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Synopsis The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and
previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime
(FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term
exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and
metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the
transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temper-
atures. However, existing studies have only examined gene expression after a week or over many months. Here we
characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting
bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and
returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at
a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify
membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This
pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects
exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata’s sensitivity to temperature
fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated
with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume
development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm
pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcrip-
tional response to one FIR cycle included multiple transcripts previously identified under long-term FTR exposure
associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent.

Introduction that are not physiologically prepared for cold expe-

Insects respond to temperature stress in a way that is
non-linear and is influenced by life stage and previ-
ous thermal exposure (Sinclair et al. 2016). Cold
tolerance often varies across life stages (Jensen
et al. 2007). Exposure to cold stress during life stages
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rience damage, which can cause acute mortality or
can accumulate resulting in sub-lethal effects on fit-
ness (Whitfield and Richards 1992; Yocum et al.
1994; Renault et al. 2004; Yocum et al. 2006;
Bale and Hayward 2010; Bennett et al. 2013;
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Hayward et al. 2014). Depending on severity, cold
temperatures cause freezing injury, direct chilling in-
jury, or indirect chilling injury (Denlinger and Lee
2010). Indirect chill injury is an accumulation of
damage caused by extended cold exposure, which
harms cell membranes, disrupts ion balance, and
causes oxidative damage (Rojas and Leopold 1996;
Kostal et al. 2004, 2006; Lalouette et al. 2011). These
physiological effects are often deleterious to the
insect’s performance and can decrease survival
(Whitfield and Richards 1992; Yocum et al. 1994,
2006; Renault et al. 2004; Bale and Hayward 2010;
Colinet et al. 2011; Bennett et al. 2013). While indi-
rect chill injury causes damage to cells and increased
mortality, periodically increasing temperatures dur-
ing cold exposure increases survival (Rinehart et al.
2011, 2013). These temperature fluctuations are fre-
quently referred to as fluctuating thermal regimes
(FTRs) (Kostal et al. 2007; Rinehart et al. 2016).
Experiments with FTR have demonstrated a benefit
in many temperature contexts and across a broad
range of insect species (Chen and Denlinger 1992;
Renault et al. 2004; Colinet et al. 2006, 2015) and
life stages (Renault et al. 2004; Kostdl et al. 2007;
Torson et al. 2015, 2017). Variation in experimental
design across studies makes it difficult to form broad
conclusions about the mechanistic basis of the pro-
tective effects (Colinet et al. 2015), but recovering
ion balance (Kostal et al. 2007) and metabolic ho-
meostasis (Colinet et al. 2016) appear to be con-
served benefits of fluctuating temperatures. How
these responses are transcriptionally regulated is
unclear (Colinet et al. 2018).

Megachile rotundata, the alfalfa leafcutting bee, is
an extensively studied system for investigating indi-
rect chill injury with a well-characterized, beneficial
response to FTR (Rinehart et al. 2016). Bees are ex-
posed to cold during two life stages, overwintering
pre-pupae and developing pupae. Adult M. rotun-
data emerge in the early summer and females con-
struct brood cells soon after emergence (Pitts-Singer
and Cane 2011). The larvae develop until the fifth
instar and then enter diapause for the winter (Pitts-
Singer and Cane 2011). Agricultural producers of M.
rotundata store diapausing pre-pupae in constant
temperature (CT) cold storage (Pitts-Singer and
Cane 2011), which causes indirect chill injury over
extended storage (Rinehart et al. 2013). When adults
are needed for spring pollination, pre-pupae are
transferred to 29°C, which initiates pupation and
adult emergence in ~20 days. If poor weather delays
alfalfa bloom, managers return pupae to CT cold
storage, which may cause indirect chill injury and
sub-lethal  effects on  adult  performance
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(Rinehart et al. 2011; Bennett et al. 2015). Storage
under FTR improves survival and reduces sub-lethal
effects in both overwintering and cold-stored pupae
(Bennett et al. 2013, 2015; Rinehart et al. 2013,
2016).

Analysis of gene expression during exposure to
fluctuating temperatures has supported the mecha-
nisms identified through physiological experiments.
Overwintering M. rotundata prepupae exposed to
fluctuating temperatures over a 7-month period
caused up-regulation of transcripts involved in met-
abolic activity, ion homeostasis, immune response,
and response to oxidative stress (Torson et al.
2015). Developing pupae exposed to the same tem-
peratures showed up-regulation of transcripts in-
volved in similar processes, but the specific
transcripts involved were different from the overwin-
tering stage (Torson et al. 2017). These experiments
demonstrate that the transcriptomic response to FTR
is rapid, with changes to gene expression established
after a week of exposure (Torson et al. 2017), and
have long term effects on survival (Torson et al.
2015). While these studies reveal possible mecha-
nisms for repair of and protection against chill injury
under FTR, short-term transcriptional effects could
confirm the patterns observed in prior studies while
also  establishing timing of the response.
Furthermore, previous studies have only investigated
gene expression during the cold phase of FTR
(Torson et al. 2015, 2017), while cellular mechanisms
are likely to be up-regulated during the warm pulse.

The goal of this study was to capture the tran-
scriptional response to FTR in developing pupae by
measuring gene expression prior to, during, and after
a cycle of a fluctuating thermal regime. Megachile
rotundata pupae were allowed to develop to the
red-eye stage before pupae development was inter-
rupted by storage under FTR and CT treatments.
The transcriptional response was compared before,
during, and after the warm pulse to pupae left at
CT 6°C. We identified specific pathways involved
in the prevention of indirect chill injury and con-
firmed that exposure to a single warm pulse can have
a significant and lasting effect on developing pupae.
In addition, we found transcripts that were identified
in previous studies with longer treatment durations
showed an immediate transcriptional response after
one warm pulse.

