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Abstract. This paper studies reinforcement learning (RL) under mali-
cious falsification on cost signals and introduces a quantitative framework
of attack models to understand the vulnerabilities of RL. Focusing on
Q-learning, we show that Q-learning algorithms converge under stealthy
attacks and bounded falsifications on cost signals. We characterize the
relation between the falsified cost and the Q-factors as well as the policy
learned by the learning agent which provides fundamental limits for fea-
sible offensive and defensive moves. We propose a robust region in terms
of the cost within which the adversary can never achieve the targeted
policy. We provide conditions on the falsified cost which can mislead the
agent to learn an adversary’s favored policy. A numerical case study of
water reservoir control is provided to show the potential hazards of RL
in learning-based control systems and corroborate the results.

Keywords: Reinforcement learning · Cybersecurity · Q-learning ·
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1 Introduction

Reinforcement Learning (RL) is a paradigm for making online decisions in uncer-
tain environment. Recent applications of RL algorithms to Cyber-Physical Sys-
tems enables real-time data-driven control of autonomous systems and improves
the system resilience to failures. However, the integration of RL mechanisms
also exposes CPS to new vulnerabilities. One type of threats arises from the
feedback architecture of the RL algorithms depicted in Fig. 1. An adversary can
launch a man-in-the-middle attack to delay, obscure and manipulate the obser-
vation data that are needed for making online decisions. This type of adversarial
behavior poses a great threat to CPS. For example, self-driving platooning vehi-
cles can collide with each other when their observation data are manipulated [2].
Similarly, drones can be weaponized by terrorists to create chaotic and vicious
situations where they are commanded to collide to a crowd or a building.
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Hence it is imperative to understand the adversarial behaviors of RL and
establish a theoretic framework to analyze the impact of the attacks on RLs.
One key aspect that makes RL security unique is its feedback architecture which
includes components of sensing, control, and actuation as is shown in Fig. 1.
These components are subject to different types of cyber threats. For example,
during the learning process, agent learns optimal policy from sequential obser-
vations from the environment. An adversary may perturb the environment to
deteriorate the learning results. This type of attack is called environment attack.
Agents observe the environment via their sensors. But the sensory observation of
the state may be delayed, perturbed, or falsified under malicious attacks which
are usually called sensors attack. There are also actuator attacks and attacks
on reward/cost signals. The latter refers to manipulation of the reward signal
produced by the environment in response to the actions applied by a RL agent,
which can significantly affect the learning process. Take a RL-based Unmanned
Aerial Vehicle (UAV) as an example, if the reward depends on the distance of the
UAV to a desired destination measured by GPS coordinates, spoofing of GPS
signals by the adversary may result in incorrect reward/cost signals.

Fig. 1. Main components of a RL agent and potential attacks that can be applied to
these components.

In this paper, we study RL under malicious manipulation of cost signals
from an offensive perspective where an adversary/attacker maliciously falsifies
the cost signals. We first introduce a general formulation of attack models by
defining the objectives, information structure and the capability of an adversary.
We focus our research on a class of Q-learning algorithm and aim to address two
fundamental questions. The first one is on the impact of the falsification of cost
signals on the convergence of Q-learning algorithm. The second one is on how the
RL algorithm can be misled under malicious falsifications. We show that under
stealthy attacks and bounded falsifications on the cost signals, the Q-learning
algorithm converges almost surely. If the algorithm converges, we characterize the
relationship between the falsified cost and the limit of Q-factors by an implicit
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map. We show that the implicit map has several useful properties including
differentiability, Lipschitz continuity etc., which help to find fundamental limits
of adversarial behavior. In particular, from the implicit map, we study how
the falsified cost affect the policy that agents learn. We show that the map is
uniformly Lipschitz continuous with an explicit Lipschitz constant and based
on this, we characterize a robust region where the adversary can never achieve
his desired policy if the falsified cost stays in the robust region. The map is
shown to be Fréchet differentiable almost everywhere and Fréchet derivative is
explicitly characterized which is independent of the falsified cost. The map has
‘piece-wise linear’ property on a normed vector space. The derivative and ‘piece-
wise linear’ property can be utilized by the adversary to drive the Q-factors to a
desired region by falsifying cost signals properly. We show that once the falsified
cost satisfies a set of inequalities, the RL agent can be mislead to learn the
policy manipulated by the adversary. Further, we give conditions under which
the adversary can attain any policy even if the adversary is only capable of
falsifying the cost at a subset of the state space. In the end, An example is
presented to illustrate potential hazards that might be caused by malicious cost
falsification. The main contributions of our paper can be summarized as follows:

1. We establish a theoretic framework to study strategic manipula-
tion/falsifications on cost signals in RL and present a set of attack models on
RL.

2. We provide an analytical results to understand how falsification on cost singals
can affect Q-factors and hence the policies learned by RL agents.

3. We characterize conditions on deceptively falsified cost signals under which
Q-factors learned by agents can produce the policy that adversaries aim for.

4. We use a case study of water reservoir to illustrate the severe damages of
insecure RL that can be inflicted on critical infrastructures and demonstrate
the need for defense mechanisms for RL.

1.1 Related Works

Very few works have explicitly studied security issues of RL [1]. There is a large
literature on adversarial machine learning, whose focus is on studying the vul-
nerability of supervised learning. However, we aim to provide a fundamental
understanding of security risks of RL which is different from both supervised
learning and unsupervised learning [21]. So, there remains a need for a solid the-
oretic foundation on security problems of RL so that many critical applications
would be safeguarded from potential RL risks.

One area relevant to security of RL is safe RL [10], which aims to ensure that
agents learn to behave in compliance with some pre-defined criteria. The security
problem, however, is concerned with settings where an adversary intentionally
seeks to compromise the normal operation of the system for malicious purposes
[1]. Apart from the distinction between RL security and safe RL, the difference
between RL security and the area of adversarial RL also exists. The adversarial
RL is usually studied under multi-agent RL settings, in which agents aim to
maximize their returns or minimize their cost in competition with other agents.
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There are two recent works that have studied inaccurate cost signals. In
[9], Everitt et al. study RL for Markov Decision Process with corrupted reward
channels where due to some sensory errors and software bugs, agents may get
corrupted reward at certain states. But their focus is not on security perspectives
and they look into unintentional perturbation of cost signals. In [22], Wang et al.
have studied Q-learning with perturbed rewards where the rewards received by
RL agents are perturbed with certain probability and the rewards take values
only on a finite set. They study unintentional cost perturbation from a robust
perspective other than a security perspective. Compared the two works men-
tioned above, our work studies RL with falsified cost signals from a security
point of view and we develop theoretical underpinnings to characterize how the
falsified cost will deteriorate the learning result.

