient primal-dual framework that leverages duality to decom-
pose the global objective into subproblems that can be solved
inexactly. Several primal methods [e.g., 8, 9, 12, 13, 16, 17],
including DANE [9] and inexact DANE [8], have also been
proposed, and have the added benefit of being applicable to
non-convex objectives. While these methods make a seemingly
small change over standard mini-batch methods, they enable
drastically improved performance in practice, and have been
shown to achieve orders-of-magnitude speedups over mini-
batch methods in real-world data center environments. This is
especially critical in communication-constrained environments
such as federated settings.

Heterogeneity-aware Federated Optimization. An impor-
tant distinction between federated optimization and classical
distributed optimization is the presence of heterogeneity, i.e.,
non-identically distributed data and heterogeneous systems
across the network. Smith et al. [10] propose a primal-dual
optimization method that learns separate but related models for
each device through a multi-task learning framework. This
setup naturally captures statistical heterogeneity, and also
considers systems issues such as stragglers in the method and
theory. However, such an approach is not generalizable to non-
convex problems. There are several recent works that provide
theoretical analysis specifically for federated optimization.
FedProx [4] characterizes the convergence behavior under a
dissimilarity assumption of local functions, while accounting
for the low participation of devices. Other works analyze dif-
ferent methods with non-identically distributed data, but under
different (possibly) limiting assumptions, such as using SGD
as a specific local solver [6], full device participation [14, 15],
convexity [3, 6, 14], or uniformly-bounded gradients [6, 15].
For instance, SCAFFOLD [3] is a recent method for federated
optimization related to DANE where it maintains a similar
gradient correction term in the local subproblem. However, its
convergence results are limited to strongly convex functions,
and the method has yet to be explored empirically. Our
convergence analysis of FedDANE also accounts for low device
participation and data heterogeneity, and covers both convex
and non-convex functions (Section IV).

III. METHODS

In this section, we propose FedDANE, a heterogeneity-aware
federated optimization method. Before introducing FedDANE
(Section III-C), we first formally define the optimization
objective we consider in this paper (Section III-A), and provide
some background on FedAvg and DANE (Section III-B).

A. Problem Setup
Federated learning typically aims to minimize the empirical

risk over heterogeneous data distributed across multiple devices:

min
w

f(w) =

N∑
k=1

pkFk(w) = Ek[Fk(w)], (1)

where N is the number of devices, pk ≥ 0, and
∑
k pk = 1.

In general, the local objectives measure the local empirical risk
over possibly differing data distributions Dk, i.e., Fk(w) :=
Exk∼Dk

fk(w;xk), with nk samples available at each device
k. Hence, we can set pk = nk

n , where n =
∑
k nk is the total

number of data points on all devices. In this work, we consider
the typical centralized setup where N devices are connected
to one central server.

B. Preliminaries: FedAvg and DANE

In FedAvg [7], a subset of devices are sampled, and perform
variable iterations of SGD to solve their local subproblems
inexactly at each communication round. In particular, each
selected device k runs E epochs of SGD on the local function
Fk to obtain local updates, then sends the updates back
for aggregation in a synchronous manner. The details are
summarized in Algorithm 1.

Algorithm 1 Federated Averaging (FedAvg)

1: Input: K, T , η, E, w0, N , pk, k = 1, · · · , N
2: for t = 1, · · · , T do
3: Server selects a subset St of K devices at random (each

device k is chosen with probability pk)
4: Server sends wt−1 to all chosen devices
5: Each device k ∈ St updates wt−1 for E epochs of SGD

on Fk with step-size η to obtain wt
k

6: Each device k ∈ St sends wt
k back to the server

7: Server aggregates the w’s as wt = 1
K

∑
k∈St

wt
k

8: end for

In data center settings, DANE [9] and its inexact variants [8]
are another set of approaches which have been analyzed in
depth. In its simplest form, DANE has each worker k solve the
following subproblem:

wt
k = argmin

w
Fk(w) +

〈
∇f(wt−1)−∇Fk(wt−1),w −wt−1

〉
+
µ

2

∥∥w −wt−1
∥∥2
. (2)

Similarly, after each worker solves its subproblem, the central
server collects those updates and aggregates them to obtain wt.
The update is in fact a two-step process, as (2) requires the
workers to first collectively compute the overall gradient of the
function, ∇f(wt−1), and can be interpreted as a distributed
variant of SVRG [8]. Inexact DANE allows the flexibility of
solving (2) inexactly [8]. Based on inexact DANE, we next
introduce FedDANE.