Materials and methods
Insects and temperature protocols

Alfalfa leafcutting bees (M. rotundata) were obtained
from JWM Leafcutters, Inc. (Nampa, ID). Pre-pupae
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were stored at 6°C under darkness to maintain dia-
pause until the start of the experiment. Prior to the
experiment, pre-pupae were transferred to a 29°C in-
cubator to initiate development in cell culture plates.
Three replicate plates were used for each sampled
time point. Pre-pupae were placed in two reporter
plates to monitor development. After 50% of the
bees in the reporter plates had developed to the
red-eye stage (14-15 days of development, 5 days prior
to adult emergence), bees were transferred to FTR and
CT treatments to interrupt development. The CT
treated bees were stored at a CT of 6°C under dark-
ness. The FTR treatment was exposed to 6°C with a
warm pulse of 20°C which occurred between 11:00
and 12:00 with a 1 h ramp to 20°C, 1 h incubation
at 20°C, and a 1 h ramp down to 6°C (Fig. 1).

Library preparation and sequencing

Pupae were collected at 29°C at 14:00 prior to treat-
ment. The following day pupae were collected at
20°C at 12: 00 at the end of the warm pulse, and
from both the FTR and CT treatments at 6°C at
15:00. Pupae were dissected from brood cells at in-
cubation temperatures, immediately submerged in
liquid nitrogen, and maintained at —80°C prior to
messenger RNA (mRNA) extraction. mRNA was
extracted using the Trizol protocol. Quality assess-
ment and quantification were performed by
Nanodrop and Qubit. RNA was shipped on dry ice
to Georgia Genomics Facility for sequencing. Prior
to sequencing quality was assessed using a
Bioanalyzer. Paired-end libraries were generated
from three replicates per time point. Illumina se-
quencing was performed on one high volume
NextSeq 500 flowcell. Quality of the resulting se-
quence reads was assessed using FastQC (v0.11.7)
(Andrews 2010). Overrepresented sequences and
any remaining Illumina sequencing artifacts were re-
moved using the BBDuk functions of the BBMap
software suite (v38.18) (Bushnell 2014). Illumina
data is archived at the NCBI Sequence Read
Archive (BioProject: PRINA528472).

Differential expression analysis

Sequenced reads were aligned to the M. rotundata
genome (accession: GCF_000220905.1) using Hisat2
(v2.1.0) (Kim et al. 2015). Mapped reads were quan-
tified with Cufflinks (v2.2.1) (Trapnell et al. 2012)
and assembled with the reference GTF annotation.
Cuftdiff (v2.2.1) (Trapnell et al. 2012) was used to
analyze gene expression with a threshold of
(2<0.05) to determine significance. All subsequent
analysis was performed in R (v3.4.2) (R Core Team
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Fig. 1 mRNA sampling strategy for differential gene expression
analysis during FTR pulse. Pupae were allowed to develop at
29°C until the red-eye pigmentation stage. MRNA was extracted
from pupae prior to treatment (TO), during (T1), and after the
warm pulse (T2). Pupae at 29°C were collected immediately
prior to the temperature treatments (TO). Pupae were trans-
ferred to FTR and CT treatments. Pupae were collected at the
end of a 1 h 20°C warm pulse (T1) and 2 h after returning to
6°C (T2). The 6°C CT treatment was also sampled at the T2
time point.

2017) and RStudio (v1.1.383) (RStudio Team 2016).
The R package cummeRbund (v2.8.2) (Goff et al
2013) was used to produce differential expression
figures (Fig. 2a—d, Supplementary Fig. SFI).
Jensen—Shannon distance between time points and
treatments was assessed using the Fragments Per
Kilobase of transcript per Million mapped reads
(FPKM) values of the full gene set (Fig. 2b).
Principle component analysis was performed using
cummeRbund (v2.8.2) (Goff et al. 2013) on the
FPKM values of both the full gene set and the dif-
ferentially expressed transcripts (Fig. 2¢, d).
Orthologous M. rotundata genes were identified in
the Apis mellifera genome (version Amel HAv3.1,
accession: GCA_003254395.2) using standalone
NCBI-BLAST+ (v2.8.1) (Camacho et al. 2009) and
a Python (v2.7) reciprocal best hit script to parse
tabular results by score. Enrichment analysis was
performed on the resulting orthologs. Gene
Ontology  (GO) term  enrichment, Kyoto
Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment, and protein function enrichment
were  determined using the Database for
Annotation, Visualization, and Integrated Discovery
(DAVID v6.8) (Huang et al. 2007, 2009a, 2009b)
using an EASE score of (x<0.05). Enrichment was
analyzed by comparison and direction of expression.
GO terms were identified using the functional anno-
tation assignments of significant transcripts in
DAVID. The functional annotation clustering tool
in DAVID using InterPro annotation was used to
cluster transcripts with similar features and func-
tions. Clusters were combined using higher-level
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Fig. 2 Summary of differential expression analysis of CT versus FTR treatments. Transcripts were identified as significant with a cutoff
of «<0.05. The number of significant transcripts and the direction of expression were identified for all comparisons, with expression
disproportionately up-regulated under FTR relative to CT (a), with the x-axis represented by the red arrow and the y-axis represented
by the blue arrow. A dendrogram was constructed using the FPKM values of all annotated M. rotundata genes to determine the Jensen—
Shannon distance between treatments and sample time points (b). Principle component analysis was performed on all genes (c) and

the subset of significant genes (d).

terms. Significance of combined clusters was estab-
lished by Fisher’s method for combined probability
using the R package metap (v1.1) (Brown 1975; Kost
and McDermott 2002; Dewey 2019) and enrichment
scores were calculated using a weighted mean.
Additional tools used to identify protein function
include NCBI, HymenopteraMine (Elsik et al
2016), OrthoDB (v10) (Kriventseva et al. 2019),
and FlyBase (Elsik et al. 2016; Agarwala et al. 2018;
Kriventseva et al. 2019; Thurmond et al. 2019).