The falsification of cost/reward signals can be viewed as one type of deception
mechanisms. The topic of defensive deception has bee surveyed in [17], which
includes a taxonomy of deception mechanisms and a review of game-theoretic
models. Game and decision-theoretic models for deception have been studied in
various contexts [12,27], including honeypots [16,18], adversarial machine learn-
ing [25,26], moving target defense [8,28], and cyber-physical control systems
[15,19,20,29]. In this work, we extend the paradigm of cyber deception to rein-
forcement learning and establish a theoretical foundation for understanding the
impact and the fundamental limits of such adversarial behaviors.

1.2 Organization of the Paper

In Sect. 2, we present preliminaries and formulate a general framework that
studies several attack models. In Sect. 3, we analyze the Q-learning algorithm
under adversarial manipulations on cost. We study under what conditions the
Q-learning algorithm converges and where it converges to. In Sect. 4, we present
an example to corroborate the theoretical results and their implications in the
security problems of RL.

2 Preliminaries and Problem Formulation

2.1 Preliminaries

Consider one RL agent interacts with an unknown environment and attempts
to minimize the total of its received costs. The environment is formalized as a
Markov Decision Process (MDP) denoted by 〈S ,A , c,P, β〉. The MDP {Φ(t) :
t ∈ Z} takes values in a finite state space S = {1, 2, . . . , S} and is controlled by
a sequence of actions (sometimes called a control sequence) Z = {Z(t) : t ∈ Z}
taking values in a finite action space A = {a1, . . . , aA}. In our setting, we
are interested in stationary policies where the control sequence takes the form
Z(t) = w(Φ(t)), where the feedback rule w is a function w : S → A . To
emphasize the policy w, we denote Zw = {Zw(t) := w(Φ(t)) : t ∈ Z}. According
to a transition probability kernel P, the controlled transition probabilities are
given by p(i, j, a) for i, j ∈ S , a ∈ A . Commonly P is unknown to the agent.
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Let c : S × A → R be the one-step cost function, and consider the infinite
horizon discounted cost control problem of minimizing over all admissible Z the
total discounted cost J(i,Z) = E[

∑∞
t=0 βtc(Φ(t), Z(t))|Φ(0) = i], where β ∈

(0, 1) is the discount factor. The minimal value function is defined as V (i) =
min J(i,Z), where the minimum is taken over all admissible control sequences
Z. The function V satisfies the dynamic programming equations [3], V (i) =
mina

[
c(i, a)+β

∑
j p(i, j, a)V (j)

]
, i ∈ S and the optimal control minimizing J

is given by the stationary policy defined through the feedback law w∗ given by
w∗(i) := arg mina[c(i, a) + β

∑
j p(i, j, a)V (j)], i ∈ S . If we define Q-values via

Q(i, a) = c(i, a) + β
∑

j

p(i, j, a)V (j), i ∈ S , a ∈ A ,

then V (i) = mina Q(i, a)and the matrix Q satisfies

Q(i, a) = c(i, a) + β
∑

j

p(i, j, a)min
b

Q(j, b), i ∈ S , a ∈ A . (1)

If the matrix Q defined in (1) can be computed, e.g., using value iteration, then
the optimal control policy can be found by w∗(i) = arg mina Q(i, a), i ∈ S .
When transition probabilities are unknown, we can use a variant of stochastic
approximation known as the Q-learning algorithm proposed in [23]. The learning
process is defined through the recursion

Qn+1(i, a) = Qn(i, a) + a(n) ×
[
β min

b
Qn(Ψn+1(i, a), b) + c(i, a) − Qn(i, a)

]
,

(2)
i ∈ S , a ∈ A , where Ψn+1(i, a) is an independently simulated S -valued random
variable with law p(i, ·, a).

Notations. An indicator function 11C is defined as 11C(x) = 1 if x ∈ C, and
11C(x) = 0 otherwise. Denote 1i ∈ R

S a vector with S components whose ith
component is 1 and other components are 0. The true cost at time t is denoted
by the shorthand notion ct := c(Φ(t), Z(t)). For a mapping f : R

S×A → R
S×A,

define fia : R
S×A → R that maps R

S×A to R where for any Q ∈ R
S×A, we have

[f(Q)]i,a = fia(Q) and [f(Q)]i,a is the ith component and ath column of f(Q).
The inverse of f is denoted by f−1. Given a set V ⊂ R

S×A, f−1(V ) is referred
to the set {c : f(c) ∈ V }. Denote B(c; r) := {c̃ : ‖c̃ − c‖ < r} an open ball in
a normed vector space with radius r and center c. Here and in later discussion,
‖ · ‖ refers to the maximum norm.

Given c ∈ R
S×A and a policy w, denote cw ∈ R

S a vector whose ith
component is c(i, w(i)) for any i ∈ S . Define ca ∈ R

S as a vector whose
ith component is c(i, a). We define Qw, Qa in the same way. For transi-
tion probability, we define Pw ∈ R

S×S as [Pw]i,j = p(i, j, w(i)) and Pia =
(p(i, 1, a), p(i, 2, a), . . . , p(i, S, a))T ∈ R

S . Define Pa ∈ R
S×S as the matrix whose

components are [Pa]i,j = p(i, j, a).



222 Y. Huang and Q. Zhu

2.2 General Attack Models

Under malicious attacks, the RL agent will not be able to observe the true cost
feedback from the environment. Instead, the agent is given a cost signal that
might be falsified by the attacker. Consider the following MDP with falsified cost
(MDP-FC) denoting as 〈S ,A , c, c̃,P, β〉. In MDP-FC, at each time t, instead of
observing ct ∈ R directly, the agent only observes a falsified cost signal denoted
by c̃t ∈ R. The remaining aspects of the MDP framework stay the same.

Attack models can be specified by three components: objective of an adver-
sary, actions available to the adversary, and information at his disposal. The
adversary’s task here is to design falsified cost signals c̃ based on his informa-
tion structure and the actions available to him so that he can achieve certain
objectives.

Objective of Adversary: One possible objective of an adversary is to maximize
the agent’s cost while minimizing the cost of attacks. This type of objectives can
be can captured by a cost function

max
c̃

E
[ ∞∑

t=0

βtc(Φ(t), Zw(c̃)(t))
]

− AttackCost(c̃).

