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Abstract. A honeynet is a promising active cyber defense mechanism.
It reveals the fundamental Indicators of Compromise (IoCs) by luring
attackers to conduct adversarial behaviors in a controlled and moni-
tored environment. The active interaction at the honeynet brings a high
reward but also introduces high implementation costs and risks of adver-
sarial honeynet exploitation. In this work, we apply infinite-horizon Semi-
Markov Decision Process (SMDP) to characterize a stochastic transition
and sojourn time of attackers in the honeynet and quantify the reward-
risk trade-off. In particular, we design adaptive long-term engagement
policies shown to be risk-averse, cost-effective, and time-efficient. Numer-
ical results have demonstrated that our adaptive engagement policies can
quickly attract attackers to the target honeypot and engage them for a
sufficiently long period to obtain worthy threat information. Meanwhile,
the penetration probability is kept at a low level. The results show that
the expected utility is robust against attackers of a large range of per-
sistence and intelligence. Finally, we apply reinforcement learning to the
SMDP to solve the curse of modeling. Under a prudent choice of the
learning rate and exploration policy, we achieve a quick and robust con-
vergence of the optimal policy and value.

Keywords: Reinforcement learning - Semi-Markov decision
processes * Active defense -+ Honeynet + Risk quantification

1 Introduction

Recent instances of WannaCry ransomware attack and Stuxnet malware have
demonstrated an inadequacy of traditional cybersecurity techniques such as
the firewall and intrusion detection systems. These passive defense mechanisms
can detect low-level Indicators of Compromise (IoCs) such as hash values, IP
addresses, and domain names. However, they can hardly disclose high-level indi-
cators such as attack tools and Tactics, Techniques and Procedures (TTPs) of
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the attacker, which induces the attacker fewer pains to adapt to the defense
mechanism, evade the indicators, and launch revised attacks as shown in the
pyramid of pain [2]. Since high-level indicators are more effective in deterring
emerging advanced attacks yet harder to acquire through the traditional passive
mechanism, defenders need to adopt active defense paradigms to learn these fun-
damental characteristics of the attacker, attribute cyber attacks [35], and design
defensive countermeasures correspondingly.

Honeypots are one of the most frequently employed active defense techniques
to gather information on threats. A honeynet is a network of honeypots, which
emulates the real production system but has no production activities nor autho-
rized services. Thus, an interaction with a honeynet, e.g., unauthorized inbound
connections to any honeypot, directly reveals malicious activities. On the con-
trary, traditional passive techniques such as firewall logs or IDS sensors have
to separate attacks from a ton of legitimate activities, thus provide much more
false alarms and may still miss some unknown attacks.

Besides a more effective identification and denial of adversarial exploitation
through low-level indicators such as the inbound traffic, a honeynet can also help
defenders to achieve the goal of identifying attackers’ TTPs under proper engage-
ment actions. The defender can interact with attackers and allow them to probe
and perform in the honeynet until she has learned the attacker’s fundamental
characteristics. More services a honeynet emulates, more activities an attacker is
allowed to perform, and a higher degree of interactions together result in a larger
revelation probability of the attacker’s TTPs. However, the additional services
and reduced restrictions also bring extra risks. Attacks may use some honeypots
as pivot nodes to launch attackers against other production systems [37].
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Fig. 1. The honeynet in red mimics the targeted production system in green. The
honeynet shares the same structure as the production system yet has no authorized
services. (Color figure online)
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The current honeynet applies the honeywall as a gateway device to supervise
outbound data and separate the honeynet from other production systems, as
shown in Fig. 1. However, to avoid attackers’ identification of the data control and
the honeynet, a defender cannot block all outbound traffics from the honeynet,
which leads to a trade-off between the rewards of learning high-level IoCs and
the following three types of risks.

T1: Attackers identify the honeynet and thus either terminate on their own or
generate misleading interactions with honeypots.

T2: Attackers circumvent the honeywall to penetrate other production systems
[34].

T3: Defender’s engagement costs outweigh the investigation reward.

We quantify risk T1 in Sect.2.3, T2 in Sect.2.5, and T3 in Sect.2.4. In
particular, risk T3 brings the problem of timeliness and optimal decisions on
timing. Since a persistent traffic generation to engage attackers is costly and
the defender aims to obtain timely threat information, the defender needs cost-
effective policies to lure the attacker quickly to the target honeypot and reduce
attacker’s sojourn time in honeypots of low-investigation value.
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Fig. 2. Honeypots emulate different components of the production system. (Color
figure online)

To achieve the goal of long-term, cost-effective policies, we construct the
Semi-Markov Decision Process (SMDP) in Sect.2 on the network shown in
Fig.2. Nodes 1 to 11 represent different types of honeypots, nodes 12 and 13
represent the domain of the production system and the virtual absorbing state,
respectively. The attacker transits between these nodes according to the network
topology in Fig.1 and can remain at different nodes for an arbitrary period of
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time. The defender can dynamically change the honeypots’ engagement levels
such as the amount of outbound traffic, to affect the attacker’s sojourn time,
engagement rewards, and the probabilistic transition in that honeypot.

