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Advanced Persistent Threats (APTs) have recently emerged as a significant security challenge for a cyber-
physical system due to their stealthy, dynamic and adaptive nature. Proactive dynamic defenses provide
a strategic and holistic security mechanism to increase the costs of attacks and mitigate the risks. This
work proposes a dynamic game framework to model a long-term interaction between a stealthy attacker
and a proactive defender. The stealthy and deceptive behaviors are captured by the multi-stage game
of incomplete information, where each player has his own private information unknown to the other.
Both players act strategically according to their beliefs which are formed by the multi-stage observation
and learning. The perfect Bayesian Nash equilibrium provides a useful prediction of both players’ policies
because no players benefit from unilateral deviations from the equilibrium. We propose an iterative al-
gorithm to compute the perfect Bayesian Nash equilibrium and use the Tennessee Eastman process as a
benchmark case study. Our numerical experiment corroborates the analytical results and provides further
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insights into the design of proactive defense-in-depth strategies.
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1. Introduction

The recent advances in automation technologies, 5G networks,
and cloud services have accelerated the development of cyber-
physical systems (CPSs) by integrating computing and communi-
cation functionalities with components in the physical world. Cy-
ber integration increases the operational efficiency of the physical
system, yet it also creates additional security vulnerabilities. First,
the increased connectivity and openness have expanded the attack
surface and enabled attackers to leverage vulnerabilities from mul-
tiple system components to launch a sequence of stealthy attacks.
Second, the component heterogeneity, the functionality complex-
ity, and the dimensionality of cyber-physical systems have created
many zero-day vulnerabilities, which make the defense arduous
and costly.

Advanced Persistent Threats (APTs) are a class of emerging
threats for cyber-physical systems with the following distinct fea-
tures. Unlike opportunistic attackers who spray and pray, APTs
have specific targets and sufficient knowledge of the system archi-
tecture, valuable assets, and even defense strategies. Attackers can
tailor their strategies and invalidate cryptography, firewalls, and in-
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trusion detection systems. Unlike myopic attackers who smash and
grab, APTs are stealthy and can disguise themselves as legitimate
users for a long sojourn in the victim’s system.

A few security researchers and experts have proposed
APT models in which the entire intrusion process is divided
into a sequence of phases, such as Lockheed-Martin's Cyber
Kill Chain (see Hutchins et al., 2011), MITRE's ATT&CK (see
Corporation, 2019), the NSA/CSS technical cyber threat framework
(see Department of Homeland Security, 2018), and the ones sur-
veyed in Messaoud et al. (2016). Fig. 1 illustrates the multi-stage
structure of APTs. During the reconnaissance phase, a threat ac-
tor collects open-source or internal intelligence to identify valuable
targets. After the attacker obtains a private key and establishes a
foothold, he escalates privilege, propagates laterally in the cyber
network, and eventually either accesses confidential information
or inflicts physical damage. Static standalone defense on a physi-
cal system cannot deter attacks originated from a cyber network.

The multi-phase feature of APTs results in the concept of De-
fense in Depth (DiD), i.e., multi-stage cross-layer defense poli-
cies. A system defender should adopt defensive countermeasures
across the phases of APTs and holistically consider interconnec-
tions and interdependencies among these layers. To formally de-
scribe the interaction between an APT attacker and a defender
with the defense-in-depth strategy, we map the sequential phases
of APTs into a game of multiple stages. Each stage describes a lo-
cal interaction between the attacker and the defender where the
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Fig. 1. An illustrate example of the multi-stage structure of APTs. The multi-stage attack is composed of reconnaissance, initial compromise, privilege escalation, lateral
movement, and mission execution. An attack originated from an early-stage cyber network can lead to damage in a physical system.

outcome leads to the next stage of interactions. The goal of the at-
tacker is to stealthily reach the targeted physical or informational
assets while the defender aims to take defensive actions at multi-
ple phases to thwart the attack or reduce its impact.

Detecting APTs timely (i.e., before attackers have reached the fi-
nal stage) and effectively (i.e., with a low rate of false alarms and
missed detections) is still an open problem due to their stealthy
and deceptive characteristics. As reported in LLC (2018), US com-
panies in 2018 have taken an average of 197 and 69 days, respec-
tively, to detect and contain a data breach. Stuxnet-like APT attacks
can conceal themselves in a critical industrial system for years and
inconspicuously increase the failure probability of physical com-
ponents. Due to the insufficiency of timely and effective detection
systems for APTs, the defender remains uncertain about the user’s
type, i.e., either legitimate or adversarial, throughout stages. To
prepare for the potential APT attacks, the defender needs to adopt
precautions and proactive defense measures, which may also im-
pair the user experience and reduce the utility of a legitimate user.
Therefore, the defender needs to strategically balance the tradeoff
between security and usability when the user’s type remains pri-
vate.

In this work, we model the private information of the user’s
type as a random variable following the work of Harsanyi (1967).
Under the same defense action, the behavior and the utility of a
user depend on whether his type is legitimate or adversarial. To
make secure and usable decisions under incomplete information,
the defender forms a belief on the user’s type and updates the
belief via the Bayesian rule based on the information acquired at
each stage. For example, throughout the phases of an APT, detec-
tion systems can generate many alerts based on suspicious user
activities. Although these alerts do not directly reveal the user’s
type, a defender can use them to reduce the uncertainty on the
user’s type and better determine her defense-in-depth strategies
at multiple stages.

Defensive deception provides an alternative perspective to bring
uncertainty to the attacker and tilt the information asymmetry.
We classify a defender into different levels of sophistication based
on factors such as her level of security awareness, detection tech-
niques she have adopted, and the completeness of her virus signa-
ture database. A sophisticated defender has a higher success rate of
detecting adversarial behaviors. Thus, the behavior of an attacker
depends on the type of defender that he interacts with. For ex-
ample, the attacker may remain stealthy when he interacts with a
sophisticated defender but behaves more aggressively when inter-
acting with a primitive defender. As the attacker has incomplete
information regarding the defender’s type, he needs to form a be-
lief and continuously updates it based on his observation of the
defender’s actions. In this way, the attacker can optimally decide
whether, when, and to what extent, to behave aggressively or con-
servatively.

To this end, we also use a random variable to characterize the
private information of the defender’s type. As both players have
incomplete information regarding the other player’s type and they
make sequential decisions across multiple stages, we extend the
classical static Bayesian game to a multi-stage nonzero-sum game
with two-sided incomplete information. Both players act strategi-
cally according to their beliefs to maximize their utilities. The Per-
fect Bayesian Nash Equilibrium (PBNE) provides a useful predic-
tion of their policies at every stage for each type since no play-
ers can benefit from unilateral deviations at the equilibrium. Com-
puting the PBNE is challenging due to the coupling between the
forward belief update and the backward policy computation. We
first formulate a mathematical programming problem to compute
the equilibrium policy pair under a given belief for the one-stage
Bayesian game. For multi-stage Bayesian games, we compute the
equilibrium policy pair under a given sequence of beliefs by con-
structing a sequence of nested mathematical programming prob-
lems. Finally, we combine these programs with the Bayesian up-
date and propose an efficient algorithm to compute the PBNE.

The proposed modeling and computational methods are shown
to be capable of hardening the security of a broad class of su-
pervisory control and data acquisition (SCADA) systems. This work
leverages the Tennessee Eastman process as a case study of proac-
tive defense-in-depth strategies against the APT attackers who can
infiltrate into the cyber network through phishing emails, escalate
privileges through the process injection, tamper the sensor reading
through malicious encrypted communication, and eventually de-
crease the operational efficiency of the Tennessee Eastman process
without triggering the alarm. The dynamic game approach offers
a quantitative way to assess the risks and provides a systematic
and computational mechanism to develop proactive and strategic
defenses across multiple cyber and physical stages. Based on the
computation result of the case study, we obtain the following in-
sights to guide the design of practical defense systems.

+ Defense at the final stage is usually too late to be effective
when APTs have been well-prepared and ready to attack. We
need to take precautions and proactive responses in the cy-
ber stages when the attack remains “under the radar” so that
the attacker becomes less dominant when they reach the final
stage.

The online learning capability of the defender plays an impor-
tant role in detecting the adversarial deception and tilting the
information asymmetry. It increases the probability of identi-
fying the hidden information from the observable behaviors,
threatens the stealthy attacker to take more conservative ac-
tions, and hence reduces the attack loss.

Third, defensive deception techniques are shown to be effec-
tive to introduce uncertainty to attackers, increase their learn-
ing costs, and hence reduce the probability of successful at-
tacks. Those techniques may introduce a negative impact on
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legitimate users. However, a delicate balance between security
and usability can be achieved under proper designs.

1.1. Related work

One well-known industrial solution to APT defense is the
ATT&CK matrix (see Corporation, 2019). It illustrates disclosed
attack methods and possible detection and mitigation counter-
measures at different phases of APTs. However, as argued in
Dufresne (2018), it lacks a prioritization to list all possible attack
methods in one matrix. A lot of false alarms can arise as legiti-
mate users can also generate a majority of activities in the ATT&CK
matrix. Besides, despite a persistent update, the matrix is far from
complete and can lead to miss detection.

