
Skill Acquisition via Automated Multi-Coordinate Cost Balancing

Harish Ravichandar1†, S. Reza Ahmadzadeh2†, M. Asif Rana1, and Sonia Chernova1

Abstract— We propose a learning framework, named Multi-
Coordinate Cost Balancing (MCCB), to address the problem of
acquiring point-to-point movement skills from demonstrations.
MCCB encodes demonstrations simultaneously in multiple
differential coordinates that specify local geometric properties.
MCCB generates reproductions by solving a convex optimiza-
tion problem with a multi-coordinate cost function and linear
constraints on the reproductions, such as initial, target, and via
points. Further, since the relative importance of each coordinate
system in the cost function might be unknown for a given
skill, MCCB learns optimal weighting factors that balance the
cost function. We demonstrate the effectiveness of MCCB via
detailed experiments conducted on one handwriting dataset and
three complex skill datasets.

I. INTRODUCTION

The next generation of robots, that can operate in and

adapt to unstructured and dynamic environments, must pos-

sess a diverse set of skills. However, it is implausible to

pre-program robots with a library of all required skills.

Learning from Demonstration (LfD) [1], [2] is a paradigm

that aims to equip robots with the ability to learn efficiently

from demonstrations provided by humans. Existing work

in trajectory-based LfD has contributed a wide range of

mathematical representations that encode skills from hu-

man demonstrations and then reproduce the learned skills

at runtime. Proposed representations include Spring-damper

systems with forcing functions [3], Gaussian Mixture Models

(GMMs) [4]–[6], Neural Networks (NNs) [7], [8], Gaussian

Processes (GPs) [9]–[11], and geometric objects [12], among

others. Each of these representations is used to encode the

demonstrations in a predefined space or coordinate system

(e.g., Cartesian coordinates). In other words, a single best

coordinate system for any given skill is assumed to both

exist and be known. However, as we show in this work, the

assumption that a single best coordinate system exists for

each task does not hold. Further, encoding in only a single

coordinate system prohibits the model from capturing some

of the geometric features that underly a demonstrated skill.

In this work, we contribute a learning framework that en-

codes demonstrations simultaneously in multiple coordinates,

and balances the relative influences of the learned models in

generating reproductions. The proposed framework, named

Multi-Coordinate Cost Balancing (MCCB), encodes demon-

strations in three differential coordinates: Cartesian, tangent,

and Laplacian (Section III-A). Simultaneously learning in

† indicates equal contribution
1 Georgia Inst. of Technology, Atlanta, GA. Email: {harish.

ravichandar,asif.rana,chernova}@gatech.edu
2 University of Massachusetts Lowell, Lowell, MA. Email:

reza ahmadzadeh@uml.edu

 Demonstrations

 Cartesian

 Tangent

 Laplacian

 MCCB

Initial

Point 2

Targets

Initial

Point 1

Fig. 1: A comparison of reproductions generated by considering
different coordinates, illustrating the need for cost balancing.

these three coordinates allows our method to capture all

of the underlying geometric properties that are central to

a given skill. MCCB encodes the joint density of the time

index and the demonstrations in each differential coordinate

frame using a separate statistical model. Thus, given any time

instant, we are able to readily obtain the conditional mean

and covariance in each coordinate system (Section III-B).

MCCB generates reproductions by solving an optimization

problem with a blended cost function that consists of one

term per coordinate. Each term penalizes deviations from the

norm, weighted by the inverse of the expected variance in

the corresponding coordinate system (Section III-C). Further,

we subject the optimization problem to linear constraints

on the reproductions, such as initial, target, and via point

constraints. Our constrained optimization problem is convex

with respect to the reproduction and hence can be solved

efficiently.