The other adversarial objectives would be to drive the MDP to a targeted process
or to mislead the agent to learn certain policies the attacker aims for. Let w(c̃)
denote the policy learned by the agent under falsified cost signals c̃ and let w†

denote the policy that an attacker aims for. We can capture the objective of such
a deceptive adversary by

max
c̃

11{w†}(w(c̃)) − AttackCost(c̃). (3)

Here, the second term AttackCost(c̃) serves as a measure for the cost of
attacking while the first term indicates whether the agent learns the policy w† or
not. We can, for example, define AttackCost(c̃) =

∑∞
t=0 αtd(ct, c̃t), where d(·, ·)

is a metric, α is a discount factor. If d is a discrete metric, then
∑T

t=0 d(ct, c̃t)
counts the number of times of cost signals being falsified before time T . Note that
here, c̃ represents all the possible ways that an adversary can take to generate
falsified signals.

Information: It is important to specify the information structure of an adversary
which determines different classes of the attacks an adversary can launch. We
can categorize them as follows.

Definition 1. 1. An attacker is called an omniscient attacker if the information
the attacker has at time t, denoted by, It, is defined as

It = {P, Φ(τ), Z(τ), c : τ ≤ t}.

2. An attacker is called a peer attacker if the attacker has only access to the
knowledge of what the agent knows at time t. That means

It = {Φ(τ), Z(τ), cτ : τ ≤ t}
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3. An attacker is called an ignorant attacker if at time t, he only knows the cost
signals before time t, i.e.,

It = {cτ : τ ≤ t}

4. An attacker is called a blind attacker if the information the attacker has at
time t, denoted by It, is defined as

It = ∅.

Remark 1. There are many other situations in terms of information sets of an
attacker that we can consider. In the definition of an omniscient attacker, c
represents the true cost at every state-action pair. One should differentiate it
from cτ . The latter means the true cost generated at time τ . That is to say an
omniscient attack knows the true cost at every state action pair (i, a) for all t.

Actions Available: Even if an adversary can be omniscient, it does not mean that
he can be omnipotent. The actions available to an adversary need to be defined.
For example, the attacker can only create bounded perturbations to true cost
signals. In some cases, the action of an adversary may be limited to changing the
sign of the cost at certain time or he can only falsify the cost signals at certain
states in the subset S ′ ⊂ S .

The constraints on the actions available to an attacker can also be captured
by the attack cost. The cost for the type of attacks whose actions are constrained
to a subset S ′ can be captured by the following

AttackCost(c̃) =

{
0 if c̃t = ct := c(Φ(t), Z(t)), for Φ(t) ∈ S\S̃,∀t

∞ Otherwise.

Moreover, the generation of falsified costs relies heavily on the information
an attacker has. If the attacker is a peer attacker or an omniscient attacker, the
falsified signal c̃ can be generated through a mapping C : S ×A × R → R, i.e.,
c̃t = C(Φ(t), Z(t), ct). If the attacker only knows the state and the cost, c̃ can be
generated by the mapping C : S × R → R. If the attacker is ignorant, we have
C : R → R, then c̃t = C(ct).

Definition 2 (Stealthy Attacks). If c̃t takes the same value for the same
state-action pair (Φ(t), Z(t)) for all t ∈ Z, i.e., for t �= τ , if for (Φ(t), Z(t)) =
(Φ(τ), Z(τ)), we have c̃t = c̃τ , then we say that the attacks on the cost signals
are stealthy.

The definition states that the cost falsification remains consistent for the
same state-action pairs. In later discussions, we focus on stealthy attacks, which
is a class of attacks that are hard to detect. Under stealthy attackers, the falsified
cost c̃ can be viewed as a falsified cost matrix of dimension S × A. At time t,
the cost received by the RL agent is c̃(Φ(t), Z(t)).
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2.3 Q-Learning with Falsified Cost

If the RL agent learns an optimal policy by Q-learning algorithm given in (2),
then under stealthy attacks on cost, the algorithm can be written as

Qn+1(i, a) = Qn(i, a) + a(n) ×
[
β min

b
Qn(Ψn+1(i, a), b) + c̃(i, a) − Qn(i, a)

]
.

(4)
Note that if the attacks are not stealthy, we need to write c̃n in lieu of c̃(i, a).
There are two important questions regarding the Q-learning algorithm with fal-
sified cost (4): (1) Will the sequence of Qn-factors converge? (2) Where will the
sequence of Qn converge to? We will address these two issues in next section.

Suppose that the sequence Qn generated by the Q-learning algorithm (4)
converges. Let Q̃∗ be the limit, i.e., Q̃∗ = limn→∞ Qn. Suppose the objective
of an adversary is to induce the RL agent to learn a particular policy w†. The
adversary’s problem then is to design c̃ by applying the actions available to
him based on the information he has so that the limit Q-factors learned from
the Q-learning algorithm produce the policy targeted by the adversary w†, i.e,
Q̃∗ ∈ Vw† , where

Vw := {Q ∈ R
S×A : w(i) = arg mina Q(i, a),∀i ∈ S }.

In next section, we will develop theoretical underpinnings to address the issues
regarding the convergence of (4) and the attainability of the adversarial objec-
tives.

3 Analysis of Q-Learning with Falsified Cost

3.1 Convergence of Q-Learning Algorithm with Falsified Cost

In Q-learning algorithm (2), to guarantee almost sure convergence, the agent
usually takes tapering stepsize [4] {a(n)} which satisfies 0 < a(n) ≤ 1, n ≥ 0,
and

∑
n a(n) = ∞,

∑
n a(n)2 < ∞. Suppose in our problem, the agent takes

tapering stepsize. To address the convergence issues, we have the following result.

Lemma 1. If an adversary performs stealthy attacks with bounded c̃(i, a) for all
i ∈ S , a ∈ A , then the Q-learning algorithm with falsified costs converges to
the fixed point of F̃ (Q) almost surely where the mapping F̃ : R

S×A → R
S×A is

defined as F̃ (Q) = [F̃ia(Q)]i,a with

F̃ia(Q) = β
∑

j

p(i, j, a)min
b

Q(j, b) + c̃(i, a),

and the fixed point is unique and denoted by Q̃∗.
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Sketch of Proof. If the adversary performs stealthy attacks, the falsified costs for
each state-action pair are consistent during the learning process. The Q learning
process thus can be written as (4). Rewrite (4) as Qn+1 = Qn + a(n)

[
h̃(Qn) +

M(n + 1)
]
, where h̃(Q) := F̃ (Q) − Q and M(n + 1) is given as

Mia(n + 1) = β

(
min

b
Qn(Ψn+1(i, a), b) −

∑
j

p(i, j, a)(min
b

Qn(j, b))

)
, i ∈ S, a ∈ A.

