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Subgame Perfect Equilibrium Analysis for
Jamming Attacks on Resilient Graphs

Yurid Nugraha, Ahmet Cetinkaya, Tomohisa Hayakawa, Hideaki Ishii, and Quanyan Zhu

Abstract— A cyber security problem is considered in a
networked system formulated as a resilient graph problem
based on a game theoretic approach. The connectivity of
the underlying graph of the network system is reduced by
an attacker who removes some of the edges whereas the
defender attempts to recover them. Both players are subject
to energy constraints so that their actions are restricted and
cannot be performed continuously. We provide a subgame
perfect equilibrium analysis and fully characterize the optimal
strategies for the attacker and the defender in terms of edge
connectivity and the number of connected components of the
graph. The resilient graph game is then applied to the multi-
agent consensus problem. We study how the attacks and the
recovery on the edges affect the consensus process.

I. INTRODUCTION

Multi-agent systems provide a framework for studying
distributed decision-making problems as a number of agents
make local decisions by interacting with each other over
networks [1]-[3]. Due to the rise in the use of general
purpose networks and wireless communication channels for
such systems, cyber security has become a major critical
issue. Each agent in the network can be vulnerable to
various threats initiated by malicious adversaries.

One of the common security threats in networked systems
is jamming attacks. The adversary can simply transmit inter-
ference signals to interrupt communication among agents.
While jamming attacks against multi-agent systems can be
harmful as it does not require any knowledge of the systems,
the danger level may further increase if the attacker is more
aware of system parameters.

In this paper, we model the interaction between an
attacker and a defender in a two-player game setting.
The attacker is motivated to disrupt the communication by
attacking individual links while the defender attempts to
recover some or all of them whenever possible. Both players
are constrained in terms of their available energy for the
actions of attacks and recovery. We extend the problem
formulation of [4], where the decision variables are limited
to the links in the graphs for both players. In our problem
setting, more dynamics are present; the time intervals for
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attacking and recovering are to be decided subject to energy
constraints.

Noncooperative game theory approaches are widely used
in security problems where multiple players are involved
[5]. Jamming attacks on networked systems were previously
analyzed through game-theoretic approaches in, e.g., [6]-
[8]. We follow the jamming attack model with energy con-
straints introduced in [9], [10] in the context of networked
control. This model has been generalized to further take
account of probabilistic packet losses in [11]. Multi-agent
consensus problems in the presence of such jamming attacks
have been studied in [12]. Also, [13] considers multi-agents
under jamming, where a stochastic communication protocol
is introduced so that the attackers do not know the exact
transmission times in advance.

More specifically, in our formulation of resilient graphs,
a sequence of games is played by the attacker and the
defender. In each attack interval, the attacker decides the
links and the duration for the attacks. His utility depends on
the number of connected components of the graph after the
attack as well as his remaining energy. On the other hand,
the defender recovers some of the links that are important
for maintaining the connectivity of the graph. Our study
is based on the analysis of the subgame perfect equilibria
of the problem, and we use backward induction to obtain
optimal strategies for both players.

To describe the relation between jamming and recovering
on a two-player game, we follow the modelling approach
of [14]. The defender can overcome the attacker’s jamming
by sending signals that have a greater signal to interference
plus noise ratio (SINR). Furthermore, our study is motivated
by [13] for formulating the maximum duration energy
constraints of the players, which are time varying. In the
current paper, we apply the game to a consensus problem
and analyze how the time for reaching consensus is affected
by the strategies of the attacker and the defender.

The paper is organized as follows. In Section II, we
introduce the problem for the resilient graph game. In
Section III, we characterize the optimal strategies for the
players. In Section 1V, we apply the obtained results to a
consensus problem for multi-agent systems. We conclude
the paper in Section V. Note that for space reasons, the
proofs of the main results are omitted.