Many papers have attempted to deal with the above two chal-
lenges, i.e., false alarms and miss detection. To prevent security
specialists from overwhelming alarms, Marchetti et al. (2016) has
analyzed high volumes of network traffic to reveal weak signals
of suspect APT activities and ranked these signals based on the
computation of suspiciousness scores. To identify attacks that ex-
ploit zero-day vulnerabilities or other unknown attack techniques,
Friedberg et al. (2015) has managed to learn and maintain a white-
list of normal system behaviors and report all actions that are not
on the white-list. There is also a rich literature on detecting es-
sential components of an APT attack such as malicious PDF files in
phishing emails (see Nissim et al., 2015), malicious SSL certificate
during command and control communications (see Ghafir et al.,
2017), and data leakage at the final stage of the APT campaign (see
Sigholm and Bang, 2013). These works have focused on a static de-
tection of abnormal behaviors in one specific stage but had not
taken into account the correlation among multiple phases of APTs.
Ghafir et al. (2018) has managed to build a framework to correlate
alerts across multiple phases of APTs based on machine learning
techniques so that all those alerts can be attributed to a single APT
scenario. Ghafir et al. (2019) has constructed a correlation frame-
work to link elementary alerts to the same APT campaign and ap-
plied the hidden Markov model to determine the most likely se-
quence of APT stages.

An alternative perspective from the aforementioned APT detec-
tion frameworks is to address how to respond to and mitigate po-
tential attacks. Li et al. (2018) has captured the dynamic state evo-
lution through a network-based epidemic model and provided both
prevention and recovery strategies for defenders based on optimal
control approaches. Since APTs are controlled by human experts
and can act strategically, the defender’s response should adapt to
the potential change of APT behaviors. Thus, decision and game
theory becomes a natural quantitative framework to capture con-
straints on defense actions, attack consequences, and attackers’ in-
centives. Van Dijk et al. (2013) has proposed Fliplt game to model
the key leakage under APTs as a private takeover between the sys-
tem operator and the attacker. Many works have integrated Fliplt
with other components for the APT defense such as the signal-
ing game to defend cloud service (see Pawlick et al., 2018), an
additional player to model the insider threats (see Feng et al.,
2015), and a system of multiple nodes under limited resources
(see Zhang et al., 2015). The Fliplt has described a high-level ab-
straction of the attacker’s behavior to understand optimal timing
for resource allocations. However, for our purpose of developing
multi-stage defense policies, we need to provide a finer-grained
model that can capture the dynamic interactions between play-
ers of different types across multiple stages. Our game framework
models heterogeneous adversarial and defensive behaviors at mul-
tiple stages, allowing the prediction of attack moves and the esti-
mation of losses using the equilibrium analysis.

Other security game models such as Huang et al. (2017);
Yang et al. (2018); Zhu and Rass (2018) have provided dynamic risk

management frameworks that allow the defender to response and
repair effectively. In particular, to model the multi-stage structure
of APTs, Zhu and Rass (2018) has developed a sequence of hetero-
geneous game phases, i.e., a static Bayesian game for spear phish-
ing, a nested game for penetration, and a finite zero-sum game for
the final stage of physical-layer infrastructure protection. However,
most of these security game frameworks have assumed complete
information. Our framework explicitly models the incomplete in-
formation across the entire phases of APTs and introduces their
belief updates based on multi-stage information for making long-
term strategic decisions.

Cyber deception is an emerging research area. Games of in-
complete information are natural frameworks to model the un-
certainty and misinformation introduced by cyber deceptions.
Previous works mainly focus on adversarial deceptions where
the deceiver is the attacker. For example, strategic attackers in
Nguyen et al. (2019) manipulate the attack data to mislead the
defender in finitely repeated security games. A defender, on
the other hand, can also initiate defensive deception techniques
such as perturbations via external noises, obfuscations via reveal-
ing useless information, or honeypot deployments as shown in
Pawlick et al. (2017). Horak et al. (2017) proposes a framework to
engage with attackers strategically to deceive them against the at-
tack goal without their awareness. A honeypot which appears to
contain valuable information can lure attackers into isolation and
surveillance. La et al. (2016) has used a Bayesian game to model
deceptive attacks and defenses in a honeypot-enabled network
in the envisioned Internet of Things. Besides detection, a honey-
pot can also be used to obtain high-level indicators of compro-
mise under a proper engagement policy as shown in Huang and
Zhu (2019a) where several security metrics are investigated and
the optimal engagement policy is learned by reinforcement learn-
ing. A system can also disguise a real asset as a honeypot to evade
attacks as shown in Rowe et al. (2007). Our work considers a dy-
namic Bayesian game with double-sided incomplete information to
incorporate both adversarial and defensive deceptions.

The preliminary versions of this work (see Huang and Zhu,
2018; Huang and Zhu, 2019b) have considered a dynamic game
with one-sided incomplete information where attackers disguise
themselves as legitimate users. This work extends the framework
to a two-sided incomplete information structure where primitive
systems can also disguise themselves as sophisticated systems.
The new framework enables us to jointly investigate deceptions
adopted by both attackers and defenders, and strategically design
defensive deceptions to counter adversarial ones. We also develop
new methodologies to address the challenge of the coupled belief
update in a generalize setting without the previous assumption of
the beta-binomial conjugate pair. In the case study, we investigate
heterogeneous actions and cyber stages such as web phishing and
privilege escalation, whose utilities are no longer negligible. More-
over, we leverage the Tennessee Eastman process with new per-
formance metric and attack models to validate the efficacy of the
proposed proactive defense-in-depth strategies, the Bayesian learn-
ing, and the defensive deception.

1.2. Organization of the paper

We summarize notations, variables, and acronyms in Table. 1
for readers’ convenience. We use pronoun ‘he’ for the user and
‘she’ for the defender throughout this paper. The rest of the pa-
per is organized as follows. Section 2 introduces the multi-stage
game with incomplete information and three equilibrium concepts
are defined in Section 3. To compute these equilibria, we construct
constrained optimization problems and an iterative algorithm in
Section 4. A case study of Tennessee Eastman process under APTs
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Table 1
Summary of notations, variables, and acronyms.

General notation

Meaning

A:=B A is defined as B

Pr Probability

f: A—B A function or a mapping f from domain A to codomain B

Eg-alf(a)] Expectation of f{a) over random variable a whose distribution is A
R Set of real numbers

|A] The cardinality of set A

a~A Random variable a follows probability distribution A

1y Indicator function which equals one when x =y, and zero otherwise
{ay, -+, an} Set with n elements ay, ---, a,

B\A Set of elements in B but not in A

Variable Meaning

i, je{l, 2} Index for players in the game: i, j = 1 for the defender and i, j = 2 for the user
0; Set of all possible types of player ie{1, 2}

A(O;) Space of probability distributions over type set ©; of player ie {1, 2}
0;€0; Type of player ie{1, 2}

01 (resp. 6})

0} (resp. 65)

K

kefo, 1, -+, K}
koe{0, 1, ---, K}
k

The defender is sophisticated (resp. primitive)

The user is adversarial (resp. legitimate)

Total number of stages

Stage index

Index for the initial stage

Set of all possible actions of player ie{1, 2} at stage ke{0, 1, ---, K}

AI(Aﬁ‘) Space of probability distributions over the action set Af.‘

ak e A¥ Action of player ie{1, 2} at stage k<{0, 1, ---, K}

hk, HK Action history and the set of all possible action histories at stage ke {0, 1, ---, K}

xk, Xk State and the set of all possible states at stage k< {0, 1, ---, K}

fr State transition function at stage k, i.e., x**1 = fk(xk, ak, ak)

l,?‘,L’i< Available Information and set of all available information for player i at stage k

ai", ):i" Behavioral strategy and the set of all behavioral strategies for player i at stage k

ok (ak|Ik) Probability of player i taking action a¥ at stage k based on the available information I¥
K

o.l_*AkO:K (67K 1= gy
i i T

b1 1k s A(O))

B

JE(xk, ak, ak, 6;, 65, wk)

o Player i's behavioral strategies from stage ko to K

Player i’s behavioral strategies from stage ko to K at the equilibrium

Player i's belief on the other player j's type at stage k based on the available information
Probability of player j being type 6; when player i observes information ¥ at stage k
Player i's stage utility received at stage k when the state is x¥, player i takes action a¥,

player i's type is 6;, and the noise is wf‘

JE(xk ak, dk.6:.62)
koK ¢ koK koK
USH (g koK, oo, xta, )

Player i's expected stage utility received at stage k with the input of x¥, a‘f, a’z‘, 61,6,
Player i's expected cumulative utility received from stage ko to K when the initial state

is x%, his/her type is 6;, and the multi-stage strategies of player i are (rx."""(
VKK, 6,) Player i’s value function at state x* when his/her type is 0;
Acronym Meaning
APT(s) Advanced persistent threat(s)
SBNE Static Bayesian Nash equilibrium
DBNE Dynamic Bayesian Nash equilibrium
PBNE Perfect Bayesian Nash equilibrium

is presented in Section 5 with results in Section 6. Section 7 con-
cludes the paper.