Note that for any Q1, Q2, h̃(Q1) − h̃(Q2) and F̃ (Q1) − F̃ (Q2) do not depend
on the falsified costs. If the falsified costs are bounded, one can see that h̃(Q)
is Lipschitz. And M(n + 1) is a Martingale difference sequence. Following the
arguments in [4] (Theorem 2 Chap. 2) and Sect. 3.2 of [5], we can see the iterates
of (4) converges almost surely to the fixed points of F̃ . Since F̃ is a contraction
mapping with respect to the max norm, with contraction factor β [3] (pp. 250),
by Banach fixed point theorem (contraction theorem), F̃ admits a unique fixed
point. 
�

It is not surprising that one of the conditions given in Lemma1 that guaran-
tees convergence is that an attacker performs stealthy attacks. The convergence
can be guaranteed because the falsified cost signals are consistent over time for
each state action pair. The uniqueness of Q̃∗ comes from the fact that if c̃(i, a)
is bounded for every (i, a) ∈ S × A , F̃ is a contraction mapping. By Banach’s
fixed point theorem [13], F̃ admits a unique fixed point. With this lemma, we
conclude that an adversary can make the algorithm converge to a limit point by
stealthily falsifying the cost signals.

Remark 2. Whether an adversary aims for the convergence of the Q-learning
algorithm (4) or not depends on his objective. In our setting, the adversary
intends to mislead the RL agent to learn policy w†, indicating that the adversary
promotes convergence and aim to have the limit point Q̃∗ lie in Vw† .

3.2 How Is the Limit Point Affected by the Falsified Cost

Now it remains to analyze, from the adversary’s perspective, how to falsify the
cost signals so that the limit point that algorithm (4) converges to is desired
by the adversary. In later discussions, we consider stealthy attacks where the
falsified costs are consistent for the same state action pairs. Denote the true
cost by matrix c ∈ R

S×A with [c]i,a = c(i, a) and the falsified cost is described
by a matrix c̃ ∈ R

S×A with [c̃]i,a = c̃(i, a). Given c̃, the fixed point of F̃ is
uniquely decided, i.e., the point that the algorithm (4) converges to is uniquely
determined. Thus, there is a mapping c̃ �→ Q̃∗ implicitly described by the relation
F̃ (Q) = Q. For convenience, this mapping is denoted by f : R

S×A → R
S×A.

Theorem 1. Let Q̃∗ denote the Q-factor learned from algorithm (4) with falsi-
fied cost signals and Q∗ be the Q-factor learned from (2) with true cost signals.
There exists a constant L < 1 such that

‖Q̃∗ − Q∗‖ ≤ 1
1 − L

‖c̃ − c‖, (5)
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and L = β where discounted factor β has been defined in the MDP-FC problem.

Proof. Define F̃ (Q) as F̃ia(Q) = β
∑

j p(i, j, a)minb Q(j, b) + c(i, a). From
Lemma 1, we know that Q̃∗ and Q∗ satisfy Q̃∗ = F̃ (Q̃∗) and Q∗ = F (Q∗).
We have Q̃∗ − Q̃ = F̃ (Q̃∗) − F (Q∗). Since F̃ and F are both contraction map-
pings, by triangle inequality, we have ‖Q̃∗ −Q∗‖ ≤ L‖Q̃∗ −Q∗‖+ ‖c̃− c‖. Thus,
we have (5). And the contraction factor L for F̃ and F is β. 
�
Remark 3. In fact, taking this argument just slightly further, one can conclude
that falsification on cost c using a tiny perturbation does not cause significant
changes in the limit point of algorithm (2), Q∗. This feature indicates that an
adversary cannot cause a significant change in the limit Q-factor by just a small
perturbation in the cost signals. This is a feature known as stability that is
observed in problems that possess contraction mapping properties. Also, Theo-
rem 1 indicates that the mapping c̃ �→ Q̃∗ is continuous, and to be more specific,
it is uniformly Lipchitz continuous with Lipchitz constant 1/(1 − β).

With Theorem 1, we can now characterize the minimum level of falsification
an adversary needs to change the policy from the true optimal policy w∗ to the
policy w† that the adversary aims for. First, note that Vw ⊂ R

S×A and it can
be also written as

Vw = {Q ∈ R
S×A : Q(i, w(i)) < Q(i, a),∀i ∈ S ,∀a �= w(i)}. (6)

We can easily see that for any given policy w, Vw is a convex set, hence connected.
This is because for any λ ∈ [0, 1], if Q1, Q2 ∈ Vw, λQ1 +(1−λ)Q2 ∈ Vw. Second,
for any two different policies w1 and w2, Vw1 ∩ Vw2 = ∅. Define the infimum
distance between the true optimal policy w∗ and the adversary desired policy
w† in terms of the Q-values by

D(w∗, w†) := inf
Q1∈Vw∗ ,Q2∈V

w†
‖Q1 − Q2‖,

which is also the definition of the distance between two sets Vw∗ and Vω† . Note
that for w∗ �= w† (otherwise, the optimal policy w∗ is what the adversary desire,
there is no incentive for the adversary to attack), D(w∗, w†) is always zero accord-
ing to the definition of the set (6). This counterintuitive result states that a small
change in the Q-value may result in any possible change of policy learned by the
agent from the Q-learning algorithm (4). Compared with Theorem 1 which is a
negative result to the adversary, this result is in favor of the adversary.

Similarly, define the point Q∗ to set Vw† distance by DQ∗(w†) :=
infQ∈V

w† ‖Q − Q∗‖. Thus, if Q̃∗ ∈ Vw† , we have

0 = D(w∗, w†) ≤ DQ∗(w†) ≤ ‖Q̃∗ − Q∗‖ ≤ 1
1 − β

‖c̃ − c‖, (7)

where the first inequality comes from the fact that Q∗ ∈ Vw∗ and the second
inequality is due to Q̃∗ ∈ Vw† . The robust region for the true cost c to the
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adversary’s targeted policy w† is given by B(c; (1 − β)DQ∗(w†)) which is an
open ball with center c and radius (1 − β)DQ∗(w†). That means the attacks
on the cost needs to be ‘powerful’ enough to drive the falsified cost c̃ outside
the ball B(c; (1 − β)DQ∗(w†)) to make the RL agent learn the policy w†. If the
falsified cost c̃ is within the ball, the RL agent can never learn the adversary’s
targeted policy w†. The ball B(c; (1−β)DQ∗(w†)) depends only on the true cost
c and the adversary desired policy w† (Once the MDP is given, Q∗ is uniquely
determined by c). Thus, we refer this ball as the robust region of the true cost
c to the adversarial policy w†. As we have mentioned in Sect. 2.2, if the actions
available to the adversary only allows him to perform bounded falsification on
cost signals and the bound is smaller than the radius of the robust region, then
the adversary can never mislead the agent to learn policy w†.

