ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 52-20 (2019) 241-246

Achieving Social Optimum in Dynamic
Weight Adaptation for Virus Mitigation: A
Potential Differential Game Approach

Yunhan Huang* Quanyan Zhu*

* New York University, Brooklyn, NY, 11220 USA (e-mail:
{yh.huang,qz494} @ nyu.edu,).

Abstract: In this paper, a differential game framework is proposed to provide a theoretic
underpinning for decentralized mitigation of virus spreading in which each node determines
its own control control policy based on local information. To reduce the inefficiency of the
Nash equilibrium and allow the decentralized policy to achieve social welfare, we propose a
mechanism through a penalty scheme for a class of potential differential games over networks.
The differential game under the penalty scheme turns out to be a potential differential game. To
investigate the long term behaviors of the weight adaptation scheme, we study their turnpike
properties. Numerical experiments are used to corroborate the results and demonstrate how the
weight adapts to mitigate virus spreading and turnpike properties of the potential differential

game.
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1. INTRODUCTION

With an increasing number of wide-spreading cyber-
attacks on networks, protection against malware and virus
spreading in cyber networks is central to the security of
network systems. However, designing a protection scheme
for cyber networks is challenging due to the fact that
cyber networks are often formed by a large number of
self-interested agents or decision-makers. The noncooper-
ation among the agents makes it almost impossible for the
system to be coordinated as a whole to defend against
wide-spreading cyber-attacks. Also, it is a challenge to
figure out how the effect of the individual selfish behaviors
and their interdependence in the network applies to the
network system.

The most fundamental reason that virus and malware can
go viral is the inherent property of networks: connectivity.
Weight adaptation is a mechanism that addresses this
issue as changing the network weights means changing
the connectivity among agents. Reduction of weights at
appropriate times can mitigate the virus and malware
spreading while maintaining essential connectivity of the
network. Compared with quarantining and link removal
Khouzani et al. (2012), weight adaptation does not need
to completely disconnect nodes from others but rather
adjust weights to connect more loosely with nodes with a
higher likelihood of infection. Instead of fixing the weights
for the whole spreading process, in the weight adaptation
scheme, each agent dynamically updates their weight in
response to the state of the neighboring nodes. The idea
of weight adaptation is from Feng et al. (2016) where the
weight between agents is adapted based on the information
regarding the global infection level. In this work, the agent
adapts the weight of all its links no matter the neighbor

each link pointing to is infected or not which is not an
efficient weight adaptation. And the work did not consider
the selfishness of the agents among the network.

We consider a directed weighted network. The original
weight is pre-designed by multilateral agreement among
agents to achieve certain goals or to optimize the system
performance when there is no infection. When there are
wide-spreading virus or cyber attacks, each agent can
choose to deviate from the original weight to avoid being
infected. Infected agents may not function normally. The
agents and the network system will suffer losses. Thus, it
is essential to consider the trade-off between malfunction
cost caused by infection and inefficiency or performance
degradation cost caused by weight deviation. The dy-
namical feature of virus spreading and the trade-off each
agent needs to balance makes differential game a perfect
framework.

In this paper, an N-person nonzero-sum differential game-
based model is proposed to model the virus spreading
and their selfish weight adaptation behavior. This model
captures the non-cooperative behaviors among agents, dy-
namic properties of spreading process, and the complexity
of the local interactions. We characterize the Nash equi-
librium (NE) for the game and use a centralized optimal
control problem to serve as a benchmark problem to char-
acterize the inefficiency of NE. To address the inefficiency,
we propose a dynamic penalty approach by designing a
mechanism in which each agent pays a additional penalty
for other agents’ infection. The differential game under the
penalty approach turns out to be a potential differential
game. To investigate its long term behavior, we resort to
turnpike properties of potential differential game. We show
both in theory and simulation that the NE trajectory of
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the potential differential game remain in most of the time
close to the solution of a static game problem which also
turns out to be a potential game.