In Sect.3, we define security metrics related to our attacker engagement
problem and analyze the risk both theoretically and numerically. These metrics
answer important security questions in the honeypot engagement problem as
follows. How likely will the attacker visit the normal zone at a given time? How
long can a defender engage the attacker in a given honeypot before his first visit
to the normal zone? How attractive is the honeynet if the attacker is initially in
the normal zone? To protect against the Advanced Persistent Threats (APTSs),
we further investigate the engagement performance against attacks of different
levels of persistence and intelligence.

Finally, for systems with a large number of governing random variables, it
is often hard to characterize the exact attack model, which is referred to as the
curse of modeling. Hence, we apply reinforcement learning methods in Sect. 4
to learn the attacker’s behaviors represented by the parameters of the SMDP.
We visualize the convergence of the optimal engagement policy and the optimal
value in a video demo!. In Sect. 4.1, we discuss challenges and future works of
reinforcement learning in the honeypot engagement scenario where the learning
environment is non-cooperative, risky, and sample scarce.

1.1 Related Works

Active defenses [23] and defensive deceptions [1] to detect and deter attacks have
been active research areas. Techniques such as honeynets [30,49], moving target
defense [17,48], obfuscation [31,32], and perturbations [44,45] have been intro-
duced as defensive mechanisms to secure the cyberspace. The authors in [11]
and [16] design two proactive defense schemes where the defender can manipu-
late the adversary’s belief and take deceptive precautions under stealthy attacks,
respectively. In particular, many works [10,26] including ones with Markov Deci-
sion Process (MDP) models [22,30] and game-theoretic models [20,40,41] focus
on the adaptive honeypot deployment, configuration, and detection evasion to
effectively gather threat information without the attacker’s notice. A number
of quantitative frameworks have been proposed to model proactive defense for
various attack-defense scenarios building on Stackelberg games [25,31,46], signal-
ing games [27,29,33,42,51], dynamic games [7,15,36,47], and mechanism design
theory [5,9,43,50]. Pawlick et al. in [28] have provided a recent survey of game-
theoretic methods for defensive deception, which includes a taxonomy of decep-
tion mechanisms and an extensive literature of game-theoretic deception.

Most previous works on honeypots have focused on studying the attacker’s
break-in attempts yet pay less attention to engaging the attacker after a suc-
cessful penetration so that the attackers can thoroughly expose their post-
compromise behaviors. Moreover, few works have investigated timing issues
and risk assessment during the honeypot engagement, which may result in an

! See the demo following URL: https://bit.ly/2QUz30k.
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improper engagement time and uncontrollable risks. The work most related to
this one is [30], which introduces a continuous-state infinite-horizon MDP model
where the defender decides when to eject the attacker from the network. The
author assumes a maximum amount of information that a defender can learn
from each attack. The type of systems, i.e., either a normal system or a hon-
eypot, determines the transition probability. Our framework, on the contrary,
introduces following additional distinct features:

— The upper bound on the amount of information which a defender can learn
is hard to obtain and may not even exist. Thus, we consider a discounted
factor to penalize the timeliness as well as the decreasing amount of unknown
information as time elapses.

— The transition probability not only depends on the type of systems but also
depends on the network topology and the defender’s actions.

— The defender endows attackers the freedom to explore the honeynet and
affects the transition probability and the duration time through different
engagement actions.

— We use reinforcement learning methods to learn the parameter of the SMDP
model. Since our learning algorithm constantly updates the engagement pol-
icy based on the up-to-date samples obtained from the honeypot interactions,
the acquired optimal policy adapts to the potential evolution of attackers’
behaviors.

SMDP generalizes MDP by considering the random sojourn time at each
state, and is widely applied to machine maintenance [4], resource allocation [21],
infrastructure protection [13,13,14], and cybersecurity [38]. This work aims to
leverage the SMDP framework to determine the optimal attacker engagement
policy and to quantify the trade-off between the value of the investigation and
the risk.

1.2 Notations

Throughout the paper, we use calligraphic letter X to define a set. The upper
case letter X denotes a random variable and the lower case = represents its
realization. The boldface X denotes a vector or matrix and I denotes an identity
matrix of a proper dimension. Notation Pr represents the probability measure
and x represents the convolution. The indicator function 1;,—,, equals one if
x = y, and zero if x # y. The superscript k represents decision epoch k and
the subscript ¢ is the index of a node or a state. The pronoun ‘she’ refers to the
defender, and ‘he’ refers to the attacker.