Remark 4. First, in discussions above, the adversary policy w† can be any pos-
sible polices and the discussion remains valid for any possible policies. Second,
set Vw of Q-values is not just a convex set but also an open set. We thus can
see that DQ∗(w†) > 0 for any w† �= w∗ and the second inequality in (7) can be
replaced by a strict inequality. Third, the agent can estimate his own robustness
to falsification if he can know the adversary desired policy w†. For an omni-
scient attacker or attackers who have access to true cost signals, the attacker
can compute the robust region of the true cost to his desired policy w† to evalu-
ate whether the objective is feasible or not. When it is not feasible, the attacker
can consider changing his objectives, e.g., selecting other favored policies that
have a smaller robust region.

We have discussed how falsification affects the change of Q-factors learned
by the agent in a distance sense. The problem now is to study how to falsify the
true cost in a right direction so that the resulted Q-factors fall into the favored
region of an adversary. One difficulty of analyzing this problem comes from the
fact that the mapping c̃ �→ Q̃∗ is not explicit known. The relation between c̃ and
Q̃∗ is governed by the Q-learning algorithm (4). Another difficulty is that due
to the fact that both c̃ and Q̃∗ lies in the space of R

S×A, we need to resort to
Fréchet derivative or Gâteaux derivative [7] (if they exist) to characterize how a
small change of c̃ results in a change in Q̃∗.

From Lemma 1 and Theorem 1, we know that Q-learning algorithm converges
to the unique fixed point of F̃ and that f : c̃ �→ Q̃∗ is uniformly Lipschitz
continuous. Also, it is easy to see that the inverse of f , denoted by f−1, exists
since given Q̃∗, c̃ is uniquely decided by the relation F̃ (Q) = Q. Furthermore,
by the relation F̃ (Q) = Q, we know f is both injective and surjective and hence
a bijection which can be simply shown by arguing that given different c̃, the
solution of F̃ (Q) = Q must be different. This fact informs that there is a one-to-
one, onto correspondence between c̃ and Q̃∗. One should note that the mapping
f : R

S×A → R
S×A is not uniformly Fréchet differentiable on R

S×A due to the
min operator inside the relation F̃ (Q) = Q. However, for any policy w, f is
Fréchet differentiable on f−1(Vw) which is an open set and connected due to the
fact that Vw is open and connected and f is continuous.
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Proposition 1. The map f : R
S×A → R

S×A is Fréchet differentiable on Vw

for any policy w and the Fréchet derivative of f at any point c̃ ∈ Vw, denoted
by f ′(c̃), is a linear bounded map G : R

S×A → R
S×A that does not depend on c̃,

and Gh is given as

[Gh]i,a = βPT
ia(I − βPw)−1hw + h(i, a) (8)

for every i ∈ S , a ∈ A .

Proof. Suppose c ∈ f−1(Vw) and c̃ = c + h ∈ f−1(Vw). By definition, Q∗, Q̃∗ ∈
Vw. By Lemma 1, we have Q̃∗ = F̃ (Q̃∗) and Q∗ = F (Q∗) which means

Q̃∗(i, a) = βPiaQ̃∗
w + c̃(i, a) = βPiaQ̃∗

w + c(i, a) + h(i, a),
Q∗(i, a) = βPiaQ∗

w + c(i, a), ∀i ∈ S , a ∈ A .
(9)

From (9), we have Q∗
w = βPwQ∗

w + cw. Thus, Q∗
w = (I − βPw)−1cw. Similarly,

Q̃∗
w = (I − βPw)−1(cw + hw), where (I − βPw) is invertible due to the fact

that β < 1 and Pw is a stochastic matrix. Thus, Q̃∗
w = Q∗

w + (I − βPw)−1hw.
Substitute it into the first equation of (9), one have

Q̃∗(i, a) = βPia(Q∗
w + (I − βPw)−1hw) + c(i, a) + h(i, a)

= Q∗(i, a) + βPia(I − βPw)−1hw + h(i, a).

Then, one can see ‖f(c + h) − f(c) − Gh‖/‖h‖ → 0 as ‖h‖ → 0. 
�
From Proposition 1, we can see that f is Fréchet differentiable on f−1(Vw)

and the derivative is constant, i.e., f ′(c̃) = G for any c̃ ∈ f−1(Vw). Note
that G lies in the space of all linear mappings that maps R

S×A to itself
and G is determined only by the discount factor β and the transition ker-
nel P of the MDP problem. The region where the differentiability may fail is
f−1(RS×A\(∪wVw)), where R

S×A\(∪wVw) is the set {Q : ∃i,∃a = a′, Q(i, a) =
Q(i, a′) = minb Q(i, b)}. This set contains the places where a change of policy
happens, i.e., Q(i, a) and Q(i, a′) are both the lowest value among the ith row
of Q. Also, due to the fact that f is Lipschitz, by Rademacher’s theorem, f is
differentiable almost everywhere (w.r.t. the Lebesgue measure).

Remark 5. One can view f as a ‘piece-wise linear function’ in the norm vector
space R

S×A instead of in a real line. Actually, if the adversary can only falsify
the cost at one state-action pair, say (i, a), while costs at other pairs are fixed,
then for every j ∈ S , b ∈ A , the function c̃(i, a) �→ [Q̃∗]j,b is a piece-wise linear
function.

Given any c ∈ f−1(Vw), if an adversary falsifies the cost c by injecting value
h, i.e., c̃ = c + h, the adversary can see how the falsification cause a change
in Q-values. To be more specific, if Q∗ is the Q-values learned from cost c by
Q-learning algorithm (2), after the falsification c̃, the Q-value learned from Q-
learning algorithm (4) becomes Q̃∗ = Q∗ + Gh if c̃ ∈ f−1(Vw). Then, an omni-
scient adversary can utilize (8) to find a way of falsification h such that Q̃∗ can
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be driven to approach a desired set Vw† bearing in mind that D(w,w†) = 0 for
any two policies w,w†. One difficulty is to see whether c̃ ∈ f−1(Vw) because the
set f−1(Vw) is now implicit. Thus, we resort to the following theorem.

