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a b s t r a c t 

Advanced Persistent Threats (APTs) have recently emerged as a significant security challenge for a cyber- 

physical system due to their stealthy, dynamic and adaptive nature. Proactive dynamic defenses provide 

a strategic and holistic security mechanism to increase the costs of attacks and mitigate the risks. This 

work proposes a dynamic game framework to model a long-term interaction between a stealthy attacker 

and a proactive defender. The stealthy and deceptive behaviors are captured by the multi-stage game 

of incomplete information, where each player has his own private information unknown to the other. 

Both players act strategically according to their beliefs which are formed by the multi-stage observation 

and learning. The perfect Bayesian Nash equilibrium provides a useful prediction of both players’ policies 

because no players benefit from unilateral deviations from the equilibrium. We propose an iterative al- 

gorithm to compute the perfect Bayesian Nash equilibrium and use the Tennessee Eastman process as a 

benchmark case study. Our numerical experiment corroborates the analytical results and provides further 

insights into the design of proactive defense-in-depth strategies. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The recent advances in automation technologies, 5G networks,

nd cloud services have accelerated the development of cyber-

hysical systems (CPSs) by integrating computing and communi-

ation functionalities with components in the physical world. Cy-

er integration increases the operational efficiency of the physical

ystem, yet it also creates additional security vulnerabilities. First,

he increased connectivity and openness have expanded the attack

urface and enabled attackers to leverage vulnerabilities from mul-

iple system components to launch a sequence of stealthy attacks.

econd, the component heterogeneity, the functionality complex-

ty, and the dimensionality of cyber-physical systems have created

any zero-day vulnerabilities, which make the defense arduous

nd costly. 

Advanced Persistent Threats (APTs) are a class of emerging

hreats for cyber-physical systems with the following distinct fea-

ures. Unlike opportunistic attackers who spray and pray, APTs

ave specific targets and sufficient knowledge of the system archi-

ecture, valuable assets, and even defense strategies. Attackers can

ailor their strategies and invalidate cryptography, firewalls, and in-
∗ Corresponding author. 
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rusion detection systems. Unlike myopic attackers who smash and

rab, APTs are stealthy and can disguise themselves as legitimate

sers for a long sojourn in the victim’s system. 

A few security researchers and experts have proposed

PT models in which the entire intrusion process is divided

nto a sequence of phases, such as Lockheed–Martin’s Cyber

ill Chain (see Hutchins et al., 2011 ), MITRE’s ATT&CK (see

orporation, 2019 ), the NSA/CSS technical cyber threat framework

see Department of Homeland Security, 2018 ), and the ones sur-

eyed in Messaoud et al. (2016) . Fig. 1 illustrates the multi-stage

tructure of APTs. During the reconnaissance phase, a threat ac-

or collects open-source or internal intelligence to identify valuable

argets. After the attacker obtains a private key and establishes a

oothold, he escalates privilege, propagates laterally in the cyber

etwork, and eventually either accesses confidential information

r inflicts physical damage. Static standalone defense on a physi-

al system cannot deter attacks originated from a cyber network. 

The multi-phase feature of APTs results in the concept of De-

ense in Depth (DiD), i.e., multi-stage cross-layer defense poli-

ies. A system defender should adopt defensive countermeasures

cross the phases of APTs and holistically consider interconnec-

ions and interdependencies among these layers. To formally de-

cribe the interaction between an APT attacker and a defender

ith the defense-in-depth strategy, we map the sequential phases

f APTs into a game of multiple stages. Each stage describes a lo-
al interaction between the attacker and the defender where the 

https://doi.org/10.1016/j.cose.2019.101660
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.101660&domain=pdf
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Fig. 1. An illustrate example of the multi-stage structure of APTs. The multi-stage attack is composed of reconnaissance, initial compromise, privilege escalation, lateral 

movement, and mission execution. An attack originated from an early-stage cyber network can lead to damage in a physical system. 
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outcome leads to the next stage of interactions. The goal of the at-

tacker is to stealthily reach the targeted physical or informational

assets while the defender aims to take defensive actions at multi-

ple phases to thwart the attack or reduce its impact. 

Detecting APTs timely (i.e., before attackers have reached the fi-

nal stage) and effectively (i.e., with a low rate of false alarms and

missed detections) is still an open problem due to their stealthy

and deceptive characteristics. As reported in LLC (2018) , US com-

panies in 2018 have taken an average of 197 and 69 days, respec-

tively, to detect and contain a data breach. Stuxnet-like APT attacks

can conceal themselves in a critical industrial system for years and

inconspicuously increase the failure probability of physical com-

ponents. Due to the insufficiency of timely and effective detection

systems for APTs, the defender remains uncertain about the user’s

type, i.e., either legitimate or adversarial, throughout stages. To

prepare for the potential APT attacks, the defender needs to adopt

precautions and proactive defense measures, which may also im-

pair the user experience and reduce the utility of a legitimate user.

Therefore, the defender needs to strategically balance the tradeoff

between security and usability when the user’s type remains pri-

vate. 

In this work, we model the private information of the user’s

type as a random variable following the work of Harsanyi (1967) .

Under the same defense action, the behavior and the utility of a

user depend on whether his type is legitimate or adversarial. To

make secure and usable decisions under incomplete information,

the defender forms a belief on the user’s type and updates the

belief via the Bayesian rule based on the information acquired at

each stage. For example, throughout the phases of an APT, detec-

tion systems can generate many alerts based on suspicious user

activities. Although these alerts do not directly reveal the user’s

type, a defender can use them to reduce the uncertainty on the

user’s type and better determine her defense-in-depth strategies

at multiple stages. 

Defensive deception provides an alternative perspective to bring

uncertainty to the attacker and tilt the information asymmetry.

We classify a defender into different levels of sophistication based

on factors such as her level of security awareness, detection tech-

niques she have adopted, and the completeness of her virus signa-

ture database. A sophisticated defender has a higher success rate of

detecting adversarial behaviors. Thus, the behavior of an attacker

depends on the type of defender that he interacts with. For ex-

ample, the attacker may remain stealthy when he interacts with a

sophisticated defender but behaves more aggressively when inter-

acting with a primitive defender. As the attacker has incomplete

information regarding the defender’s type, he needs to form a be-

lief and continuously updates it based on his observation of the

defender’s actions. In this way, the attacker can optimally decide

whether, when, and to what extent, to behave aggressively or con-

servatively. 

 

To this end, we also use a random variable to characterize the

rivate information of the defender’s type. As both players have

ncomplete information regarding the other player’s type and they

ake sequential decisions across multiple stages, we extend the

lassical static Bayesian game to a multi-stage nonzero-sum game

ith two-sided incomplete information. Both players act strategi-

ally according to their beliefs to maximize their utilities. The Per-

ect Bayesian Nash Equilibrium (PBNE) provides a useful predic-

ion of their policies at every stage for each type since no play-

rs can benefit from unilateral deviations at the equilibrium. Com-

uting the PBNE is challenging due to the coupling between the

orward belief update and the backward policy computation. We

rst formulate a mathematical programming problem to compute

he equilibrium policy pair under a given belief for the one-stage

ayesian game. For multi-stage Bayesian games, we compute the

quilibrium policy pair under a given sequence of beliefs by con-

tructing a sequence of nested mathematical programming prob-

ems. Finally, we combine these programs with the Bayesian up-

ate and propose an efficient algorithm to compute the PBNE. 

The proposed modeling and computational methods are shown

o be capable of hardening the security of a broad class of su-

ervisory control and data acquisition (SCADA) systems. This work

everages the Tennessee Eastman process as a case study of proac-

ive defense-in-depth strategies against the APT attackers who can

nfiltrate into the cyber network through phishing emails, escalate

rivileges through the process injection, tamper the sensor reading

hrough malicious encrypted communication, and eventually de-

rease the operational efficiency of the Tennessee Eastman process

ithout triggering the alarm. The dynamic game approach offers

 quantitative way to assess the risks and provides a systematic

nd computational mechanism to develop proactive and strategic

efenses across multiple cyber and physical stages. Based on the

omputation result of the case study, we obtain the following in-

ights to guide the design of practical defense systems. 

• Defense at the final stage is usually too late to be effective
when APTs have been well-prepared and ready to attack. We

need to take precautions and proactive responses in the cy-

ber stages when the attack remains “under the radar” so that

the attacker becomes less dominant when they reach the final

stage. 

• The online learning capability of the defender plays an impor-

tant role in detecting the adversarial deception and tilting the

information asymmetry. It increases the probability of identi-

fying the hidden information from the observable behaviors,

threatens the stealthy attacker to take more conservative ac-

tions, and hence reduces the attack loss. 

• Third, defensive deception techniques are shown to be effec-

tive to introduce uncertainty to attackers, increase their learn-

ing costs, and hence reduce the probability of successful at-

tacks. Those techniques may introduce a negative impact on
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legitimate users. However, a delicate balance between security

and usability can be achieved under proper designs. 

.1. Related work 

One well-known industrial solution to APT defense is the

TT&CK matrix (see Corporation, 2019 ). It illustrates disclosed

ttack methods and possible detection and mitigation counter-

easures at different phases of APTs. However, as argued in

ufresne (2018) , it lacks a prioritization to list all possible attack

ethods in one matrix. A lot of false alarms can arise as legiti-

ate users can also generate a majority of activities in the ATT&CK

atrix. Besides, despite a persistent update, the matrix is far from

omplete and can lead to miss detection. 

Many papers have attempted to deal with the above two chal-

enges, i.e., false alarms and miss detection. To prevent security

pecialists from overwhelming alarms, Marchetti et al. (2016) has

nalyzed high volumes of network traffic to reveal weak signals

f suspect APT activities and ranked these signals based on the

omputation of suspiciousness scores. To identify attacks that ex-

loit zero-day vulnerabilities or other unknown attack techniques,

riedberg et al. (2015) has managed to learn and maintain a white-

ist of normal system behaviors and report all actions that are not

n the white-list. There is also a rich literature on detecting es-

ential components of an APT attack such as malicious PDF files in

hishing emails (see Nissim et al., 2015 ), malicious SSL certificate

uring command and control communications (see Ghafir et al.,

017 ), and data leakage at the final stage of the APT campaign (see

igholm and Bang, 2013 ). These works have focused on a static de-

ection of abnormal behaviors in one specific stage but had not

aken into account the correlation among multiple phases of APTs.

hafir et al. (2018) has managed to build a framework to correlate

lerts across multiple phases of APTs based on machine learning

echniques so that all those alerts can be attributed to a single APT

cenario. Ghafir et al. (2019) has constructed a correlation frame-

ork to link elementary alerts to the same APT campaign and ap-

lied the hidden Markov model to determine the most likely se-

uence of APT stages. 