A major hurdle in learning a wide variety of skills, without

significant parameter tweaking, is that the relative importance

of each differential coordinate (or the geometric feature) in

encoding a given task is unknown ahead of time. For in-

stance, consider the problem of encoding the demonstrations

illustrated in Fig. 1. Using any one coordinate system in

isolation, even when the most suitable one is known, does

not yield good reproductions (the red, brown, and green

dashed lines). To alleviate this problem, MCCB preferentially

weights the costs defined in each coordinate (Fig. 2). Impor-

tantly, MCCB learns the optimal weights directly from the

demonstrations without making task-dependent assumptions.

To this end, MCCB solves a meta optimization problem that

aims to minimize reproduction errors (Section III-D). As

shown by the solid blue lines in Fig. 1, a cost function that

optimally balances the costs in each coordinate yields better

reproductions than any single-coordinate method.

Fig. 2: A flow diagram illustrating MCCB.

In summary, we contribute a unified task-independent

learning framework that (1) encodes demonstrations simul-

taneously in multiple differential coordinates, (2) defines a

blended cost function that incentivizes conformance to the

norm in each coordinate system while considering expected

variance, and (3) learns optimal weights directly from the

demonstrations to balance the relative influence of each

differential coordinate in generating reproductions. Further,

MCCB is compatible with and complementary to several

existing LfD methods that utilize different statistical repre-

sentations and coordinate systems [10]–[16].

II. RELATED WORK

Learning from demonstration has attracted a lot of at-

tention from researchers in the past few decades. While

several categories of LfD methods exist [1], our work falls

under the category of trajectory-based LfD. In this category,

demonstrations take the form of trajectories and the methods

aim to synthesize trajectories that accurately reproduce the

demonstrations.

Dynamical systems-based trajectory learning methods,

such as [5]–[7], encode demonstrations using statistical

dynamical systems and generate reproductions by forward

propagating the dynamics. While such deterministic methods

exhibit several advantages, such as convergence guarantees

and robustness to perturbations, they are restricted to learning

in a single coordinate system and ignore inherent uncertain-

ties in the demonstrations. They incentivize conformance to

the norm even when demonstrations exhibit high variance.

Trajectory optimization methods, such as [17] and [18],

focus on geometric features by minimizing costs specified

using predefined norms. An optimization framework pro-

posed in [19] attempts to adapt multiple demonstrations to

new initial and target locations by minimizing the distance

between the demonstrations and the reproduction accord-

ing to a learned Hilbert space norm. Indeed, learning an

appropriate Hilbert space norm is related to finding an

appropriate coordinate system based on the demonstrations.

However, similar to the dynamical systems-based methods,

the methods in [17]–[19] are restricted to a single predefined

or learned coordinate system and do not explicitly model

and utilize the inherent time-dependent variations in the

demonstrations.

Probabilistic trajectory-learning methods, such as [10],

[11] and [14], on the other hand, capture and utilize the

variation observed in the demonstrations. However, these

methods are also restricted to encoding demonstrations in

a single predefined coordinate system that is assumed to be

known.

Our design of the costs in each differential coordinate

is inspired by the minimal intervention principle [13] that

takes variance into account. While the approach in [13]

does encode demonstrations in different frames of references,

all the frames are restricted to Cartesian coordinates or

orientation space. Furthermore, all the relevant frames for

a given task are also expected to be provided by the user.

The motion planning framework in [15], complementary to

our approach, utilizes a blended cost function, the construc-

tion of which is guided by probability distributions learned

from the demonstrations. This framework incentivizes factors

such as smoothness, manipulability, and obstacle avoidance,

but is restricted to the Cartesian coordinate system. MCCB,

on the other hand, encodes demonstrations in multiple dif-

ferential coordinates and learns to optimally balance their

relative influences, but does not consider factors such as

manipulability and obstacle avoidance.

Differential coordinates have been extensively used in

the computer graphics community [20], [21]. Prior work in

trajectory learning that incorporates differential coordinates

includes the Laplacian trajectory editing (LTE) algorithm

[16]. Using Laplacian coordinates, the LTE algorithm adapts

a single demonstration to new initial, target, and via points

while preserving the shape. However, the LTE algorithm

does not reason about the relative importances of multiple

coordinates.