The paper is organized as follows. In Section 2, prelim-
inaries are presented and the N-person nonzero-sum dif-
ferential game framework is formulated. In Section 3, we
characterize the open-loop NE of the differential game and
the weight adaptation scheme. Sect. 4 discusses attaining
the social optimum in a decentralized setting and studies
the long term behavior of the potential differential differ-
ential game.

2. PRELIMINARIES AND PROBLEM
FORMULATIONS

2.1 Graph Theory

A weighted, directed graph can be defined by a triple
G =2 (V,8,W). V £ {vi,vg,..,vN} represents a set of
N nodes. Define N £ {1,..., N}. A set of directed edges is
denoted by & € V x V. The set of in-neighbors of node
i is defined as Nf” £ {jlj € V,(j,i) € &}. Denote by
| - | the cardinality of a set. The weight adjacency matrix
G is denoted by an N x N matrix W = [w;;] where w;;
refers to the weight of the edge from node i to j. We
assume that graph G has no self-loops. We denote the
original weight adjacency matrix by W¢ = [wg’j] € RNVXN,
Let N7V (Nl”o’) be the set of out-neighbors (in-neighbors)
under the original optimal weight pattern W°. In the
weight adaptation setting, the weight is time-varying. The
time-varying weight is described by U(r) = [u;;(t)] where
u;(¢) is the weight of edge (i, j) at time ¢.

2.2 Virus Spreading Model

In this paper, we study the so-called susceptible-infected-
susceptible (SIS) model. Consider a population of N
agents. Each agent can be either susceptible (S) or infected
(I). Infected individuals infect others at rate §; > 0. The
intensity of interaction between v; and v; is described by
the weight u;; € R. The virus spreading process can be
precisely modelled by an exact 2V state Markov Chain.
See Van Mieghem et al. (2009), Paré et al. (2018). But
solving only the 2V state Markov Chain is computationally
challenging due to the exponential increasing state space
especially for large-scale networks. Hence, we resort to
the mean-field approximation of the Markov process, i.e.,
the N-intertwined model proposed by Van Mieghem et al.
(2009), extended by Paré et al. (2018). Denote x;(¢) € [0, 1]
as the probability of agent i being infected at time ¢. The
mean-field approximation then provides

N
5(1) = (1= xi(1)) Z wi(DBx; (1) — oixi(1), (1)

Jj=1
fori=12..,N.

Remark 1. According to the discussions in Paré et al.
(2018), the N-intertwined model (1) gives an upper-bound
for the exact probability of infection, x;(¢). However, the
mean-field approximation consider herein, while it is an
approximation, is legitimate as we focus on the cases
where B/o0 is above the outbreak threshold. Under these

cases, the approximation is well behaved according to
Van Mieghem et al. (2009).

Remark 2. Given an intial point, differential equation in
(1) admits a unique solution since the right side of (1)
satisfies the Lipschitz condition Khalil and Grizzle (2002).
See Lemma 1 in Huang and Zhu (2019) for a proof of
Lipschitz conditions.

2.3 Differential Game Over Networks

The self-interested agents aim to minimize their own cost.
One cost arises from malfunction caused by infection,
measured by f; : [0,1] — R*, a function of x;(z) € [0,1]. f;
is assumed to be monotonically increasing to capture the
loss of being infected. Another cost for agent i is to describe
inefficiency or degradation of system performance caused
by deviation from the original weights WZ for all j € N.
Thus, a weight cost function for edge from i to j is given
by gij(u;j(t) - wfj) where g;; : R = R* is assumed to be
convex. The function satisfies the property that g;;(w) = 0
if and only if w =0 for all i, j € N. Given a time duration
from 0 to T > 0, the cost function of agent i during time
interval [0,T] is given by
T N
Ji = /0 Fae)+ > gy - wipdi. (2)
j=1

The graph evolution and the epidemic spreading process
described by (1) can be viewed as physical constraints.
The agents in the network are coupled by these constraints
while trying to minimize their own cost. Such behaviors
lead to a differential game over network defined as follows,