Differentially expressed transcripts under FTR in
M. rotundata identified by Torson et al. (2015, 2017)
were retrieved from the original publications.
Annotation of the M. rotundata genome in the
most recent genome release was applied by sequence
alignment using NCBI-BLAST+ (v2.8.1) (Camacho
et al. 2009) to facilitate comparison between studies.
Significant transcripts found in multiple studies were
identified using R (v3.4.2) (R Core Team 2017) and
DB Browser for SQLite (v3.10.1).
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Results
Read mapping and differential expression analysis

Sequencing generated 464.6 million, 126 base pair
paired-end reads averaging 38.7 million reads per
sample (Table 1). After quality trimming and re-
moval of over-represented sequences, an average of
27.8 million reads (71.7%) per sample mapped to
the M. rotundata genome (accession:
GCA_000220905.1) leaving 11.0 million reads
(28.3%) unmapped (Table 1). Analysis of gene ex-
pression identified 827 significant differentially
expressed transcripts between all pairwise compari-
sons (Fig. 2a, Supplementary Table SI1). 442
(53.45%) transcripts are unique and 385 (46.55%)
are shared by two or more comparisons. Gene ex-
pression is disproportionately up-regulated under
FTR compared to CT regardless of temperature
(Fig. 2a): 65.5% of transcripts were up-regulated at
T0, 61.2% during the warm pulse (T1), and 66.7%
after returning to 6°C (T2) versus CT. The largest
number of differentially expressed transcripts occurs
at T2 versus CT. These samples were collected at the
same time and temperature indicating persistent
effects of the FTR warm pulse. Among FTR time
points, expression is up-regulated at higher temper-
atures, 64.3% at TO and 59.5% at T1, versus T2,
although TO0/T2 have the fewest differentially
expressed transcripts (Fig. 2a). Jensen—Shannon dis-
tance of FPKM values shows progressive divergence
from CT over time (Fig. 2b). Principle component
analysis of all transcripts (Fig. 2c) and the subset of
significant transcripts (Fig. 2d) show a distinct dif-
ference in expression profile between treatments and
greater similarity between TO at 29°C and T2 at 6°C
than T1 at 20°C during the warm pulse (Fig. 2¢).

Membrane fluidity, lipid synthesis and modification,
and lipid transport under FTR

Genes associated with membrane fluidity (Figs 3, 4)
are up-regulated (Fig. 3a) and down-regulated
(Fig. 3b) during the warm pulse relative to TO.
Genes directly involved in lipid biosynthesis and
modification are among the most abundant. Fatty-
acid synthase (LOC100878819) performs diverse
lipid biosynthesis functions (Wakil 1989). GNSI1/
SUR4 family fatty acid elongation proteins
(LOC100880416, LOCI100877574, LOC100877913,
LOC100877466) modify lipids and function to
generate lipid diversity through interaction with fatty
acyl-CoA enzymes (LOC100881347, LOC100878698,
LOC100876260), serine kinases (LOC100877637,
LOC100881145)  aminotransferases  (LOC10087
8030), and glycoside hydrolase-family enzymes

D. Melicher et al.

(LOC100877705, LOC100879769, LOC100878475)
(Holthuis and Menon 2014) (Fig. 3a, b). The cho-
lesterol desaturase neverland (LOC100877176), Delta
11 acyl-CoA desaturase (LOC100881714), and desa-
turase/reductase enzymes (LOC100881714, LOC100
881578, LOC100879632) modify fatty acid chains
to influence membrane fluidity. Intracellular lipid
transport proteins include two long-chain fatty acid
transporters (LOC100883461, LOC100876568),
CRAL-TRIO domain lipid-binding transporters
(SEC14-like, clavesin-2, LOC413056, Fig. 4b)
(Salama et al. 1990; Schaaf et al. 2008), and acytl-
transferases (LOC100878398, LOC100879483).
Enzymes that affect membrane glycerophospholipid
composition include alanine-glyoxylate aminotrans-
ferase 2-like (LOC100879339), which is up-
regulated during the warm pulse and phospholipase
A2 (LOCI100877091), which is up-regulated under
CT (Huang et al. 2007). ABC transporter G 20-like
(LOC100877576), an adenosine triphosphate-binding
transmembrane transporter associated with intracel-
lular cholesterol and lipid transport, is down-
regulated under CT.

Oxidative stress

The oxidative stress response (Fig. 5a) includes glu-
tathione synthetase (LOC100876989) and glutathione
S-transferase (LOC100876760), which generate the
glutathione pool that buffers oxidative stress, and
are significantly up-regulated at TO versus CT.
Glutathione synthetase expression decreases under
FTR and is significantly up-regulated under CT ver-
sus T2. Peroxidases (LOC100875470, LOC1056
64053, LOC100882514) and enzymes that catalyze
redox-reactions (LOC100875155, LOC100883439)
were up-regulated under FTR (Fig. 5a). Three cyto-
chrome P450 genes (LOC100883162, LOC100879963,
LOC100880078) were up-regulated during the warm
pulse. However, some genes that regulate the
oxidation—reduction response were not differentially
expressed, including superoxide dismutase.

Reponse of cryoprotectant, ion transport, chitinase,
and cuticle protein transcripts