III. METHODOLOGY

The section describes the technical details of MCCB and

its work flow as illustrated in Fig. 2.

A. Differential Coordinate Transformations

In this section, we define the differential coordinates and

their corresponding transformations used in MCCB.

Cartesian: Let a discrete finite-length trajectory in n-

dimensional Cartesian coordinates be denoted by X =
[x(1) x(2) · · ·x(T)]⊤ ∈ R

T×n and let x(t) ∈ R
n denote

a discrete sample at time index t. This trajectory can be

represented using a graph G = (V, E) where V is the set

of vertices representing the samples in the trajectory and E
is the set of edges that represent the connections between

the samples in the trajectory. The neighborhood Nt of each

vertex Vt is defined by the set of adjacent vertices V ′
t. In

the case of discrete-time trajectories, the edges between any

given vertex and its two neighbors are assumed to carry unit

weights, while all other edges carry zero weights.

Laplacian: It is known that the discrete Laplace-Beltrami

operator for the trajectory X provides the Laplacian co-

ordinate δ(t) as δ(t) ,
∑

t′∈Nt

1∑
t′∈Nt

1 (x(t)− x(t′)) [20].

Note that the above relationship can be written as a linear

differential operator in matrix form

∆ = LX (1)

where ∆ = [δ(1) δ(2) · · · δ(T)]⊤ ∈ R
T×n is the trajectory

in the Laplacian coordinates, and L ∈ R
T×T , called the

graph Laplacian, is given by

L =









1 −1 0 0
−0.5 1 −0.5 0 ... 0
0 −0.5 1 −0.5 ... 0

...
. . .

. . .
. . .

...
0 ... 0 −0.5 1 −0.5
0 0 −1 1









(2)

As pointed out in [16], the Laplacian coordinates have

meaningful geometric interpretations. Specifically, the Lapla-

cian coordinates can be seen as the discrete approximations

of the derivative of the unit tangent vectors of an arc-

length parametrized continuous trajectory. In other words, the

Laplacian coordinates measure the deviation of each sample

from the centroid of its neighbors.

Tangent: While the Laplacian coordinates are discrete

approximations of second order differential transformations,

a discrete approximation of the first differential trans-

formation is possible. Consider such a first order trans-

formation using first order finite differences defined as

γ(t) , (x(t+ 1)− x(t)), where γ(t) is called the tangent

coordinate. The matrix form of the above relationship results

in a linear differential operator given by

Γ = GX (3)

where Γ = [γ(1) γ(2) · · · γ(T)]⊤ ∈ R
T×n is the trajectory

in the tangent coordinates and G ∈ R
T×T , called the graph

incidence matrix, is given by

G =









−1 1 0 0
0 −1 1 0 ... 0
0 0 −1 1 ... 0

...
. . .

. . .
. . .

...
0 ... 0 0 −1 1
0 0 0 −1









(4)

Similar to the Laplacian coordinates, the tangent coordinates

have geometric interpretations. Specifically, the tangent co-

ordinates can be seen as discrete approximations of the un-

normalized tangent vectors of an arc-length parametrized

continuous trajectory, i.e., the tangent coordinates measure

the local direction of motion at each sample of the trajectory.

In our work, we assume that a set of N demonstrations in

the Cartesian coordinates are available. Let the jth demon-

stration be denoted by X
j
d = [xj

d(1) xj
d(2) · · ·x

j
d(T)]

⊤ ∈
R

T×n. Note that if the raw demonstrations are of varying

duration in time, we perform time alignment using dynamic

time warping. MCCB transforms each obtained demonstra-

tion X
j
d into a trajectory in the tangent coordinates (denoted

by Γ
j
d) and a trajectory in Laplacian coordinates (denoted by

∆
j
d) using (1) and (3), respectively.