2 Problem Formulation

To obtain optimal engagement decisions at each honeypot under the probabilistic
transition and the continuous sojourn time, we introduce the continuous-time
infinite-horizon discounted SMDPs, which can be summarized by the tuple {t €
[0,00),S,A(s;), tr(si|sj,a;5), 2(-|s;,a;,81),77(s5,a5,5),7 € [0,00)}. We describe
each element of the tuple in this section.
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2.1 Network Topology

We abstract the structure of the honeynet as a finite graph G = (N, &). The
node set N := {ny,n9, - ,ny} U{nyy1} contains N nodes of hybrid honey-
pots. Take Fig. 2 as an example, a node can be either a virtual honeypot of an
integrated database system or a physical honeypot of an individual computer.
These nodes provide different types of functions and services, and are connected
following the topology of the emulated production system. Since we focus on opti-
mizing the value of investigation in the honeynet, we only distinguish between
different types of honeypots in different shapes, yet use one extra node ny1
to represent the entire domain of the production system. The network topology
& :={ei},j,l € N, is the set of directed links connecting node n; with n;, and
represents all possible transition trajectories in the honeynet. The links can be
either physical (if the connecting nodes are real facilities such as computers)
or logical (if the nodes represent integrated systems). Attackers cannot break
the topology restriction. Since an attacker may use some honeypots as pivots
to reach a production system, and it is also possible for a defender to attract
attackers from the normal zone to the honeynet through these bridge nodes,
there exist links of both directions between honeypots and the normal zone.

2.2 States and State-Dependent Actions

At time ¢ € [0, 00), an attacker’s state belongs to a finite set S := {s1, 892, , sy,
SN+1,SN+2} where s;,4 € {1,--- /N + 1}, represents the attacker’s location
at time t. Once attackers are ejected or terminate on their own, we use the
extra absorbing state sy to represent the virtual location. The attacker’s state
reveals the adversary visit and exploitation of the emulated functions and ser-
vices. Since the honeynet provides a controlled environment, we assume that the
defender can monitor the state and transitions persistently without uncertainties.
The attacker can visit a node multiple times for different purposes. A stealthy
attacker may visit the honeypot node of the database more than once and revise
data progressively (in a small amount each time) to evade detection. An attack
on the honeypot node of sensors may need to frequently check the node for the
up-to-date data. Some advanced honeypots may also emulate anti-virus systems
or other protection mechanisms such as setting up an authorization expiration
time, then the attacker has to compromise the nodes repeatedly.

At each state s; € S, the defender can choose an action a; from a state-
dependent finite set A(s;). For example, at each honeypot node, the defender
can conduct action ag to eject the attacker, action ap to purely record the
attacker’s activities, low-interactive action ay, or high-interactive action ay to
engage the attacker, i.e., A(s;) := {ag,ap,ar,an},i € {1,---,N}. The high-
interactive action is costly to implement yet both increases the probability of
a longer sojourn time at honeypot n;, and reduces the probability of attackers
penetrating the normal system from n; if connected. If the attacker resides in the
normal zone either from the beginning or later through the pivot honeypots, the
defender can choose either action ag to eject the attacker immediately, or action
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aa to attract the attacker to the honeynet by exposing some vulnerabilities
intentionally, i.e., A(sy+1) := {ag,a4}. Note that the instantiation of the action
set and the corresponding consequences are not limited to the above scenario.
For example, the action can also refer to a different degree of outbound data
control. A strict control reduces the probability of attackers penetrating the
normal system from the honeypot, yet also brings less investigation value.

2.3 Continuous-Time Process and Discrete Decision Model

Based on the current state s; € S, the defender’s action a; € A(s;), the attacker
transits to state s; € S with a probability tr(s;|s;,a;) and the sojourn time at
state s; is a continuous random variable with a probability density z(-|s;, a;, 51).
Note that the risk T1 of the attacker identifying the honeynet at state s; under
action a; # Ag can be characterized by the transition probability tr(syi2|s;, a;)
as well as the duration time z(-|s;, a;, Sn4+2). Once the attacker arrives at a new
honeypot n;, the defender dynamically applies an interaction action at honeypot
n; from A(s;) and keeps interacting with the attacker until he transits to the
next honeypot. The defender may not change the action before the transition to
reduce the probability of attackers detecting the change and become aware of
the honeypot engagement. Since the decision is made at the time of transition,
we can transform the above continuous time model on horizon t € [0, 00) into
a discrete decision model at decision epoch k € {0,1,---,00}. The time of the
attacker’s k*" transition is denoted by a random variable T%, the landing state
is denoted as s* € S, and the adopted action after arriving at s* is denoted as

a® € A(sh).

2.4 Investigation Value

The defender gains a reward of investigation by engaging and analyzing the
attacker in the honeypot. To simplify the notation, we divide the reward during
time ¢ € [0,00) into ones at discrete decision epochs T* k € {0,1,---,00}.
When 7 € [T*, T*+1] amount of time elapses at stage k, the defender’s reward
of investigation

k k _k+1 k k+1 _ k _k k+1 k _k k k+1
7‘(8 A, S , 1%, 7T) —7’1(8 a8 )1{720}4—7‘2(8 ,an, T, T 7T)7

at time 7 of stage k, is the sum of two parts. The first part is the immediate
cost of applying engagement action a* € A(s*) at state s* € S and the second
part is the reward rate of threat information acquisition minus the cost rate of
persistently generating deceptive traffics. Due to the randomness of the attacker’s
behavior, the information acquisition can also be random, thus the actual reward
rate ro is perturbed by an additive zero-mean noise w;..