2. Dynamic game modelling of APT attacks

There are two players in the game, player 1 is the user and
player 2 is the defender. The stealthy, persistent, and deceptive fea-
tures of APTs result in incomplete information of the user’s type
to the defender. We use a finite set ®, to accommodate all pos-
sible types of the user. For example, we consider a binary type
set for the case study in Sections 5 and 6 where the user’s type
6, is either adversarial 05 or legitimate 95. The APT attacker, i.e.,
the adversarial user, disguises himself as the legitimate user, thus
the defender does not know the type of the user. The set of the
user’s type can also be non-binary and incorporate different APT
groups when their attack tools and targeted assets are different
(see FireEye, 2017).

The Defender can also be classified into different levels of so-
phistication based on various factors such as her level of security
awareness, detection techniques she adopted, and the complete-
ness of her virus signature database. The discrete type 6; distin-
guishes defenders of different sophistication levels and all the pos-

sible type values constitute the defender’s type set ®,. For exam-
ple, in our case study, the defender’s type 6 is either sophisticated
9{* or primitive 9%. The defender can apply defensive deception
techniques and keep her type private to the user. We assume that
both players’ type sets are commonly known. Each player knows
his/her own type, yet not the other player’s type. Thus, each player
i should treat the other player’s type as a random variable with
an initial distribution b? and update the distribution to bi.‘ when
obtaining new information at each stage k. We present the above
belief update formally in Section 2.3.

2.1. Multi-stage transition

We formulate the interaction between the multi-stage APT at-
tack and the cross-stage proactive defense into K stages of sequen-
tial games with incomplete information, as shown in Fig. 2. At
each stage ke{0, 1, ---, K}, player i< {1, 2} takes an action a¥ A
from a finite and discrete set A;‘. An intrusion detection system
generates alerts based on the user’s actions. However, since le-
gitimate users can also trigger these alerts, each alert itself does
not reveal the user’s type. For example, an APT attacker uses the
Tor network connection for data exfiltration, yet a legitimate user
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Fig. 2. A block diagram of applying the defense-in-depth approach against multi-stage APT attacks. We denote the user, the defender, and the system states in red, blue,
and black, respectively. The defender interacts with the user from stage 0 to stage K in sequence where the output state of stage k — 1 becomes the input state of stage
k. At each stage k, the user observes the defender’s actions at previous stages, forms a belief on the defender’s type, and takes an action. At the same time, the defender
makes decisions based on the output of an imperfect detection system. The dotted line means that the observation is not in real time, i.e., both players can only observe the
previous-stage actions of the other player. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

can also use it legally for the traffic confidentiality as shown in
Milajerdi and Kharrazi (2015). Another example is that code obfus-
cation can be either used legitimately to prevent reverse engineer-
ing or illegally to conceal malicious JavaScript code from being rec-
ognized by signature-based detectors or human analysts as shown
in Nissim et al. (2015). We assume that the user can observe the
defender’s stage-k action at stage k + 1. The observation of the de-
fender’s action at a single stage also does not reveal the defender’s
type.

In this paper, each player obtains a one-stage de-
layed observation of the other player’s actions, i.e., at each
stage k, the action history available to both players is
he={af, .- a1 a, ... a1} e HR = T2, ]‘[E;;Af. Given his-
tory h¥ at the current stage k, players at stage k+ 1 obtain an
updated history h¥! = hk U {a¥, ak} after the observation of both
players’ actions at stage k. At each stage k, we further define a state
xk e Xk which summarizes information about both players’ actions
in previous stages so that the initial state xX° € X? and the history
at stage k uniquely determine x¥ through a known state transition
function f¥, ie, xk1 = fk(xk ak ak), Vk e {0,1,... K —1}. States
at different stages can have different meanings such as the recon-
naissance outcome, the user’s location, the privilege level, and the
sensor status.

2.2. Behavioral strategy

A defender should behave differently when interacting with ad-
versarial users and legitimate ones. The defensive measure should
also vary for attackers who adopt different code families and tools.
However, since the defender is uncertain about the user’s type
throughout the entire stages of games, she has to make judicious
decisions at each stage to balance usability versus security. The
user’s action should also adapt to the type of the defender. For ex-
ample, if the defender is primitive, an attacker prefers to take ag-
gressive adversarial actions to achieve a quicker and low-cost com-
promise. However, if the defender is sophisticated and can detect

the malware with better accuracy, an attacker has to take conser-
vative actions to remain stealthy. Since the proactive defense ac-
tions across the entire stages can affect legitimate users, they also
need to be designed to avoid collateral damage.

Thus, the decision-making problem of the defender or the user
boils down to the determination of a behavioral strategy ai" € Z!‘ :
Lk~ A(AK), ie., player i at each stage k needs to decide which
action to take or take an action with what probability based on
the information I{‘ € Lf.‘ available to him/her at stage k. We present
two different information structures in Section 2.3.1 and 2.3.2. The
strategy is called ‘behavioral’ as the strategy depends on the in-
formation available at the time the players make their decisions.
In this work, players are allowed to take mixed strategies, thus
the co-domain of the strategy function ol." is A(A{F), a probabil-
ity distribution over the action space A{.‘. With a slight abuse of
notation, we denote o(ak|I¥) as the probability of player i tak-
ing action a¥ € A¥ given the available information I¥ € L¥. The ac-
tual action of player i taken at stage k, i.e., af‘, is a realization
of the behavioral strategy oik. Note that the values of the other
player’s type ¢; and action az? are not observable for player i at
stage k, thus do not affect player i's behavioral strategy o, i.e.,
Pr(aé‘la’]f, 6;.1) = o (a¥|Ik). Therefore, 0% and ok are conditionally
independent, i.e., Pr(ak, az?|ll!<, l;‘) = ai"(af.‘|l!‘)a}<(a’j?|l;‘).

2.3. Belief and Bayesian update

To quantify the uncertainty of the other player’s type through-
out the entire stages, each player i forms a belief b:,‘ : Li.‘ >
A(®)), j #i. Likewise, b¥(0;]I¥) means that given information I¥
Lf at stage k, player i forms a belief that the other player j is of
type ;e ®; with probability b¥(6;|IX). At the initial stage k=0,
the only information available to player i is his/her own type, i.e.,
19 = 6;. We assume that player i has a prior belief distribution b?
based on the past experiences with the other player. If no pre-
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vious experiences are available to player i, player i can take the
uniform distribution as an unbiased prior belief. As each player i
obtains new information when arriving at the next stage, his or
her belief can be updated using the Bayesian rule. We present the
Bayesian update under two different information structures L{.‘ at
stage 0 <k <K in the following two subsections.

2.3.1. Timely observations
The most straightforward information structure is Lf.‘ =Hk x ©;,
i.e., the information available to player i at stage k is the action
history h* and player i’s own type 6;, which leads to the belief
update in (1).
b;‘“ (9]-|h" U {aﬁ‘, ag?}, 0;)
3 oi"(aﬂh",Gi)a}‘(aﬂh",Gj)bg‘(9j|h",9,»)
5,0, OF (@ 1hk, 6ok (ak|n¥, 6;)bk (G| hk. 6;)°
i,je{1,2},j#i. (1)
Here, player i updates the belief b;‘ based on the observation of
the action a:.‘,a’jf. When the denominator is 0, the history h**! is

not reachable from h¥, and the Bayesian update does not apply. In
this case, we let b¥1(6;|hk U {ak, aﬂf}, 6;) := bY(6;16)).

2.3.2. Markov belief

If the information available to player i at stage k is the
state value x¥ and player i's own type 6;, then the information
set is taken to be L¥ =Xk x ©;. With the Markov property that
Pr(xk+110;, xk, ... x1,x0,6;) = Pr(x+1|6;,xk,6;), the Bayesian up-
date between two consequent states is

Pl'(X’chl |9j, Xk, Hi)bf.‘(eﬂx", 9,)
ZéjegjPr(xk“l@_j,x",Gi)bf(éjlx"ﬁi)’ (2)

i,je{1,2},j#i.

With the conditional independence of o} and o,

Pr(xX*10;, %, 6) = )" of(df|x", 61)o5 (a5 |x*, 62),

{ak ak}eAk

b$<+1 (9j|Xk+l, 6) =

3)

where A := {ak € Ak X e AK|xk+1 = fk(xk ak, ak)} contains all the
action pairs that change the system state from x¥ to x¥+1. Equation
(3) shows that the Bayesian update in (2) can be obtained from
(1) by clustering all the action pairs in set A¥. Thus, the Markov be-
lief update (2) can also be regarded as an approximation of (1) us-
ing action aggregations. Unlike the history set H¥, the dimension
of the state set, |X¥|, does not grow with the number of stages.
Hence, the Markov approximation significantly reduces the mem-
ory and computational complexity. The following sections adopt
the Markov belief update.