B. Encoding in Multiple Differential Coordinates

This section defines the costs associated with each coor-

dinate. With the demonstrations available in all three differ-

ential coordinates, we employ three independent Gaussian

mixture models (GMMs)1 to approximate the joint proba-

bility densities of time and the samples in each coordinate

system.

1MCCB does not rely on the use of GMMs and any statistical represen-
tation that can provide the conditional estimates will suffice.

The GMM associated with the Cartesian coordinates at-

tempts to approximate the joint density of t and x us-

ing a finite number of Gaussian basis functions as fol-

lows P(t, x; θC) =
∑KC

k=1 P(k)P(t, x|k), where KC is the

number of Gaussian basis functions, P(k) = πk
C is

the prior associated with the kth basis function, θC =
{µ1

C · · ·µKC

C ,Σ1
C · · ·ΣKC

C , π1
C · · ·πKC

C } is the set of param-

eters of the GMM, and P(t, x|k) is the conditional probabil-

ity density given by P(t, x|k) ∼ N

([

t
x

]

;µk
C ,Σ

k
C

)

, where

µk
C =

[

µk
t

µk
x

]

is the mean and Σk
C =

[

Σk
t Σk

t,x

Σk
x,t Σk

x

]

is the

covariance matrix of the kth Gaussian basis function.

We learn the parameters θC of the model using the

Expectation-Maximization algorithm based on the demon-

strations {Xj
d}

N
j=1. Given the learned model and a time

instant, the expected value of the conditional density P(x|t)
is given by Gaussian mixture regression (GMR) [22] as

follows

x̂(t) = E[x|t] =
KC
∑

k=1

hk
C(t)(A

k
Ct+ bkC) (5)

where hk
C(t) = P(k)P(t|k)

∑KC

i=1
P(i)P(t|i)

, Ak
C = Σk

x,t(Σ
k
t)

−1, bk =

µk
x + (t− µk

t), and the conditional covariance is given by

Σ̂x(t) = V ar[x|t] =
KC
∑

k=1

hk
C

2
(Σk

x − Σk
x,t(Σ

k
t)

−1Σt,x) (6)

Similar to the GMM learned in the Cartesian coordi-

nates, we learn a second GMM in the tangent coordinates

based on the demonstrations {Γj
d}

N
j=1, and a third GMM

in the Laplacian coordinates based on the demonstrations

{∆j
d}

N
j=1. The expected values of the conditional densities

P(γ|t) and P(δ|t) are given by

γ̂(t) =E[γ|t] =
KG
∑

k=1

hk
G(t)(A

k
Gt+ bkG) (7)

δ̂(t) =E[δ|t] =
KL
∑

k=1

hk
L(t)(A

k
Lt+ bkL) (8)

and the corresponding conditional expectations are given by

Σ̂γ(t) =Var[γ|t] =
KG
∑

k=1

(hk
G)

2 (Σk
γ − Σk

γ,t(Σ
k
t)

−1Σt,γ) (9)

Σ̂δ(t) =Var[δ|t] =
KL
∑

k=1

(hk
L)

2 (Σk
δ − Σk

δ,t(Σ
k
t)

−1Σt,δ) (10)

where the variables in (7)-(10) with subscripts G and L corre-

spond to the tangent and Laplacian coordinates, respectively,

and are defined similarly to the ones in (5)-(6).

C. Imitation via Optimization

In this section, we explain the design of our multi-

coordinate cost function. MCCB generates reproductions by

solving a constrained optimization problem given by

Xr =argmin
X

wCJC(X) + wGJG(X)

+ wLJL(X) (11)

s.t. PxX = X
∗ (12)

where Xr ∈ R
T×n is the reproduction, wC , wG, wL ∈

R
+ are positive weights; JC , JG, JL : R

T×n → R
+

are cost functions in the Cartesian, tangent, and Laplacian

coordinates, respectively; Px ∈ R
m×T and X

∗ ∈ R
m×n

define m ∈ Z
+ linear constraints on Xr. In practice, m <<

n and we use the linear constraints to enforce constraints on

initial, target, and via points.