Genes with cryoprotectant functions were differen-
tially expressed between treatments (Fig. 5b).
Trehalose transport proteins (LOC100882177,
LOC100878705) are expressed in opposing direc-
tions. Expression of antifreeze protein Maxi-like
(LOC100879693) is maintained during the warm
pulse but reduced under CT. The gene samui
(LOC100881147) is up-regulated between treatments
at T2 versus CT. Other known cryoprotectants were
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Table 1 Sequencing and mapping statistics
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Sample Treatment Reads Mapped Unmapped
TO-1 FTR (29°C) 37,062,935 27,531,929 (74.3%) 9,531,006 (25.7%)
TO-2 FTR (29°C) 36,663,032 26,561,683 (72.4%) 10,101,349 (27.6%)
TO-3 FTR (29°C) 37,589,676 25,144,257 (66.9%) 12,445,419 (33.1%)
T1-1 FTR (20°C) 33,339,558 27,135,877 (81.4%) 11,981,208 (35.9%)
T1-2 FTR (20°C) 39,256,402 29,176,358 (74.3%) 11,768,736 (30.0%)
T1-3 FTR (20°C) 34,693,423 29,481,740 (85.0%) 12,791,732 (36.9%)
T2-1 FTR (6°C) 39,939,573 27,576,476 (69.0%) 12,363,097 (31.0%)
T2-2 FTR (6°C) 39,816,866 26,927, 100 (67.6%) 12,889,766 (32.4%)
T2-3 FTR (6°C) 43,865,807 32,342,409 (73.7%) 11,523,398 (26.3%)
CT1 CT (6°C) 39,117,085 25,909,089 (66.2%) 7,430,469 (19.0%)
CT2 CT (6°C) 40,945,094 28,629,912 (69.9%) 10,626,490 (26.0%)
CT-3 CT (6°C) 42,273,472 26,643,691 (63.0%) 8,049,732 (19.0%)
Total 464,562,923 333,060,521 (71.7%) 131,502,402 (28.3%)
Mean 38,134,436 27,778,692 72.8% 11,282,618 (29.6%)

Notes: 126 base-pair paired-end Illumina reads were sequenced and mapped to the M. rotundata genome.

not differentially expressed, including genes that syn-
thesize trehalose, glycerol or other polyols, and sor-
bitol. Three membrane-bound ion transport channel
proteins (Fig. 6a), voltage-dependent L-type calcium
channel (LOC100875269),  probable  cation-
transporting ATPase 13A3 (LOC100876262) and po-
tassium  ion  channel = UNCO93-like  protein
(LOC100883536), were down-regulated under CT.
Chitinase enzymes (LOC100879953,
LOC100878742) are down-regulated under FTR
(Fig. 6b). Of four proteins with chitin-binding
domains, two are down-regulated under FTR
(LOC100879494, LOC100877019), two up-regulated
(LOC100881700, LOC105662353). Cuticle proteins
were all up-regulated under FTR (LOC100883766,
LOC100880223, LOC100876922, LOC100881531,
LOC100883648).

Enrichment analysis

Analysis of significant transcripts using DAVID iden-
tified enriched clusters of genes with enriched GO
terms, KEGG pathways, and protein features/func-
tions. All differentially expressed transcripts in this
study are summarized by protein function in
Table 2. Categories with the largest number of tran-
scripts include transcription factors and HOX genes,
membrane-bound proteins, and protein kinases.
Pathway enrichment analysis (Table 3) shows meta-
bolic pathways and phenylalanine metabolism are el-
evated at TO versus Tl and T2, indicating a
reduction in metabolic activity after pupal develop-
ment is interrupted that is maintained 24-h later.

Fatty acid metabolism is down-regulated at T1. No
pathways are enriched between T1 and T2, during
and after the warm pulse, respectively. Between FTR
and CT treatments, phenylalanine and tyrosine me-
tabolism are up-regulated at TO. Two transcripts
map to multiple down-regulated pathways associated
with glycan metabolism and glycosphingolipid bio-
synthesis (Table 3). A comparison of warm (TO0, T1)
and cold (T2, CT) shows enrichment of the Hippo
signaling pathway (fold enrichment [FE] = 3.9,
P=0.017) including the HOX gene homothorax,
dachsous which mediates imaginal disc development
and cellular adhesion, and expanded which regulates
Hippo signaling and cell proliferation during devel-
opment (Willecke et al. 2008; Halder and Johnson
2011).

GO term enrichment shows development resumes
during the warm pulse (Table 4). Multiple develop-
mental transcription factors including drop, distal-
less, engrailed, homothorax, and the co-repressors
slpl, groucho, and hairy are up-regulated under
FTR. This pattern of expression is maintained across
all FTR time points including TO where these tran-
scripts are significantly up-regulated, but the associ-
ated GO term is not significantly enriched (FE =
3.38, P=0.071). Analysis of enriched GO terms un-
der FTR shows decreased expression of membrane-
bound transport proteins during the warm pulse
(Table 5). Fatty acyl-CoA reductase activity increased
at T1, during the warm pulse, and decreased at T2.
Fatty acid biosynthesis activity decreased at T1 and
increased at T2. Frequently occurring GO terms are
found in Supplementary Table S2. Enriched InterPro
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Fig. 3 Expression of membrane component genes under FTR. Genes associated with membrane fluidity, lipid biosynthesis, and fatty
acid modification are up-regulated (a) and down-regulated (b) during the warm pulse. During the warm pulse fatty acid synthase and
fatty acid elongation enzymes are up-regulated and are down-regulated after the pulse with the exception of estradiol 17-beta-

dehydrogenase 2 (a). Fatty acyl CoA, long-chain fatty acid transport protein 4, and a fatty acid elongation enzyme are down-regulated

(b). TO-T2 represent expression over time under FTR versus CT.

protein feature/function terms are summarized in
Tables 6 and 7. Transcripts categorized as hemo-
lymph juvenile hormone binding (Table 6), take-
out-like and circadian  clock-controlled  protein,
belong to the takeout superfamily associated with
circadian rhythm and feeding behavior.

Identification of conserved transcripts from previous
FTR treatments

Transcripts expressed after one FTR cycle that were
identified in Torson et al. (2015, 2017) are summa-
rized in Table 8. Transcript sequences found in
short-term interrupted pupal development (Torson
et al. 2017) and long-term survival where FTR-
treated bees experience significantly lower mortality

over months of incubation (Torson et al. 2015)
were retrieved from the original publications. The
M. rotundata genome had been annotated in the
intervening time and transcripts from these studies
received updated annotation by sequence align-
ment which removed redundant sequences. The
sequence content of the M. rotundata genomes
used in this and previous studies did not differ
and alignments matched 100% of nucleotide
identities.