An alternative perspective from the aforementioned APT detec-

ion frameworks is to address how to respond to and mitigate po-

ential attacks. Li et al. (2018) has captured the dynamic state evo-

ution through a network-based epidemic model and provided both

revention and recovery strategies for defenders based on optimal

ontrol approaches. Since APTs are controlled by human experts

nd can act strategically, the defender’s response should adapt to

he potential change of APT behaviors. Thus, decision and game

heory becomes a natural quantitative framework to capture con-

traints on defense actions, attack consequences, and attackers’ in-

entives. Van Dijk et al. (2013) has proposed FlipIt game to model

he key leakage under APTs as a private takeover between the sys-

em operator and the attacker. Many works have integrated FlipIt

ith other components for the APT defense such as the signal-

ng game to defend cloud service (see Pawlick et al., 2018 ), an

dditional player to model the insider threats (see Feng et al.,

015 ), and a system of multiple nodes under limited resources

see Zhang et al., 2015 ). The FlipIt has described a high-level ab-

traction of the attacker’s behavior to understand optimal timing

or resource allocations. However, for our purpose of developing

ulti-stage defense policies, we need to provide a finer-grained

odel that can capture the dynamic interactions between play-

rs of different types across multiple stages. Our game framework

odels heterogeneous adversarial and defensive behaviors at mul-

iple stages, allowing the prediction of attack moves and the esti-

ation of losses using the equilibrium analysis. 

Other security game models such as Huang et al. (2017) ;

ang et al. (2018) ; Zhu and Rass (2018) have provided dynamic risk
anagement frameworks that allow the defender to response and

epair effectively. In particular, to model the multi-stage structure

f APTs, Zhu and Rass (2018) has developed a sequence of hetero-

eneous game phases, i.e., a static Bayesian game for spear phish-

ng, a nested game for penetration, and a finite zero-sum game for

he final stage of physical-layer infrastructure protection. However,

ost of these security game frameworks have assumed complete

nformation. Our framework explicitly models the incomplete in-

ormation across the entire phases of APTs and introduces their

elief updates based on multi-stage information for making long-

erm strategic decisions. 

Cyber deception is an emerging research area. Games of in-

omplete information are natural frameworks to model the un-

ertainty and misinformation introduced by cyber deceptions.

revious works mainly focus on adversarial deceptions where

he deceiver is the attacker. For example, strategic attackers in

guyen et al. (2019) manipulate the attack data to mislead the

efender in finitely repeated security games. A defender, on

he other hand, can also initiate defensive deception techniques

uch as perturbations via external noises, obfuscations via reveal-

ng useless information, or honeypot deployments as shown in

awlick et al. (2017) . Horák et al. (2017) proposes a framework to

ngage with attackers strategically to deceive them against the at-

ack goal without their awareness. A honeypot which appears to

ontain valuable information can lure attackers into isolation and

urveillance. La et al. (2016) has used a Bayesian game to model

eceptive attacks and defenses in a honeypot-enabled network

n the envisioned Internet of Things. Besides detection, a honey-

ot can also be used to obtain high-level indicators of compro-

ise under a proper engagement policy as shown in Huang and

hu (2019a) where several security metrics are investigated and

he optimal engagement policy is learned by reinforcement learn-

ng. A system can also disguise a real asset as a honeypot to evade

ttacks as shown in Rowe et al. (2007) . Our work considers a dy-

amic Bayesian game with double-sided incomplete information to

ncorporate both adversarial and defensive deceptions. 

The preliminary versions of this work (see Huang and Zhu,

018; Huang and Zhu, 2019b ) have considered a dynamic game

ith one-sided incomplete information where attackers disguise

hemselves as legitimate users. This work extends the framework

o a two-sided incomplete information structure where primitive

ystems can also disguise themselves as sophisticated systems.

he new framework enables us to jointly investigate deceptions

dopted by both attackers and defenders, and strategically design

efensive deceptions to counter adversarial ones. We also develop

ew methodologies to address the challenge of the coupled belief

pdate in a generalize setting without the previous assumption of

he beta-binomial conjugate pair. In the case study, we investigate

eterogeneous actions and cyber stages such as web phishing and

rivilege escalation, whose utilities are no longer negligible. More-

ver, we leverage the Tennessee Eastman process with new per-

ormance metric and attack models to validate the efficacy of the

roposed proactive defense-in-depth strategies, the Bayesian learn-

ng, and the defensive deception. 

.2. Organization of the paper 

We summarize notations, variables, and acronyms in Table. 1

or readers’ convenience. We use pronoun ‘he’ for the user and

she’ for the defender throughout this paper. The rest of the pa-

er is organized as follows. Section 2 introduces the multi-stage

ame with incomplete information and three equilibrium concepts

re defined in Section 3 . To compute these equilibria, we construct

onstrained optimization problems and an iterative algorithm in

ection 4 . A case study of Tennessee Eastman process under APTs
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Table 1 

Summary of notations, variables, and acronyms. 

General notation Meaning 

A := B A is defined as B 

Pr Probability 

f : A �→ B A function or a mapping f from domain A to codomain B 

E a ∼A [ f (a )] Expectation of f ( a ) over random variable a whose distribution is A 

R Set of real numbers 

| A | The cardinality of set A 

a ∼A Random variable a follows probability distribution A 

1 { x = y } Indicator function which equals one when x = y, and zero otherwise 

{ a 1 , ���, a n } Set with n elements a 1 , ���, a n 
B �A Set of elements in B but not in A 

Variable Meaning 

i, j ∈ {1, 2} Index for players in the game: i, j = 1 for the defender and i, j = 2 for the user 

�i Set of all possible types of player i ∈ {1, 2} 
�( �i ) Space of probability distributions over type set �i of player i ∈ {1, 2} 
θ i ∈ �i Type of player i ∈ {1, 2} 
θH 
1 (resp. θ

L 
1 ) The defender is sophisticated (resp. primitive) 

θ b 
2 (resp. θ

g 
2 
) The user is adversarial (resp. legitimate) 

K Total number of stages 

k ∈ {0, 1, ���, K } Stage index 

k 0 ∈ {0, 1, ���, K } Index for the initial stage 

A k 
i 

Set of all possible actions of player i ∈ {1, 2} at stage k ∈ {0, 1, ���, K } 
�(A k 

i 
) Space of probability distributions over the action set A k 

i 

a k 
i 

∈ A k 
i 

Action of player i ∈ {1, 2} at stage k ∈ {0, 1, ���, K } 
h k , H k Action history and the set of all possible action histories at stage k ∈ {0, 1, ���, K } 
x k , X k State and the set of all possible states at stage k ∈ {0, 1, ���, K } 
f k State transition function at stage k , i.e., x k +1 = f k (x k , a k 1 , a 

k 
2 ) 

l k 
i 
, L k 

i 
Available Information and set of all available information for player i at stage k 

σ k 
i 
, �k 

i 
Behavioral strategy and the set of all behavioral strategies for player i at stage k 

σ k 
i 
(a k 

i 
| l k 
i 
) Probability of player i taking action a k 

i 
at stage k based on the available information l k 

i 

σ k 0 : K 
i 

Player i ’s behavioral strategies from stage k 0 to K 

σ ∗,k 0 : K 
i 

( σ ∗,K 
i 

:= σ ∗,K: K 
i 

) Player i ’s behavioral strategies from stage k 0 to K at the equilibrium 

b k 
i 
: L k 

i 
�→ �(� j ) Player i ’s belief on the other player j ’s type at stage k based on the available information 

b k 
i 
(θ j | l k i ) Probability of player j being type θ j when player i observes information l k 

i 
at stage k 

J̄ k 
i 
(x k , a k 1 , a 

k 
2 , θ1 , θ2 , w 

k 
i 
) Player i ’s stage utility received at stage k when the state is x k , player i takes action a k 

i 
, 

player i ’s type is θ i , and the noise is w 
k 
i 

J k 
i 
(x k , a k 1 , a 

k 
2 , θ1 , θ2 ) Player i ’s expected stage utility received at stage k with the input of x k , a k 1 , a 

k 
2 , θ1 , θ2 

U k 0 : K 
i 

(σ k 0 : K 
i 

, σ k 0 : K 
j 

, x k 0 , θi ) Player i ’s expected cumulative utility received from stage k 0 to K when the initial state 

is x k 0 , his/her type is θ i , and the multi-stage strategies of player i are σ k 0 : K 
i 

V k 
i 
(x k , θi ) Player i ’s value function at state x k when his/her type is θ i 

Acronym Meaning 

APT(s) Advanced persistent threat(s) 

SBNE Static Bayesian Nash equilibrium 

DBNE Dynamic Bayesian Nash equilibrium 

PBNE Perfect Bayesian Nash equilibrium 
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is presented in Section 5 with results in Section 6 . Section 7 con-

cludes the paper. 

2. Dynamic game modelling of APT attacks 

There are two players in the game, player 1 is the user and

player 2 is the defender. The stealthy, persistent, and deceptive fea-

tures of APTs result in incomplete information of the user’s type

to the defender. We use a finite set �2 to accommodate all pos-

sible types of the user. For example, we consider a binary type

set for the case study in Sections 5 and 6 where the user’s type

θ2 is either adversarial θ
b 
2 

or legitimate θ g 
2 
. The APT attacker, i.e.,

the adversarial user, disguises himself as the legitimate user, thus

the defender does not know the type of the user. The set of the

user’s type can also be non-binary and incorporate different APT

groups when their attack tools and targeted assets are different

(see FireEye, 2017 ). 

The Defender can also be classified into different levels of so-

phistication based on various factors such as her level of security

awareness, detection techniques she adopted, and the complete-

ness of her virus signature database. The discrete type θ1 distin-

guishes defenders of different sophistication levels and all the pos-
ible type values constitute the defender’s type set �1 . For exam-

le, in our case study, the defender’s type θ1 is either sophisticated
H 
1 

or primitive θ L 
1 
. The defender can apply defensive deception

echniques and keep her type private to the user. We assume that

oth players’ type sets are commonly known. Each player knows

is/her own type, yet not the other player’s type. Thus, each player

 should treat the other player’s type as a random variable with

n initial distribution b 0 
i 
and update the distribution to b k 

i 
when

btaining new information at each stage k . We present the above

elief update formally in Section 2.3 . 