C. Proposed Method: FedDANE

The inexact DANE method mentioned above cannot be
directly applied to federated settings. One critical challenge is
that computing the full gradient ∇f(wt−1) requires the server
to communicate with all the devices and then average the local
gradients, which is infeasible in massive federated networks.

In FedDANE, we propose to approximate the full gradients
using a subset of gradients from randomly sampled devices.



Algorithm 2 Proposed method: FedDANE

1: Input: K, T , η, E, w0, N , pk, k = 1, · · · , N
2: for t = 1, · · · , T do
3: Server selects a subset St of K devices at random (each

device k is chosen with probability pk)
4: Server sends wt−1 to all chosen devices
5: Each selected device computes ∇Fk(wt−1) and sends

it to the central server
6: The server aggregates the gradients into

gt =
1

K

∑
k∈St

∇Fk(wt−1)

7: Each device k ∈ St solves the following subproblem
inexactly to obtain wt

k:
wt
k = argmin

w
Fk(w) +

〈
gt −∇Fk(wt−1),w −wt−1

〉
+
µ

2

∥∥w −wt−1
∥∥2

8: Each device k ∈ St sends wt
k back to the server

9: Server aggregates the w’s as wt = 1
K

∑
k∈St

wt
k

10: end for

Collecting the gradients from a subset St (|St| = K) of devices
at each iteration t yields:

∇f(wt−1) ≈ gt =
1

K

∑
k∈St

∇Fk(wt−1).

After computing gt, FedDANE selects another subset of devices
where each device k ∈ St solves the following subproblem
inexactly:

wt
k = argmin

w
Fk(w) +

〈
gt −∇Fk(wt−1),w −wt−1

〉
+
µ

2

∥∥w −wt−1
∥∥2
. (3)

The server then aggregates the updates from the selected
devices. See Algorithm 2 for details. We note that one
limitation of FedDANE is that each outer iteration incurs
two rounds of communication, making it less efficient than
FedAvg and FedProx. This leads us to suggest a variant
of FedDANE leveraging a pipelined approach to perform one
update in a single round of communication (see Section V-C
for more discussions). However, as we will see in our empirical
valuation (Section V), even the less efficient (and more
accurate) FedDANE proposed here results in inferior practical
performance compared to FedAvg and FedProx.

IV. ANALYSIS

We now provide our convergence analysis of FedDANE for
both convex and non-convex problems. Recall that FedDANE
allows each selected device to solve a subproblem inexactly
at each updating round to reduce communication. We first
formally define a parameter γ to quantify the inexactness,
which will be used throughout our analysis.

Definition 1 (γ-inexact Solution). We say that wt is a γ-
inexact minimizer of (3) if ‖wt −wt‖ ≤ γ

∥∥wt −wt−1
∥∥,

where γ ∈ [0, 1), and wt is the exact minimizer of (3). Note
that a smaller γ corresponds to higher accuracy.

In order to quantify the dissimilarity between devices in a
federated network, following Li et al. [4], we define B-local
dissimilarity as follows.

Definition 2 (B-local Dissimilarity). The local functions
Fk are B-locally dissimilar at w if Ek‖∇Fk(w)‖2 ≤
‖∇f(w)‖2B2. We further define B(w)=

√
Ek‖∇Fk(w)‖2
‖∇f(w)‖2 for

‖∇f(w)‖ 6=0.

When the devices are homogeneous with I.I.D. data, B(w) =
1 for every w. The more heterogeneous the data are in
the network, the larger B(w) is. As discussed later, our
convergence results are a function of the device dissimilarity
bound B.

A. Convex Case

We first investigate the convergence results for convex Fk’s.