We define the cost function in each coordinate system as

follows

JC(X) =(X(:)− X̂(:))⊤(Σ̂X)−1(X(:)− X̂(:)) (13)

JG(X) =(Γ(:)− Γ̂(:))⊤(Σ̂Γ)
−1(Γ(:)− Γ̂(:)) (14)

JL(X) =(∆(:)− ∆̂(:))⊤(Σ̂∆)−1(∆(:)− ∆̂(:)) (15)

where Σ̂X , Σ̂Γ, Σ̂∆ ∈ R
nT×nT denote the block di-

agonal matrices formed with the conditional covariances

Σ̂x(t), Σ̂γ(t), and Σ̂δ(t), respectively, for all values of t.
Further, the notation (:) denotes vectorization - for instance,

X(:), X̂(:) ∈ R
nT denote the vectorized trajectories formed

by vertically stacking x(t) and x̂(t) for all values of t,
respectively. Note that we construct the trajectories Γ and ∆
in (14) and (15) from X via the linear operators defined in

(3) and (1), respectively. MCCB penalizes deviations from

the conditional mean in each coordinate system. However,

deviations are penalized less (more) severely if high (low)

variance is observed in the demonstrations at any given time.

D. Automated Cost Balancing

In order to obtain reproductions that successfully imitate

demonstrations of a wide variety of skills, the weights

wC , wG, and wL have to be chosen with care. Indeed, they

preferentially weight the costs defined in each differential

coordinate and thereby manipulate the relative incentive for

successful imitation in each coordinate system.

We learn these weights directly from the available demon-

strations. Note that, for known weights, the constrained

optimization problem in (11) is convex in X . We estimate

the weights in the following form

ŵC =
αC

βC

; ŵG =
αG

βG

; ŵL =
αL

βL

(16)

where βC , βG, βL ∈ (0, 1], such that
∑

i βi = 1, are posi-

tive scaling factors used to correct for inherent differences in

the magnitudes of the costs, and αC , αG, αL ∈ [0, 1], such

that
∑

i αi = 1, are positive weights used to preferentially

weight the cost defined in each coordinate system. MCCB

estimates the scaling factors βi’s as follows

βi =

∑N
j=1 Ji(X

j
d)

∑

l

∑N
j=1 Jl(X

j
d)

, ∀i, l = {C,G,L} (17)

With the scaling factors compensating the inherent scale

difference in the costs, we compute the preferential weighting

factors αi’s that minimize reproduction error. To this end, we

formulate the following meta optimization problem

{αC , αG, αL} =arg min
αC ,αG,αL

N
∑

j=1

SSE(Xj
r ,X

j
d) (18)

s.t.
∑

i

αi = 1, ∀i = {C,G,L} (19)

where SSE(·) denotes the sum of squared errors computed

over time, and X
j
r is the solution to the following optimiza-

tion problem

X
j
r =argmin

X

(

αC

βC

)

JC(X) +

(

αG

βG

)

JG(X)

+

(

αL

βL

)

JL(X) (20)

s.t. PxX = X
∗
j (21)

where PxX = X
∗
j denotes specific linear constraints per-

taining to the demonstration X
j
d , such as initial, target, and

via points. Solving the above meta-optimization problem

results in the preferential weights αi’s that minimize re-

production errors of the solutions generated by the original

constrained optimization problem in (11)-(12).