2.4. Stage and cumulative utility

The player’s utility can vary under the same action taken by dif-
ferent types of users or defenders. For example, the remote access
from a legitimate teleworker brings a reward to the defender while
the one from an adversarial user inflicts a loss. Therefore, at each
stage k, player i's stage utility /¥ : Xk x Ak x Ak x ©1 x O, x R > R
can depend on both players’ types and actions, the current state
xkeXk and an external noise w e R with a known probability
density function wi". The noise term models unknown or uncon-
trolled factors that can affect the value of the stage utility. The ex-
istence of the external noise makes it impossible for player i, after
reaching stage k + 1, to infer the value of the other player’s type
0; based on the knowledge of the input parameters x",a’l‘,a’z‘ﬁi,
together with the output of the utility function ]Z‘ at stage k.

We denote the expected stage utility as J¥(x, ¥, d¥.6;.6,) :=
Ewl_cwmik[]z‘(x",a’f,a’é,@l,Qz,wff)],\?’x",a’f,a’z‘,elﬁz. Given the type
0;€®;, the initial state x¥o ¢ X0, and both players’ strategies
010 1= 1o} (a1, 6) ik, .. & € TTh_i, F from stage ko to K. we

can determine the expected cumulative utility Ul.kozK for player i,
ie.,

UikozK ( O_ikozK , ()‘;(“:K , Xko, 91’)
K
. kyk Ak Ak
= 3 Eg i abotat-otUF (X 0. 5. 601.62)]
k=kq
K
=Y > bk 0) Y ol(afIxk 6)
k=ko 0;€0; akeAk
’ k . .
° Z G]k(al;|X{79])]1 (xksa"fyag7 9]792)a J?él (4)
akeAk

3. PBNE and dynamic programming

The user and the defender use the Bayesian update to reduce
their uncertainties on the other player’s type. Since their actions
affect the belief update, both players at each stage should optimize
their expected cumulative utilities concerning the updated beliefs
at the future stages, which leads to the Perfect Bayesian Nash Equi-
librium (PBNE) in Definition 1.

Definition 1. Consider the two-person K-stage game with double-
sided incomplete information (i.e., each player’s type is not known
to the other player), a sequence of beliefs bi‘,‘v’k €{0,---,K}, an
expected cumulative utility U%K in (4), and a given scalar &> 0.
A sequence of strategies o e [T{_o =K is called e-dynamic
Bayesian Nash equilibrium for player i if condition (C2) is satisfied.
If condition (C1) is also satisfied, oi**O:K is further called e-perfect
Bayesian Nash equilibrium.

(C1) Belief consistency: Under strategy pair (%K, 05:0%), each

player’s belief bff at each stage k=0, --- , K satisfies (2).
(C2) Sequential rationality: For all given initial state xko e Xko at ev-
ery initial stage ko {0, ---, K},

ko:K *,ko:K #,ko:K ki
U (o0, 000 x50, 01) + &

K
> U{{:K(o‘lk":K, Z*,RO:K’ Xko, 91), vo.]kU:K c l_[ Ek;
k=0

ko:K #,ko:K s,ko:K Lk
U0 (0707, 000 X%, 0,) + &

K
- Uéc:l((o_l*,kozl( O_ZkO:K Xko 92) VO.ZkU:K c l_[Eg
k=0
When ¢ =0, the two e-equilibria are called Dynamic Bayesian
Nash Equilibrium (DBNE) and Perfect Bayesian Nash Equilibrium
(PBNE), respectively.

(5)

The belief consistency emphasizes that when strategic players
make long-term decisions, they have to consider the impact of
their actions on their opponent’s beliefs at future stages. The PBNE
is a refinement of the DBNE with the additional requirement of the
belief consistency property. When the horizon K =0, the multi-
stage game of incomplete information defined in Section 2 degen-
erates to a one-stage (static) Bayesian game with the one-stage
belief pairs (bX,b¥) and the solution concept of the DBNE/PBNE
degenerates to the Static Bayesian Nash Equilibrium (SBNE) in
Definition 2.

The sequential rationality property in (5) guarantees that uni-
lateral deviations from the equilibrium at any states do not ben-
efit the deviating player. Thus, the equilibrium strategy can be a
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reasonable prediction of both players’ multi-stage behaviors. DBNE
strategies have the property of strongly time consistency because
(5) holds for any possible initial states, even for states that are
not on the equilibrium path, ie., those states would not be vis-
ited under DBNE strategies. The strongly time consistency prop-
erty makes the DBNE adapt to unexpected changes. Solutions ob-
tained by dynamic programming naturally satisfy strongly time con-
sistency. Hence, in the following, we introduce algorithms based on
dynamic programming techniques.

Define the value Viko (xko, 0;) :=

Ul.koz'((a]*‘ko:'(,02*"‘0:'(,x"0,9,-) as the utility-to-go from any initial

function

stage ko {0, ---, K} under the DBNE strategy pair (al*’ko:K, az*’ko:K).

Then, at the final stage K, the value function for player i< {1, 2}
with type 0; at state xX is

VKK, 0;) = SUPyk ez By iy [JK(xK, ak dk., 6,,0,)].

Jaf~o al~o

J J
(6)
For any feasible sequence of belief pairs
(b5, bK). k=0,--- \[K—1, we have the following recursive sys-
tem equations for player i to find the equilibrium strategy pairs

(a]**", 02**") backwardly from stage K — 1 to the initial stage 0, i.e.,

Vke {0 K—1},Vije{1,2),j£i,
;.k[Vi"“ (ff(xk, ak, ab), 6))

Kook gk
ai~of.ak~0;

VKK, 6,) = sup Eq, s

okexk
+.]1k(xkva’]<aa,2{s 91702)]' (7)

If we assume a virtual termination value V*1 (fK(xK df. ). 6;) =
0, we can obtain (6) by letting stage k=K in (7). The second
term in (7) represents the immediate stage utility and the first
term represents the expected utility under the future state xk+1 =
fxk ak ak). ke {0,-- . K—1}. Since a¥ affects both terms, play-
ers should adopt a long-term perspective and avoid myopic behav-
iors to balance between the immediate utility and the expected
future utility.

4. Computational algorithms

In 4.1, we formulate a constrained optimization problem to
compute the SBNE and ViK for the one-stage game. In 4.2, we use
the proposed optimization problem as building blocks to compute
the DBNE and V,.", Vk e {0, --- ,K — 1}. Finally, we propose an itera-
tive algorithm to solve for the PBNE. Efficient algorithms to com-
pute the PBNE lay a solid foundation to quantify the risk of cyber-
physical attacks and guide the design of proactive defense-in-depth
strategies.

4.1. One-stage Bayesian game and SBNE

Since both players’ actions at the final stage k = K only affect
the immediate utility ]IK and there is no future state transition, we
can treat the final-stage game at each state xX ¢ XX as an equivalent
one-stage Bayesian game with the belief b{( and obtain the SBNE.

Definition 2. A pair of mixed-strategies (0" € =K, 05X ¢ £K) is
said to constitute a Static Bayesian Nash Equilibrium (SBNE) un-
der the given belief pair (b¥, bX) and the state xX e XX, if V0, € ©1,
92 S @2,

KK K 4K
B, b gkt K gy Ui (. ay, a3, 01.65)]
KK K 4K K K.
= E92~b’f,a’f~ol’<,a§~a§"<ul (x *al’a2’91v92)]vvol € X
KK K 4K
Eg, b8 at~orX ak~ayk U2 (X7, 07, 03, 61, 6,)]

> Eglwblz(’all(wa-{ﬂ’(_alz(wo-zl( U§ (xX, (111(7 ag, 01.62)1. VUZK € 25- (8)

In Theorem 1, we propose a constrained optimization program
CX to compute the SBNE. We suppress the superscript of K without
any ambiguity in one-stage games.