.1. Multi-stage transition 

We formulate the interaction between the multi-stage APT at-

ack and the cross-stage proactive defense into K stages of sequen-

ial games with incomplete information, as shown in Fig. 2 . At

ach stage k ∈ {0, 1, ���, K }, player i ∈ {1, 2} takes an action a k 
i 

∈ A k
i 

rom a finite and discrete set A k 
i 
. An intrusion detection system

enerates alerts based on the user’s actions. However, since le-

itimate users can also trigger these alerts, each alert itself does

ot reveal the user’s type. For example, an APT attacker uses the

or network connection for data exfiltration, yet a legitimate user
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Fig. 2. A block diagram of applying the defense-in-depth approach against multi-stage APT attacks. We denote the user, the defender, and the system states in red, blue, 

and black, respectively. The defender interacts with the user from stage 0 to stage K in sequence where the output state of stage k − 1 becomes the input state of stage 

k . At each stage k , the user observes the defender’s actions at previous stages, forms a belief on the defender’s type, and takes an action. At the same time, the defender 

makes decisions based on the output of an imperfect detection system. The dotted line means that the observation is not in real time, i.e., both players can only observe the 

previous-stage actions of the other player. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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an also use it legally for the traffic confidentiality as shown in

ilajerdi and Kharrazi (2015) . Another example is that code obfus-

ation can be either used legitimately to prevent reverse engineer-

ng or illegally to conceal malicious JavaScript code from being rec-

gnized by signature-based detectors or human analysts as shown

n Nissim et al. (2015) . We assume that the user can observe the

efender’s stage- k action at stage k + 1 . The observation of the de-

ender’s action at a single stage also does not reveal the defender’s

ype. 

In this paper, each player obtains a one-stage de-

ayed observation of the other player’s actions, i.e., at each

tage k , the action history available to both players is

 
k = { a 0 

1 
, · · · , a k −1 

1 
, a 0 

2 
, · · · , a k −1 

2 
} ∈ H 

k := 

∏ 2 
i =1 

∏ k −1 

k̄ =0 
A k̄ 
i 
. Given his-

ory h k at the current stage k , players at stage k + 1 obtain an

pdated history h k +1 = h k ∪ { a k 
1 
, a k 

2 
} after the observation of both

layers’ actions at stage k . At each stage k , we further define a state

 
k ∈ X k which summarizes information about both players’ actions

n previous stages so that the initial state x 0 ∈ X 0 and the history

t stage k uniquely determine x k through a known state transition

unction f k , i.e., x k +1 = f k (x k , a k 
1 
, a k 

2 
) , ∀ k ∈ { 0 , 1 , · · · , K − 1 } . States

t different stages can have different meanings such as the recon-

aissance outcome, the user’s location, the privilege level, and the

ensor status. 

.2. Behavioral strategy 

A defender should behave differently when interacting with ad-

ersarial users and legitimate ones. The defensive measure should

lso vary for attackers who adopt different code families and tools.

owever, since the defender is uncertain about the user’s type

hroughout the entire stages of games, she has to make judicious

ecisions at each stage to balance usability versus security. The

ser’s action should also adapt to the type of the defender. For ex-

mple, if the defender is primitive, an attacker prefers to take ag-

ressive adversarial actions to achieve a quicker and low-cost com-

romise. However, if the defender is sophisticated and can detect
he malware with better accuracy, an attacker has to take conser-

ative actions to remain stealthy. Since the proactive defense ac-

ions across the entire stages can affect legitimate users, they also

eed to be designed to avoid collateral damage. 

Thus, the decision-making problem of the defender or the user

oils down to the determination of a behavioral strategy σ k 
i 

∈ �k 
i 
:

 
k 
i 

�→ �(A k 
i 
) , i.e., player i at each stage k needs to decide which

ction to take or take an action with what probability based on

he information l k 
i 

∈ L k 
i 
available to him/her at stage k . We present

wo different information structures in Section 2.3.1 and 2.3.2 . The

trategy is called ‘behavioral’ as the strategy depends on the in-

ormation available at the time the players make their decisions.

n this work, players are allowed to take mixed strategies , thus

he co-domain of the strategy function σ k 
i 

is �(A k 
i 
) , a probabil-

ty distribution over the action space A k 
i 
. With a slight abuse of

otation, we denote σ k 
i 
(a k 

i 
| l k 
i 
) as the probability of player i tak-

ng action a k 
i 

∈ A k 
i 
given the available information l k 

i 
∈ L k 

i 
. The ac-

ual action of player i taken at stage k , i.e., a k 
i 
, is a realization

f the behavioral strategy σ k 
i 
. Note that the values of the other

layer’s type θ j and action a 
k 
j 
are not observable for player i at

tage k , thus do not affect player i ’s behavioral strategy σ k 
i 
, i.e.,

r (a k 
i 
| a k 

j 
, θ j , l 

k 
i 
) = σ k 

i 
(a k 

i 
| l k 
i 
) . Therefore, σ k 

1 
and σ k 

2 
are conditionally

ndependent, i.e., Pr (a k 
i 
, a k 

j 
| l k 
i 
, l k 

j 
) = σ k 

i 
(a k 

i 
| l k 
i 
) σ k 

j 
(a k 

j 
| l k 
j 
) . 

.3. Belief and Bayesian update 

To quantify the uncertainty of the other player’s type through-

ut the entire stages, each player i forms a belief b k 
i 
: L k 

i 
�→

(� j ) , j 	 = i . Likewise, b k 
i 
(θ j | l k i ) means that given information l k 

i 
∈

 
k 
i 
at stage k , player i forms a belief that the other player j is of

ype θ j ∈ �j with probability b k 
i 
(θ j | l k i ) . At the initial stage k = 0 ,

he only information available to player i is his/her own type, i.e.,

 
0 
i 

= θi . We assume that player i has a prior belief distribution b 0 
i 

ased on the past experiences with the other player. If no pre-
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e  
vious experiences are available to player i , player i can take the

uniform distribution as an unbiased prior belief. As each player i

obtains new information when arriving at the next stage, his or

her belief can be updated using the Bayesian rule. We present the

Bayesian update under two different information structures L k 
i 
at

stage 0 < k ≤K in the following two subsections. 

2.3.1. Timely observations 

The most straightforward information structure is L k 
i 

= H 
k × �i ,

i.e., the information available to player i at stage k is the action

history h k and player i ’s own type θ i , which leads to the belief

update in (1) . 

b k +1 
i 

(θ j | h k ∪ { a k i , a k j } , θi ) 

= 

σ k 
i 
(a k 

i 
| h k , θi ) σ k 

j 
(a k 

j 
| h k , θ j ) b 

k 
i 
(θ j | h k , θi ) 

∑ 

θ̄ j ∈ � j 
σ k 
i 
(a k 

i 
| h k , θi ) σ k 

j 
(a k 

j 
| h k , θ̄ j ) b 

k 
i 
( ̄θ j | h k , θi ) 

, 

i, j ∈ { 1 , 2 } , j 	 = i. (1)

Here, player i updates the belief b k 
i 
based on the observation of

the action a k 
i 
, a k 

j 
. When the denominator is 0, the history h k +1 is

not reachable from h k , and the Bayesian update does not apply. In

this case, we let b k +1 
i 

(θ j | h k ∪ { a k 
i 
, a k 

j 
} , θi ) := b 0 

i 
(θ j | θi ) . 

2.3.2. Markov belief 

If the information available to player i at stage k is the

state value x k and player i ’s own type θ i , then the information

set is taken to be L k 
i 

= X k × �i . With the Markov property that

Pr (x k +1 | θ j , x 
k , · · · , x 1 , x 0 , θi ) = Pr (x k +1 | θ j , x 

k , θi ) , the Bayesian up-
date between two consequent states is 

b k +1 
i 

(θ j | x k +1 , θi ) = 

Pr (x k +1 | θ j , x 
k , θi ) b 

k 
i 
(θ j | x k , θi ) 

∑ 

θ̄ j ∈ � j 
Pr ( x k +1 | ̄θ j , x k , θi ) b 

k 
i 
( ̄θ j | x k , θi ) 

, 

i, j ∈ { 1 , 2 } , j 	 = i. 

(2)

With the conditional independence of σ k 
1 
and σ k 

2 
, 

Pr (x k +1 | θ j , x 
k , θi ) = 

∑ 

{ a k 
1 
,a k 

2 
}∈ ̄A k 

σ k 
1 (a 

k 
1 | x k , θ1 ) σ k 

2 (a 
k 
2 | x k , θ2 ) , (3)

where Ā k := { a k 
1 

∈ A k 
1 
, a k 

2 
∈ A k 

2 
| x k +1 = f k (x k , a k 

1 
, a k 

2 
) } contains all the

action pairs that change the system state from x k to x k +1 . Equation

(3) shows that the Bayesian update in (2) can be obtained from

(1) by clustering all the action pairs in set Ā k . Thus, the Markov be-

lief update (2) can also be regarded as an approximation of (1) us-

ing action aggregations. Unlike the history set H 
k , the dimension

of the state set, | X k |, does not grow with the number of stages.

Hence, the Markov approximation significantly reduces the mem-

ory and computational complexity. The following sections adopt

the Markov belief update. 

2.4. Stage and cumulative utility 

The player’s utility can vary under the same action taken by dif-

ferent types of users or defenders. For example, the remote access

from a legitimate teleworker brings a reward to the defender while

the one from an adversarial user inflicts a loss. Therefore, at each

stage k , player i ’s stage utility J̄ k 
i 
: X k × A k 

1 
× A k 

2 
× �1 × �2 × R �→ R

can depend on both players’ types and actions, the current state

x k ∈ X k , and an external noise w 
k 
i 

∈ R with a known probability

density function � 
k 
i 
. The noise term models unknown or uncon-

trolled factors that can affect the value of the stage utility. The ex-

istence of the external noise makes it impossible for player i , after

reaching stage k + 1 , to infer the value of the other player’s type

θ j based on the knowledge of the input parameters x k , a k 
1 
, a k 

2 
, θi ,

together with the output of the utility function J̄ k 
i 
at stage k . 
We denote the expected stage utility as J k 
i 
(x k , a k 

1 
, a k 

2 
, θ1 , θ2 ) :=

 
w k 
i 
∼� 

k 
i 
[ ̄J k 
i 
(x k , a k 

1 
, a k 

2 
, θ1 , θ2 , w 

k 
i 
)] , ∀ x k , a k 

1 
, a k 

2 
, θ1 , θ2 . Given the type

i ∈ �i , the initial state x 
k 0 ∈ X k 0 , and both players’ strategies

k 0 : K 

i 
:= [ σ k 

i 
(a k 

i 
| x k , θi )] k = k 0 , ··· ,K ∈ 

∏ K 
k = k 0 �

k 
i 

from stage k 0 to K , we

an determine the expected cumulative utility U 

k 0 : K 

i 
for player i ,

.e., 

U 

k 0 : K 
i 

(σ k 0 : K 
i 

, σ k 0 : K 
j 

, x k 0 , θi ) 