IV. EXPERIMENTAL EVALUATION

This section describes the design and discusses the results

of four experiments conducted to evaluate MCCB. In each

experiment, we compared the performances of the following

approaches:

1) Cartesian-coordinates: wC = 1, wG = 0, wL = 0
2) Tangent-coordinates: wC = 0, wG = 1, wL = 0
3) Laplacian-coordinates: wC = 0, wG = 0, wL = 1
4) Uniform weighting: wC = 1/3, wG = 1/3, wL = 1/3
5) MCCB: wC = ŵC , wG = ŵG, wL = ŵL

We measured the performance of each approach by the

following geometric and kinematic metrics: Swept Error

Area (SEA) [23], Sum of Squared Errors (SSE), Dynamic

Time Warping Distance (DTWD), and Frechet Distance (FD)

[24]. These metrics allow us to evaluate different aspects

of each method’s performance. The SEA and SSE metrics

penalize both spatial and temporal misalignment, and thus

evaluate kinematic performance. On the other hand, the

DTWD and FD metrics penalize spatial misalignment while

disregarding time misalignment, and thus evaluate geometric

performance. Further, the SEA, SSE, and DTWD metrics

evaluate aggregate performance by summing over or aver-

aging across all the samples of each reproduction. The FD

metric, on the other hand, computes the shortest possible

cord length required to connect the demonstration and the

reproduction in space while allowing time re-parametrization

of either trajectory, and thus measures maximal deviation in

space. Note that the SEA metric is restricted to 2-dimensional

data, so we only report it for one of our experiments.

In all the experiments, we used the position constraints

in (12) to enforce both initial and end point constraints

uniformly across all the methods being compared. Further,

Fig. 3: Qualitative performance of MCCB on the LASA hand-
writing dataset. Demonstration (gray), reproductions (blue), and
expected mean position (dashed red) are shown.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

10

20

30

40
Swept Error Area (m

2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

200

400

600

800

1000

1200

Sum of Squared

Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

50

100

150

200

250

300

Dynamic Time

Warping Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

2

4

6

8

Frechet Distance

Fig. 4: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the handwriting task.

we uniformly set the number of Gaussian basis functions to

five across all the coordinates and all the experiments.

A. Handwriting Skill

This experiment evaluates MCCB on the publicly avail-

able LASA human handwriting library [5], that consists of

handwriting motions collected from pen input using a Tablet

PC. The library contains a total of 25 handwriting motions,

each with 7 demonstrations.

Fig. 3 shows that MCCB yields reproductions that are

qualitatively similar to the demonstrations while satisfying

the end-point constraints across all motions. As shown in

Fig. 4, quantitative analysis indicates that MCCB (ᾱC =
0.1814, ᾱG = 0.4958, ᾱL = 0.3228)2 and three of the

four baselines performed comparably with respect to the

SEA, FD, SSE, and DTWD metrics, while the Cartesian

2Weighting factors averaged over all 25 skills in the LASA dataset

Fig. 5: Snapshots illustrating the experimental setup for the picking
(left), pressing (center), and pushing (right) skills.

baseline performed poorly in comparison. This is consistent

with the fact that the demonstrations within the LASA dataset

emphasize strong similarities in shape.

B. Picking Skill

The second experiment evaluates the performance of

MCCB in a picking task (Fig. 5). The data consists of

six kinesthetic demonstrations, each a 3-dimensional robot

end-effector position trajectory recorded as a human guided

the robot in picking up two magnets atop two blocks. We

enforced two via-point constraints (one at each picking point)

in addition to the end-point constraints.

As shown in Fig. 6(a), MCCB generated reproductions

that are qualitatively similar to the demonstrations while

satisfying all the position constraints. Quantitative evalu-

ations reveal that learning in tangent coordinates yielded

better reproductions than learning in Cartesian and Laplacian

coordinates (Fig. 7). This was expected since the demonstra-

tions of this task, much like the LASA dataset, emphasize

shape similarity. Further, MCCB (αC = 0.2362, αG =
0.5451, αL = 0.2187) yielded the best performance, with

respect to all three metrics. In fact, uniform weighting

yielded poorer results, with respect to all three metrics, than

when considering only the tangent coordinates. The results

of this experiment show that while multi-coordinate methods

can yield strong performance, it is critical that we balance

the weights appropriately.