Torson et al. (2017) identified transcripts differen-
tially expressed during interrupted pupal develop-
ment after seven FTR cycles (Torson et al. 2017).
Of the 256 differentially expressed transcripts identi-
fied, 86 (23.76%) were found to be significant in this
study. The direction of expression of shared

6102 Joquieoag 0z Uo Josn ANSISAlUN S1elS ejoNed UYHON AQ LFEZLGS/0ZE/2/6G/ABASqR-0]01LE/qD/W00" dNO"DIWSPEoE//:SA)Y WO} POPEOjUMO]


Deleted Text: 7 

Transcriptional response to warm pulse

| CT-Up

3.44

2.61

putative fatty acyl-CoA reductase CG5065 LOC100881347
== sterol O-acyltransferase 1

- uncharacterized Phospholipase A2

327

(b)

CRAL-TRIO

4.2

4.04

3.8+

3.6

3.4+

T T T T

TO T1 T2 CT
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Fig. 4 Expression of membrane components under CT and expression of CRAL-TRIO family enzymes. Some genes that affect
membrane composition are significantly up-regulated under CT but are not affected by the warm pulse (a). CRAL-TRIO genes,
intracellular membrane-bound transporters that affect fluidity by exchanging phospholipids, are differentially expressed at T1 or T2
versus CT (b). TO-T2 represent expression over time under FTR versus CT.

transcripts were disproportionately down-regulated
(n=72, 83.72%) versus up-regulated (n=14,
16.82%). This is a result of the disproportionate
71.74% down-regulation present in the original
study. Common transcripts regulate transcription
during development, are involved in metabolic pro-
cesses, or are membrane-bound transport or signal-
ing proteins (Table 8).

Torson et al. (2015) identified 215 transcripts un-
der long-term FTR when mortality begins to diverge
and a protective effect of FTR versus CT is observed.
Of these 29 of 256 (11.33%) were shared between
studies. Megachile rotundata were sequenced as pre-
pupa, an earlier stage of development, which corre-
sponds to the lack of developmental transcription
factors and metabolic genes from the list of shared
transcripts (Table 8). The remaining identities in-
clude orthologs for cytochrome p450, peroxidase,
and mitochondrial amidoxime-reducing component
which function as chaperones, the oxidative stress
response, and in DNA-repair.

Discussion

Ectotherms experience daily temperature variation as
well as broad seasonal variation in the range and
magnitude of temperature change. With a limited
ability to regulate internal temperature, insects have
multiple adaptations that allow them to survive fluc-
tuations in temperature. Temperature variation and
FTR improve survival and longevity in many species
(Rinehart et al. 2011, 2013, 2016; Colinet et al. 2015,
2018). Previous studies indicated that brief exposures
to fluctuating temperatures were sufficient to estab-
lish differential gene expression patterns (Torson
et al. 2017) that may provide a protective effect
that reduces mortality observed over longer periods
of exposure (Torson et al. 2015). Our objective was
to determine the transcriptional response to a single
FTR pulse. We compare the response over one 24-
h FTR cycle to storage under CT. We established
that one FTR cycle is sufficient to cause differential
expression of transcripts associated with the repair of
cell membrane damage, restoration of ion
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=4 haem peroxidase
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Fig. 5 Antioxidant and antifreeze response to FTR. Glutathione synthase is down-regulated under FTR. Glutathione transferase
expression declines under FTR and is not significantly different between T2 and CT. Peroxiredoxin-6 is up-regulated during the warm
pulse and glutaredoxin expression increases after the pulse. Peroxidases and peroxisome biogenesis factor 2 are differentially
expressed between FTR and CT treatments (a). Antifreeze protein Maxi-like is differentially expressed at TO and T1 versus CT.

Trehalose transporters are regulated in opposing directions. Expression of the temperature-associated chaperone samui is significantly
different at T2 versus CT (b). TO-T2 represent expression over time under FTR versus CT.

homeostasis, and response to oxidative stress. We
identify individual genes as well as enrichment of
pathways, GO terms, and protein functions before,
during, and after the warm pulse. We compared
these results with previous studies on the same or-
ganism and two life stages and identified a shared
response.

Membrane composition responds rapidly to
temperature

Insects possess highly diverse lipid species and
enzymes that modify lipids in cell and intracellular
membranes that facilitate rapid response to temper-
ature fluctuations (Hazel 1995; Los and Murata
2004; Kimura et al. 2016). Membrane components

were the largest cluster of genes by general function,
significantly enriched pathways, GO terms, and pro-
tein functions/features. Lipid biosynthesis and fatty
acid metabolism respond to FTR but individual
genes are regulated in opposing directions (Fig. 3a,
b, Table 3). 3-oxo-cerotoyl-CoA synthase activity, a
product of fatty acyl-CoA synthase, is down-
regulated under FTR versus CT (Table 4). Among
FTR time points, two sets of membrane components
and lipid synthesis/modification genes are regulated
in opposite directions (Tables 5, 7). Although some
have functions unrelated to membrane composition,
many groups identified in Table 2 directly or indi-
rectly influence membranes through lipid species di-
versity, modification of fatty acids, desaturase/
reductase activity, lipid and cholesterol transport,
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Fig. 6 lon channel, chitinase, and cuticle protein expression during FTR. lon channel proteins respond to the warm pulse and are
significantly down-regulated versus CT (a). Chitinase, chitin-binding proteins, and cuticle proteins are differentially expressed between
FTR and CT treatments although the mechanism and function of this response is unknown (b). TO-T2 represent expression over time

under FTR versus CT.

and potential mobilization of cryoprotectants to
support membrane integrity. Fatty-acid synthase
is a highly versatile enzyme that functions in mul-
tiple lipid biosynthesis pathways (Wakil 1989).
GNS1/SUR4 family fatty acid elongation proteins
generate diverse lipid species by creating precur-
sors of ceramide in combination with serine me-
tabolism, glycosphingolipids, and sphingolipids
(Holthuis and Menon 2014). Phospholipids are
synthesized through elongation and desaturation
of fatty-acid synthase intermediate products, and
addition of acyl CoA, cholesterol, and glycerol
(Holthuis and  Menon  2014). Multiple

components of these pathways were found to be
differentially expressed during exposure to FTR,
indicating that FTR affects membrane composi-
tion and may restore membrane function through
the synthesis and modification of membrane
components.