Different types of attackers target different components of the production
system. For example, an attacker who aims to steal data will take intensive
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adversarial actions at the database. Thus, if the attacker is actually in the hon-
eynet and adopts the same behavior as he is in the production system, the
defender can identify the target of the attack based on the traffic intensity. We
specify r; and 79 at each state properly to measure the risk T3. To maximize
the value of the investigation, the defender should choose proper actions to lure
the attacker to the honeypot emulating the target of the attacker in a short time
and with a large probability. Moreover, the defender’s action should be able to
engage the attacker in the target honeypot actively for a longer time to obtain
more valuable threat information. We compute the optimal long-term policy that
achieves the above objectives in Sect. 2.5.

As the defender spends longer time interacting with attackers, investigating
their behaviors and acquires better understandings of their targets and TTPs,
less new information can be extracted. In addition, the same intelligence becomes
less valuable as time elapses due to the timeliness. Thus, we use a discounted
factor of v € [0,00) to penalize the decreasing value of the investigation as time
elapses.

2.5 Optimal Long-Term Policy

The defender aims at a policy m € IT which maps state s* € S to action a* €
A(s*) to maximize the long-term expected utility starting from state s°, i.e.,

u [Z/

At each decision epoch, the value function v(s®) = sup,¢;; u(s®, 7) can be
represented by dynamic programming, i.e.,

Tk+1

77(T+Tk)(r(5k, AR ghFL R TR ) 4 wr)drl .

v(s) = sup E
a®%€ A(s0)

Tl
/ e*”(TJrTO)T(so7 a®, 81, 70 T 7)dr + eVTlv(Sl)] .
T0
(1)

We assume a constant reward rate ro(s¥,af T* TF+1 1) = 7y(sF a¥) for
simplicity. Then, (1) can be transformed into an equivalent MDP form, i.e.,
vs® € S,

v(s’) = sup tr(s'|s, a)(r7(s%,a°, s*) 4+ 27(s°, a®, sM)v(sh)), 2
(
a%€A(s9) sles

where 27(s%, a0, s1) == [ e 72(7]s°,a% s')dr € [0,1] is the Laplace trans-

form of the sojourn probability density z(7]s?,a", s') and the equivalent reward
0 0 (1Y ._ 0,0 o1y, T2(s%,a%) 0,0 1 :

r1(s%,a”, s7) = (s, a”, 57 )+ = (1=27(s0, a7, s7)) € [—me, me] is assumed

to be bounded by a constant Me.
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A classical regulation condition of SMDP to avoid the probability of an infi-
nite number of transitions within a finite time is stated as follows: there exists
constants 6 € (0,1) and 6 > 0 such that

Z tr(s'|s,a)z(6|s%,a%,s') <1 —-0,Vs" € S,a’ € A(s°). (3)
sleS

It is shown in [12] that condition (3) is equivalent to Y. gtr(s'|s’, a®)
27(s%,a% s') € [0,1), which serves as the equivalent stage-varying discounted
factor for the associated MDP. Then, the right-hand side of (1) is a contraction
mapping and there exists a unique optimal policy 7* = argmax,¢ u(s®, )
which can be found by value iteration, policy iteration or linear programming.

Cost-Effective Policy. The computation result of our 13-state example system
is illustrated in Fig.2. The optimal policies at honeypot nodes n; to ni; are
represented by different colors. Specifically, actions ag,ap,ar,ay are denoted
in red, blue, purple, and green, respectively. The size of node n; represents the
state value v(s;).

In the example scenario, the honeypot of database niy and sensors ni; are
the main and secondary targets of the attacker, respectively. Thus, defenders can
obtain a higher investigation value when they manage to engage the attacker
in these two honeypot nodes with a larger probability and for a longer time.
However, instead of naively adopting high interactive actions, a savvy defender
also balances the high implantation cost of ag. Our quantitative results indicate
that the high interactive action should only be applied at n1g to be cost-effective.
On the other hand, although the bridge nodes ni,ns,ng which connect to the
normal zone n1s do not contain higher investigation values than other nodes,
the defender still takes action aj, at these nodes. The goal is to either increase
the probability of attracting attackers away from the normal zone or reduce the
probability of attackers penetrating the normal zone from these bridge nodes.

Engagement Safety Versus Investigation Values. Restrictive engagement
actions endow attackers less freedom so that they are less likely to penetrate
the normal zone. However, restrictive actions also decrease the probability of
obtaining high-level IoCs, thus reduces the investigation values.