:= 

K ∑ 

k = k 0 
E θ j ∼b k 

i 
,a k 

i 
∼σ k 

i 
,a k 

j 
∼σ k 

j 
[ J k i (x 

k , a k 1 , a 
k 
2 , θ1 , θ2 )] 

= 

K ∑ 

k = k 0 

∑ 

θ j ∈ � j 

b k i (θ j | x k , θi ) 
∑ 

a k 
i 
∈ A k 

i 

σ k 
i (a 

k 
i | x k , θi ) 

·
∑ 

a k 
j 
∈ A k 

j 

σ k 
j (a 

k 
j | x k , θ j ) J 

k 
i (x 

k , a k 1 , a 
k 
2 , θ1 , θ2 ) , j 	 = i. (4)

. PBNE and dynamic programming 

The user and the defender use the Bayesian update to reduce

heir uncertainties on the other player’s type. Since their actions

ffect the belief update, both players at each stage should optimize

heir expected cumulative utilities concerning the updated beliefs

t the future stages, which leads to the Perfect Bayesian Nash Equi-

ibrium (PBNE) in Definition 1 . 

efinition 1. Consider the two-person K -stage game with double-

ided incomplete information (i.e., each player’s type is not known

o the other player), a sequence of beliefs b k 
i 
, ∀ k ∈ { 0 , · · · , K} , an

xpected cumulative utility U 
0: K 
i 

in (4) , and a given scalar ε ≥0.

 sequence of strategies σ ∗, 0: K 
i 

∈ 

∏ K 
k =0 �

k 
i 

is called ε-dynamic

ayesian Nash equilibrium for player i if condition (C2) is satisfied.

f condition (C1) is also satisfied, σ ∗, 0: K 
i 

is further called ε-perfect
ayesian Nash equilibrium. 

1) Belief consistency: Under strategy pair (σ ∗, 0: K 
1 

, σ ∗, 0: K 
2 

) , each

player’s belief b k 
i 
at each stage k = 0 , · · · , K satisfies (2) . 

2) Sequential rationality: For all given initial state x k 0 ∈ X k 0 at ev-

ery initial stage k 0 ∈ {0, ���, K }, 

U 

k 0 : K 
1 

(σ ∗,k 0 : K 
1 

, σ ∗,k 0 : K 
2 

, x k 0 , θ1 ) + ε 

≥ U 
k : K 
1 (σ k 0 : K 

1 
, σ ∗,k 0 : K 

2 
, x k 0 , θ1 ) , ∀ σ k 0 : K 

1 
∈ 

K ∏ 

k =0 

�k 
1 ;

U 

k 0 : K 
2 

(σ ∗,k 0 : K 
1 

, σ ∗,k 0 : K 
2 

, x k 0 , θ2 ) + ε 

≥ U 
k : K 
2 (σ ∗,k 0 : K 

1 
, σ k 0 : K 

2 
, x k 0 , θ2 ) , ∀ σ k 0 : K 

2 
∈ 

K ∏ 

k =0 

�k 
2 . (5)

When ε = 0 , the two ε-equilibria are called Dynamic Bayesian

ash Equilibrium (DBNE) and Perfect Bayesian Nash Equilibrium

PBNE), respectively. 

The belief consistency emphasizes that when strategic players

ake long-term decisions, they have to consider the impact of

heir actions on their opponent’s beliefs at future stages. The PBNE

s a refinement of the DBNE with the additional requirement of the

elief consistency property. When the horizon K = 0 , the multi-

tage game of incomplete information defined in Section 2 degen-

rates to a one-stage (static) Bayesian game with the one-stage

elief pairs (b K 
1 
, b K 

2 
) and the solution concept of the DBNE/PBNE

egenerates to the Static Bayesian Nash Equilibrium (SBNE) in

efinition 2 . 

The sequential rationality property in (5) guarantees that uni-

ateral deviations from the equilibrium at any states do not ben-

fit the deviating player. Thus, the equilibrium strategy can be a
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easonable prediction of both players’ multi-stage behaviors. DBNE

trategies have the property of strongly time consistency because

5) holds for any possible initial states, even for states that are

ot on the equilibrium path, i.e., those states would not be vis-

ted under DBNE strategies. The strongly time consistency prop-

rty makes the DBNE adapt to unexpected changes. Solutions ob-

ained by dynamic programming naturally satisfy strongly time con-

istency . Hence, in the following, we introduce algorithms based on

ynamic programming techniques. 

Define the value function V 
k 0 
i 

(x k 0 , θi ) :=
 

k 0 : K 

i 
(σ

∗,k 0 : K 

1 
, σ

∗,k 0 : K 

2 
, x k 0 , θi ) as the utility-to-go from any initial

tage k 0 ∈ {0, ���, K } under the DBNE strategy pair (σ
∗,k 0 : K 

1 
, σ

∗,k 0 : K 

2 
) .

hen, at the final stage K , the value function for player i ∈ {1, 2}

ith type θ i at state x 
K is 

 
K 
i 
(x K , θi ) = sup σ K 

i 
∈ �K 

i 
E θ j ∼b K 

i 
,a K 

i 
∼σ K 

i 
,a K 

j 
∼σ ∗,K 

j 
[ J K 
i 
(x K , a K 1 , a 

K 
2 , θ1 , θ2 )] . 

(6) 

For any feasible sequence of belief pairs

(b k 
1 
, b k 

2 
) , k = 0 , · · · , K − 1 , we have the following recursive sys-

em equations for player i to find the equilibrium strategy pairs

(σ ∗,k 
1 

, σ ∗,k 
2 

) backwardly from stage K − 1 to the initial stage 0, i.e.,

 k ∈ { 0 , · · · , K − 1 } , ∀ i, j ∈ { 1 , 2 } , j 	 = i, 

 
k 
i (x 

k , θi ) = sup 
σ k 
i 
∈ �k 

i 

E θ j ∼b k 
i 
,a k 

i 
∼σ k 

i 
,a k 

j 
∼σ ∗,k 

j 

[ V k +1 
i 

( f k (x k , a k 1 , a 
k 
2 ) , θi ) 

+ J k i (x 
k , a k 1 , a 

k 
2 , θ1 , θ2 )] . (7) 

f we assume a virtual termination value V K+1 
i 

( f K (x K , a K 
1 
, a K 

2 
) , θi ) ≡

 , we can obtain (6) by letting stage k = K in (7) . The second

erm in (7) represents the immediate stage utility and the first

erm represents the expected utility under the future state x k +1 =
f k (x k , a k 

1 
, a k 

2 
) , k ∈ { 0 , · · · , K − 1 } . Since a k 

i 
affects both terms, play-

rs should adopt a long-term perspective and avoid myopic behav-

ors to balance between the immediate utility and the expected

uture utility. 

. Computational algorithms 

In 4.1 , we formulate a constrained optimization problem to

ompute the SBNE and V K 
i 

for the one-stage game. In 4.2 , we use

he proposed optimization problem as building blocks to compute

he DBNE and V k 
i 
, ∀ k ∈ { 0 , · · · , K − 1 } . Finally, we propose an itera-

ive algorithm to solve for the PBNE. Efficient algorithms to com-

ute the PBNE lay a solid foundation to quantify the risk of cyber-

hysical attacks and guide the design of proactive defense-in-depth

trategies. 

.1. One-stage Bayesian game and SBNE 

Since both players’ actions at the final stage k = K only affect

he immediate utility J K 
i 

and there is no future state transition, we

an treat the final-stage game at each state x K ∈ X K as an equivalent

ne-stage Bayesian game with the belief b K 
i 
and obtain the SBNE. 

efinition 2. A pair of mixed-strategies (σ ∗,K 
1 

∈ �K 
1 
, σ ∗,K 

2 
∈ �K 

2 
) is

aid to constitute a Static Bayesian Nash Equilibrium (SBNE) un-

er the given belief pair (b K 1 , b 
K 
2 ) and the state x 

K ∈ X K , if ∀ θ1 ∈ �1 ,

2 ∈ �2 , 

E θ2 ∼b K 
1 
,a K 

1 
∼σ ∗,K 

1 
,a K 

2 
∼σ ∗,K 

2 
[ J K 1 (x 

K , a K 1 , a 
K 
2 , θ1 , θ2 )] 

≥ E θ2 ∼b K 
1 
,a K 

1 
∼σ K 

1 
,a K 

2 
∼σ ∗,K 

2 
[ J K 1 (x 

K , a K 1 , a 
K 
2 , θ1 , θ2 )] , ∀ σ K 

1 ∈ �K 
1 ;

E θ1 ∼b K 
2 
,a K 

1 
∼σ ∗,K 

1 
,a K 

2 
∼σ ∗,K 

2 
[ J K 2 (x 

K , a K 1 , a 
K 
2 , θ1 , θ2 )] 

≥ E θ1 ∼b K ,a K ∼σ ∗,K ,a K ∼σ K [ J 
K 
2 (x 

K , a K 1 , a 
K 
2 , θ1 , θ2 )] , ∀ σ K 

2 ∈ �K 
2 . (8) 
2 1 1 2 2 
In Theorem 1 , we propose a constrained optimization program

 
K to compute the SBNE. We suppress the superscript of K without

ny ambiguity in one-stage games. 

heorem 1. A strategy pair (σ ∗
1 

∈ �1 , σ
∗
2 

∈ �2 ) constitutes a SBNE

o the one-stage bi-matrix Bayesian game ( J 1 , J 2 ) under private type

i ∈ �i , ∀ i ∈ {1, 2}, belief b i , ∀ i ∈ {1, 2}, and a given state x, if and only

f the strategy pair is a solution to C K : 

 C K ] : max 
σ1 ,σ2 ,s 1 ,s 2 

∑ 

θ1 ∈ �1 

α1 (θ1 ) s 1 (x, θ1 ) + 

∑ 

θ2 ∈ �2 

α2 (θ2 ) s 2 (x, θ2 ) 

+ 

∑ 

θ1 ∈ �1 

α1 (θ1 ) E θ2 ∼b 1 ,a 1 ∼σ1 ,a 2 ∼σ2 
[ J 1 (x, a 1 , a 2 , θ1 , θ2 )] 

+ 

∑ 

θ2 ∈ �2 

α2 (θ2 ) E θ1 ∼b 2 ,a 1 ∼σ1 ,a 2 ∼σ2 
[ J 2 (x, a 1 , a 2 , θ1 , θ2 )] 

s.t. (a ) E θ1 ∼b 2 ,a 1 ∼σ1 
[ J 2 (x, a 1 , a 2 , θ1 , θ2 )] ≤ −s 2 (x, θ2 ) , ∀ θ2 , ∀ a 2 , 