In addition to lipid biosynthesis we found
enzymes that influence membrane fluidity through
desaturase/reductase activity. These enzymes are
known to have intracellular membrane functions
and are localized in endoplasmic reticulum, Golgi
apparatus, or mitochondria, although the function
of these enzymes has been shown to have diversified
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in some arthropods (Salama et al. 1990; Schaaf et al.
2008; Smith and Briscoe 2015; Kriventseva et al.
2019). Our results support the hypothesis that FTR
exposure provides a recovery period that restores
intracellular and cell membrane fluidity by modify-
ing membrane composition, synthesis of diverse lipid
species, and production of lipid transport proteins
(Colinet et al. 2018). Additionally, loss of ion gra-
dients through membrane phase transitions and

Table 2 Protein function annotation clustering of significant
transcripts

2

Function summary n Xz P ES

Lipid metabolism 8 84.97 <0.0001* 2.05

Chitin binding 9 43.18 <0.0001* 1.88

Transcription, DNA-binding, 43 2349 <0.0001* 1.12
HOX genes

Pyridoxal phosphate binding 5 25.24 0.005%* 11
CRAL-TRIO binding domain 3 14.62 0.023* 1.06

Membrane components 49 17.06 0.029* 0.17
Serine protease 3 23.73 0.095 0.64
Glycoside hydrolase 3 8.86 0.35 0.48
Protein kinase activity 26 2647 0.33 0.48
Major facilitator superfamily 7 6.47 0.37 0.47
Leucine-rich repeat 5 528 0.51 0.38

Notes: All differentially expressed transcripts were clustered by
InterPro protein features and functions. Clusters with similar func-
tions were combined to summarize overall transcript function with n
representing the number of unique transcript identities in each group.
% and P-values use Fisher’s method for testing combined probability
to determine significance. ES indicates combined enrichment scores
by weighted mean.

D. Melicher et al.

oxidative damage to membranes have been hypoth-
esized to accumulate under CT and may be a pri-
mary mechanism of increased survival under FTR
(Colinet et al. 2018). However, our ability to make
broad conclusions is limited by the fact that this
study focuses on the whole organism response, and
cannot differentiate between physiological processes
at the organ level. Our results demonstrate that a 1-
h exposure to a warm temperature is sufficient to
activate the repair and modification of membranes.
These mechanisms had been identified by other FTR
studies in insects (Torson et al. 2015, 2017; Colinet
et al. 2016), but were not known to operate under
brief temperature exposures.

Oxidative stress response, cryoprotectants, and
chitinases

Under FTR, genes that respond to oxidative stress
are up-regulated (Fig. 5a), including the cytochrome
P450-family, peroxidases/peroxisomes, and redoxin
enzymes. Expression of glutathione synthase and glu-
tathione S-transferase S4, which maintain the gluta-
thione pool for the removal of reactive oxygen
species was significant (Felton and Summers 1995;
Schafer and Buettner 2001). Superoxide dismutase
was not differentially expressed between treatments
or time points. The incubation at 6°C between col-
lection of TO and CT is 24h and reactive oxygen
species may not accumulate enough to induce a
transcriptional response. Expression of some antiox-
idants like superoxide dismutase is a tissue-level

Table 3 Pathway enrichment of significant differentially expressed transcripts

Comparison Term Description FE n P

TO (29°C) vs. CT (6°C) ame00360 Phenylalanine metabolism T 7043 2 0.023
ame00350 Tyrosine metabolism T 46.96 2 0.035

T1 (20°C) vs. CT (6°C) ame00604 Glycosphingolipid biosynthesis 1 105.65 2 0.016
ame00531 Glycosaminoglycan degradation l 40.63 2 0.042
ame00511 Other glycan degradation l 37.73 2 0.046

T2 (6°C) vs. CT (6°C) None

TO (29°C) vs. T1 (20°C) ame01100 Metabolic pathways 1 2.18 7 0.034
ame00360 Phenylalanine metabolism T 42.26 2 0.042
ame01212 Fatty acid metabolism 1 28.55 2 0.05

T1 (20°C) vs. T2 (6°C) None

TO (29°C) vs. T2 (6°C) ame01100 Metabolic pathways T 3.12 5 0.01
ame00360 Phenylalanine metabolism T 84.52 2 0.019
ame00380 Tryptophan metabolism T 36.75 2 0.043

Notes: KEGG pathway enrichment using A. mellifera orthologs. Enrichment was determined by mapping up-regulated or down-regulated tran-
scripts to KEGG pathways for each comparison with a cutoff of  <0.05. The direction of expression is indicated by the arrow, with FE, and the

number (n) of unique transcripts mapping to each pathway.
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Table 4 GO term enrichment of significant differentially expressed transcripts under FTR versus CT

Sample Term Description FE n P
TO (29°C)
BP GO: 0016021 Aromatic amino acid metabolic process T 82.18 2 0.022
MF GO: 0042302 Structural constituent of cuticle 1 16.56 5 <0.001
MF GO: 0005506 Iron ion binding T 8.03 3 0.05
BP GO: 0006633 Fatty acid biosynthetic process ! 31.8 3 <0.01
MF GO: 0102337 3-oxo-cerotoyl-CoA synthase activity l 80.88 3 <0.001
T1 (20°C)
BP GO: 0006355 Regulation of transcription T 7.74 7 <0.0001
CC GO: 0005634 Nucleus 1 2.73 7 0.028
MF GO: 0042302 Structural constituent of cuticle T 16.56 5 <0.001
MF GO: 0043565 Sequence-specific DNA binding T 4.56 5 0.02
MF GO: 0030170 Pyridoxal phosphate binding l 21.85 3 <0.01
T2 (6°C)
BP GO: 0006355 Regulation of transcription T 5.05 6 0.004
MF GO: 0043565 Sequence-specific DNA binding T 5.01 6 <0.01
BP GO: 0006633 Fatty acid biosynthetic process 1 28.62 3 <0.01
BP GO: 0006355 Regulation of transcription ! 59.31 3 <0.001

Notes: GO term enrichment of FTR versus CT treatments with a cutoff of o <0.05. Direction of expression under FTR is indicated by the

arrow. The number of transcripts (n) and FE are shown for each term.