To quantify the system value under the trade-off of the engagement safety and
the reward from the investigation, we visualize the trade-off surface in Fig. 3. In
the z-axis, a larger penetration probability p(snyy1ls;,a;),7 € {s1,5s2,58},a; #
ag, decreases the value v(s10). In the y-axis, a larger reward r7(s;,a;,;),j €
S\{s12,813},1 € S, increases the value. The figure also shows that value v(sy0)
changes in a higher rate, i.e., are more sensitive when the penetration probability
is small and the reward from the investigation is large. In our scenario, the
penetration probability has less influence on the value than the investigation
reward, which motivates a less restrictive engagement.
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Fig. 3. The trade-off surface of v(si0) in z-axis under different values of penetra-
tion probability p(sy+1|sj,a;),7 € {s1,$2,88},a; # ag, in x-axis, and the reward
rY(sj,a;5,81),75 € S\{s12,s13},1 € S, in y-axis.

3 Risk Assessment

Given any feasible engagement policy = € I1, the SMDP becomes a semi-Markov
process [24]. We analyze the evolution of the occupancy distribution and first
passage time in Sects. 3.1 and 3.2, respectively, which leads to three security
metrics during the honeypot engagement. To shed lights on the defense of APTs,
we investigate the system performance against attackers with different levels of
persistence and intelligence in Sect. 3.3.

3.1 Transition Probability of Semi-Markov Process

Define the cumulative probability ¢;;(t) of the one-step transition from {S* =
i, Tk = t*} to {Sk+! = j Tkl = t’“ +t} as Pr(SFtt = j TFHL — ¢k < ¢|Sk =
i, TF = %) = tr(jli,n(i fo z(7li,m(i),7)dr,Vi,j € S,t > 0. Based on a variation
of the forward Kolmogorov equation Where the one-step transition lands on an
intermediate state | € S at time TFT! = tk 4 u,Yu € [0,], the transition
probability of the system in state j at time ¢, given the initial state ¢ at time 0
can be represented as

pu *172q1h +Z/ plzt*quzl()

hes les

dgi
pl] Z/pl]t7quzl() Z (t)* ql()VZ]€S7]7£ZVt>O

es lesS
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where 1 — 37, - s qin(t) is the probability that no transitions happen before time
t. We can easily verify that ), spu(t) = 1,Vi € S,¥t € [0,00). To compute
pi;(t) and p;;(t), we can take Laplace transform and then solve two sets of linear
equations.

For simplicity, we specify z(7]i,7(i),j) to be exponential distributions with
parameters \;;(7(4)), and the semi-Markov process degenerates to a continuous
time Markov chain. Then, we obtain the infinitesimal generator via the Leibniz
integral rule, i.e.,

dp; (t , o o o
iy = PION 5 (i) (Gl () > 0.1 € 8.5
t=0
dpii(t _ .
Gii ‘= pdt() = — Z gi; <0,VieS.
t=0 JES\{i}

Define matrix Q := [gi;]ijes and vector P;(t) = [p;;()];es, then based on the
forward Kolmogorov equation,

. Pz(u) —1I
—= = lim = lim ————
dt u—0+ U u—0+ U

P;(t) = QP,(t).

Thus, we can compute the first security metric, the occupancy distribution of
any state s € S at time ¢ starting from the initial state i € S at time 0, i.e.,

P;(t) = eQP;(0),Vi € S. (4)

We plot the evolution of p;;(t),i = sy+1,7 € {s1, S2, S10, 512}, versus ¢t €
[0,00) in Fig.4 and the limiting occupancy distribution p;;(00),? = sy41, in
Fig.5. In Fig. 4, although the attacker starts at the normal zone i = sy, our
engagement policy can quickly attract the attacker into the honeynet. Figure 5
demonstrates that the engagement policy can keep the attacker in the honeynet
with a dominant probability of 91% and specifically, in the target honeypot nig
with a high probability of 41%. The honeypots connecting the normal zone also
have a higher occupancy probability than nodes ns, n4, ns, ng, n7, ng, which are
less likely to be explored by the attacker due to the network topology.
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—==2: Server
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= 12: Normal Zone
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2: Server,
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Fig. 4. Evolution of p;;(t),i = sn+1- Fig. 5. The limiting occupancy distribution.
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3.2 First Passage Time

Another quantitative measure of interest is the first passage time T;p of vis-
iting a set D C S starting from ¢ € S\D at time 0. Define the cumulative
probability function fi5(t) = Pr(Tip < t), then fip(t) = > ,cp din(t) +
> les\p fg [ (t — w)dgy(u). In particular, if D = {j}, then the probability

af 55 (1)
dt

density function f;;(t) := satisfies

t
pij(t) = /0 pji(t —w)dfi;(u) = pj;(t)  fi;(t), Vi, j € S, j #i.