II. PROBLEM FORMULATION

We consider a multi-agent system of n agents with a
communication topology described by the undirected graph
G = (V,€). Tt consists of the set V of vertices with |V|=n
and the set £ C V x V of edges. The agents are described
by the vertices, while the communication links between the
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Fig. 1. Illustration of graph transitions: Changes in connectivity of the four edges over time are shown. Solid lines indicate that the corresponding

edges are connected while dashed lines show that they are disconnected by attacks. At time interval [;1,51], two edges ej2 and egq are attacked at
time I‘f, but the defender recovers esq from 1113 until F]f. At time interval [¢,, t2], the attacker removes three edges, which are not recovered by the

defender. The corresponding graphs are shown under the time intervals.

agents are represented by the edges of the graph. Every
agent is able to communicate with its neighbor agents via
the communication links. We assume that the underlying,
attack-free communication topology G is connected.

In this paper, we consider a game between two players,
the attacker and the defender, in terms of the communication
among the agents. The attacker is an entity capable to
block the communication by jamming some targeted links,
whereas the defender tries to recover some or all of the
attacked links. However, the actions of both players are
constrained by the limited energy resources they have.

The attacker wants to attack the communication activities
between the agents by sending jamming signals that are
stronger than the communication signals. This action by the
attacker is represented as a deletion of edges in the graph.
We call this an attack action. When the communication
links are jammed, the defender asks the agents to send even
stronger signals in certain communication links in order to
maintain the connectivity over the entire set of agents. We
call this a recovery action.

The kth game with k£ € N is played in the time interval
[t tk], which is determined by the players’ actions with
ty > t,, = tx—1. Initially, at the start time t,, there is no
attack or recovery, and the underlying graph is G. Then,
the attacker may start an attack on certain links, at which
point the defender will decide his actions whether to recover
some links or not. The durations and the links for the attack
and the recovery are the action variables. The end time #j, is
when the attacker and hence the defender stop their actions.
The kth game may also end after a fixed time duration when
no attack occurs. The (k+1)th game starts immediately after
the kth game, that is, ¢, = .

The attacker can start and end attacking, and the defender
can start and end recovering at most once in each time
interval [t;,t;]. The end of the kth time interval ¢j is
specified more concretely later in this section. At the start
time ¢,, we assume that the active communication links are
prescribed by the original edge set £ C V xV forall k£ € N.

More specifically, the attacker attacks G by deleting some
of the existing edges 5,? C & from time zﬁ until ??, where

i, < 1113 < ?ﬁ < tg. Consequently, G is changed to g;j =
(V,E\ &) at 2. For transmitting jamming signals, the
attacker spends some amount of energy in proportion to the
attack duration. For the attacker, it is also an option not to
make an attack action considering its utility defined later.
We define the attack phase as [13,74] for every k € N,
where the values of ?ﬁ are related to the energy of the
attacker, as discussed later. If there is no attack in the kth
time interval, it is understood that 1,‘;\ = ?ﬁ.

On the other hand, the defender aims to maintain the
connectivity of the graph by recovering some of the edges
that are blocked by the attacker. The defender recovers the
edges £ from time IE until ?E, with 5,? - 5,? and
t, < 7 < 1P < 7P < 1. As soon as the defender
starts the recovery action at 7}, the graph g;j is changed
to GP == (V, (E\ &) UEP). By recovering the edges, the
defender spends some amount of energy similarly to the
attacker. If there is no recovery action due to the absence
of the attack action or the decision by the defender, we
set 7P = 7P. We define the recovery phase as [P, 77
for every k£ € N, where values of ?E are related to the
energy of the defender, as discussed later. Once the attacker
stops attacking, the graph becomes G again, and a new game
((k+ 1)th game) begins. The timeline of the attack and the
recovery sequences is illustrated in Fig. 1.

In this formulation, we assume that there is a constant
dwell time v between the beginning of the kth game ¢,
and the beginning of the attack time 1?. For the defender,
we assume that there is also a constant dwell time ~°
between the beginning of attack time 1? and the beginning
of recovery time 15 unless the attacker ends attacking
carlier, i.e., 74 < 7P. Thus, 7+ and 77 are given by

Ijkx :zk +7Aa

ey
The length of the attack and the recovery intervals are

denoted by % and 6P, respectively. Note that

A=A A D._ =D D
6]6 =T — Tk, 6]6 =T T

7y = min(7y, 7 + 7).