Z 8ij(uij(t) — wi)dt
JENT

T
min ;i = / i) +
0

3
st Xi(1) = (1 = x;(2)) Z uij(0)Bx;(t) — oixi(1), ®)

JENTu
Xi(O) = Xi0, i= 1, 2, . N,

— 3 : out —
where w; = (uijl""’ulle{’Zt\) with ji € N2 for k =

1,..., |Ni’00“’|, and u;; is a trajectory describing the weight
between agent i and j over the time interval [0, T]. Here,
U; is the admissible control set of agent i defined as
Ui = {0 < uy () < wi,j € Nl t € [0,T]}. Each player
aims to find a control policy wu;(x;o) to generate a weight
trajectory u;. Such control policies are open-loop policies
that only depend on the initial conditions.

Remark 3. Here, we only consider the adaptation of
weights that are originally connected. This is because there
is no incentive for agents to connect an agent who is not
originally connected. Also, the adaptation of the weights
are bounded by the original ones since there is no benefit
for the agents to increase their weights more than the
original weights. See Observation 1 in Huang and Zhu
(2019) for more discussions on the choice of admissible
control set.

3. NASH EQUILIBRIUM AND ITS INEFFICIENCY

The solution to the N-person nonzero-sum differential
game (3) played with an open-loop information structure
are open-loop NE. Define u_; = {u;, j € N\{i}}.
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Definition 1. The weight adaptation trajectories or the
control trajectories {u;, i € N} constitute an open-loop
NE solution of the differential game (3) if the inequalities

Ji(uj,ul;) < Ji(u,uly) (4)
hold for all control trajectories w;(¢) € S;, ¢ € [0,T] and for

all i € N. Here, denote x(¢),¢ € [0,T] the associated state
trajectory for i € N.

To obtain the necessary conditions for the open-loop NE,
we impose two mild assumptions.

Assumption 1. For each i € N, the infection cost function
fi(-) is to be of C! class.

Assumption 2. For each i, j € N, the weight deviation cost
function g;;(-) is to be of C* class.

Following the techniques in optimal control theory Basar
and Olsder (1999), we arrive at the following result.

Theorem 1. Consider the N-person differential game (3)
under assumptions 1 and 2. Then, if {ui(z),i € N} is
an open-loop NE solution, and {x*(#),0 < ¢t < T} is
the corresponding state trajectory, there exist N costate
functions p;(*) : [0,T] — R™,i € N, whose j-th component
is denoted by p;;(-), such that the following relations are
satisfied:

() =1 -x7) Z ufj(t)ﬂjx; — oy x: (1),

JeNZy! (5)
x:(0) = x50, VieN,
u;(t) = arg min

u; €U; . (6)

Hi(t, pi(t), X7, wy (), s 0y, i, 0y (1), oo Uy (1))
pi(t) = T(t,x",u, ..., up)pi(t) + yi(#), pi(T) =0, (7)

where
H,'(l, Pi, X Uy, ..., llN) < ﬁ(xi(t)) + Z gij(uij — W?j

P out
jENi o

+ZP£/ (l_xj) Z ujkﬂkxk(t)"_o—jxj(t)

keNout

and T is a matrix given by

Z mj(t),B,x @) +om, ifn=m
JENZYS

L O (OB itnenin,
0 otherwise,

|

v; is a vector whose i-th component is —df;/dx; and other
components are zero, fori € N and I',,,,, denote the element
in the mth row and the nth column of T'.

For the proof of Theorem 1, one can refer to Huang
and Zhu (2019). To find the structure of the NE control
trajectory, we solve the minimization problem given in (6),
which gives the following.

Corollary 1. Define ¢;;(t) := pu(t)(1 — x;‘(t))ﬁjx;f(t) where
pii(+) is the ith component of the costate function p;(-). The

basic structure of the NE-based optimal weight control,
i.e., the solution to (6), can be written as:

() =
0 _¢ij(t) < g;](_wloj)’ (1 )
(85) 05 (0) 8505) < () < 85,0
Wi —¢i;(t) = g/;(0),

out
forteN,]er .