C. Pressing Skill

In this experiment, we evaluated MCCB’s ability to learn

pressing skills (Fig. 5). The data consists of six kinesthetic

demonstrations, each a 3-dimensional robot end-effector po-

sition trajectory recorded as a human guided the robot in

pressing two cylindrical pegs into their respective holes.

As shown in Fig. 6(b), MCCB successfully reproduced

the demonstrations. Note that MCCB is capable of auto-

matically capturing and reproducing the consistencies across

the demonstrations in certain regions without any position

constraints. Fig. 8 illustrates the performance of MCCB and

the baselines with respect to three different metrics. Learning

in Cartesian coordinates resulted in the better performance

compared to learning in tangent and Laplacian coordinates.

Quantitative evaluations further demonstrate that MCCB

(αC = 0.6735, αG = 0.2034, αL = 0.1231) consistently

yielded the best performance with respect to all three metrics.

The results of this experiment, in light of the results in

Section IV-B, suggest that the relative importance of each

of the differential coordinates vary across different skills.

(b) Pressing(a) Picking (b) Pushing

Fig. 6: Qualitative performance of MCCB on the picking, pressing, and pushing datasets. Demonstration (gray), reproductions (blue),
expected mean position (dashed red), initial (black squares), and target (black stars) are shown.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.02

0.04

0.06

0.08

0.1

0.12

Frechet Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.05

0.1

0.15

0.2

0.25

0.3

Sum of Squared Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

1

2

3

4

Dynamic Time Warping Distance

Fig. 7: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the picking dataset.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.05

0.1

0.15

0.2

0.25
Frechet Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.5

1

1.5

2

2.5

3

Sum of Squared Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

2

4

6

8

10

12

14

Dynamic Time Warping Distance

Fig. 8: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the pressing dataset.

D. Pushing Skill

The final experiment evaluates the performance of MCCB

in a pushing task (Fig. 5). The data consists of six kinesthetic

demonstrations, each a 3-dimensional robot end-effector po-

sition trajectory recorded as a human guided the robot in

sliding closed the lid of a wooden box.

As shown in Fig. 6(c), MCCB successfully generated

reproductions that are similar to the demonstrations. As

evidenced by quantitative evaluations in Fig. 9, encoding

demonstrations in the Laplacian coordinates yielded better

performance, with respect to all three metrics, when com-

pared to learning only in either of the other two coordinates,

while, MCCB (αC = 0.0123, αG = 0.045, αL = 0.9427)

consistently outperformed all the other approaches. Note that

learning in the Laplacian coordinates alone resulted in better

performance than uniformly weighting of all the coordinates.

These results are consistent with the results from the previous

sections and indicate that MCCB yields consistently good

performance. The results are summarized in Table I.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.05

0.1

0.15

0.2

0.25

0.3
Frechet Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.5

1

1.5

2

2.5

3

3.5

Sum of Squared Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

2

4

6

8

10

12

Dynamic Time Warping Distance

Fig. 9: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the pushing dataset.

Single Coordinate Multi-Coordinate

Cartesian Tangent Laplacian Uniform W. MCCB

Handwriting X X X X X X

Picking X X

Pressing X X

Pushing X X

TABLE I: Orange check marks denote the most relevant coordinate
and green check marks denote the best performing method.

V. DISCUSSION AND CONCLUSION

We introduced MCCB, a learning framework for encod-

ing demonstrations in multiple differential coordinates, and

automated balancing of costs defined in those coordinates.

As shown in Table I, we demonstrated that the relative

effectiveness of each coordinate system is not consistent

across a variety of tasks since any given skill might be better

suited for learning in one (or more) coordinate system(s).