(b) 
∑ 

a 1 ∈ A 1 
σ1 (a 1 | x, θ1 ) = 1 , σ1 (a 1 | x, θ1 ) ≥ 0 , ∀ θ1 , 

(c) E θ2 ∼b 1 ,a 2 ∼σ2 
[ J 1 (x, a 1 , a 2 , θ1 , θ2 )] ≤ −s 1 (x, θ1 ) , ∀ θ1 , ∀ a 1 , 

(d) 
∑ 

a 2 ∈ A 2 
σ2 (a 2 | x, θ2 ) = 1 , σ2 (a 2 | x, θ2 ) ≥ 0 , ∀ θ2 . 

he dimensions of decision variables σ 1 ( a 1 | x, θ1 ), ∀ θ1 ∈ �1 , and

2 ( a 2 | x, θ2 ), ∀ θ2 ∈ �2 , are | A 1 | × | �1 | and | A 2 | × | �2 |, respectively.

esides, s 1 ( x, θ1 ), ∀ θ1 and s 2 ( x, θ2 ), ∀ θ2 are scalar decision variables

or each given θ i , i ∈ {1, 2} . The non-decision variables α1 ( θ1 ), ∀ θ1 

nd α2 ( θ2 ), ∀ θ2 , can be any strictly positive and finite numbers. The

olution to C K exists and is achieved at the equality of constraints ( a ),

 c ), i.e., s ∗
2 
(x, θ2 ) = −V 2 (x, θ2 ) , s 

∗
1 
(x, θ1 ) = −V 1 (x, θ1 ) . 

roof. The finiteness and discreteness of the action and the type

paces guarantee the existence of the SBNE in mixed strategies

s shown in Shoham and Leyton-Brown (2008) , which further

uarantee that program C K has solutions. To show the equivalence

etween the solution to C K and the SBNE, we first show that every

BNE is a solution of C K . If (σ ∗
1 

∈ �1 , σ
∗
2 

∈ �2 ) is a SBNE pair, then

he quadruple σ ∗
1 
(θ1 ) , σ

∗
2 
(θ2 ) , s 

∗
2 
(x, θ2 ) = −V 2 (x, θ2 ) , s 

∗
1 
(x, θ1 ) =

V 1 (x, θ1 ) , ∀ θi ∈ �i , ∀ i ∈ { 1 , 2 } , is feasible because it satisfies

onstraints ( a ), ( b ), ( c ), ( d ). Constraints ( a ) and ( c ) imply a non-

ositive objective function of C K . Since the value of the objective

unction achieved under this quadruple is 0, this quadruple is also

ptimal. Second, we show that σ ∗
1 
(θ1 ) , σ

∗
2 
(θ2 ) , s 

∗
2 
(x, θ2 ) , s 

∗
1 
(x, θ1 ) ,

he result of C K is a SBNE. The solution of C K should satisfy all the

onstraints, i.e., 

 θ1 ∼b 2 ,a 1 ∼σ ∗
1 
,a 2 ∼σ2 

[ J 2 (x, a 1 , a 2 , θ1 , θ2 )] ≤ −s ∗2 (x, θ2 ) , ∀ θ2 , ∀ σ2 ∈ �2 , 

 θ2 ∼b 1 ,a 1 ∼σ1 ,a 2 ∼σ ∗
2 
[ J 2 (x, a 1 , a 2 , θ1 , θ2 )] ≤ −s ∗1 (x, θ1 ) , ∀ θ1 , ∀ σ1 ∈ �1 . 

(9) 

n particular, if we pick σi (θi ) = σ ∗
i 
(θi ) , ∀ θi , ∀ i ∈ { 1 , 2 } , and com-

ine the fact that the optimal value is achieved at 0, the inequality

urns out to be an equality and equation (9) becomes (8) , which

hows that (σ ∗
1 

∈ �1 , σ
∗
2 

∈ �2 ) is a SBNE. �

Theorem 1 focuses on the double-sided Bayesian game where

ach player player i has a private type θ i ∈ �i . To accommodate the

ne-sided Bayesian game where player i ’s type θ i ∈ �i is known by

oth players and player j ’s type remains unknown to player i , we

an modify program C K by letting αi ( θ i ) > 0 and αi ( ̃  θi ) = 0 , ∀ ̃
 θi ∈

i \ { θi } . 
.2. Multi-stage Bayesian game and PBNE 

From (7) , we can see that at stages k < K , each player optimizes

he sum of the immediate utility J k 
i 
and the utility-to-go V k 

i 
. Thus,

e can replace the original stage utility J K 
i 
in program C K with V k 

i 
+
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Algorithm 1: Numerical solution of ε-PBNE. 

1 Initialization beliefs b k 
i 
at each stage k ∈ { 0 , 1 , · · · , K} , 

IterNum > 0 , ε ≥ 0 . while the t < IterNum do 

2 t := t + 1 ; 

3 for each x K ∈ X K do 

4 Compute SBNE strategy σ ∗,K 
i 

and V K 
i 

(x K , θi ) via C 
K . 

5 end 

6 for k ← K − 1 to 0 do 

7 for each x k ∈ X k do 

8 Compute DBNE strategy σ ∗,k 
i 

and V k 
i 
(x k , θi ) via C 

k . 

9 end 

10 end 

11 for k ← 0 to K − 1 do 

12 Update b k 
i 
with σ ∗, 0: K−1 

i 
via (2). 

13 end 

14 if σ ∗, 0: K−1 
i 

, ∀ i ∈ { 1 , 2 } , satisfy (5) then 

15 Terminate 

16 end 

17 Output ε-PBNE strategy pair (σ ∗, 0: K−1 
1 

, σ ∗, 0: K−1 
2 

) and 

consistent beliefs b k 
i 
, ∀ k ∈ { 0 , · · · , K} . 

b  

u

5

 

A  

s  

f  

l  
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t  

t  

e  

i  
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c  
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a  
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e  

s  

t  

t  
J k 
i 
in program C k to compute the DBNE in a multi-stage Bayesian

game. 

Theorem 2. Given a sequence of beliefs b k 
i 
for each player i ∈ {1, 2} at

each stage k ∈ { 0 , 1 , · · · , K − 1 } , a strategy pair (σ ∗, 0: K−1 
1 

, σ ∗, 0: K−1 
2 

)

constitutes a DBNE of the K-stage Bayesian game under double-sided

incomplete information with the expected cumulative utility U 
0: K 
i 

in

(4) , if, and only if σ ∗,k 
1 

, σ ∗,k 
2 

, s ∗,k 
1 

(x k , θ1 ) , s 
∗,k 
2 

(x k , θ2 ) are the opti-

mal solutions to the following constrained optimization problem C k 

for each k ∈ { 0 , 1 , · · · , K − 1 } : 

[ C k ] : max 
σ k 
1 
,σ k 

2 
,s k 

1 
,s k 

2 

2 ∑ 

i =1 

∑ 

θi ∈ �i 

αi (θi ) { s k i (x k , θi ) 

+ 

∑ 

θ j ∈ � j 

b k i (θ j | x k , θi ) 
∑ 

a k 
1 
∈ A k 

1 

σ k 
1 (a 

k 
1 | x k , θ1 ) 

∑ 

a k 
2 
∈ A k 

2 

σ k 
2 (a 

k 
2 | x k , θ2 ) 

·[ J k i (x k , a k 1 , a k 2 , θ1 , θ2 ) + V k +1 
i 

( f k (x k , a k 1 , a 
k 
2 ) , θi )] } 

s.t. (a ) 
∑ 

θ1 ∈ �1 

b k 2 (θ1 | x k , θ2 ) 
∑ 

a k 
1 
∈ A k 

1 

σ k 
1 (a 

k 
1 | x k , θ1 ) 

·[ J k 2 (x k , a k 1 , a k 2 , θ1 , θ2 ) + V k +1 
2 ( f k (x k , a k 1 , a 

k 
2 ) , θ2 )] 

≤ −s k 2 (x 
k , θ2 ) , ∀ θ2 ∈ �2 , ∀ a k 2 ∈ A k 2 , 

(b) 
∑ 

θ2 ∈ �2 

b k 1 (θ2 | x k , θ1 ) 
∑ 

a k 
2 
∈ A k 

2 

σ k 
2 (a 

k 
2 | x k , θ2 ) 

·[ J k 1 (x k , a k 1 , a k 2 , θ1 , θ2 ) + V k +1 
1 ( f k (x k , a k 1 , a 

k 
2 ) , θ1 )] 

≤ −s k 1 (x 
k , θ1 ) , ∀ θ1 ∈ �1 , ∀ a k 1 ∈ A k 1 . 

Similarly, α1 ( θ1 ), α2 ( θ2 ) can be any strictly positive and finite num-

bers, and (s k 
1 
(x k , θ1 ) , s 

k 
2 
(x k , θ2 )) is a sequence of scalar variables for

each x k ∈ X k , θ i ∈ �i , i ∈ {1, 2} . The optimum exists and is achieved at

the equality of constraints ( a ), ( b ), i.e., s ∗,k 
i 

(x k , θi ) = −V k 
i 
(x k , θi ) , ∀ θi ∈

�i , ∀ i ∈ { 1 , 2 } . 
The proof is similar to the one for Theorem 1 . The decision

variables σ k 
i 

are of size | A k 
i 
| × | X k | × | �i | . By letting stage k = K

and V K+1 
i 

= 0 , program C K for the static Bayesian game is a special

case of C k for the multi-stage Bayesian game. We can solve pro-

gram C k +1 to obtain the DBNE strategy pair (σ k +1 
1 

, σ k +1 
2 

) and the

value of V k +1 
i 

. Then, we apply V k +1 
i 

in program C k to obtain a DBNE

strategy pair (σ k 
1 
, σ k 

2 
) and the value of V k 

i 
. Thus, for any given

sequences of type belief pairs b k 
i 
, ∀ i ∈ { 1 , 2 } , ∀ k ∈ { 0 , 1 , · · · , K} , we

can solve C k from k = K to k = 0 recursively to obtain the DBNE

pair (σ ∗, 0: K−1 
1 

, σ ∗, 0: K−1 
2 

) . 

4.2.1. PBNE 

Given a sequence of beliefs, we can obtain the corresponding

DBNE via C k in a backward fashion. However, given a sequence of

policies, both players forwardly update their beliefs at each stage

by (2) . Thus, we need to find a consistent pair of belief and policy

sequences as required by the PBNE. As summarized in Algorithm 1 ,

we iteratively alternate between the forward belief update and the

backward policy computation to find the PBNE. We resort to ε-
PBNE solutions when the existence of PBNE is not guaranteed. 