Proof. Since H; is convex over u;, one can easily solve
optimization problem Eq. (6) using first order necessary
condition which gives Eq. (10).

From (10), one can notice that agents tend to decrease
its connectivity to neighbors with high probability of
infection. The information about the infection of the whole
network is contained in p;;(#) whose dynamics is highly
coupled with the states and the controls of other agents.
The larger p;i(t) is, the lower the optimal weight wu;;(¢)
should be. When the probability of agent i being infected
x;(t) is high, it does not care much about the risk of
connecting to an infected out-neighbor.

It is well-known that the non-cooperative NE in nonzero-
sum games is generally inefficient Dubey (1986). There is
need to develop a mechanism to attain a higher social wel-
fare or lower aggregate costs through cooperation behavior
Bagar and Zhu (2011). In the network, the social cost is
the aggregate costs of all players. The social problem thus
can be stated as an optimal control problem:

min J, = / Zﬁ(xl(t)wz ST iy 6) - widr

i=1 ]ENout

s.t. )E?i(l) = (1 — xi(t)) Z Mij(t),gjxj(l) _ O-ixi(t),
JeNlozt
x(0) = xj0,i = 1,2, ...,
(11)
Here, u = {uy,...,uy} where u;(r) € R™5'! is the weight

control variable for the whole network with admissible set
U, = {u: u;;(1) € [0, a)l‘.}],\/i eN,je Ni"’(’;’,t € [0,T]}.

The social optimum can be attained by solving the optimal
control problem. The optimal solution u’(f) of problem
(11) and corresponding trajectory x°(¢) must satisfy the
following so-called canonical equations Basar and Olsder
(1999):

WO =01-x0) > ul0px

— 0y x? (1), x7(0) = xio,

JeNyS!
(12)
A1) = T(t,x%,9, .., u)A1) + v, AT) = 0, (13)
u’(t) = arg gelbn H(t,x°(¢), A(t), u(t)), (14)

for all i € N, where I'(¢) is the same with the one given

in (9) and y(1) = [=f/ (1 (D)), = f5 (x2(1)), ... = f (xn)]'; the

Hamiltonian of the optimal control problem is defined as
H(t x(1), A(¢), u(t))

—Zfl(xl(rmz > i) = wg)

i= ]_JeNout (15)

D wi OB (1) oixi()

]ENout

i,o

N
#3404 (1= xi(0)
i=1
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and A(-) : [0,T] — R¥ is the costate function, 4; is its ith
component. The inefficiency of NE solution then can be
described by the quotient (va Ji(u}))/Jo(ug, ..., uf,) which
also can be written as J,(uj, ..., uy)/Jo(ug, ..., uf).

4. SOCIAL OPTIMUM AND TURNPIKE PROPERTY

The social optimum can in principle be computed cen-
trally by network operator. However, this will require the
network operator to be omniscient and also not all the
agents have incentives to adapt their connection weights
based on the rule designed to minimize the aggregate costs.
Also, for large-scale network/system, centralized solution
gives rise to computational problems and implementability
issues. Therefore, centralized optimal control mechanism
is impractical and there is need for decentralized mech-
anism designs that can achieve the social optimum. To
this end, we develop a mechanism that assigns a penalty
¢ : [0,T] —» Ry to agent i. Hence the differential game
under the penalties can be written as

T
LEneilr}ifi=/fi(xi(t))+ Z &ij(uij(t) —wi) +ci(t), dt (16)
0

- out
Je/vi,o

subject to the same dynamics equation stated in (3).
Define 4(t,x,w) = fi(xi(t) + Xjeneur 8ij(uij(t) = wi) + ci(7)
such that J; = /0 Ii(r)dr.

Definition 2. The differential game defined in (16) is an
potential differential game if there exists a function 7 : X x
Uy X---xUpn X[0,T] — R satisfying the following condition:
for every i € N,

T
/ li(t’ Xiy X—j, Wy, u—i) - li(t’ )2,‘, )A(—is Vi, u—i)dt
0
- (17)
= [ ath ) - v
0

for all u;,v; € U;, where x,x € X are the corresponding
states under controls {u;,u_;} and {v;, u_;}, respectively.