Take Laplace transform p;;(s fo 'p;; (t)dt, and then take inverse Laplace
transform on fi;(s) = g}; 8, we obtain
fl-j(t):/ eStp”( )ds Vi, j eS8, j A1 (5)
0 pjj(s)

We define the second security metric, the attraction efficiency as the proba-
bility of the first passenger time Tj,, s,, less than a threshold ¢;,. Based on (4)
and (5), the probability density function of Ty, s,, is shown in Fig. 6. We take
the mean denoted by the orange line as the threshold ¢;, and the attraction effi-
ciency is 0.63, which means that the defender can attract the attacker from the
normal zone to the database honeypot in less than t;;, = 20.7 with a probability
of 0.63.
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Fig. 6. Probability density function of T, 4.

Mean First Passage Time. The third security metric of concern is the avemge
engagement efficiency defined as the Mean First Passage Time (MFPT) t7}, =
E[T;p],Vi € §,D C S. Under the exponential sojourn distribution, MEPT can
be computed directly through the a system of linear equations, i.e.,

D =0,i€eD,

1+ qutyy = 0,i ¢ D. (6)
leS
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In general, the MFPT is asymmetric, i.e., ]} # t7},Vi, j € S. Based on (6), we
compute the MFPT from and to the normal zone in Figs.7 and 8, respectively.
The color of each node indicates the value of MFPT. In Fig.7, the honeypot
nodes that directly connect to the normal zone have the shortest MFPT, and
it takes attackers much longer time to visit the honeypots of clients due to the
network topology. Figure 8 shows that the defender can engage attackers in the
target honeypot nodes of database and sensors for a longer time. The engage-
ments at the client nodes are yet much less attractive. Note that two figures have
different time scales denoted by the color bar value, and the comparison shows
that it generally takes the defender more time and efforts to attract the attacker
from the normal zone.

The MFPT from the normal zone ¢7}, ; measures the average time it takes
to attract attacker to honeypot state j € S\{si12, 513} for the first time. On the
contrary, the MFPT to the normal zone ] =~measures the average time of the
attacker penetrating the normal zone from honeypot state i € S\{s12, s13} for
the first time. If the defender pursues absolute security and ejects the attack
once it goes to the normal zone, then Fig.8 also shows the attacker’s average

sojourn time in the honeynet starting from different honeypot nodes.

Mean First-Passage Time from Normal Zone Mean First-passage Time to Normal Zone

Clients ” Clients 2
* * *
El
Server b Server
%
E
Normal Zone ° Normal Zone
. < 0 - - - . ‘
Switch ’ z Switch ’ 2 g
s0F F
| o a | o a B
Computer a0 Computer|
Network Network 18
. 20 1
X A 2 y
Emulated Emulated Emulated Emulated
Database Sensors w0 Database Sensors *
. . m
Fig. 7. MFPT from the normal zone Fig. 8. MFPT to the normal zone ¢}, .

m .
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3.3 Advanced Persistent Threats

In this section, we quantify three engagement criteria on attackers of different
levels of persistence and intelligence in Figs. 9 and 10, respectively. The criteria
are the stationary probability of normal zone p; 5,,(c0), Vi € S\{s13}, the utility
of normal zone v(s12), and the expected utility over the stationary probability,
Le., > icspij(00)v(j), Vi € S\{s13}.

As shown in Fig. 9, when the attacker is at the normal zone i = s15 and the
defender chooses action a = aa, a larger A := \;;(aa),Vj € {s1, s2,ss}, of the
exponential sojourn distribution indicates that the attacker is more inclined to
respond to the honeypot attraction and thus less time is required to attract the
attacker away from the normal zone. As the persistence level A increases from 0.1
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to 2.5, the stationary probability of the normal zone decreases and the expected
utility over the stationary probability increases, both converge to their stable
values. The change rate is higher during A € (0,0.5] and much lower afterward.
On the other hand, the utility loss at the normal zone decreases approximately
linearly during the entire period A € (0,2.5].

As shown in Fig. 10, when the attacker becomes more advanced with a larger
failure probability of attraction, i.e., p := p(j|si2,a4),¥] € {s12, 513}, he can
stay in the normal zone with a larger probability. A significant increase happens
after p > 0.5. On the other hand, as p increases from 0 to 1, the utility of
the normal zone reduces linearly, and the expected utility over the stationary
probability remains approximately unchanged until p > 0.9.

Figures9 and 10 demonstrate that the expected utility over the stationary
probability receives a large decrease only at the extreme cases of a high tran-
sition frequency and a large penetration probability. Similarly, the stationary
probability of the normal zone remains small for most cases except for the above
extreme cases. Thus, our policy provides a robust expected utility as well as a
low-risk engagement over a large range of changes in the attacker’s persistence
and intelligence.

Stationary Probability of Normal Zone Stationary Probability of Normal Zone
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Fig. 9. Three engagement criteria under  Fig. 10. Three engagement criteria under
different persistence levels A € (0,2.5]. different intelligence levels p € [0, 1].