Theorem 1. A strategy pair (o] € X1,05 € X;) constitutes a SBNE
to the one-stage bi-matrix Bayesian game (J;, J,) under private type
0;€0;, Yie(1, 2}, belief b;, Vie {1, 2}, and a given state x, if and only
if the strategy pair is a solution to CK:

> a1 (@)s1(x.01) + ) ax(02)s2(x. 62)

6,0, 0,0,

[CX]: max
01,02,51,52

+ Z (241 (91 )E92~b1,a1~01,u2~(rz U1 (X’ ap, az, 01 s 92)]

610,
+ Y 2(02)Eg, by 0~01.0-0, L2 (X, 01, 02, 61, 6)]
6,€0,
S.t. (a) E01~b2.a1~a1 U2 (X, ay, dy, 91 . 92)] < -5 (X, 92), V@z, Vaz,
(b) Y oi(alx.61) =1,01(a11x,61) = 0, V6,
a;eh,

(©) Egyp, ay~0, L1 (X, A1, 02,01, 02)] < —s1(x,61), V0, Vay,
(d) Y 02(azlx.02) = 1,02(az|x. 62) = 0, V65

a,eAy

The dimensions of decision variables oq(ai|x, 61), V01 € ®¢, and
oy(azx, 65), VO, € ®,, are |A1] x|®1] and |A;| x |®,], respectively.
Besides, s1(x, 61), YO and s,(x, 6,), VO, are scalar decision variables
for each given 0;, ie{1, 2}. The non-decision variables o«1(61), Y61
and a5(05), YO,, can be any strictly positive and finite numbers. The
solution to CK exists and is achieved at the equality of constraints (a),
(C), ie., SE (X, 92) = 7V2 (X, 92), ST (X, 91) = 7Vl (X, 91 )

Proof. The finiteness and discreteness of the action and the type
spaces guarantee the existence of the SBNE in mixed strategies
as shown in Shoham and Leyton-Brown (2008), which further
guarantee that program CK has solutions. To show the equivalence
between the solution to CX and the SBNE, we first show that every
SBNE is a solution of CX, If (0] € 1,05 € %) is a SBNE pair, then
the quadruple o7 (61).05(02).55(x,0,) = -Vo(x,0,), 5% (x,07) =
-Vi(x,01),VY6; € ®;,Vie {1,2}, is feasible because it satisfies
constraints (a), (b), (c), (d). Constraints (a) and (c) imply a non-
positive objective function of CX. Since the value of the objective
function achieved under this quadruple is 0, this quadruple is also
optimal. Second, we show that o5 (61), 05 (6,). 85 (x, 62). 55 (x, 61).
the result of CX is a SBNE. The solution of CK should satisfy all the
constraints, i.e.,

Eg,~by.ay~07.ap~0, L2 (X, 01, 02,01, 02)] < =85 (X, 62), V0, Vo, € Xy,
E92Nb1-01’“01-(12"'02* U2 (X, a, dp, 9] s 92)] < —Sy{ (X, 9] ), V@] s VJ] € E] .
(9)

In particular, if we pick 0;(6;) = 07(6;),V6;, Vi e {1,2}, and com-
bine the fact that the optimal value is achieved at 0, the inequality
turns out to be an equality and equation (9) becomes (8), which
shows that (o} € X1, 05 € X3) is a SBNE. O

Theorem 1 focuses on the double-sided Bayesian game where
each player player i has a private type 6; € ®;. To accommodate the
one-sided Bayesian game where player i's type 6; € ®; is known by
both players and player j's type remains unknown to player i, we
can modify program CX by letting «;(#;)>0 and «;(6;) =0, V0; e
O\ {6}

4.2. Multi-stage Bayesian game and PBNE

From (7), we can see that at stages k <K, each player optimizes
the sum of the immediate utility J* and the utility-to-go V¥. Thus,
we can replace the original stage utility JK in program CK with V¥ +



8 L. Huang and Q. Zhu/Computers & Security 89 (2020) 101660

]i" in program C¥ to compute the DBNE in a multi-stage Bayesian
game.

Theorem 2. Given a sequence of beliefs b" for each player ie{1, 2} at
each stage k € {0,1,--- K — 1}, a strategy pair (001 o5 0KT)
constitutes a DBNE of the K-stage Bayesian game under double-sided
incomplete information with the expected cumulative utility UiO:K in
(4), if, and only if 0¥ o, sik(xk 6),s3¥(xk,0,) are the opti-
mal solutions to the following constrained optimization problem C*

for each ke {0,1,--- . K—1}:
[C¥]: _max Z > (@) {sf(x*, 6)
i beoy
+ Z b{(6;1x%,6;) > of (ak[xk,61) Y of(a5|x*, 6,)
0;€0; akeAk akeAk

UF(k, dk, ak. 6. 0,) + VE(FR (K, dk, ab). 6)])
st. (@) Y B5(611xk.60) > of(dk|xk 0y)

01€0, akeAk
K(xk, a¥, db, 61, 00) + VI (fR(xF, dk, db), 6,)]
< —sK(xk,6,), V0, € Oy, Vak € AL,
(b) D Bi(GaIx*.01) Y of (d5|xk. 6,)

0,€0, akeAk
Kk b, db, 01, 0,) + VET(fR (&K, ab, db), 61)]
< —sk(x¥,01), V0, € ©;,Vak e Ak,

Similarly, a1(61), a3(0,) can be any strictly positive and finite num-
bers, and (sk(x¥,0,), sk(x¥,6,)) is a sequence of scalar variables for
each x* e X, 6, ®;, i (1, 2}. The optimum exists and is achieved at
the equality of constraints (a), (b), i.e., s;"k(xk, 6;) = -V (xk. 6;),V6; e
O, Vie{1,2).

The proof is similar to the one for Theorem 1. The decision
variables o are of size |AX| x |X¥| x |©;|. By letting stage k =K
and ViK+1 =0, program CK for the static Bayesian game is a special
case of Ck for the multi-stage Bayesian game. We can solve pro-
gram Ck*+1 to obtain the DBNE strategy pair (o', 6X*1) and the
value of V"“ Then, we apply V"+l in program C" to obtain a DBNE
strategy pair (01,02) and the value of V" Thus, for any given
sequences of type belief pairs bi‘,Vl e {1, 2},Vk €{0,1,--- K}, we
can solve C* from k=K to k=0 recursively to obtain the DBNE
palr (O_*OK 1 *OK 1)

4.2.1. PBNE

Given a sequence of beliefs, we can obtain the corresponding
DBNE via C* in a backward fashion. However, given a sequence of
policies, both players forwardly update their beliefs at each stage
by (2). Thus, we need to find a consistent pair of belief and policy
sequences as required by the PBNE. As summarized in Algorithm 1,
we iteratively alternate between the forward belief update and the
backward policy computation to find the PBNE. We resort to &-
PBNE solutions when the existence of PBNE is not guaranteed.

Algorithm 1 provides a computational approach to find ¢-PBNE
with the following procedure. First, both players initialize their
beliefs b¥ for every state x* at stage ke{0, 1, ---, K}, accord-
ing to their types. Then, they compute the DBNE strategy pair
00K Vi e (1,2}, under the given belief sequence at each stage by
solving program C¥ from stage K to stage O in sequence. Next, they
update their beliefs at each stage according to the strategy pair
o;°%%=1 Vi e {1, 2}, via the Bayesian update (2). If the strategy pair
Gi*'O:Kq,Vi e {1, 2}, satisfies (5) under the updated belief, we find
the ¢-PBNE and terminate the iteration. Otherwise, we repeat the

Algorithm 1: Numerical solution of ¢-PBNE.

1 Initialization beliefs b¥ at each stage k € {0,1,--- K},
ITERNUM> 0, & > O.while the t <ITERNuM do

2 t:=t+1;

3 | for each xX e XX do

4 ‘ Compute SBNE strategy ai*'K and VX (xK, 6;) via CK.
5 end

6 for k <~ K—1to 0do

7 for each x* < X* do

8 ‘ Compute DBNE strategy oi**" and VK (x, 6;) via Ck.
9 end

10 end

1 for k <~ 0toK—1do

12 ‘ Update b* with 6% 1 via (2).

13 end

u | if 070K Vie (1,2}, satisfy (5) then

15 | Terminate

16 end

17 Output &-PBNE strategy pair (o;-%%~", ;%) and
consistent beliefs bi‘, Vke{0,---,K}.

backward policy computation in step two and the forward belief
update in step three.

5. Case study

The model presented in Section 2 can be applied to various
APT scenarios. To illustrate the framework, this section presents a
specific attack scenario where the attacker stealthily initiates in-
fection and escalates privileges in the cyber network, aiming to
launch attacks on the physical plant as shown in Fig. 3. Three ver-
tical columns in the left block illustrate the state transitions across
three stages: the initial compromise, the privilege escalation, and
the sensor compromise of a physical system. The red squares at
each column represent possible states at that stage. The right block
illustrates a simplified flow chart of the Tennessee Eastman Pro-
cess. We use the Tennessee Eastman process as a benchmark of
industrial control systems to show that attackers can strategically
compromise the SCADA system and decrease the operational effi-
ciency of a physical plant without triggering the alarm.

In this case study, we adopt the binary type space ®, = {95’, Hzg}
and ©; = {6}, 0} for the user and the defender, respectively. In
particular, 95 and Qég denote the adversarial and legitimate user,
respectively; 6{" and OlL denote the sophisticated and primitive de-
fender, respectively. The bi-matrices in Tables 2-4 represent both
players’ expected utilities at three stages, respectively. In these ma-
trices, the defender is the row player and the user is the column
player. Each entry of the matrix corresponds to players’ payoffs un-
der their action pairs, types, and the state. In particular, the two
numbers in the parenthesis before the semicolon are the payoffs
of the defender and the user, respectively, under type 6’5’, while
the parenthesis in after the semicolon presents the payoff of the
defender and the user, respectively, under type 92‘5.