Theorem 3 (Sufficient Decrease). Assume Fk’s are convex,
and have L-Lipschitz continuous gradients. Moreover, assume
B-dissimilarity is bounded by B at point wt−1. Given the
inexact criterion in Definition 1, if µ, γ, L, and B satisfy

ρ =

(
2− 3γ

2µ
− 2L(1 + γ)2 + 3L

2µ2

− (B2 − 1)

(
L(1 + γ)2 + L

µ2
+
γ

µ

))
> 0,

then at iteration t of Algorithm 2, we have the following
expected decrease in the global objective:

ESt

[
f(wt)

]
≤ f(wt−1)− ρ

∥∥∇f(wt−1)
∥∥2
,

where St represents the distribution of a set of random devices
selected at time t.

Due to length restrictions, we provide all proofs in a full
version of the paper, provided on Tian Li’s academic website.
At a high-level, we first use the γ-inexactness and other
assumptions to attain a decrease in the objective, then take
an expectation over randomly selected devices and apply the
bounded B-dissimilarity to obtain the above results.

Corollary 4 (Convergence: Convex Case). Let the assertions
of Theorem 3 hold. In addition, let γ = 0, i.e., all the local
problems are solved exactly, if 1 � B then we choose µ ≈
5LB2 from which it follows that ρ ≈ 3

25LB2 .

B. Non-convex Case

We have the following convergence characterization for non-
convex functions.

Theorem 5 (Sufficient Decrease). Assume Fk’s are non-convex,
and have L-Lipschitz continuous gradients. Moreover, assume
there exists a λ such that λI+∇2Fk(w) � 0, with µ− λ > 0.



Assume B-dissimilarity is bounded by B at point wt−1. Given
the inexact criterion in Definition 1, if µ, γ, L, and B satisfy

ρ =

(
1

µ
− 3γ

2(µ− λ)
− L(1 + γ)2

(µ− λ)2
− 3L

2µ(µ− λ)

−
(
B2 − 1

)(L(1 + γ)2

(µ− λ)2
+

L

µ(µ− λ)
+

γ

µ− λ

))
> 0

then at iteration t of Algorithm 2, we have the following
expected decrease in the global objective:

ESt
[f(wt)] ≤ f(wt−1)− ρ‖∇f(wt−1)‖2,

where St represents the devices randomly selected at time t.

The proof (Appendix V-E) is similar to the proof for
Theorem 3. Now we can use the above sufficient decrease to the
characterize the rate of convergence to the set of approximate
stationary solutions {w | E

[
‖∇f(wt)‖2

]
≤ ε}.

Theorem 6 (Convergence: Non-convex Case). Let the assump-
tion Theorem 5 hold at each iteration of FedDANE. Moreover,
f(w0)− f∗ = ∆. Then, after T = O( ∆

ρε ) iterations, we have
1
T

∑T
t=1 E

[
‖∇f(wt)‖2

]
≤ ε.

Note that the convergence rates of FedDANE derived
here recover the results in FedProx [4], which are also
asymptotically the same as SGD [2].

C. Device-specific Constants

While the previous results assume the same constants L (the
Lipschitz constant of gradients), µ (the penalty constant of the
proximal term), and γ (the degree of inexactness) across all
devices, we can easily extend the analysis to allow for variable
constants across devices.

Theorem 7 (Convergence with Device-specific Constants).
Assume Fk’s are convex, and have Lk-Lipschitz continuous
gradients. Moreover, assume B-dissimilarity is bounded by B
at point wt−1. Given the inexact criterion in Definition 1, if
constants µk, γk, Lk, and B are chosen such that

ρ =

(
1

Kt

Kt∑
k=1

(
1

µk
− 3γk

2µk
− Lk (1 + γk)

2

µ2
k

− 3Lk
2µ2

k

)

− 1

Kt

Kt∑
k=1

(
L (1 + γk)

2

µ2
k

+
Lk
µ2
k

+
γk
µk

)(
B2 − 1

))
> 0,

then at iteration t of Algorithm 2, we have the following
expected decrease in the global objective:

ESt
[f(wt)] ≤ f(wt−1)− ρ‖∇f(wt−1)‖2,

where St represents the distribution of a set of random devices
selected at time t.

Note that our analysis is general in that it is agnostic of
any specific local solver, and covers both cases of sampling
devices with and without replacement.

V. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate the performance of FedDANE using
both synthetic and real-world federated datasets. The datasets
are curated from the LEAF benchmark [1] as well as previous
work on federated learning [4]. In particular, we use a set of
synthetic datasets with varying degrees of data heterogeneity
following the setup in Li et al. [4]. We also study three real
datasets in LEAF: FEMNIST for image classification with a
convex model, Shakespeare for next-character prediction, and
Sent140 for sentiment analysis, both with non-convex deep
neural network models. These datasets are naturally partitioned
into different devices in the network [1]. Data statistics are
summarized in Table I below.

TABLE I: Statistics of three real federated datasets.

Datasets # Devices # Samples # Samples/device

mean stdev
FEMNIST 200 18,345 92 159
Sent140 772 40,783 53 32
Shakespeare 143 517,106 3,616 6,808

Implementation & Hyper-parameters. We simulate a
federated setup where N devices (N is the total number of
devices shown in Table I) are connected with a central server.
For FedAvg and FedProx, we directly take the tuned hyper-
parameters reported in [4]. For FedDANE, we use the same
learning rates and batch sizes as in FedAvg on the same
dataset. We tune µ (the penalty constant in the proximal term)
for FedDANE from a candidate set {0, 0.001, 0.01, 0.1, 1}
and pick a best µ based on the training loss.

B. Evaluation Results

We compare the convergence of FedDANE with FedAvg
and FedProx. For each method, we select 10 devices at
each updating round, and let each device perform E epochs
of local updates (E = 20). We plot the training loss versus
the updating rounds (treating two communication rounds in
FedDANE as one). The results are shown in Figure 1. We see
that FedDANE consistently performs worse than both FedAvg
and FedProx. This indicates that statistical heterogeneity and
low device participation (the inaccurate approximation of the
full gradients) may hurt the convergence of FedDANE. We
further investigate the effects of varying participating devices
and show that whether selecting more devices to get a better
approximation of the full gradients can lead to improved
performance depends on the degree of data heterogeneity.
We then create an extreme ‘unrealistic’ setting that favors
FedDANE, where we select a large subset of devices (78%
of the total devices on average) and let each device perform
only one epoch of local updates, trying to prevent local models
from deviating too much from the global model. Even in
this unrealistic setting, the performance of FedDANE is still
disappointing. The results of all the additional experiments are
provided in Appendix V-G in the full version of the paper on
Tian Li’s academic homepage.
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Fig. 1: Convergence of FedDANE compared with FedAvg and FedProx. For synthetic datasets in the first row, from left to
right, data are becoming more heterogeneous. Except for the perfect I.I.D. dataset (Synthetic IID), FedDANE underperforms
both FedAvg and FedProx on all datasets—either converging more slowly or diverging.

C. Discussions
Despite encouraging theoretical results, FedDANE demon-

strates underwhelming empirical performance. This indicates
that several of our theoretical assumptions may not hold in
practical scenarios. These violations may include (1) the lowest
eigenvalue of the Hessian ∇2Fk(w) is too small, (2) the choice
of µ does not make the local subproblem strongly convex, and
(3) the choices of the constants µ, γ, L and B may not guarantee
sufficient decrease. More generally, the discrepancy between
theory and practice suggests that the practical issues of low
device participation and statistical heterogeneity in distributed
optimization require careful theoretical consideration—for
FedDANE as well as for methods such as FedAvg and
FedProx. Developing a better understanding of this setting
may help to enable improved empirical performance for the
increasingly prevalent problem of federated learning.

We note that there are other possible variants of DANE that
may address the drawbacks of FedDANE. For instance, in
order to mitigate the negative effects of the gradient correction
term, we can consider decaying this term over the optimization
process. The ‘decayed’ FedDANE will eventually reduce to
FedProx as the gradient correction term becomes closer to
zero. Another limitation with the proposed FedDANE method
is that it requires two rounds of communication for one update.
One could imagine a ‘pipelined’ variant of FedDANE where
the overall gradient and the local model updates are transmitted
together to the server. In this way, however, the selected devices
have to use the stale gradients for the gradient correction term in
the local subproblem. Exploring such variants is an interesting
direction of future research.
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APPENDIX

D. Proof for Theorem 3
Proof. We have by the Lipschitz continuity of the gradients:

f(wt) ≤ f(wt−1) + 〈∇f(wt−1),wt −wt−1〉+ L

2

∥∥wt −wt−1
∥∥2

≤ f(wt−1) + 〈∇f(wt−1),wt −wt−1〉+ 〈∇f(wt−1),wt −wt〉+ L

2

∥∥wt −wt−1
∥∥2 (4)