4 Reinforcement Learning of SMDP

Due to the absent knowledge of an exact SMDP model, i.e., the investigation
reward, the attacker’s transition probability (and even the network topology),
and the sojourn distribution, the defender has to learn the optimal engagement
policy based on the actual experience of the honeynet interactions. As one of the
classical model-free reinforcement learning methods, the @-learning algorithm
for SMDP has been stated in [3], i.e.,
QFL(s* ab) = (1 — aF(s%,a"))Q (5%, a¥) + ¥ (5%, a*)[F1 (5%, ¥, 551
1-— 6777_—)“) —k (7)

= k _k ( —T k/=k+1 _/
+ 72(87,a —e€ max Q"(s a)l,
2( ’ ) v a’€A(SFH1) ( ’ )]
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k is the current state sample, a* is the current selected action,

where s

ak(s* a*) € (0,1) is the learning rate, 5**! is the observed state at next
stage, 71,72 is the observed investigation rewards, and 7% is the observed
sojourn time at state s¥. When the learning rate satisfies Yoo ak(sk ak) =
00, > opeo(a@¥(s¥,a"))? < 0o,Vsk € S,Va* € A(s¥), and all state-action pairs
are explored infinitely, max, ¢ 4(s) Qk(s*,a’),k — oo, in (7) converges to value
v(s*) with probability 1.

At each decision epoch k& € {0,1,---}, the action ¢" is chosen accord-
ing to the e-greedy policy, i.e., the defender chooses the optimal action
arg max, ¢ A(sk) QF(s*,a’) with a probability 1 — ¢, and a random action with a
probability e. Note that the exploration rate e € (0, 1] should not be too small to
guarantee sufficient samples of all state-action pairs. The Q-learning algorithm
under a pure exploration policy € = 1 still converges yet at a slower rate.

In our scenario, the defender knows the reward of ejection action a4 and
v(s13) = 0, thus does not need to explore action a4 to learn it. We plot one
learning trajectory of the state transition and sojourn time under the e-greedy
exploration policy in Fig. 11, where the chosen actions ag, ap, ar,am are denoted
in red, blue, purple, and green, respectively. If the ejection reward is unknown,
the defender should be restrictive in exploring a4 which terminates the learning
process. Otherwise, the defender may need to engage with a group of attackers
who share similar behaviors to obtain sufficient samples to learn the optimal
engagement policy.

k

12 - 1 11} I I L A ]|

State
£ (3] o ~ -] ©

2r Il i I | 1l | Il

1r | | | I [ 1w I |
! I

2.4899 2.4994 2.5089 2.5184 2.5279 2.5374
Time x10%

Fig. 11. One instance of Q-learning on SMDP where the z-axis shows the sojourn time
and the y-axis represents the state transition. The chosen actions ag,ap,ar,an are
denoted in red, blue, purple, and green, respectively. (Color figure online)
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k

In particular, we choose o (s*,a*) = ﬁ,h’sk € S,Va* € A(s¥), to
{sk,ak} e

guarantee the asymptotic convergence, where k. € (0, c0) is a constant parameter
and kg o6 € {0,1,---} is the number of visits to state-action pair {s*,a"}
up to stage k. We need to choose a proper value of k. to guarantee a good
numerical performance of convergence in finite steps as shown in Fig.12. We
shift the green and blue lines vertically to avoid the overlap with the red line
and represent the corresponding theoretical values in dotted black lines. If k. is
too small as shown in the red line, the learning rate decreases so fast that new
observed samples hardly update the @)-value and the defender may need a long
time to learn the right value. However, if k. is too large as shown in the green
line, the learning rate decreases so slow that new samples contribute significantly
to the current @Q-value. It causes a large variation and a slower convergence rate
of max, e a(s,,) Q% (512, ).

We show the convergence of the policy and value under k., = 1,¢ = 0.2,
in the video demo (See URL: https://bit.ly/2QUz30k). In the video, the color
of each node n* distinguishes the defender’s action a* at state s* and the size
of the node is proportional to max, ¢ 4(s*) QF(s*,a’) at stage k. To show the
convergence, we decrease the value of € gradually to 0 after 5000 steps.

Since the convergence trajectory is stochastic, we run the simulation for 100
times and plot the mean and the variance of Q%(s12,ap) of state sy» under
the optimal policy 7(s;2) = ap in Fig.13. The mean in red converges to the
theoretical value in about 400 steps and the variance in blue reduces dramatically
as step k increases.