Furthermore, uniform weighting of costs in different coor-

dinates does not consistently yield the best results across

different skills. Indeed, uniform weighting, in some cases,

yielded poorer performances compared to when only one

coordinate system was used. On the other hand, MCCB

learned to balance the costs and consistently yielded the best

performance. Since the weights are learned directly from the

demonstrations, MCCB makes no task-specific assumptions

and does not require tedious parameter tuning. Note that

although we used GMMs as the base representation in this

work, MCCB is agnostic to the statistical model used to

encode the demonstrations in each coordinate system, and

thus can be combined with other techniques, such as [10]–

[16]. Furthermore, MCCB can be extended to include more

coordinate systems that capture additional trajectory features.

ACKNOWLEDGMENT

This research is supported in part by NSF NRI 1637758.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous

systems, vol. 57, no. 5, pp. 469–483, 2009.
[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-

ming by demonstration,” in Springer handbook of robotics. Springer,
2008, pp. 1371–1394.

[3] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
IEEE International Conference on Robotics and Automation (ICRA),
2009, pp. 763–768.

[4] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286–298, 2007.

[5] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions

on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
[6] H. C. Ravichandar and A. Dani, “Learning position and orientation

dynamics from demonstrations via contraction analysis,” Autonomous

Robots, pp. 1–16, 2018.
[7] K. Neumann, A. Lemme, and J. J. Steil, “Neural learning of stable

dynamical systems based on data-driven lyapunov candidates,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2013, pp. 1216–1222.
[8] S. Levine and V. Koltun, “Learning complex neural network policies

with trajectory optimization,” in International Conference on Machine

Learning, 2014, pp. 829–837.
[9] M. Schneider and W. Ertel, “Robot learning by demonstration with

local gaussian process regression,” in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2010, pp. 255–260.
[10] M. A. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and

B. Boots, “Towards robust skill generalization: Unifying learning from
demonstration and motion planning,” in Proceedings of the 2017

Conference on Robot Learning (CoRL), 2017.
[11] J. Umlauft and S. Hirche, “Learning stable stochastic nonlinear dy-

namical systems,” in International Conference on Machine Learning,
2017, pp. 3502–3510.

[12] S. R. Ahmadzadeh, M. A. Rana, and S. Chernova, “Generalized
cylinders for learning, reproduction, generalization, and refinement of
robot skills.” in Robotics: Science and Systems, 2017.

[13] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in IEEE In-

ternational Conference on Robotics and Automation (ICRA), 2014,
pp. 3339–3344.

[14] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in neural information processing

systems, 2013, pp. 2616–2624.
[15] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters,

and G. Neumann, “Guiding trajectory optimization by demonstrated
distributions,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 819–826, 2017.

[16] T. Nierhoff, S. Hirche, and Y. Nakamura, “Spatial adaption of robot
trajectories based on laplacian trajectory editing,” Autonomous Robots,
vol. 40, no. 1, pp. 159–173, 2016.

[17] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2009, pp. 489–494.

[18] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International

Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.
[19] A. D. Dragan, K. Muelling, J. A. Bagnell, and S. S. Srinivasa, “Move-

ment primitives via optimization,” in IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2015, pp. 2339–2346.
[20] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi, and H.-

P. Seidel, “Differential coordinates for interactive mesh editing,” in
Shape Modeling Applications. IEEE, 2004, pp. 181–190.

[21] B. Lévy, “Laplace-beltrami eigenfunctions towards an algorithm that”
understands” geometry,” in IEEE International Conference on Shape

Modeling and Applications, 2006, pp. 13–13.
[22] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with

statistical models,” Journal of artificial intelligence research, vol. 4,
pp. 129–145, 1996.

[23] S. M. Khansari-Zadeh and A. Billard, “Learning control lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 752–
765, 2014.

[24] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti

del Circolo Matematico di Palermo (1884-1940), vol. 22, no. 1, pp.
1–72, 1906.