For a more general definition of potential differential
game, one can refer to Fonseca-Morales and Herndndez-
Lerma (2018). Note that the differential game (16) and the
optimal control problem (11) share the same dynamical
system constraints. If we can find ¢;(¢) for every i € N
such that relation (17) holds for n = Zfil fi(xi()) -
Zi'\il ZjEN;):t gij(uij(t)—wl.oj), then the differential game (16)
is a potential game corresponding to the optimal control
problem (11).

Theorem 2. Let ¢;(t) = X j4; fj(x;(1)). the differential game
(16) is a potential differential game corresponding to the
optimal control problem (11). Moreover, if {u}(z),i € N}
is an open-loop NE solution for the differential game (16),
and {x*(¢),0 <t < T} is the corresponding state trajectory,
the relations (12) (13) and (14) also hold for u* and x* with

u’ replaced by {u’(z),i € N} and x° replaced by x*

Proof. As u® and x° are optimal for the optimal control
problem (11), then

T N
[y, Y suti0-wg)
0

i=1 JE keNDu!
+ Z ik (uix (1) — wyy )dt
kE}V'."Zt
TN
> [ s "<r>)+z S i) - widr.
0 i=1 i= 1]6}\/1"5’

Adding to both sides of this this inequality the constant

/ D D, &0 - whd,

J#i keNou!

we obtain that J;(u;, u?,) > Ji(u®) for all u; € U;. According
to the definition of open-loop NE for differential games in
(1), we know u? is also an open-loop NE for the differential
game with penalties.

This theorem enables the network operator to attain
social optimum under a decentralized weight adaptation
control scheme. What we have developed so far in this
section is for cases where the original weighted network is
strongly connected. If the original network is not strongly
connected, we need the following definition.

Definition 3. Given a graph, if there exists a directed path
from vertex j to vertex i, we say i is reachable from
j. Denote by R; € N the set of vertices that i can be
reachable from.

Under Definition 3, we have assumed that graph G has no
self-loops which implies i ¢ R;. If the graph is strongly
connected, for every i € N, R; = N\{i}. Denote R;,
the counterpart of R; under the original graph defined by
(V,E,We).

Corollary 2. Consider the differential game defined by
(16). Let ci(t) = Xjer, , fi(xj)- Then, if {uj(r),i € N} is an
open-loop NE solution for the new differential game, and
{x*(¢),0 <t < T} is the corresponding state trajectory, the
relations (12), (13), and (14) hold for u* and x* with u®
replaced by {u}(),i € N} and x° replaced by x*.

Proof. The proof of Corollary 2 simply follows from
Theorem 2 and the structure of the necessary condition

(7).

Corollary 2 indicates that the choice of penalties ¢;(¢) really
depends on the topology of the graph, more specifically,
the reachable set of vertex v;.

To see the long term behavior of the potential differ-
ential game, we resort to turnpike properties. Turnpike
properties have been established long time ago in finite-
dimensional optimal control problems arising in econo-
metrics. See Cass (1966). Turnpike properties Trélat and
Zuazua (2015) are basically telling us the fact that, under
some mild assumptions, the optimal solutions of a given
optimal control problem settled in large time consist ap-
proximately of three pieces, the first and the last of which
being transient short-time arcs, and the middle piece being
a long-time arc staying exponentially close to the optimal
steady-state solution of an associated static optimization
problem. Thus, one can approximate the solution of a long
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term differential game/optimal control problem by simply
looking into a static optimization problem and design
distributed computation based on the static problem.