Table 5 GO term enrichment of significant differentially expressed transcripts under FTR

Comparison Term Description FE n P
TO (29°C) vs. T1 (20°C)
CcC GO: 0016021 Integral component of membrane T 1.63 12 0.017
MF GO: 0030170 Pyridoxal phosphate binding 1 21.85 3 <0.01
MF GO: 0080019 fatty-acyl-CoA reductase activity T 69.2 2 0.026
BP GO: 0006633 Fatty acid biosynthetic process l 19.08 3 <0.01
BP GO: 0006355 Regulation of transcription, DNA-templated l 4.72 4 0.04
T1 (20°C) vs. T2 (6°C)
BP GO: 0006633 Fatty acid biosynthetic process T 40.88 0.002
MF GO: 0102337 3-oxo-cerotoyl-CoA synthase activity T 74.14 3 <0.001
MF GO: 0102336 3-oxo-arachidoyl-CoA synthase activity T 74.14 3 <0.001
MF GO: 0102338 3-oxo-lignoceronyl-CoA synthase activity T 74.14 3 <0.001
MF GO: 0080019 fatty-acyl-CoA reductase activity l 148.28 2 0.012
TO (29°C) vs. T2 (6°C)
MF GO: 0030170 Pyridoxal phosphate binding 1 31.22 2 0.05

Notes: Enrichment of GO terms across FTR time points with a cutoff of & <0.05. Direction of expression in each comparison is indicated by the

arrow. The number of transcripts (n) and FE are shown for each term.

response (Terada 2006; Wang et al. 2018) that may
not be detectable at the whole-organism level.
Insects respond to cold stress by production of an-
tifreeze proteins, cryoprotectant sugars, and polyols,
which lower freezing temperatures and stabilize mem-
branes (Sinclair et al. 2003). Trehalose synthase and

enzymes that synthesize glycerol or sorbitol cryopro-
tectants are not differentially expressed. However, tre-
halose transport proteins are expressed at higher levels
under FTR (Fig. 5b) which may indicate that treha-
lose is being mobilized in response to cold. Antifreeze
protein Maxi-like is up-regulated under FTR versus
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Table 6 Protein function enrichment of significant transcripts under FTR versus CT

D. Melicher et al.

Sample Term Description FE n P
TO (29°C)
IPR000618 Insect cuticle protein T 16.47 5 <0.001
IPR001273 Aromatic amino acid hydroxylase 1 125.14 2 0.017
IPRO19773 Tyrosine 3-monooxygenase-like T 125.14 2 0.017
IPRO18301 Aromatic amino acid hydroxylase, iron/copper T 125.14 2 0.017
IPR002076 GNS1/SUR4 membrane protein l 86.4 3 <0.001
T1 (20°C)
IPRO00618 Insect cuticle protein T 17.69 5 <0.001
IPR0O13087 Zinc finger C2H2-type/integrase DNA-binding 1 4.73 5 0.02
IPR0O01680 WDA40 repeat 1 4.48 5 0.023
IPRO01507 Zona pellucida domain l 52.79 2 0.036
T2 (6°C)
IPRO13087 Zinc finger C2H2-type/integrase DNA-binding 7 393 5 0.036
IPR002076 GNS1/SUR4 membrane protein ! 62.21 3 <0.001
IPRO10562 Hemolymph juvenile hormone binding l 41.47 2 0.045

Notes: Enrichment of InterPro protein functions/features between FTR and CT treatments with a cutoff of o <0.05. Direction of expression

under FTR is indicated by the arrow. The number of transcripts (n) and FE are shown for each term.

Table 7. Protein function enrichment of significant transcripts under FTR

Comparison Term Description FE n P
TO (29°C) vs. T1 (20°C)
IPR015422 Pyridoxal phosphate-dependent transferase T 20.74 3 <0.01
IPR0O13120 Male sterility, NAD-binding 1 60.48 2 0.03
IPR026055 Fatty acyl-CoA reductase T 60.48 2 0.03
IPR002076 GNS1/SUR4 membrane protein ! 51.84 3 0.001
IPRO01356 Homeodomain l 121 4 <0.01
IPR017970 Homeobox, conserved site l 10.67 3 0.03
T1 (20°C) vs. T2 (6°C)
IPR002076 GNS1/SUR4 membrane protein T 77.76 3 <0.001
IPR010562 Hemolymph juvenile hormone binding T 77.76 3 <0.001
IPRO01611 Leucine-rich repeat T 12.23 3 0.022
IPR0O16040 NAD(P)-binding domain ! 19.67 5 <0.0001
IPR002347 Glucosef/ribitol dehydrogenase ! 37.22 3 0.002
IPRO13120 Male sterility, NAD-binding l 120.97 2 0.015
IPR026055 Fatty acyl-CoA reductase l 120.97 2 0.015
TO (29°C) vs. T2 (6°C)
IPR020846 Major facilitator superfamily domain l 19.2 3 0.008
IPRO13761 Sterile alpha motif/pointed domain l 57.6 2 0.03
IPR005828 General substrate transporter l 37.51 2 0.046

Notes: Enrichment of InterPro protein functions/features across FTR time points with a cutoff of « <0.05. Direction of expression in each

comparison is indicated by the arrow. The number of transcripts (n) and FE are shown for each term.

CT and expression is maintained during the warm
pulse, but is lower at T2 so it cannot be determined
if expression is influenced by FTR.