By optimality conditions, we have that wt satisfies

∇Fk

(
wt)+ gt −∇Fk

(
wt−1)+ µ

(
wt −wt−1) = 0. (5)

We denote the local subproblem (3) as Pt(w). We also note that, Pt(w) is µ-strongly convex,

µ
∥∥wt −wt−1

∥∥ ≤ ∥∥∇Pt(w
t−1)

∥∥ = ‖gt‖ . (6)

We derive a bound for
∥∥wt −wt−1

∥∥ next.∥∥wt −wt−1
∥∥ ≤ ∥∥wt −wt−1

∥∥+ ∥∥wt −wt
∥∥ ≤ (1 + γ)

∥∥wt −wt−1
∥∥ . (7)

Using (5)-(6) in (4), we have,

f(wt) ≤ f(wt−1) + 〈∇f(wt−1),wt −wt−1〉+ 〈∇f(wt−1),wt −wt〉+ L

2

∥∥wt −wt−1
∥∥2

≤ f(wt−1)− 1

µ
〈∇f(wt−1),∇Fk

(
wt)+ gt −∇Fk

(
wt−1)〉+ ∥∥∇f(wt−1)

∥∥∥∥wt −wt
∥∥+ L(1 + γ)2

2µ2
‖gt‖2

≤ f(wt−1)− ∇
>f(wt−1)gt

µ
+
L

µ

∥∥∇f(wt−1)
∥∥ ∥∥wt −wt−1

∥∥+ γ
∥∥∇f(wt−1)

∥∥∥∥wt −wt−1
∥∥+ L(1 + γ)2

2µ2
‖gt‖2

≤ f(wt−1)− ∇
>f(wt−1)gt

µ
+

L

2µ2

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+

γ

2µ

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+
L(1 + γ)2

2µ2
‖gt‖2 . (8)

Taking expectation with respect to the randomly chosen devices St yields

ESt

[
f(wt)

]
≤f(wt−1)−

(
1− 3γ

2

) ∥∥∇f(wt−1)
∥∥2

µ
+

(
2L(1 + γ)2

2µ2
+

3L

2µ2

)∥∥∇f(wt−1)
∥∥2

+

(
L(1 + γ)2

µ2
+

L

µ2
+
γ

µ

)
ESt

[∥∥gt −∇f(wt−1)
∥∥2] , (9)

where in the last step, we used the inequality that

‖gt‖2 =
∥∥gt −∇f(wt−1) +∇f(wt−1)

∥∥2 ≤ 2
∥∥∇f(wt−1)

∥∥2 + 2
∥∥gt −∇f(wt−1)

∥∥2 . (10)

Note that

ESt

[∥∥gt −∇f(wt−1)
∥∥2] = ESt

[
‖gt‖2

]
−
∥∥∇f(wt−1)

∥∥2 ≤ Ek

[
‖∇Fk(w

t−1)‖2
]
−
∥∥∇f(wt−1)

∥∥2 ≤ (B2 − 1)
∥∥f(wt−1)

∥∥2 . (11)

Plugging into (9), we get

ESt

[
f(wt)

]
≤ f(wt−1)− ρ

∥∥∇f(wt−1)
∥∥2 , (12)

where

ρ =
2− 3γ

2µ
− 2L(1 + γ)2 + 3L

2µ2
−
(
B2 − 1

)(L (1 + γ)2 + L

µ2
+
γ

µ

)
. (13)



E. Proof for Theorem 5
Proof. We have by the Lipschitz continuity of the gradients:

f(wt) ≤ f(wt−1) + 〈∇f(wt−1),wt −wt−1〉+ L

2

∥∥wt −wt−1
∥∥2

≤ f(wt−1) + 〈∇f(wt−1),wt −wt−1〉+ 〈∇f(wt−1),wt −wt〉+ L

2

∥∥wt −wt−1
∥∥2 (14)

By optimality conditions, we have that wt satisfies

∇Fk

(
wt)+ gt −∇Fk

(
wt−1)+ µ

(
wt −wt−1) = 0. (15)

We denote the local subproblem (3) as Pt(w). We also note that, Pt(w) is (µ− λ)-strongly convex,