5.1. Initial stage: Phishing emails

We use a binary set to represent whether the reconnaissance is
effectual X = 1 or not x0 = 0. Effectual reconnaissance collects es-
sential intelligence that can better support APTs for an initial entry
through phishing emails. To penalize the adversarial exploitation of
the open-source intelligence (OSINT) data, the defender can create
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Tennessee Eastman Challenge Process

Fig. 3. The diagram of the cyber state transition (denoted by the left block in orange) and the physical attack on Tennessee Eastman process via the compromise of the
SCADA system (denoted by the right block in blue). APTs can damage the normal industrial operation by falsifying controllers’ setpoints, tampering sensor readings, and
blocking communication channels to cause delays in either the control message or the sensing data. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 2

The expected utilities of the defender and the user at the initial stage, i.e., J{ and J9, respectively.

0265

Email employees

Email managers

Email avatars

No training
Train employees
Train managers

(—19,19):(0,19)
(=0, —10)5(=c, 19)

(=0, 19);(=c%, 19)

(=19.19);(0.19)
(=0, 19);(=c 19)
(=%, —10)5(=c, 19)

(0.r) )3(0.18 )
(=% mp (%19 )

(=% rp (=% 19 )

Table 3
The expected utilities of the defender and the user at the interme-
diate stage, i.e., JI and J}. respectively.

05:05 NoP Escalate privilege
Permit escalation (0,0)(0,0) (=}, r);(rl
Restrict escalation  (0,0);(0.0)  (r!, —r1);(=r}. —r})

avatars (fake personal profiles) on the social network or the com-
pany website as shown in Molok et al. (2010).

At the initial stage of interaction, a user can send emails with
non-executable attachments and shortened URLs to the accounts
of entry-level employees, managers, or avatars. These three action
options of the user are represented by ag =0,1,2, respectively.
Non-executable files such as PDF and MS Office are widely used
in organizations yet an APT attacker can exploit them to execute
malicious actions on the victim’s computer. The shortened URL is
created by legitimate service providers such as Google URL short-
ener yet can redirect to malicious links. The existing email secu-
rity mechanisms are not completely effective for identifying mali-
cious PDF files (see Nissim et al., 2015) and malicious links behind
shortened URLs (see Sahoo et al., 2017). As a supplement to techni-
cal countermeasures, security training should be emphasized to in-
crease employees’ security awareness and protect them from web
phishing. For example, after receiving suspicious links or attach-
ments with strange names at unexpected times, the entry-level
employee and the manager should be aware of the potential risk
and apply extra security measures such as a digital signature re-
quest from the sender before clicking the link or opening the at-
tachment. They should also be sufficiently alert and report imme-
diately if a PDF does not contain the information that it claims
to have. Then isolation can be applied to prevent the attacker
from the potential lateral movement. Since employees’ awareness
and alertness diminish over time, the security training needs to
be repeated at reasonable intervals as argued in Mitnick and Si-
mon (2011), which can be costly. With a limited budget, the de-
fender can choose to educate entry-level employees, manager-level

employees, or no training to avoid the prohibitive training cost
Y. These three action options of the defender are represented by
a? =1, 2,0, respectively. The utility matrix of the initial infection
is given in Table 2. If the user is legitimate, i.e., 6, = 95, then as
denoted after semicolon, he receives an immediate reward r? if
he successfully communicates with the employee or the manager
by email, but receives a substantial penalty rg_f < 0 if he emails
the avatars because he should not contact a non-existing person. If
the user is adversarial, i.e., 6, = 05, then as denoted before semi-
colon, he receives an immediate attack reward rg if the email re-
ceiver does not have proper security training, but an additional
attack cost 0 if the receiver has been trained properly. The ad-
versarial user receives a faked reward rgq £ 0 when contacting
the avatar, yet arrives at an unfavorable state at stage k=1 and
receives few rewards in the future stages. The training cost and
the attack cost are both different for the primitive and the so-
phisticated defender, i.e., ¢ := ¥ . Ty, o1y + g - 144, _on) and 0=
ro. 1, —o1y r9 - 1, oM} The sophisticated defender holds the se-
curity training with a higher frequency, which incurs a higher cost,
i.e., cg > ¢, but is also more effective in mitigating web phishing,

ie, rp > ré.

5.2. Intermediate stage: Privilege escalation

The state at the intermediate stage can be interpreted as the lo-
cation of the user where x! = 1 refers to the employee’s computer,
x! = 2 refers to the manager’s computer, and x! = 0 refers to the
quarantine area. After the initial access, the user operates within a
process of low privilege. To access certain resources, the user needs
to gain higher-level privileges. An attacker can utilize the process
injection to execute malicious code in the address space of a live
process and masquerade as legitimate programs to evade detection
as shown in Team (2017). A mitigation method for the defender is
to prevent certain endpoint behaviors that can occur during the
process injection. Table 3 presents this game of privilege escala-
tion.



10 L. Huang and Q. Zhu/Computers & Security 89 (2020) 101660

The user can choose to escalate his privileges, or choose ‘no op-
eration performed (NOP). The two action options are denoted by
a% =1 and a% = 0, respectively. The defender can choose to either
restrict or permit an escalation, which are denoted by a} =1 and
a% =0, respectively. If the legitimate user escalates his privilege
and the defender permits escalation, then both players obtain a
reward of r}. If the legitimate user escalates his privilege and the
defender restricts escalation, then the efficiency reduction brings a
loss of r} to both players. On the other hand, if the adversarial user
escalates his privilege and the defender permits escalation, the de-
fender receives a loss of r%. If the adversarial user escalates his
privilege and the defender restricts escalation, then the adversarial
user has to resort to other attack techniques which lead to a higher
rate of detection. Thus, the defender obtains a reward while the at-
tacker receives an additional cost. We assume that the reward and
the additional cost are both r,} if the defender is primitive, and r,l,
if the defender is sophisticated, i.e., r! =1} - g, oty + rl- 144, _on)-

5.3. Final stage: Sensor compromise

The state at the final stage represents four possible privilege
levels, denoted by x% = {0, 1, 2, 3}, respectively. The privilege level
affects the result of the physical attack at the final stage. The de-
fender’s and the user’s actions, and the state at the intermediate
stage determine the state at the final stage. For example, if the
user is at the quarantine area during the intermediate stage, then
he ends up with a level-zero privilege regardless of actions taken
by the defender and himself. Users who take control of the man-
ager’s computer at the intermediate stage can obtain a higher priv-
ilege level than those who start from the entry-level employee’s
computer, yet the degree of escalation is reduced if the defender
chooses to restrict escalation.

We modify the Simulink model in Bathelt et al. (2015) to quan-
tify the monetary loss of the Tennessee Eastman process under
sensor compromises. Our attack model of sensor compromise is
presented in Section 5.3.2. A new performance metric to quan-
tify the operational efficiency of the Tennessee Eastman process
is proposed in Section 5.3.1 and applied in the game matrix in
Section 5.3.3.

5.3.1. Performance metric

The Tennessee Eastman process involves two irreversible reac-
tions to produce two liquid (liq) products G, H from four gaseous
(g) reactants A, C, D, E as shown in the right block of Fig. 3. The
control objective is to maintain a desired production rate as well
as quality while stabilizing the whole system under the Gaussian
noise to avoid violating safety constraints such as a high reac-
tor pressure, a high reactor temperature, and a high/low separa-
tor/stripper liquid level. Previous studies on the security of the
Tennessee Eastman process have mostly focused on how an at-
tacker can cause the shortest shutdown time (see Krotofil and Car-
denas, 2013), or a serious violation of a setpoint, e.g., the reac-
tor pressure exceeds 3,000 kpa (see Cardenas et al., 2011). These
attacks successfully cause the shutdown of the plant and a few
days of shutdowns can incur a considerable financial loss. However,
the shutdown also discloses the attack and leads to an immediate
patch and a defense strategy update. Thus, it becomes harder for
the same kind of attacks to succeed after the plant recovers from
the shutdown.

In our APT scenario, the attacker aims to stealthily decrease the
operational efficiency of the plant, i.e., deviate the normal opera-
tion state of the plant without triggering the safety alarm or shut-
ting down the plant. By compromising the SCADA system and gen-
erating fraudulent sensor readings, the attacker can stealthily make
the plant operates at a non-optimal state with reduced utilities.

The following economic metrics affect the operational utility of the
Tennessee Eastman process:

» Hourly operating cost C, with the unit ($/h) is taken as the
sum of purge costs, product stream costs, compressor costs, and
stripper steam costs.

« Production rate R, with the unit (m3/h) is the volume of total
products per hour.

+ Quality of products Q, with the unit (G mole%), is the per-
centage of G among total products.