Chitinase enzymes, chitin-binding proteins, and
cuticle proteins have been identified as differentially
expressed in multiple FTR and cold stress studies in
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Gene set RefSeq-RNA Short name Gene name
2017—Up in FTR
XM_003708250 LOC100881147 BAG domain-containing protein Samui-like
XM_003708002 LOC100877637 Serine/threonine-protein kinase SIK3-like
XM_003699760 LOC100880515 Bone morphogenetic protein receptor type-1B
XM_012282783 LOC100881489 Nuclear hormone receptor FTZ-F1
XM_012281076 LOC105661976 CCAAT/enhancer-binding protein-like
2017—Down in FTR
XM_012288926 LOC100880270 Transmembrane protease serine 9-like
XM_003700471 LOC100877574 Elongation of very long chain fatty acids protein 7-like
XM_003703558 LOC100878819 Fatty acid synthase
XM_003700398 LOC100878398 Heparan-alpha-glucosaminide N-acetyltransferase-like
XM_012292966 LOC100880205 Phosphodiesterase epsilon-1-like
XM_003702488 LOC100880638 Aquaporin AQPcic-like
XM_003703107 LOC100875155 Peroxiredoxin-6-like
XM_003704386 LOC100879301 Alpha-amylase-like
XM_003702306 LOC100879369 Carboxypeptidase M-like
XM_012287600 LOC100882780 Serine proteinase stubble
XM_003701259 LOC100882217 Protein yellow-like
XM_003704962 LOC100880044 Transmembrane domain-containing protein 2-like
XM_012286750 LOC100881714 Acyl-CoA Delta
XM_003702234 LOC100880821 Glutamic acid-rich protein
XM_003707059 LOC100879468 Phenoloxidase 2
XM_012286098 LOC105662570 Histidine-rich glycoprotein-like
XM_012284520 LOC100877204 Vitellogenin-like
XM_012284233 LOC100878705 Facilitated trehalose transporter Tret1-like
2015—NovSTR NovFTR
XM_003700977 LOC100878060 Hemolymph lipopolysaccharide-binding protein-like
XM_003700471 LOC100877574 Elongation of very long chain fatty acids protein 7-like
XM_003704386 LOC100879301 Alpha-amylase-like
XM_003700707 LOC100875958 Cytochrome P450 4g15-like
2015—SeptFTR NovFTR
XM_003702880 LOC100878030 Aminomethyltransferase, mitochondrial
XM_003706384 LOC100877030 Aminotransferase, mitochondrial-like
XM_003700707 LOC100875958 Cytochrome P450 4g15-like
XM_003703558 LOC100878819 Fatty acid synthase
2015—SeptSTR NovSTR
None
2015—SeptSTR SeptFTR
XM_003702196 LOC100876503 Mitochondrial amidoxime-reducing component 1
XM_003707130 LOC100877705 Beta-galactosidase-like
XM_012286145 LOC100882514 Peroxidase-like
XM_003702880 LOC100878030 Aminomethyltransferase, mitochondrial
XM_003700707 LOC100875958 Cytochrome P450 4g15-like
XM_012283276 LOC100879483 Sterol O-acyltransferase 1

Notes: Differentially expressed transcripts were retrieved from Torson et al. (2015, 2017) and annotated by sequence alignment to the current
genome release (Torson et al. 2015, 2017). Significant transcripts shared between studies are summarized here.
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several species (Colinet et al. 2007; Clark et al. 2009;
Yocum et al. 2009; Torson et al. 2015, 2017).
Expression of these transcripts appears to be a com-
mon feature in transcriptomic studies of FTR but
they have not been specifically investigated. Because
chitin is expressed in the midgut and the midgut
reacts to many forms of stress, the mechanism is
often hypothesized as midgut atrophy or repair
(Yocum et al. 2009; MacRae 2010).

Development resumes during the warm pulse

Genes that regulate development are significantly up-
regulated after the warm pulse versus CT.
Transcription factors in multiple families including
HOX genes, Zn-fingers, WD40 repeats, and winged-
helix that regulate gene expression are present.
Growth factors, genes that coordinate cell prolifera-
tion and differentiation, cell signaling, and hormone-
binding are expressed under FTR. We see a rapid
transcriptomic response to the warm pulse with the
production of developmental transcription factors.
The large number of transcription factors up-
regulated during the warm pulse after 20 h of inter-
rupted development, indicate that these transcripts
are in circulation for a relatively brief time. The 1-
h pulse appears to be sufficient time above the de-
velopmental temperature threshold to resume pro-
duction of these transcripts, although it is
unknown if the warm pulse is long enough for de-
velopment to progress beyond maintenance of the
transcriptional response.

Shared mechanisms of FTR

Genes and pathways in transcriptional response to
FTR in M. rotundata were identified in previous
studies, indicating the mechanisms that improve sur-
vival and reduce sub-lethal effects under FTR emerge
quickly and are maintained over long periods of time
in different life stages (Torson et al. 2015, 2017). The
transcript samui was upregulated under FTR in both
our study and Torson et al. (2017). Samui has been
proposed as the trigger to end diapause in Bombyx
mori (Moribe et al. 2001, 2002) and has been asso-
ciated with diapause termination in M. rotundata
(Yocum et al. 2018). The bees in this study had al-
ready terminated diapause prior to the start of the
experiment, so the function of samui in this study is
not directly related to diapause. However, samui may
function as a molecular chaperone because it is in
the BAG protein family (Doong et al. 2002; Kabbage
and Dickman 2008) and may broadly function to
maintain cellular processes during cold exposure.

D. Melicher et al.

Conclusions

Our results establish that M. rotundata responds rap-
idly to temperature changes at the transcript level,
and that these responses last beyond the initial ex-
posure. The transcriptomic responses to FTR include
genes associated with cell and intracellular organelle
membranes that affect membrane composition and
fluidity, ion homeostasis, oxidative stress, and anti-
freeze proteins. After a single 1-h exposure at 20°C,
we found transcripts identified in previous studies
associated with recovery from indirect chill injury.
The brief exposure to warmth provided by FTR is
enough to resume production of developmental
transcription factors, as evidenced by transcripts as-
sociated with morphogenesis, and this effect persists
even after a return to cold exposure. Finally, we
identify the gene Samui, which seems to be a gene
associated with a tolerance of cold exposure across
studies.
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