(µ− λ)
∥∥wt −wt−1

∥∥ ≤ ∥∥∇Pt(w
t−1)

∥∥ = ‖gt‖ . (16)

Using (15)-(16) in (14), we have,

f(wt) ≤ f(wt−1) + 〈∇f(wt−1),wt −wt−1〉+ 〈∇f(wt−1),wt −wt〉+ L

2

∥∥wt −wt−1
∥∥2

≤ f(wt−1)− 1

µ
〈∇f(wt−1),∇Fk

(
wt)+ gt −∇Fk

(
wt−1)〉+ ∥∥∇f(wt−1)

∥∥∥∥wt −wt
∥∥+ L(1 + γ)2

2(µ− λ)2 ‖gt‖2

≤ f(wt−1)− ∇
>f(wt−1)gt

µ
+
L

µ

∥∥∇f(wt−1)
∥∥ ∥∥wt −wt−1

∥∥+ γ
∥∥∇f(wt−1)

∥∥∥∥wt −wt−1
∥∥+ L(1 + γ)2

2(µ− λ)2 ‖gt‖2

≤ f(wt−1)− ∇
>f(wt−1)gt

µ
+

L

2µ(µ− λ)

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+

γ

2(µ− λ)

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+
L(1 + γ)2

2(µ− λ)2 ‖gt‖2

⇒ ESt

[
f(wt)

]
≤ f(wt−1)−

(
1− 3γµ

2(µ− λ)

) ∥∥∇f(wt−1)
∥∥2

µ
+

(
L(1 + γ)2

(µ− λ)2 +
3L

2µ(µ− λ)

)∥∥∇f(wt−1)
∥∥2

+

(
L(1 + γ)2

(µ− λ)2 +
L

µ(µ− λ) +
γ

µ− λ

)
ESt

[∥∥gt −∇f(wt−1)
∥∥2] , (17)

where in the last step, we used the inequality in (10).
Note that

ESt

[∥∥gt −∇f(wt−1)
∥∥2] = ESt

[
‖gt‖2

]
−
∥∥∇f(wt−1)

∥∥2 ≤ Ek

[
‖∇Fk(w

t−1)‖2
]
−
∥∥∇f(wt−1)

∥∥2 ≤ (B2 − 1)
∥∥f(wt−1)

∥∥2 . (18)

Plugging into (17), we get

ESt

[
f(wt)

]
≤ f(wt−1)− ρ

∥∥∇f(wt−1)
∥∥2 , (19)

where

ρ =
1

µ
− 3γ

2(µ− λ) −
L(1 + γ)2

(µ− λ)2 −
3L

2µ(µ− λ) −
(
B2 − 1

)(L(1 + γ)2

(µ− λ)2 +
L

µ(µ− λ) +
γ

µ− λ

)
. (20)

F. Proof for Theorem 7
Proof. We have by the Lipschitz continuity of the gradients:

f(wt
k) ≤ f(wt−1) + 〈∇f(wt−1),wt

k −wt−1〉+ Lk

2

∥∥wt
k −wt−1

∥∥2
≤ f(wt−1) + 〈∇f(wt−1),wt

k −wt−1〉+ 〈∇f(wt−1),wt
k −wt

k〉+
Lk

2

∥∥wt
k −wt−1

∥∥2 (21)

By optimality conditions, we have that wt
k satisfies

∇Fk

(
wt

k

)
+ gt −∇Fk

(
wt−1)+ µk

(
wt

k −wt−1) = 0. (22)



Similarly, we denote the local subproblem (3) as Pt(w). We also note that, Pt(w) is (µk − λ)-strongly convex,

µk

∥∥wt
k −wt−1

∥∥ ≤ ∥∥∇Pt(w
t−1)

∥∥ = ‖gt‖ . (23)

We derive a bound for
∥∥wt

k −wt−1
∥∥ next.∥∥wt

k −wt−1
∥∥ ≤ ∥∥wt

k −wt−1
∥∥+ ∥∥wt

k −wt
k

∥∥ ≤ (1 + γk)
∥∥wt

k −wt−1
∥∥ . (24)