The static optimization problem associated with optimal
control problem (11) can be given as

N N
. | . .. PRy pp— o
H}ilun ;fl(x,)+z Z gl](”z] Wij

=1 jeNgy!
s.t. (x,u) € (RN, S) (18)
(1—x,~) Z M,‘jﬁjx]' =0'l-x,-,i€N,
JENZS!
where § = {1 < u; < w;’j,i e N,j € /\/l"(')”} Let

ci(t) = Xjzi fj(x(2)). Consider the potential differential
game (16). The associated static game problem is

Z 8ij(uiz = wy))

JENZS
st (x, ) € (R, S;)
(1-x;) Z uijBjxj = oixi,

i t
JENTS

Xi, Ui

N
min Zﬁ(x,) +
i=1

(19)

for i € N, where §; = {0 < u;; < wg.}.

Theorem 3. The static game (19) is a potential game
associated with a potential function which is the cost
function of problem (18).

For the definition of static potential game, one should refer
to Monderer and Shapley (1996). The proof of Theorem 3
follows immediately from the definition. The NE solutions
of problem (19) is the optimal solutions of problem (18).
We assume that the minimization problem (18) has a
solution (X, ). Consider a quadratic cost function g;;(u;; —
wl.oj) = %(uij - wfj)z. The optimal solution to the static

optimization problem (18) can be characterized by:

i
xi=1- — — 20
' 2jenput ijfiXj + 0 (20)
re— 3 i 3 -\~
F@ =TT - Y - gusy (@)
JENES
ij = max{wy; — 4;(1 - 5)B;%;, 0}, (22)

for some 1 € RV, for every i € N and j € NI,

Remark 4. The system of optimality conditions is ob-
tained by letting the Hamiltonian H(x,u, 1) defined in (15)
satisfy 0H /04 =0, 0H/0x = 0 and 1 = arg minges H(X, u, 1)
and re-arranging the algebraic expression.

Remark 5. From (20), we know %; € [0,1) which implies
that the first term in the right hand side of (21) is well
defined. Note that x; = 0 only if i;;x; = 0 for all j € Nl.f'(‘)”
which tells that the probability of agent i being infected
is 0 only if it does not connect to an agents with positive
probability of being infected.

Remark 6. Relation (22) shows that the agent does not
cut down his weight i;; if and only if the corresponding
neighbor has 0 probability of being infected, i.e, X; = 0.

The turnpike properties of potential differential game
states that, when T is large, the NE solutions of the

potential differential game (16), i.e., (x*(-), u*(:), p;(*)), re-
mains most of the time close to static optimization solution
(%, @, A). Note that p; = p; for any i, j € N for the potential
differential game (16). Define

o0H -
325 = &4
which are of size N X N, with Hy, = H;x (where the upper
dag stands for the transpose). Similarly, the matricies

oOH - _
HXX = %(X5.us/l)’ HX/! =

oOH - OH _
— (%1 Hu = ——(%, @
I au(x, 1), Hu a1 au(x, a, A),

are of size N X M, where M = Zf\il INPU|, with Hy, = H
and Hy, = HI 1+ We define the matrices

A=H) + HyyHy, B=Hyy, W=-Hy — HyyHyx.
The following theorem gives a formal statement of turnpike
properties of the potential differential game.

Theorem 4. Assume that the matrix W is symmetric pos-
itive definite, and that the pair (A, B) satisfies the Kalman
condition, i.e., the controllability matrix formed by (A, B)
is of full rank, and that there exists i € N X; # x;0. Then,
there exist constant €, C; > 0, Co > 0 and a time Ty > 0
such that, if

D= %~ xoll + | (‘f) - ("pé(o)) |<e

then, for any T > Tp, the potential game (16) has at least
one NE solution (x*(-), u*(-), p;(+)) satisfying
Ix*(@) = x|l + lIpi(1) — Al + [[a*(2) — ull

<Cyi(e €2 4+ ¢ G0,

Hyy =

(23)

Having established that the differential game (16) is a
potential one given proper ¢;, the remaining steps of the
proof of Theorem 4 follows similar steps as the one in
Trélat and Zuazua (2015) and thus are omitted.

Remark 7. The assumption that there exists i € N, x; #
xjo is mild. Note that X = 0 and u;; = wf},i e N,j €
Nl”;” is a global optimal solution of problem (18) and a
trivial one (disease free). But at this optimal solution, the
assumptions stated in Theorem 4 do not hold.