« P with the unit ($/m?3) is the price of product G.

We propose a new performance metric U, the per-hour util-
ity to quantify the operational efficiency of the Tennessee Eastman
process as follows:

UTE = Rp X Qp X PG — Co. (10)

5.3.2. Attack model

An attack model is characterized by two separate parts, infor-
mation and capacity. First, the information available to the attacker
such as readings of different sensors can affect the performance
of the attack differently. For example, observing the input rate of
the raw material in the Tennessee Eastman process is less bene-
ficial for the attacker than the direct measurements of Pg, Rp, Qp,
C, that affect the utility metric in (10). Second, attackers can have
different capacities in accessing and revising controllers and sen-
sors. An attacker may change the parameters of the proportional-
integral-derivative controller, directly falsify the controller output,
or indirectly deviate the setpoint by tampering, blocking or delay-
ing sensor readings.

In this experiment, we assume a reading manipulation of sen-
sor XMEAS(40) and XMEAS(17) in loop 8 and loop 13 of Tennessee
Eastman process (see Ricker, 1996), respectively. Sensor XMEAS(40)
measures the composition of component G and sensor XMEAS(17)
measures the stripper underflow. A higher privilege state x2 e {0,
1, 2, 3} means that the user can access more sensors for a longer
time, which results in a larger loss and thus a smaller utility of
r% (x2) to the defender if the user is adversarial. Fig.4 shows the
variation of Urg versus the simulation time under four different
privilege states. We use the time average of these utilities to ob-
tain the normal operational utility rﬁ and compromised utilities
r2(x2) under four different privilege states x? €{0, 1, 2, 3}. The at-
tacker compromises the sensor and generates fraudulent readings.
The fraudulent reading can be a constant, denoted by the blue line,
or a double of the real readings, denoted by the red or green lines.
The pink line represents a composition attack with a limited con-
trol time. Initially, the attacker manages to compromise both sen-
sors by doubling their readings. After the attacker loses access to
XMEAS(40) at the 6th h, the system is sufficiently resilient to re-
cover partially in about 16 h and achieve the same level of utility
as the single attack in green. When the attacker also loses access to
XMEAS(17) at the 36th h, the utility goes back to normal in about
13 h.

5.3.3. Utility matrix

Attacks against SCADA system can apply command injection at-
tacks to inject false control and compromise sensor readings as
shown in Morris and Gao (2013). Encryption can be introduced
to conceal these malicious commands. However, a legitimate user
may also encrypt his communication with the sensor to avoid
eavesdropping and enhance privacy.

Therefore, at the final stage, the user has two options, sends
commands to the sensor with or without encryption, which are
denoted by a2 =1 and a% = 0, respectively. The defender chooses
to apply either a complete or selective monitoring, denoted by
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Fig. 4. The economic impact of sensor compromise in the Tennessee Eastman process. The black line represents the utility of Tennessee Eastman process under the normal
operation while the other four lines represent the utility of Tennessee Eastman process under attacks with four possible privilege levels. We use the time average of these
utilities to obtain the normal operational utility r}l and compromised utilities rf (x2),Vx2 € {0, 1, 2, 3}, under four different states of privilege levels in Table 4.

Table 4
The expected utilities of the defender and the user at the final stage, i.e., J? and J2, respectively.

Unencrypted Command (UC)

Encrypted Command (EC)

02:05
Selective Monitoring (SM)
Complete Monitoring (CM)

(12,0);(r2.13/2)

(12 —c2,0);(2 — 2.12/2)

(r2(x%), 12 =12 (x2)); (12, 12)
(2 =, —r2);(r2 - c2,13)

a% =1and a% = 0, respectively. The complete monitoring stores all
sets of communication data and analyzes them elaborately to iden-
tify malicious commands despite encryption. The selective moni-
toring cannot identify malicious commands if they are encrypted.
The implementation of the complete monitoring incurs an addi-
tional cost ¢ compared to the selective one. The last-stage utility
matrix of both players is defined in Table 4. If the user is legiti-
mate, as denoted in blue, both the defender and the user can re-
ceive a reward of r* when the Tennessee Eastman process oper-
ates normally. Legitimate users further receive a utility reduction
of /2 for the potential privacy loss if they choose unencrypted
commands. For adversarial users, they send malicious commands
only when the communication is encrypted to evade detection.
Thus, if they choose not to encrypt the communication, they re-

ceive 0 utility and the defender receives a reward of r* for the

normal operation. However, if they choose to send encrypted ma-

licious commands, both players’ rewards depend on whether the

defender chooses the selective or complete monitoring. If the de-
fender chooses the selective monitoring, then the adversarial user
can successfully compromise the sensor, which results in a re-
duced utility of r% (x2). In the meantime, the attacker benefits from
the reward reduction of rZ —r2(x2). If the defender chooses the
complete monitoring, then the adversarial user suffers a loss of
r2 for being detected. The detection reward and the implementa-
tion cost for two types of defenders are r2,r4 and c?, cZ, respec-
tively. Let 12 :=r?. T, o1y + r2. 1(g, _gn) and i=cf 1y —oty +

2
% Vg, o1y
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Fig. 5. The SBNE strategy and the expected utility of the primitive defender and the user who is either legitimate or adversarial. The x-axis represents the probability of
the user being adversarial. The y-axis of the upper figure represents the probability of either the user taking action ‘selective monitoring (SM)" or the defender taking action

‘unencrypted command (UC)'.

6. Computation results

In this section, we apply the algorithms introduced in
Section 4 to compute both players’ strategies and utilities at the
equilibrium. We implement our algorithms in MATLAB and use
YALMIP (see Lofberg, 2004) as the interface to call external solvers
such as BARON (see Tawarmalani and Sahinidis, 2005) to solve
the optimization problems. We present elaborate results from the
concrete case study and provide meaningful insights of the proac-
tive cross-layer defense against multi-stage APT attacks that are
stealthy and deceptive.

For the static Bayesian game at the final stage in Section 6.1,
we focus on illustrating how two players’ private types affect their
policies and utilities under different information structures. We
further apply sensitivity analysis to show how the value of the
key parameter affects the defender’s and the attacker’s utilities. For
the multi-stage Bayesian game in 6.2, we focus on the dynamic of
the belief update and state transition under the interaction of the
stealthy attacker and the proactive defender. Moreover, we inves-
tigate how the adversarial and defensive deception, and how the
initial state can affect the stage utility and the cumulative utility
of the user and the defender.

6.1. Final stage and SBNE

Players’ beliefs affect their policies and expected utilities at the
final stage. We discuss three different scenarios as follows. In Fig 5
a, the defender does not know the user’s type. In Fig. 6, the user
does not know the defender’s type. In Fig. 5b, both the user and
the defender do not know the other’s type. In all three scenar-
ios, the x-axis represents the belief of either the user or the de-
fender. The y-axis of the upper figure represents the probability of
either the user taking action ‘selective monitoring (SM)' or the de-
fender taking action ‘unencrypted command (UC)'. Fig. 5a shows the
following trends as the user becomes more likely to be adversar-
ial. First, two black lines show that the expected utility of the de-
fender decreases and the defender is more inclined to apply action
‘complete monitoring’ after her belief exceeds a threshold. Second,
two red lines show that the adversarial user takes action ‘unen-
crpted command’ with a higher probability and only gains a reward
when the probability of adversarial users is sufficiently small. Thus,
we conclude that when the probability of the adversarial user in-

= Attacker === Primitive Defender === Sophisticated Defender
1 T T 7

0 . . | |
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X
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0

Fig. 6. The SBNE strategy and the expected utility of the adversarial user and the
defender who is either primitive or sophisticated. The defender knows that the user
is adversarial while the adversarial user only knows the probability of the defender
being primitive. The x-axis represents the probability of the defender being sophis-
ticated. The y-axis of the upper figure represents the probability of either the user
taking action ‘selective monitoring (SM)' or the defender taking action ‘unencrypted
command (UC)'.
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creases, the defender tends to invest more in cyber defense so that
the attacker behaves more conservatively and inflicts fewer losses.
Third, the two blue lines show that the legitimate user always
chooses ‘encrypt command’ and receives a constant utility, which
indicates that the proactive defense does not affect the behavior
and the utility of legitimate users at this stage.