Using (22)-(23) in (21), we have,

f(wt
k) ≤ f(wt−1) + 〈∇f(wt−1),wt

k −wt−1〉+ 〈∇f(wt−1),wt
k −wt

k〉+
Lk

2

∥∥wt
k −wt−1

∥∥2
≤ f(wt−1)− 1

µk
〈∇f(wt−1),∇Fk

(
wt

k

)
+ gt −∇Fk

(
wt−1)〉+ ∥∥∇f(wt−1)

∥∥ ∥∥wt
k −wt

k

∥∥+ Lk(1 + γk)
2

2µ2
k

‖gt‖2

≤ f(wt−1)− ∇
>f(wt−1)gt

µk
+
Lk

µk

∥∥∇f(wt−1)
∥∥ ∥∥wt

k −wt−1
∥∥+ γ

∥∥∇f(wt−1)
∥∥ ∥∥wt

k −wt−1
∥∥+ Lk(1 + γk)

2

2µ2
k

‖gt‖2

≤ f(wt−1)− ∇
>f(wt−1)gt

µk
+

Lk

2µ2
k

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+

γk
2µk

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+
Lk(1 + γk)

2

2µ2
k

‖gt‖2

⇒ f(wt) ≤ 1

Kt

Kt∑
k=1

f(wt
k) ≤ f(wt−1)−

(
1

Kt

Kt∑
k=1

1

µk

)
∇>f(wt−1)gt +

1

Kt

Kt∑
k=1

Lk

2µ2
k

(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+

(
1

Kt

Kt∑
k=1

γk
2µk

)(∥∥∇f(wt−1)
∥∥2 + ‖gt‖2

)
+

(
1

Kt

Kt∑
k=1

Lk(1 + γk)
2

2µ2
k

)
‖gt‖2

⇒ ESt

[
f(wt)

]
≤ f(wt−1)− 1

Kt

Kt∑
k=1

(
1

µk
− 3γk

2µk

)∥∥∇f(wt−1)
∥∥2 + 1

Kt

Kt∑
k=1

(
Lk(1 + γk)

2

µ2
k

+
3Lk

2µ2
k

)∥∥∇f(wt−1)
∥∥2

+
1

Kt

Kt∑
k=1

(
L(1 + γk)

2

µ2
k

+
Lk

µ2
k

+
γk
µk

)
ESt

[∥∥gt −∇f(wt−1)
∥∥2] , (25)

where |St| = Kt and in the last step, we used the inequality in (10).
Note that

ESt

[∥∥gt −∇f(wt−1)
∥∥2] = ESt

[
‖gt‖2

]
−
∥∥∇f(wt−1)

∥∥2 ≤ Ek

[
‖∇Fk(w

t−1)‖2
]
−
∥∥∇f(wt−1)

∥∥2 ≤ (B2 − 1)
∥∥f(wt−1)

∥∥2 . (26)

Plugging into (25), we get

ESt

[
f(wt)

]
≤ f(wt−1)− ρ

∥∥∇f(wt−1)
∥∥2 , (27)

where

ρ =
1

Kt

Kt∑
k=1

(
1

µk
− 3γk

2µk
− Lk (1 + γk)

2

µ2
k

− 3Lk

2µ2
k

)
− 1

Kt

Kt∑
k=1

(
L (1 + γk)

2

µ2
k

+
Lk

µ2
k

+
γk
µk

)(
B2 − 1

)
. (28)

G. Additional Experiments
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Fig. 2: Effects of low device participation. For the three synthetic datasets with varying statistical heterogeneity, we randomly
select 1, 5, 10, or 30 devices (out of 30) at each communication round. We set E to be 20. From the top row to the bottom row,
data heterogeneity is increasing. We see that (1) low device participation hurts the performance of FedDANE in statistically
heterogeneous settings, and (2) in highly heterogeneous environments (e.g., on the Synthetic (0.5,0.5) dataset), even full device
participation does not help improve the performance of FedDANE.
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Fig. 3: Convergence of FedDANE compared with FedAvg and FedProx in unrealistic settings (nearly full device participation,
small local epochs E = 1) which favor FedDANE. For synthetic datasets, we let all devices participate in learning at each
iteration. For FEMNIST, Sent140, and Shakespeare, we select 50%, 26%, and 70% devices respectively at each round in
order to better estimate the full gradients. FedDANE still performs worse than the other two methods, especially on highly
heterogeneous datasets.
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