Algorithm 1 provides a computational approach to find ε-PBNE
with the following procedure. First, both players initialize their

beliefs b k 
i 

for every state x k at stage k ∈ {0, 1, ���, K }, accord-
ing to their types. Then, they compute the DBNE strategy pair

σ ∗, 0: K 
i 

, ∀ i ∈ { 1 , 2 } , under the given belief sequence at each stage by
solving program C k from stage K to stage 0 in sequence. Next, they

update their beliefs at each stage according to the strategy pair

σ ∗, 0: K−1 
i 

, ∀ i ∈ { 1 , 2 } , via the Bayesian update (2) . If the strategy pair
σ ∗, 0: K−1 
i 

, ∀ i ∈ { 1 , 2 } , satisfies (5) under the updated belief, we find

the ε-PBNE and terminate the iteration. Otherwise, we repeat the
ackward policy computation in step two and the forward belief

pdate in step three. 

. Case study 

The model presented in Section 2 can be applied to various

PT scenarios. To illustrate the framework, this section presents a

pecific attack scenario where the attacker stealthily initiates in-

ection and escalates privileges in the cyber network, aiming to

aunch attacks on the physical plant as shown in Fig. 3 . Three ver-

ical columns in the left block illustrate the state transitions across

hree stages: the initial compromise, the privilege escalation, and

he sensor compromise of a physical system. The red squares at

ach column represent possible states at that stage. The right block

llustrates a simplified flow chart of the Tennessee Eastman Pro-

ess. We use the Tennessee Eastman process as a benchmark of

ndustrial control systems to show that attackers can strategically

ompromise the SCADA system and decrease the operational effi-

iency of a physical plant without triggering the alarm. 

In this case study, we adopt the binary type space �2 = { θb 
2 
, θ g 

2 
}

nd �1 = { θH 
1 , θ

L 
1 } for the user and the defender, respectively. In

articular, θb 
2 

and θ g 
2 

denote the adversarial and legitimate user,

espectively; θH 
1 and θ L 

1 denote the sophisticated and primitive de-

ender, respectively. The bi-matrices in Tables 2 –4 represent both

layers’ expected utilities at three stages, respectively. In these ma-

rices, the defender is the row player and the user is the column

layer . Each entry of the matrix corresponds to players’ payoffs un-

er their action pairs, types, and the state. In particular, the two

umbers in the parenthesis before the semicolon are the payoffs

f the defender and the user, respectively, under type θb 
2 
, while

he parenthesis in after the semicolon presents the payoff of the

efender and the user, respectively, under type θ g 
2 
. 

.1. Initial stage: Phishing emails 

We use a binary set to represent whether the reconnaissance is

ffectual x 0 = 1 or not x 0 = 0 . Effectual reconnaissance collects es-

ential intelligence that can better support APTs for an initial entry

hrough phishing emails. To penalize the adversarial exploitation of

he open-source intelligence (OSINT) data, the defender can create
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Fig. 3. The diagram of the cyber state transition (denoted by the left block in orange) and the physical attack on Tennessee Eastman process via the compromise of the 

SCADA system (denoted by the right block in blue). APTs can damage the normal industrial operation by falsifying controllers’ setpoints, tampering sensor readings, and 

blocking communication channels to cause delays in either the control message or the sensing data. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 2 

The expected utilities of the defender and the user at the initial stage, i.e., J 0 1 and J 
0 
2 , respectively. 

θ b 
2 ; θ

g 
2 

Email employees Email managers Email avatars 

No training (−r 0 2 , r 
0 
2 ) ; (0 , r 

0 
1 ) (−r 0 2 , r 

0 
2 ) ; (0 , r 

0 
1 ) (0 , r 0 

b, f 
) ; (0 , r 0 

g, f 
) 

Train employees (−c 0 , −r 0 ) ; (−c 0 , r 0 1 ) (−c 0 , r 0 2 ) ; (−c 0 , r 0 1 ) (−c 0 , r 0 
b, f 

) ; (−c 0 , r 0 
g, f 

) 

Train managers (−c 0 , r 0 2 ) ; (−c 0 , r 0 1 ) (−c 0 , −r 0 ) ; (−c 0 , r 0 1 ) (−c 0 , r 0 
b, f 

) ; (−c 0 , r 0 
g, f 

) 

Table 3 

The expected utilities of the defender and the user at the interme- 

diate stage, i.e., J 1 1 and J 
1 
2 , respectively. 

θ b 
2 ; θ

g 
2 

NOP Escalate privilege 

Permit escalation (0 , 0) ; (0 , 0) (−r 1 2 , r 
1 
2 ) ; (r 

1 
1 , r 

1 
1 ) 

Restrict escalation (0 , 0) ; (0 , 0) ( r 1 , −r 1 ) ; (−r 1 1 , −r 1 1 ) 

a  

p
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t  
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a  
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a  
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c  

x  

q  

p  

t  

i  

p  

a  

t  

p  

t

vatars (fake personal profiles) on the social network or the com-

any website as shown in Molok et al. (2010) . 

At the initial stage of interaction, a user can send emails with

on-executable attachments and shortened URLs to the accounts

f entry-level employees, managers, or avatars. These three action

ptions of the user are represented by a 0 
2 

= 0 , 1 , 2 , respectively.

on-executable files such as PDF and MS Office are widely used

n organizations yet an APT attacker can exploit them to execute

alicious actions on the victim’s computer. The shortened URL is

reated by legitimate service providers such as Google URL short-

ner yet can redirect to malicious links. The existing email secu-

ity mechanisms are not completely effective for identifying mali-

ious PDF files (see Nissim et al., 2015 ) and malicious links behind

hortened URLs (see Sahoo et al., 2017 ). As a supplement to techni-

al countermeasures, security training should be emphasized to in-

rease employees’ security awareness and protect them from web

hishing. For example, after receiving suspicious links or attach-

ents with strange names at unexpected times, the entry-level

mployee and the manager should be aware of the potential risk

nd apply extra security measures such as a digital signature re-

uest from the sender before clicking the link or opening the at-

achment. They should also be sufficiently alert and report imme-

iately if a PDF does not contain the information that it claims

o have. Then isolation can be applied to prevent the attacker

rom the potential lateral movement. Since employees’ awareness

nd alertness diminish over time, the security training needs to

e repeated at reasonable intervals as argued in Mitnick and Si-

on (2011) , which can be costly. With a limited budget, the de-

ender can choose to educate entry-level employees, manager-level
mployees, or no training to avoid the prohibitive training cost

 
0 . These three action options of the defender are represented by

 
0 
1 

= 1 , 2 , 0 , respectively. The utility matrix of the initial infection

s given in Table 2 . If the user is legitimate, i.e., θ2 = θ g 
2 
, then as

enoted after semicolon, he receives an immediate reward r 0 
1 

if

e successfully communicates with the employee or the manager

y email, but receives a substantial penalty r 0 
g, f 

< 0 if he emails

he avatars because he should not contact a non-existing person. If

he user is adversarial, i.e., θ2 = θb 
2 
, then as denoted before semi-

olon, he receives an immediate attack reward r 0 
2 
if the email re-

eiver does not have proper security training, but an additional

ttack cost r 0 if the receiver has been trained properly. The ad-

ersarial user receives a faked reward r 0 
b, f 

> 0 when contacting

he avatar, yet arrives at an unfavorable state at stage k = 1 and

eceives few rewards in the future stages. The training cost and

he attack cost are both different for the primitive and the so-

histicated defender, i.e., c 0 := c 0 
L 

· 1 { θ1 = θ L 
1 
} + c 0 

H 
· 1 { θ1 = θH 

1 
} and r 0 :=

 
0 
L 

· 1 { θ1 = θ L 
1 
} + r 0 

H 
· 1 { θ1 = θH 

1 
} . The sophisticated defender holds the se-

urity training with a higher frequency, which incurs a higher cost,

.e., c 0 
H 

> c 0 
L 
, but is also more effective in mitigating web phishing,

.e., r 0 
H 

> r 0 
L 
. 

.2. Intermediate stage: Privilege escalation 

The state at the intermediate stage can be interpreted as the lo-

ation of the user where x 1 = 1 refers to the employee’s computer,

 
1 = 2 refers to the manager’s computer, and x 1 = 0 refers to the

uarantine area. After the initial access, the user operates within a

rocess of low privilege. To access certain resources, the user needs

o gain higher-level privileges. An attacker can utilize the process

njection to execute malicious code in the address space of a live

rocess and masquerade as legitimate programs to evade detection

s shown in Team (2017) . A mitigation method for the defender is

o prevent certain endpoint behaviors that can occur during the

rocess injection. Table 3 presents this game of privilege escala-

ion. 
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The user can choose to escalate his privileges, or choose ‘ no op-

eration performed (NOP)’ . The two action options are denoted by

a 1 
2 

= 1 and a 1 
2 

= 0 , respectively. The defender can choose to either

restrict or permit an escalation, which are denoted by a 1 
1 

= 1 and

a 1 1 = 0 , respectively. If the legitimate user escalates his privilege

and the defender permits escalation, then both players obtain a

reward of r 1 
1 
. If the legitimate user escalates his privilege and the

defender restricts escalation, then the efficiency reduction brings a

loss of r 1 
1 
to both players. On the other hand, if the adversarial user

escalates his privilege and the defender permits escalation, the de-

fender receives a loss of r 1 2 . If the adversarial user escalates his

privilege and the defender restricts escalation, then the adversarial

user has to resort to other attack techniques which lead to a higher

rate of detection. Thus, the defender obtains a reward while the at-

tacker receives an additional cost. We assume that the reward and

the additional cost are both r 1 
L 
if the defender is primitive, and r 1 

H 
if the defender is sophisticated, i.e., r 1 = r 1 

L 
· 1 { θ1 = θ L 

1 
} + r 1 

H 
· 1 { θ1 = θH 

1 
} .

5.3. Final stage: Sensor compromise 

The state at the final stage represents four possible privilege

levels, denoted by x 2 = { 0 , 1 , 2 , 3 } , respectively. The privilege level
affects the result of the physical attack at the final stage. The de-

fender’s and the user’s actions, and the state at the intermediate

stage determine the state at the final stage. For example, if the

user is at the quarantine area during the intermediate stage, then

he ends up with a level-zero privilege regardless of actions taken

by the defender and himself. Users who take control of the man-

ager’s computer at the intermediate stage can obtain a higher priv-

ilege level than those who start from the entry-level employee’s

computer, yet the degree of escalation is reduced if the defender

chooses to restrict escalation. 

We modify the Simulink model in Bathelt et al. (2015) to quan-

tify the monetary loss of the Tennessee Eastman process under

sensor compromises. Our attack model of sensor compromise is

presented in Section 5.3.2 . A new performance metric to quan-

tify the operational efficiency of the Tennessee Eastman process

is proposed in Section 5.3.1 and applied in the game matrix in

Section 5.3.3 . 