Remark 8. Here, C; depends linearly on D and e T To
be more specific, Cy is smaller as T is larger or D is smaller.

5. EXPERIMENTS

We study the graph stated in Fig. 1 with N = 4 agents.
Consider a homogeneous linear infection cost f;(x;) = ax;
for i € N and quadratic weight adaptation cost g;;(u;;j —
wlf’j) = %(uij - wfj)Q. Based on the graph G given in Fig.
1, let wZ =1if (i, j) € &. Otherwise, WZ = 0. So, we have
Nfzt = {2}, Nzﬁ’ ={1,4}, Ngﬁ’ ={1,2}, Nzﬁ’ = {3}. Let
Bi =B =16,0; =0 =038 fori € N. Arrange the weight
adaptation control as u = (u12 ua1 uz4 usy uzz us2)’ and
x = (x1 x3 x3 x4)". Thus, we have

0 Ayity2 + Agitoy Agitz; 0
Hy = - Agita1 + Aqit12 0 0 Agitg
** Aziiz Aziizp 0 Agigz|”
0 Aoilzy Agitss 0

Similarly, we can write down H x, Hyxy, and Hy,. We choose
a = 0.5. Given the topology of the graph and the param-
eters we specified above, using Sequential Quadratic Pro-
gramming (SQP) to solve problem (18), we obtain an local
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Fig. 1. A graph G = (V, &, W?) with 4 agents which is
strongly connected.

L] L) mm Ly Ty st Ty T3 T4
0.7
0.65F -~ ->=
T o.s'F
S
[
= 0.55
2
S o5
0.45 ﬁ
0.4
0-3% 10 20 30 40

Time ¢

Fig. 2. The evolution of infection probability x;(f) corre-
sponding to the potential differential game problem
(16) over time interval ¢ € [0, T] marked by solid lines.
The solutions of static problem (18) marked by dash
lines.

optimal solution x = (0.4327,0.6137,0.6535,0.4926) and

u = (0.6329,0.8634,0.8461,0.9168,0.8832,0.7428) as well

as the trivial optimal solution. Using the optimality sys-

tem (21-22), we obtain A = (0.6471,0.5054, 0.3353, 0.4848).

Under the optimal solution (X, 1), W(x,@, 1) is positive

definite and the pair (A, B) satisfies the Kalman condition.

We solve the differential game (16) under the parame-
ters we specified in this section with penalty function
ci(t) = Xjz @x;(t) using Distributed Resistance Algorithm
in Huang and Zhu (2019), where we choose T = 20 and
the initial point xy = (0.4,0.4,0.4,0.4). The turnpike prop-
erty can be observed on Fig. 2-3. As expected, except
transient initial and final arcs, the NE solution u* of
the corresponding potential differential game (16) and the
corresponding state trajectory (x*, u*) remain close to the
steady-state (X,u). During the transient time, as you can
see, the agent adapts its weight with his neighbors to avoid
being infected. For example, u12, the weight between agent
1 and agent 2, has been cut down from 1 to less than 0.5
by agent 1. So, agent 1 can avoid being infected by agent
1 whose infection level is relatively high.

6. CONCLUSION

In this paper, we have established a differential game
framework to develop decentralized virus-resistant mech-
anisms over complex. We have discussed the inefficiency
of the open-loop Nash equilibrium and have proposed
a penalty-based mechanism to achieve social optimum.
We have studied the steady-state behavior of a long-
term virus-resistance scheme where the duration of virus
spreading is sufficiently long. We have discussed their turn-
pike properties under the decentralized socially optimal
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Fig. 3. The weight adaptation of u(¢) corresponding to
the potential differential game problem (16) over time
interval ¢ € [0, T] marked by solid lines. The solutions
of static problem (18) marked by dash lines.

mechanism. One future direction would be to generalize
the turnpike properties to a general class of potential
differential games and study the application of turnpike
properties in mechanism design problems for this class of
games.
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