Fig. 6 shows that the defender benefits from introducing defen-
sive deception. When the defender becomes more likely to a so-
phisticated one, both types of defenders can have a higher proba-
bility to apply the selective monitoring and save the extra surveil-
lance cost of the complete monitoring. The attacker with incom-
plete information has a threshold policy and switches to a lower
attacking probability after reaching the threshold of 0.5 as shown
in the black line. When the probability goes beyond the thresh-
old, the primitive defender can pretend to be a sophisticated one
and take action ‘selective monitoring’. Meanwhile, a sophisticated
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Fig. 7. Utilities of the primitive defender and the attacker versus

defender can reduce the security effort and take action ‘selective
monitoring’ with a higher probability since the attacker becomes

the value of r? under different states x? {0, 1, 2, 3}.
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more cautious in taking adversarial actions after identifying the B o
defender as more likely to be sophisticated. It is also observed that 05 L | |
the sophisticated defender receives a higher payoff before the at- _ J— B 22— 0
tacker’s belief reaches the 0.5 threshold. After the belief reaches e o0 wpen =L : ! : : : : ‘
the threshold, the attacker is threatened to take less aggressive ac- 2 10 0;1 02 0"3 014 0"5 . 06 0;7 0"8 09 !
tions, and both types of defenders share the same payoff. -g

Finally, we consider the double-sided incomplete information £ 05
where both players’ types are private information, and each player 3 i
only has the belief of the other player’s type. Compared with the < 00 01 02
defender in Fig. 5a who takes action ‘selective monitoring’ with a ug 10
probability less than 0.5 and receives a decreasing expected payoff, D
the defender in Fig. 5b can take ‘selective monitoring’ with a prob- @ 05
ability closed to 1 and receive a constant payoff in expectation af- '% 0
ter the user’s belief exceeds the threshold. Thus, the defender can 9 1‘{
spare defense efforts and mitigate risks by introducing uncertain- a
ties on her type as a countermeasure to the adversarial deception. 05F
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6.1.1. Sensitivity analysis

As shown in Fig. 7, if the value of the penalty rL2 is close to 0,
i.e,, the defense at the final stage is ineffective, then an arrival at
state x2 = 3, the highest privilege level can significantly increase
the attacker’s payoff and cause the most damage to the defender.
As more effective defensive methods are employed at the final
stage, i.e., the value of rL2 increases, the attacker becomes more
conservative and strategic in taking adversarial behaviors. Then,
the state with the highest privilege level may not be the most fa-
vorable state for the attacker.

6.2. Multi-stage and PBNE

We show in Fig. 8 that the Bayesian belief update leads to a
more accurate estimate of users’ types. Without the belief update,
the posterior belief is the same as the prior belief in red and is
used as the baseline. As the prior belief increases in the x-axis, the
posterior belief after the Bayesian update also increases in blue.
The blue line is in general above the red line, which means that
with the Bayesian update, the defender’s belief becomes closer to
the right type. Also, we find that the belief update is the most ef-
fective when an inaccurate prior belief is used as it corrects the
erroneous belief significantly.

In Fig. 9, we show that the proactive defense, i.e., defensive
methods in intermediate stages can affect the state transition and
reduce the probability of attackers reaching states that can result
in huge damage at the final stage. As the prior belief of the user
being adversarial increases, the attacker is more likely to arrive

Prior Belief of Adversarial User

Fig. 8. The defender’s prior and posterior beliefs of the user being adversarial.
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Fig. 10. The defender’s utility under deceived beliefs.

at state x2 =0 and x2 =1, and reduce the probability of visiting
x2 =2 and x2 = 3.

6.2.1. Adversarial and defensive deception

Fig. 10 investigates the adversarial deception where the attacker
takes full control of the defense system and manipulates the de-
fender’s belief. As shown in the figure, the defender’s utilities all
increase when the belief under the deception approaches the cor-
rect belief that the user is adversarial. Also, the increase is stair-
wise, i.e., the defender only alternates her policy when the ma-

330000

170000

150000
Ineffectual Reconnaissance

nipulated belief is beyond certain thresholds. Under the same ma-
nipulated belief, a sophisticated defender benefits no less than a
primitive one. The defender receives a lower payoff when the re-
connaissance provides effectual intelligence.

Incapable of revealing the adversarial deception completely, the
defender can alternatively introduce defensive deceptions, e.g., a
primitive defender can disguise himself as a sophisticated one to
confuse the attacker. Defensive deceptions introduce uncertainties
to attackers, increase their costs, and increase the defender’s util-
ity.

Fig. 11 investigates the defender’s and the attacker’s utilities
under three different scenarios. The complete information refers
to the scenario where both players know the other player’s type.
The deception with the H-type or the L-type means that the at-
tacker knows the defender’s type to be sophisticated or primitive,
respectively, yet the defender has no information about the user’s
type. The double-sided deception indicates that both players do
not know the other player’s type. The results from Fig. 11 are sum-
marized as follows. First, the sophisticated defender’s payoffs can
increase as much as 56% than those of the primitive defender. Also,
a prevention of effectual reconnaissance increases the defender’s
utility by as much as 41% and reduces the attacker’s utility by as
much as 38%. Second, the defender and the attacker receive the
highest and the lowest payoff, respectively, under the complete in-
formation. When the attacker introduces deceptions over his type,
the attacker’s utility increases and the defender’s utility decreases.
Third, when the defender adopts defensive deceptions to introduce
double-sided incomplete information, we find that the decrease of
the sophisticated defender’s utilities is reduced by at most 64%, i.e.,
changes from $55, 570 to $35, 570 when the reconnaissance is ef-
fectual. The double-sided incomplete information also brings lower
utilities to the attacker than the one-sided adversarial deception.
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Fig. 11. The cumulative utilities of the attacker and the defender under the complete information, the adversarial deception, and the defensive deception. In the legend, the
left three represent the utilities for a sophisticated defender and the right three represent the ones for a primitive defender.
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However, the defender’s utility under the double-sided deception
is still less than the complete information case, which concludes
that acquiring complete information of the adversarial user is the
most effective defense. However, if the complete information can-
not be obtained, the defender can mitigate her loss by introducing
defensive deceptions.

7. Discussions and conclusions

Advanced Persistent Threats (APTs) are emerging security chal-
lenges for cyber-physical systems as the attacker can stealthily en-
ter, persistently stay in, and strategically interact with the system.
In this work, we have developed a game-theoretic framework to
design proactive and cross-layer defenses for cyber-physical sys-
tems in a holistic manner. Dynamic games of incomplete infor-
mation have been used to capture the long-term interaction be-
tween users and defenders who have private information unknown
to the other player. Each player forms a belief on the unknowns
and uses the Bayesian update to learn the private information and
reduce uncertainty. The analysis of the Perfect Bayesian Nash Equi-
librium (PBNE) has provided the defender with an effective coun-
termeasure against the stealthy strategic attacks at multiple stages.
To compute the PBNE of the dynamic games, we have proposed
a nested algorithm that iteratively alternates between the forward
belief update and the backward policy computation. The algorithm
has been shown to quickly converge to the ¢-PBNE that yields a
consistent pair of beliefs and policies.

Using the Tennessee Eastman process as a case study of indus-
trial control systems, we have shown that the proactive multi-stage
defense in cyber networks can successfully mitigate the risk of
physical attacks without reducing the payoffs of legitimate users.
In particular, experiment results show that a sophisticated de-
fender receives a payoff up to 56% higher than a primitive defender
does. Also, it has been illustrated that by preventing effectual re-
connaissance, the defender increases her utility and reduces the at-
tacker’s utility by at most 41% and 38%, respectively. On one hand,
the attacker receives a higher payoff after introducing the adver-
sarial deception as it increases the defender’s uncertainties on the
user’s type. On the other hand, by creating uncertainties for attack-
ers, the defender can successfully threaten them to take more con-
servative behaviors and become less motivated to launch attacks.
It has been shown that the defender can significantly benefit from
the mitigation of attack losses when he adopts defensive decep-
tions.

The main challenge of our approach is to identify the utility
and feasible actions of defenders and users at each stage. One fu-
ture direction to reduce the complexity of the model description
is to develop mechanisms that can automate the synthesis of ver-
ifiably correct game-theoretic models. It would alleviate the work-
load of the system defender and operator. Nevertheless, game the-
ory provides a quantitative and explainable framework to design
the proactive defensive response under uncertainty compared to
rule-based and machine-learning-based defense methods, respec-
tively. Besides, the rule-based defense is static, thus an attack can
circumvent it through sufficient effort. Machine learning methods
require a lot of labeled data sets which may be hard to obtain in
the APT scenario. Second, we have proposed the belief to quantify
the uncertainty which results from players’ private types. The be-
lief is continuously updated to reduce uncertainties and provide a
probabilistic detection system as a byproduct of the APT response
design. Third, our approach enables the defender to evaluate the
multi-stage impact of her defense strategies to both legitimate
and adversarial users when adversarial and defensive deceptions
present at the same time. Based on the evaluation, defenders can
further find revised countermeasures and design new game rules
to achieve a better tradeoff between security and usability. Our

model can be broadly applied to scenarios in artificial intelligence,
economy, and social science where multi-stage interactions occur
between multiple agents with incomplete information. Multi-sided
non-binary types can be defined based on the scenario, and our
iteration algorithm of the forward belief update and the backward
policy computation can be extended for efficient computations of
the perfect Bayesian Nash equilibrium. The future work would ex-
tend the framework to an N-person game to characterize the si-
multaneous interactions among multiple users and model compo-
sition attacks. We would also consider scenarios where players’ ac-
tions and the system state are partially observable.
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