5.3.1. Performance metric 

The Tennessee Eastman process involves two irreversible reac-

tions to produce two liquid (liq) products G, H from four gaseous

(g) reactants A, C, D, E as shown in the right block of Fig. 3 . The

control objective is to maintain a desired production rate as well

as quality while stabilizing the whole system under the Gaussian

noise to avoid violating safety constraints such as a high reac-

tor pressure, a high reactor temperature, and a high/low separa-

tor/stripper liquid level. Previous studies on the security of the

Tennessee Eastman process have mostly focused on how an at-

tacker can cause the shortest shutdown time (see Krotofil and Cár-

denas, 2013 ), or a serious violation of a setpoint, e.g., the reac-

tor pressure exceeds 3,0 0 0 kpa (see Cárdenas et al., 2011 ). These

attacks successfully cause the shutdown of the plant and a few

days of shutdowns can incur a considerable financial loss. However,

the shutdown also discloses the attack and leads to an immediate

patch and a defense strategy update. Thus, it becomes harder for

the same kind of attacks to succeed after the plant recovers from

the shutdown. 

In our APT scenario, the attacker aims to stealthily decrease the

operational efficiency of the plant, i.e., deviate the normal opera-

tion state of the plant without triggering the safety alarm or shut-

ting down the plant. By compromising the SCADA system and gen-

erating fraudulent sensor readings, the attacker can stealthily make

the plant operates at a non-optimal state with reduced utilities.
he following economic metrics affect the operational utility of the

ennessee Eastman process: 

• Hourly operating cost C o with the unit ($/ h ) is taken as the

sum of purge costs, product stream costs, compressor costs, and

stripper steam costs. 

• Production rate R p with the unit ( m 
3 /h ) is the volume of total

products per hour. 

• Quality of products Q p with the unit ( G mole %) , is the per-

centage of G among total products. 

• P G with the unit ($/m 
3 ) is the price of product G . 

We propose a new performance metric U TE , the per-hour util-

ty to quantify the operational efficiency of the Tennessee Eastman

rocess as follows: 

 T E = R p × Q p × P G −C o . (10)

.3.2. Attack model 

An attack model is characterized by two separate parts, infor-

ation and capacity . First, the information available to the attacker

uch as readings of different sensors can affect the performance

f the attack differently. For example, observing the input rate of

he raw material in the Tennessee Eastman process is less bene-

cial for the attacker than the direct measurements of P G , R p , Q p ,

 o that affect the utility metric in (10) . Second, attackers can have

ifferent capacities in accessing and revising controllers and sen-

ors. An attacker may change the parameters of the proportional-

ntegral-derivative controller, directly falsify the controller output,

r indirectly deviate the setpoint by tampering, blocking or delay-

ng sensor readings. 

In this experiment, we assume a reading manipulation of sen-

or XMEAS(40) and XMEAS(17) in loop 8 and loop 13 of Tennessee

astman process (see Ricker, 1996 ), respectively. Sensor XMEAS(40)

easures the composition of component G and sensor XMEAS(17)

easures the stripper underflow. A higher privilege state x 2 ∈ {0,

, 2, 3} means that the user can access more sensors for a longer

ime, which results in a larger loss and thus a smaller utility of

 
2 
1 
(x 2 ) to the defender if the user is adversarial. Fig. 4 shows the

ariation of U TE versus the simulation time under four different

rivilege states. We use the time average of these utilities to ob-

ain the normal operational utility r 2 
4 

and compromised utilities

 
2 
1 (x 

2 ) under four different privilege states x 2 ∈ {0, 1, 2, 3}. The at-

acker compromises the sensor and generates fraudulent readings.

he fraudulent reading can be a constant, denoted by the blue line,

r a double of the real readings, denoted by the red or green lines.

he pink line represents a composition attack with a limited con-

rol time. Initially, the attacker manages to compromise both sen-

ors by doubling their readings. After the attacker loses access to

MEAS(40) at the 6 th h, the system is sufficiently resilient to re-

over partially in about 16 h and achieve the same level of utility

s the single attack in green. When the attacker also loses access to

MEAS(17) at the 36 th h, the utility goes back to normal in about

3 h. 

.3.3. Utility matrix 

Attacks against SCADA system can apply command injection at-

acks to inject false control and compromise sensor readings as

hown in Morris and Gao (2013) . Encryption can be introduced

o conceal these malicious commands. However, a legitimate user

ay also encrypt his communication with the sensor to avoid

avesdropping and enhance privacy. 

Therefore, at the final stage, the user has two options, sends

ommands to the sensor with or without encryption, which are

enoted by a 2 2 = 1 and a 2 2 = 0 , respectively. The defender chooses

o apply either a complete or selective monitoring, denoted by
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Fig. 4. The economic impact of sensor compromise in the Tennessee Eastman process. The black line represents the utility of Tennessee Eastman process under the normal 

operation while the other four lines represent the utility of Tennessee Eastman process under attacks with four possible privilege levels. We use the time average of these 

utilities to obtain the normal operational utility r 2 4 and compromised utilities r 2 1 (x 
2 ) , ∀ x 2 ∈ { 0 , 1 , 2 , 3 } , under four different states of privilege levels in Table 4 . 

Table 4 

The expected utilities of the defender and the user at the final stage, i.e., J 2 1 and J 
2 
2 , respectively. 

θ b 
2 ; θ

g 
2 

Unencrypted Command (UC) Encrypted Command (EC) 

Selective Monitoring (SM) (r 2 4 , 0) ; (r 2 4 , r 
2 
4 / 2) (r 2 1 (x 

2 ) , r 2 4 − r 2 1 (x 
2 )) ; (r 2 4 , r 

2 
4 ) 

Complete Monitoring (CM) (r 2 4 − c 2 , 0) ; (r 2 4 − c 2 , r 2 4 / 2) (r 2 − c 2 , −r 2 ) ; (r 2 4 − c 2 , r 2 4 ) 

a  
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2 
1 = 1 and a 2 1 = 0 , respectively. The complete monitoring stores all

ets of communication data and analyzes them elaborately to iden-

ify malicious commands despite encryption. The selective moni-

oring cannot identify malicious commands if they are encrypted.

he implementation of the complete monitoring incurs an addi-

ional cost c 2 compared to the selective one. The last-stage utility

atrix of both players is defined in Table 4 . If the user is legiti-

ate, as denoted in blue, both the defender and the user can re-

eive a reward of r 4 when the Tennessee Eastman process oper-

tes normally. Legitimate users further receive a utility reduction

f r 4 /2 for the potential privacy loss if they choose unencrypted

ommands. For adversarial users, they send malicious commands

nly when the communication is encrypted to evade detection.

hus, if they choose not to encrypt the communication, they re-
eive 0 utility and the defender receives a reward of r 4 for the

ormal operation. However, if they choose to send encrypted ma-

icious commands, both players’ rewards depend on whether the

efender chooses the selective or complete monitoring. If the de-

ender chooses the selective monitoring, then the adversarial user

an successfully compromise the sensor, which results in a re-

uced utility of r 2 1 (x 
2 ) . In the meantime, the attacker benefits from

he reward reduction of r 2 
4 

− r 2 
1 
(x 2 ) . If the defender chooses the

omplete monitoring, then the adversarial user suffers a loss of

 
2 for being detected. The detection reward and the implementa-

ion cost for two types of defenders are r 2 L , r 
2 
H and c 

2 
L , c 

2 
H , respec-

ively. Let r 2 := r 2 
L 

· 1 { θ1 = θ L 
1 
} + r 2 

H 
· 1 { θ1 = θH 

1 
} and c 2 := c 2 

L 
· 1 { θ1 = θ L 

1 
} +

 
2 
H 

· 1 { θ1 = θH } . 
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Fig. 5. The SBNE strategy and the expected utility of the primitive defender and the user who is either legitimate or adversarial. The x -axis represents the probability of 

the user being adversarial. The y -axis of the upper figure represents the probability of either the user taking action ‘ selective monitoring (SM) ’ or the defender taking action 

‘ unencrypted command (UC) ’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The SBNE strategy and the expected utility of the adversarial user and the 

defender who is either primitive or sophisticated. The defender knows that the user 

is adversarial while the adversarial user only knows the probability of the defender 

being primitive. The x -axis represents the probability of the defender being sophis- 

ticated. The y -axis of the upper figure represents the probability of either the user 

taking action ‘ selective monitoring (SM) ’ or the defender taking action ‘ unencrypted 

command (UC) ’. 
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6. Computation results 

In this section, we apply the algorithms introduced in

Section 4 to compute both players’ strategies and utilities at the

equilibrium. We implement our algorithms in MATLAB and use

YALMIP (see Löfberg, 2004 ) as the interface to call external solvers

such as BARON (see Tawarmalani and Sahinidis, 2005 ) to solve

the optimization problems. We present elaborate results from the

concrete case study and provide meaningful insights of the proac-

tive cross-layer defense against multi-stage APT attacks that are

stealthy and deceptive. 

For the static Bayesian game at the final stage in Section 6.1 ,

we focus on illustrating how two players’ private types affect their

policies and utilities under different information structures. We

further apply sensitivity analysis to show how the value of the

key parameter affects the defender’s and the attacker’s utilities. For

the multi-stage Bayesian game in 6.2 , we focus on the dynamic of

the belief update and state transition under the interaction of the

stealthy attacker and the proactive defender. Moreover, we inves-

tigate how the adversarial and defensive deception, and how the

initial state can affect the stage utility and the cumulative utility

of the user and the defender. 

6.1. Final stage and SBNE 

Players’ beliefs affect their policies and expected utilities at the

final stage. We discuss three different scenarios as follows. In Fig 5

a, the defender does not know the user’s type. In Fig. 6 , the user

does not know the defender’s type. In Fig. 5 b, both the user and

the defender do not know the other’s type. In all three scenar-

ios, the x -axis represents the belief of either the user or the de-

fender. The y -axis of the upper figure represents the probability of

either the user taking action ‘ selective monitoring (SM) ’ or the de-

fender taking action ‘ unencrypted command (UC) ’. Fig. 5 a shows the

following trends as the user becomes more likely to be adversar-

ial. First, two black lines show that the expected utility of the de-

fender decreases and the defender is more inclined to apply action

‘ complete monitoring ’ after her belief exceeds a threshold. Second,

two red lines show that the adversarial user takes action ‘ unen-

crpted command ’ with a higher probability and only gains a reward

when the probability of adversarial users is sufficiently small. Thus,

we conclude that when the probability of the adversarial user in-
reases, the defender tends to invest more in cyber defense so that

he attacker behaves more conservatively and inflicts fewer losses.

hird, the two blue lines show that the legitimate user always

hooses ‘ encrypt command ’ and receives a constant utility, which

ndicates that the proactive defense does not affect the behavior

nd the utility of legitimate users at this stage. 