Variance ——Mean -+** Theoretical Value
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Value

Value of Q(syy, ar)
4§ & & FS & ) A ° - » @

0 1 2 3 4 5 6 7 0 100 200 300 400 500 600 700 800 900 1000
Step k x10% Step k

Fig. 12. The convergence rate under dif- Fig.13. The evolution of the mean and

ferent values of k.. (Color figure online)  the variance of Q*(s12,ap). (Color figure
online)

4.1 Discussion

In this section, we discuss the challenges and related future directions about
reinforcement learning in the honeypot engagement.


https://bit.ly/2QUz3Ok
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Non-cooperative and Adversarial Learning Environment. The major
challenge of learning under the security scenario is that the defender lacks full
control of the learning environment, which limits the scope of feasible reinforce-
ment learning algorithms. In the classical reinforcement learning task, the learner
can choose to start at any state at any time, and repeatedly simulate the path
from the target state. In the adaptive honeypot engagement problem, however,
the defender can remove attackers but cannot arbitrarily draw them to the tar-
get honeypot and force them to show their attacking behaviors because the true
threat information is revealed only when attackers are unaware of the honey-
pot engagements. The future work could generalize the current framework to an
adversarial learning environment where a savvy attacker can detect the honeypot
and adopt deceptive behaviors to interrupt the learning process.

Risk Reduction During the Learning Period. Since the learning process
is based on samples from real interactions, the defender needs to concern the
system safety and security during the learning period. For example, if the visit
and sojourn in the normal zone bring a significant amount of losses, we can use
the SARSA algorithm to conduct a more conservative learning process than Q-
learning. Other safe reinforcement learning methods are stated in the survey [§],
which are left as future work.

Asymptotic Versus Finite-Step Convergence. Since an attacker can ter-
minate the interaction on his own, the engagement time with attacker may be
limited. Thus, comparing to an asymptotic convergence of policy learning, the
defender aims more to conduct speedy learning of the attacker’s behaviors in
finite steps, and meanwhile, achieve a good engagement performance in these
finite steps.

Previous works have studied the convergence rate [6] and the non-asymptotic
convergence [18,19] in the MDP setting. For example, [6] have shown a relation-
ship between the convergence rate and the learning rate of Q-learning, [19] has
provided the performance bound of the finite-sample convergence rate, and [18§]
has proposed E3 algorithm which achieves near-optimal with a large probability
in polynomial time. However, in the honeypot engagement problem, the defender
does not know the remaining steps that she can interact with the attacker
because the attacker can terminate on his own. Thus, we cannot directly apply
the E? algorithm which depends on the horizon time. Moreover, since attack-
ers may change their behaviors during the long learning period, the learning
algorithm needs to adapt to the changes of SMDP model quickly.

In this preliminary work, we use the e-greedy policy for the trade-off of the
exploitation and exploration during the finite learning time. The € can be set at
a relatively large value without the gradual decrease so that the learning algo-
rithm persistently adapts to the changes in the environment. On the other hand,
the defender can keep a larger discounted factor v to focus on the immediate
investigation reward. If the defender expects a short interaction time, i.e., the
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attacker is likely to terminate in the near future, she can increase the discounted
factor in the learning process to adapt to her expectations.

Transfer Learning. In general, the learning algorithm on SMDP converges
slower than the one on MDP because the sojourn distribution introduces extra
randomness. Thus, instead of learning from scratch, the defender can attempt
to reuse the past experience with attackers of similar behaviors to expedite
the learning process, which motivates the investigation of transfer learning in
reinforcement learning [39]. Some side-channel information may also contribute
to the transfer learning.

5 Conclusion

A honeynet is a promising active defense scheme. Comparing to traditional pas-
sive defense techniques such as the firewall and intrusion detection systems, the
engagement with attackers can reveal a large range of Indicators of Compromise
(IoC) at a lower rate of false alarms and missed detection. However, the active
interaction also introduces the risks of attackers identifying the honeypot setting,
penetrating the production system, and a high implementation cost of persistent
synthetic traffic generations. Since the reward depends on honeypots’ type, the
defender aims to lure the attacker into the target honeypot in the shortest time.
To satisfy the above requirements of security, cost, and timeliness, we leverage
the Semi-Markov Decision Process (SMDP) to model the transition probability,
sojourn distribution, and investigation reward. After transforming the continu-
ous time process into the equivalent discrete decision model, we have obtained
long-term optimal policies that are risk-averse, cost-effective, and time-efficient.

We have theoretically analyzed the security metrics of the occupancy dis-
tribution, attraction efficiency, and average engagement efficiency based on the
transition probability and the probability density function of the first passen-
ger time. The numerical results have shown that the honeypot engagement can
engage the attacker in the target honeypot with a large probability and in a
desired speed. In the meantime, the penetration probability is kept under a bear-
able level for most of the time. The results also demonstrate that it is a worthy
compromise of the immediate security to allow a small penetration probability
so that a high investigation reward can be obtained in the long run.

Finally, we have applied reinforcement learning methods on the SMDP in case
the defender can not obtain the exact model of the attacker’s behaviors. Based
on a prudent choice of the learning rate and exploration-exploitation policy, we
have achieved a quick convergence rate of the optimal policy and the value.
Moreover, the variance of the learning process has decreased dramatically with
the number of observed samples.
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