Theorem 2. Let Q̃∗ ∈ R
S×A be the Q-values learned from the Q-learning algo-

rithm (4) with the falsified cost c̃ ∈ R
S×A. Then Q̃∗ ∈ Vw† if and only if the

falsified cost signals c̃ designed by the adversary satisfy the following conditions

c̃(i, a) > (1i − βPia)T (I − βPw†)−1c̃w† . (10)

for all i ∈ S , a ∈ A \{w†(i)}.

Sketch of Proof. If Q̃∗ ∈ Vw† , then from proof of Proposition 1, we know Q̃∗
w† =

(I − βPw†)−1c̃w† and the ith component of Q̃∗
w† is strictly less than Q̃∗(i, a)

for each a ∈ A \{w†(i)}. That means Q̃∗(i, a) > 1T
i Q̃∗

w† which gives us (10).
Conversely, if c̃ satisfy conditions (10), Q̃∗ ∈ Vw† due to the one-to-one, onto
correspondence between c̃ and Q̃∗. 
�

With the results in Theorem 2, we can characterize the set f−1(Vw). Elements
in f−1(Vw) have to satisfy the conditions given in (10). Also, Theorem 2 indicates
that if an adversary intends to mislead the agent to learn policy w†, the falsified
cost c̃ has to satisfy the conditions specified in (10). Note that for a = w†(i),
c̃(i, w†(i)) ≡ (1i − βPiw†(i))T (I − βPw†)−1c̃w† .

If the objective of an omniscient attacker is to induce the agent to learn
policy w† while minimizing his own cost of attacking, i.e., the attack’s problem
we have formulated in (3) in Sect. 2.2. Given AttackCost(c̃) = ‖c̃ − c‖ where c
is the true cost, the attacker’s problem is to solve the following minimization
problem

min
c̃∈RS×A

‖c̃ − c‖ s.t. (10) (11)

Remark 6. If the norm in the attacker’s problem (11) is a Frobenius norm, the
attacker’s problem is a convex minimization problem which can be easily solved
by omniscient attackers using software packages like MOSEK [14], CVX [11]
etc. If AttackCost(c̃) is the number of state-action pair where the cost has been
falsified, i.e., AttakCost(c̃) =

∑
i

∑
a 11{c(i,a) �=c̃(i,a)}, then the attacker’s problem

becomes a combinatorial optimization problem [24].

Remark 7. If the actions available to an adversary only allow the adversary
to falsify the true cost at certain states S ′ ⊂ S (or/and at certain actions
A ′ ⊂ A ), then the adversary’s problem (11) becomes

min
c̃∈RS×A

‖c̃ − c‖
s.t. (10)

c̃(i, a) = c(i, a) ∀i ∈ S \S ′, a ∈ A \A ′.

However, if an adversary can only falsify at certain states S ′, the adversary may
not be able to manipulate the agent to learn w†.
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Without loss of generality, suppose that the adversary can only falsify the
cost at a subset of states S ′ = {1, 2, . . . , S′}. We rewrite the conditions given in
(10) into a more compact form:

c̃a ≥ (I − βPa)(I − βPw†)−1c̃w† ,∀ a ∈ A , (12)

where the equality only holds for one component of the vector, i.e., the i-th
component satisfying w(i) = a. Partition the vector c̃a and c̃w† in (12) into two
parts, the part where the adversary can falsify the cost denoted by c̃fal

a , c̃fal
w† ∈

R
S′

and the part where the adversary cannot falsify ctrue
a , ctrue

w† ∈ R
S−S′

.
[

c̃fal
a

ctrue
a

]

≥
[

Ra Ya

Ma Na

] [
c̃fal
w†

ctrue
w†

]

, ∀ a ∈ A (13)

where
[

Ra Ya

Ma Na

]

:= (I − βPa)(I − βPw†)−1, ∀ a ∈ A

and Ra ∈ R
S′×S′

, Ya ∈ R
S′×(S−S′),Ma ∈ R

(S−S′)×S′
, Na ∈ R

(S−S′)×(S−S′).
Note that the ith component of c̃fal

w†(i) is equal to the i component of c̃fal
w† . If

the adversary aims to mislead the agent to learn w†, the adversary needs to
design c̃fal

a , a ∈ A such that the conditions in (13) hold. Whether the conditions
in (13) are easy for an adversary to achieve or not depends on the true costs
ctrue
a , a ∈ A . The following results state that under some conditions on the

transition probability, no matter what the true costs are, the adversary can find
proper c̃fal

a , a ∈ A such that conditions (13) are satisfied. For i ∈ S \S ′, if
w(i) = a, we remove the rows of Ma that correspond to the state i ∈ S \S ′.
Denote the new matrix after the row removals by M̄a.

Theorem 3. Define H := [M̄T
a1

M̄T
a2

· · · M̄T
aA

]T ∈ R
(A(S−S′)−S′)×S′

. If there
exists x ∈ R

S′
such that Hx < 0, i.e., the column space of H intersects the

negative orthant of R
A(S−S′)−S′

, then for any true cost, the adversary can find
c̃fal
a , a ∈ A such that conditions (13) hold.

Proof. We can rewrite (13) as c̃fal
a ≥ Rac̃fal

w† + Yactrue
w† and ctrue

a ≥ Mac̃fal
w† +

Nactrue
w† for all a ∈ A . If there exists c̃fal

w† such that Mac̃fal
w† can be less than

any given vector in R
S−S′

, then ctrue
a ≥ Mac̃fal

w† + Nactrue
w† can be satisfied no

matter what the true cost is. We need ctrue
a ≥ Mac̃fal

w† + Nactrue
w† to hold for

all a ∈ A , which means that we need the range space of [MT
a1

, . . . , MT
aA

] ∈
R

A(S−S′)×S′
to intersect the negative orthant. By using the fact that c̃(i, w†(i)) ≡

(1i −βPiw†(i))T (I −βPw†)−1c̃w† , we can give less stringent conditions. Actually,
we only need the range space of H = [M̄T

a1
, . . . , M̄T

aA
] ∈ R

(A(S−S′)−S′)×S′
to

intersection the negative orthant. If this is true, then these exists c̃fal
w† such that

ctrue
a ≥ Mac̃fal

w† + Nactrue
w† is feasible for all a ∈ A .
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As for conditions c̃fal
a ≥ Rac̃fal

w† +Yactrue
w† , note that there are S′ ×A number

of variables c̃fal
a , a ∈ A and that c̃fal

w† has been chosen such that conditions
ctrue
a ≥ Mac̃fal

w† + Nactrue
w† are satisfied. One can choose the remaining variables

in c̃fal
a , a ∈ A sufficiently large to satisfy ctrue

a ≥ Mac̃fal
w† + Nactrue

w† due to the
fact that c̃(i, w†(i)) is equivalent to (1i − βPiw†(i))T (I − βPw†)−1c̃w† . 
�

Note that H only depends on the transition probability and the discount
factor, if an omniscient adversary can only falsify cost signals at states denoted
by S ′, an adversary can check if the range space of H intersects with the negative
orthant of R

A(S−S′) or not. If it does, the adversary can mislead the agent to
learn w† by falsifying costs at a subset of state space no matter what the true
cost is.