Fig. 6 shows that the defender benefits from introducing defen-

ive deception. When the defender becomes more likely to a so-

histicated one, both types of defenders can have a higher proba-

ility to apply the selective monitoring and save the extra surveil-

ance cost of the complete monitoring. The attacker with incom-

lete information has a threshold policy and switches to a lower

ttacking probability after reaching the threshold of 0.5 as shown

n the black line. When the probability goes beyond the thresh-

ld, the primitive defender can pretend to be a sophisticated one

nd take action ‘ selective monitoring ’. Meanwhile, a sophisticated
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Fig. 7. Utilities of the primitive defender and the attacker versus the value of r 2 L under different states x 
2 ∈ {0, 1, 2, 3}. 
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Fig. 8. The defender’s prior and posterior beliefs of the user being adversarial. 

Fig. 9. The probability of different states x 2 ∈ {0, 1, 2, 3}. 
efender can reduce the security effort and take action ‘ selective

onitoring ’ with a higher probability since the attacker becomes

ore cautious in taking adversarial actions after identifying the

efender as more likely to be sophisticated. It is also observed that

he sophisticated defender receives a higher payoff before the at-

acker’s belief reaches the 0.5 threshold. After the belief reaches

he threshold, the attacker is threatened to take less aggressive ac-

ions, and both types of defenders share the same payoff. 

Finally, we consider the double-sided incomplete information

here both players’ types are private information, and each player

nly has the belief of the other player’s type. Compared with the

efender in Fig. 5 a who takes action ‘ selective monitoring ’ with a

robability less than 0.5 and receives a decreasing expected payoff,

he defender in Fig. 5 b can take ‘ selective monitoring ’ with a prob-

bility closed to 1 and receive a constant payoff in expectation af-

er the user’s belief exceeds the threshold. Thus, the defender can

pare defense effort s and mitigate risks by introducing uncertain-

ies on her type as a countermeasure to the adversarial deception. 

.1.1. Sensitivity analysis 

As shown in Fig. 7 , if the value of the penalty r 2 
L 
is close to 0,

.e., the defense at the final stage is ineffective, then an arrival at

tate x 2 = 3 , the highest privilege level can significantly increase

he attacker’s payoff and cause the most damage to the defender.

s more effective defensive methods are employed at the final

tage, i.e., the value of r 2 
L 

increases, the attacker becomes more

onservative and strategic in taking adversarial behaviors. Then,

he state with the highest privilege level may not be the most fa-

orable state for the attacker. 

.2. Multi-stage and PBNE 

We show in Fig. 8 that the Bayesian belief update leads to a

ore accurate estimate of users’ types. Without the belief update,

he posterior belief is the same as the prior belief in red and is

sed as the baseline. As the prior belief increases in the x -axis, the

osterior belief after the Bayesian update also increases in blue.

he blue line is in general above the red line, which means that

ith the Bayesian update, the defender’s belief becomes closer to

he right type. Also, we find that the belief update is the most ef-

ective when an inaccurate prior belief is used as it corrects the

rroneous belief significantly. 

In Fig. 9 , we show that the proactive defense, i.e., defensive

ethods in intermediate stages can affect the state transition and

educe the probability of attackers reaching states that can result

n huge damage at the final stage. As the prior belief of the user

eing adversarial increases, the attacker is more likely to arrive
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Fig. 10. The defender’s utility under deceived beliefs. 
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at state x 2 = 0 and x 2 = 1 , and reduce the probability of visiting

x 2 = 2 and x 2 = 3 . 

6.2.1. Adversarial and defensive deception 

Fig. 10 investigates the adversarial deception where the attacker

takes full control of the defense system and manipulates the de-

fender’s belief. As shown in the figure, the defender’s utilities all

increase when the belief under the deception approaches the cor-

rect belief that the user is adversarial. Also, the increase is stair-

wise, i.e., the defender only alternates her policy when the ma-
Fig. 11. The cumulative utilities of the attacker and the defender under the complete info

eft three represent the utilities for a sophisticated defender and the right three represen
ipulated belief is beyond certain thresholds. Under the same ma-

ipulated belief, a sophisticated defender benefits no less than a

rimitive one. The defender receives a lower payoff when the re-

onnaissance provides effectual intelligence. 

Incapable of revealing the adversarial deception completely, the

efender can alternatively introduce defensive deceptions, e.g., a

rimitive defender can disguise himself as a sophisticated one to

onfuse the attacker. Defensive deceptions introduce uncertainties

o attackers, increase their costs, and increase the defender’s util-

ty. 

Fig. 11 investigates the defender’s and the attacker’s utilities

nder three different scenarios. The complete information refers

o the scenario where both players know the other player’s type.

he deception with the H -type or the L -type means that the at-

acker knows the defender’s type to be sophisticated or primitive,

espectively, yet the defender has no information about the user’s

ype. The double-sided deception indicates that both players do

ot know the other player’s type. The results from Fig. 11 are sum-

arized as follows. First, the sophisticated defender’s payoffs can

ncrease as much as 56% than those of the primitive defender. Also,

 prevention of effectual reconnaissance increases the defender’s

tility by as much as 41% and reduces the attacker’s utility by as

uch as 38%. Second, the defender and the attacker receive the

ighest and the lowest payoff, respectively, under the complete in-

ormation. When the attacker introduces deceptions over his type,

he attacker’s utility increases and the defender’s utility decreases.

hird, when the defender adopts defensive deceptions to introduce

ouble-sided incomplete information, we find that the decrease of

he sophisticated defender’s utilities is reduced by at most 64%, i.e.,

hanges from $55, 570 to $35, 570 when the reconnaissance is ef-

ectual. The double-sided incomplete information also brings lower

tilities to the attacker than the one-sided adversarial deception.
rmation, the adversarial deception, and the defensive deception. In the legend, the 

t the ones for a primitive defender. 



L. Huang and Q. Zhu / Computers & Security 89 (2020) 101660 15 

H  

i  

t  

m  

n  

d

7

 

l  

t  

I  

d  

t  

m  

t  

t  

a  

r  

l  

t  

T  

a  

b  

h  

c

 

t  

d  

p  

I  

f  

d  

c  

t  

t  

s  

u  

e  

s  

I  

t  

t

 

a  

t  

i  

i  

l  

o  

t  

r  

t  

c  

r  

t  

t  

l  

p  

d  

m  

a  

p  

f  

t  

m  

e  

b  

n  

i  

p  

t  

t  

m  

s  

t

D

 

c  

i

A

 

C  

1  

F  

s

R

B  

 

C  

 

 

C

D  

F  

 

F  

F  

 

G

 

G  

 

G  

 

 

H  

D  

 

 

H  

 

 

H  

 

H  

 

H  

 

owever, the defender’s utility under the double-sided deception

s still less than the complete information case, which concludes

hat acquiring complete information of the adversarial user is the

ost effective def ense. However, if the complete information can-

ot be obtained, the defender can mitigate her loss by introducing

efensive deceptions. 

. Discussions and conclusions 

Advanced Persistent Threats (APTs) are emerging security chal-

enges for cyber-physical systems as the attacker can stealthily en-

er, persistently stay in, and strategically interact with the system.

n this work, we have developed a game-theoretic framework to

esign proactive and cross-layer defenses for cyber-physical sys-

ems in a holistic manner. Dynamic games of incomplete infor-

ation have been used to capture the long-term interaction be-

ween users and defenders who have private information unknown

o the other player. Each player forms a belief on the unknowns

nd uses the Bayesian update to learn the private information and

educe uncertainty. The analysis of the Perfect Bayesian Nash Equi-

ibrium (PBNE) has provided the defender with an effective coun-

ermeasure against the stealthy strategic attacks at multiple stages.

o compute the PBNE of the dynamic games, we have proposed

 nested algorithm that iteratively alternates between the forward

elief update and the backward policy computation. The algorithm

as been shown to quickly converge to the ε-PBNE that yields a
onsistent pair of beliefs and policies. 

Using the Tennessee Eastman process as a case study of indus-

rial control systems, we have shown that the proactive multi-stage

efense in cyber networks can successfully mitigate the risk of

hysical attacks without reducing the payoffs of legitimate users.

n particular, experiment results show that a sophisticated de-

ender receives a payoff up to 56% higher than a primitive defender

oes. Also, it has been illustrated that by preventing effectual re-

onnaissance, the defender increases her utility and reduces the at-

acker’s utility by at most 41% and 38%, respectively. On one hand,

he attacker receives a higher payoff after introducing the adver-

arial deception as it increases the defender’s uncertainties on the

ser’s type. On the other hand, by creating uncertainties for attack-

rs, the defender can successfully threaten them to take more con-

ervative behaviors and become less motivated to launch attacks.

t has been shown that the defender can significantly benefit from

he mitigation of attack losses when he adopts defensive decep-

ions. 

The main challenge of our approach is to identify the utility

nd feasible actions of defenders and users at each stage. One fu-

ure direction to reduce the complexity of the model description

s to develop mechanisms that can automate the synthesis of ver-

fiably correct game-theoretic models. It would alleviate the work-

oad of the system defender and operator. Nevertheless, game the-

ry provides a quantitative and explainable framework to design

he proactive defensive response under uncertainty compared to

ule-based and machine-learning-based defense methods, respec-

ively. Besides, the rule-based defense is static, thus an attack can

ircumvent it through sufficient effort. Machine learning methods

equire a lot of labeled data sets which may be hard to obtain in

he APT scenario. Second, we have proposed the belief to quantify

he uncertainty which results from players’ private types. The be-

ief is continuously updated to reduce uncertainties and provide a

robabilistic detection system as a byproduct of the APT response

esign. Third, our approach enables the defender to evaluate the

ulti-stage impact of her defense strategies to both legitimate

nd adversarial users when adversarial and defensive deceptions

resent at the same time. Based on the evaluation, defenders can

urther find revised countermeasures and design new game rules

o achieve a better tradeoff between security and usability. Our
odel can be broadly applied to scenarios in artificial intelligence,

conomy, and social science where multi-stage interactions occur

etween multiple agents with incomplete information. Multi-sided

on-binary types can be defined based on the scenario, and our

teration algorithm of the forward belief update and the backward

olicy computation can be extended for efficient computations of

he perfect Bayesian Nash equilibrium. The future work would ex-

end the framework to an N -person game to characterize the si-

ultaneous interactions among multiple users and model compo-

ition attacks. We would also consider scenarios where players’ ac-

ions and the system state are partially observable. 
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