Remark 8. To check whether the condition on H is true or not, one has to
resort to Gordan’s theorem [6]: Either Hx < 0 has a solution x, or HT y =
0 has a nonzero solution y with y ≥ 0. The adversary can use linear/convex
programming software to check if this is the case. For example, by solving

min
y∈RA(S−S′)

‖HT y‖ s.t. ‖y‖ = 1, y ≥ 0, (14)

the adversary knows whether the condition about H given in Theorem 3 is true
or not. If the minimum of (14) is 0, the adversary cannot guarantee that, for
any given true cost, the agent learns the policy w†. If the minimum of (14) is
positive, there exists x such that Hx < 0. The adversary can select c̃fal

w† = λx
and choose a sufficiently large λ to make sure that conditions (13) hold, which
means an adversary can make the agent learn the policy w† by falsifying costs
at a subset of state space no matter what the true costs are.

4 Numerical Example

In this section, we use the application of RL in water reservoir operations to
illustrate the security issues of RL. Consider a RL agent aiming to create the
best operation policies for the hydroelectric reservoir system described in Fig. 2.
The system consists of the following: (1) an inflow conduit regulated by Val0,
which can either be a river or a spillway from another dam; and (2) two spill-
ways for outflow: the first penstock, Val1, which is connected to the turbine
and thus generates electricity, and the second penstock, Val2, allowing direct
water evacuation without electricity generation. We consider three reservoir lev-
els: MinOperL, MedOperL, MaxExtL. Weather conditions and the operation of
valves are key factors that affect the reservoir level. In practice, there are usually
interconnected hydroelectric reservoir systems located at different places which
makes it difficult to find an optimal operational policy.

For illustrative purposes, we only consider controlling of Val1. Thus, we
have two actions: either a1, Val1 = ‘shut down’; or a2, Val1 = ‘open’. Hence
A = {a1, a2}. We consider three states which represent three different reservoir
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Fig. 2. A hydroelectric reservoir system.

levels, denoted by S = {1, 2, 3} where 1(2, 3) represents MaxExtL (MedOperL,
MinOperL, respectively). The goal of the operators is to generate more electric-
ity to increase economic benefits, which requires the reservoir to store a sufficient
amount of water to generate electricity. Meanwhile, the operator also aims to
avoid possible overflows which can be caused by the unexpected heavy rain in
the reservoir area or in upper areas. The operator needs to learn a safe policy,
i.e., the valve needs to be open at state 1 so that the cost at c(1, a1) needs to be
high. We assume that the uncertain and intermittent nature is captured by the
transition probability given by

Pa1 =

⎡

⎣
1 0 0

0.6 0.4 0
0.1 0.5 0.4

⎤

⎦ , Pa2 =

⎡

⎣
0.3 0.7 0
0.1 0.2 0.7
0 0 1

⎤

⎦ .

And the true cost is assumed to be c = [30 − 5; 6 − 10; 0 0]. Negative cost can
be interpreted as the reward for hydroelectric production. Let the discounted
factor β be 0.8. The limit Q-values learned from Q-learning algorithm (2) is

approximately Q∗ =

⎡

⎣
8.71 −26.6129

−15.48 −27.19
−19.12 −15.30

⎤

⎦ . The optimal policy thus is w∗(1) =

a2, w
∗(2) = a2, w

∗(3) = a1. Basically, the optimal policy indicates that one
should keep the valve open to avoid overflowing and generate more electricity
at MaxExtL. While at MinOperL, one should keep the valve closed to store
more water for water supply and power generation purposes. From (5), we know
that the resulting change in Q∗ under malicious falsification is bounded by the
change in the cost with a Lipschitz constant 1/(1 − β). To see this, we randomly
generate 100 falsifications h ∈ R

3×2 using randi(10) * rand(3,2) in Matlab. For
each falsified cost c̃ = c + h, we obtain the corresponding Q-factors Q̃∗. We plot
‖Q̃∗ − Q∗‖ corresponding with ‖c̃ − c‖ for each falsification in Fig. 3. One can
clearly see the bound given in (5). The result in Fig. 3 corroborates Theorem 1.

Suppose that the adversary aims to mislead the agent to learn a policy w†

where w†(1) = a1, w†(2) = a2, w†(3) = a1. The purpose is to keep the valve shut
down at MaxExtL which will cause overflow and hence devastating consequences.
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Fig. 3. ‖Q̃∗ − Q∗‖ versus ‖c̃ − c‖ with 100 falsifications.

The adversary can utilize DQ∗(w†) to see how much at least he has to falsify
the original cost c̃ to achieve the desired policy w†. The value of DQ∗(w†) can
be obtained by solving the following optimization problem:

min
Q∈R3×2

‖Q − Q∗‖
s.t. Q(1, a1) ≤ Q(1, a2), Q(2, a2) ≤ Q(1, a1), Q(3, a1) ≤ Q(3, a2).

The value of DQ∗(w†) is thus 17.66. By (5), we know that to achieve w†, the
adversary has to falsify the cost such that ‖c̃ − c‖ ≥ (1 − β)DQ∗(w†) = 3.532. If
the actions available to the adversary are to perform only bounded falsification
to one state-action pair with bound 3.5, then it is impossible for the adversary
to attain its goal, i.e., misleading the agent to the policy w† targeted by the
adversary. Thus, in this MDP-FC, the robust region of c to the adversary’s
desired policy w† is 3.532.

In Fig. 4, we plot the change of the limit Q-values when only the cost at
one state-action pair is falsified while the other components are fixed at c =
[9 −5; 6 −10; 0 0]. We can see that when the other costs are fixed, for every
j ∈ {1, 2, 3}, b ∈ {a1, a2} the function c̃(i, a) �→ [Q̃∗]j,b is piece-wise linear. And
the change of slope happens only when the policy changes. This illustrates our
argument about the differentiability of the mapping c̃ �→ Q̃∗ in Proposition 1.
From the first two plots, one can see that changes in costs at one state can
deviate the policy at another state. That is when altering the cost at MedOperL,
an adversary can make the valve open at MinOperL so that the reservoir cannot
store enough water to maintain the water supply and generate electricity. When
an adversary aims to manipulate the policy at one state, he does not have to alter
the cost at this state. Figure 5 illustrates Proposition 1 when costs corresponding
to two state-action pairs are altered.

Furthermore, to illustrate Proposition 1 in general cases, i.e., in R
3×2, sup-

pose c = [9 −5; 6 −10; 0 0], the Q-factors learned from c is Q∗ = [−12.29
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Fig. 4. The change of the limit Q-values when only the cost at one state-action pair is
altered. Black line corresponds to state 1, red line corresponds to state 2 and green line
corresponds to state 3. Solid (dash) line corresponds to a1 (a2). (Color figure online)

−26.61; −15.47 −27.19; −19.12 −15.30]. The optimal policy is thus w∗(1) =
a2, w

∗(2) = a2, w
∗(3) = a1. By (8) in Proposition 1, the derivative of f : R

3×2

at c ∈ f−1(Vw∗) is a linearly bounded map G : R
3×2 → R

3×2

[Gh]i,a = 0.8PT
ia

( ⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ − 0.8

⎡

⎣
0.3 0.7 0
0.1 0.2 0.7
0.1 0.5 0.4

⎤

⎦

)−1
⎡

⎣
h(1, a2)
h(2, a2)
h(3, a1)

⎤

⎦ + h(i, a). (15)

One can see that G is a constant independent of c. Suppose that the adversary

falsifies the cost from c to c̃ by h, i.e., c̃ = c + h and h =

⎡

⎣
0.6 −0.2
1 2

0.4 0.7

⎤

⎦. Then,

Gh =

⎡

⎣
3.74 3.92
4.70 5.68
4.39 4.21

⎤

⎦ by (15). Thus, c̃ = c+h =

⎡

⎣
9.6 −5.2
7 −8

0.4 0.7

⎤

⎦. The Q-factors learned

from c̃ is Q̃∗ =

⎡

⎣
−8.55 −22.69
−10.77 −21.51
−14.73 −11.08

⎤

⎦ . The resulting policy is still w∗. One thus can

see that Q̃∗ = Q∗ + Gh.
If an adversary aims to have the hydroelectric reservoir system operate based

on a policy w†, the falsified cost c̃ has to satisfy conditions given in (10). Let the
targeted policy of the adversary be w†(1) = a1, w

†(2) = a2, w
†(3) = a2. If the

adversary can deceptively falsify the cost at every state-action pair to any value,
it is not difficult to find c̃ satisfying (10). For example, the adversary can first
select c̃w† = [c̃(1, a1) c̃(2, a2) c̃(3, a2)]T , e.g., c̃w† = [3 2 1]T . Then select cost at
other state-action pairs following c̃(i, a) = (1i−βPia)T (I−βPw†)−1c̃w† +ξ for i ∈
S , a ∈ A \{w†(i)}, where ξ > 0. Then, c̃ satisfies conditions (10). For example if
an adversary choose ξ = 1, the adversary will have c̃ = [3 10.86;−1.34 2; 0.34 1].
The Q-factors learned from c̃ is Q̃∗ = [15 18.46; 8.15 7.14; 5.99 5; ]. Thus, the
resulted policy is the adversary desired policy w†. Hence, we say if the adversary
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Fig. 5. The alteration of the limit Q-values when only the costs c̃(2, 1), c̃(1, 1) are
altered.

can deceptively falsify the cost at every state-action pair to any value, the adver-
sary can make the RL agent learn any policy.

If an adversary can only deceptively falsify the cost at states S ′, we have to
resort to Theorem 3 to see what he can achieve. Suppose S ′ = {1, 2} and the
adversary desires policy w†(1) = a1, w

†(2) = a2, w
†(3) = a2. Given S ′ and w†,

(13) can be written as
⎡

⎣
c̃(1, a1)
c̃(2, a1)
c(3, a1)

⎤

⎦ ≥
⎡

⎣
1.0000 0 0

−2.0762 0.8095 2.2667
−0.5905 −0.4762 2.0667

⎤

⎦

⎡

⎣
c̃(1, a1)
c̃(2, a2)
c(3, a2)

⎤

⎦ ,

⎡

⎣
c̃(1, a2)
c̃(2, a2)
c(3, a2)

⎤

⎦ ≥
⎡

⎣
3.5333 −0.6667 −1.8667

0 1.0000 0
0 0 1.0000

⎤

⎦

⎡

⎣
c̃(1, a1)
c̃(2, a2)
c(3, a2)

⎤

⎦ .

(16)

Note that the last row in the second equality is automatically satisfied. Thus, we
have H = [−0.5906 − 0.4762] whose range space is R which intersects (−∞, 0).
Thus, no matter what values c(3, a1) and c(3, a2) are, the adversary can always
find c̃(1, a1), c̃(2, a2) such that

c(3, a1) > Ma1

[
c̃(1, a1)
c̃(2, a2)

]

+ 2.0667 × c(3, a2).

Next, choose c̃(2, a1) and c̃(1, a2) by

c̃(2, a1) >
[−2.0762 0.8095 2.2667

]
⎡

⎣
c̃(1, a1)
c̃(2, a2)
c(3, a2)

⎤

⎦

c̃(1, a2) >
[
3.5333 −0.6667 −1.8667

]
⎡

⎣
c̃(1, a1)
c̃(2, a2)
c(3, a2)

⎤

⎦ .
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We hence can see that no matter what the true cost is, the adversary can make
the RL agent learn w† by falsifying only the cost at sates S ′ = {1, 2}. It can
also be easily seen that when the adversary can only falsify the cost at state
S = {1}, he can still make the RL agent learn the policy w† independent of the
true cost.

5 Conclusion and Future Work

In this paper, a general framework has been introduced to study RL under
deceptive falsifications of cost signals where a number of attack models have
been presented. We have provided theoretical underpinnings for understanding
the fundamental limits and performance bounds on the attack and the defense
in RL systems. The robust region of the cost can be utilized by both offen-
sive and defensive sides. A RL agent can leverage the robust region to evaluate
the robustness to malicious falsifications. An adversary can use it to estimate
whether certain objectives can be achieved or not. Conditions given in Theo-
rem 2 provide a fundamental understanding of the possible strategic adversar-
ial behavior of the adversary. Theorem3 helps understand the attainability of
an adversary’s objective.Future work would focus on investigating a particular
attack model we have presented in Sect. 2.2 and developing defensive strategies
based on the analytical tools we have introduced.
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