@

In the kth game, both of the players attempt to choose
the best strategy to maximize their own utility functions that
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are defined over the time interval [¢,t;] without foreseeing
the future activities. The attacker’s strategy is determined in
terms of (£ ,?, ]§ A), and the defender’s strategy is determined
in terms of (£7,47).

To characterrze how much the nodes are connected or
disconnected in a unified way, we introduce the generalized
edge connectivity A as an extension of the notion of
edge connectivity. Specifically, for any undirected graph G’,
define

!
G = {)\(g )

if G’ is connected,
otherwise,

MG, 3)
where A(G’) denotes the edge connectivity, i.e., the min-
imum number of edges required to be removed in order
to make the connected graph G’ disconnected, and A(G')
denotes the minimum number of edges required to make
the disconnected graph G’ connected. Note that a larger
positive value of A implies that the graph G’ has more links
to be removed by the attacker, and a smaller negative value
of A indicates that the graph G’ requires more links to be
recovered by the defender. Since g;j - g,? C @G, note that
MGR) < AGR) < AG).

The attacker chooses the edges to attack based on the
generalized edge connectivity of the graph G, and the de-
fender chooses the edges to recover based on the generalized
edge connectivity of the graph Q,‘?. The attacker should
s}rategically choose the edges to destroy in order to reduce

(Q i) (and make gh . more disconnected), and the defender
also should strategically choose the edges to efficiently
increase A(gk ) (and make gk more connected).

For the game of the kth time interval [¢;, ¢x], we define
the utility function U# of the attacker as

UNER, ER, 01, 08) = — MG (08 — 67) — A(GP)oF
— BAER 57 4)

where 3% > 0 is the attacker’s cost to destroy one edge per
one time unit. Similarly, we define the utility function UP
of the defender as

UP(ER,E0, 0. 0F) = )‘(gk )(6p — 05) + ;\(91]3)51?
- BP1ER 108, (5)

where 8P > 0 is the defender’s cost to recover one edge per
one time unit. Note that the utility function (4) represents
the total generalized edge connectivity (with the negative
sign) for the attacker over the game horizon [Tk,tk] plus
the cost for jamming EA Similarly, (5) represents the total
generalized edge connectivity for the defender over the
game horizon [79,%;] plus the cost for recovering EP.

If the attacker decides to attack at least one edge or the
defender decides not to recover, the attacker can end the
game at ?ﬁ. Otherwise, the game ends at ¢, + v* + ~P.
Hence, the end time £ of the kth game is

Fom 4R if &M #£0,
t 74 + 9P,

otherwise.
From (6), it is understood that if the defender stops recov-
ering £ before the game ends while the attacker keeps
sending jamming signals at £, the graph is changed back

(6)

to G at 72, with generalized edge connectivity 5\(9,‘:‘).
Therefore, in [?]k),fk], the utilities of both players in (4)
and (5) are computed based on S\(Q,‘j).

The players cannot keep sending signals for very long
durations due to energy resource constraints. We follow the
approach in [13] to model such energy constraints. The total
energy used for the attacker must satisfy

k—1
Y BMEmIom + BEN(E — 1) < &P M (D)

m=1

for any tlme t € [rh,Tyq). with &% > 0, p* € (0,1),
A > p”, and k € N. For the defender, the total energy
used must satisfy
k—1
> BRIEDISE + BRIERI(E — 17) < kP + pPt,  (8)
m=1
for any time ¢ € [1), 7, 4], With kP > 0, pP € (0,1),
BP > pP, and k € N. Note that x* and xP denote the initial
energy that the attacker and the defender have, respectively.
Moreover, p® and pP denote the recharge rate of energy for
the attacker and the defender, respectively. In this paper, we
assume that each player knows all parameters of the other
player, including p?, pP, x*, and xP
Under this problem formulatlon, 1f the attacker keeps
sending signals from 77 until he runs out of energy, then
from (7) we obtain an explicit expression for the maximum
time interval 5,? when the attacker completes the attack as
ap o A BNEREE — 30 BNERIn
BAER | —p* -

Similarly, from (8), we obtain an explicit form for the time

6D when the defender completes the recovery as

w0+ BPIERITR — 30, BPIERISR,
BPIER =P

For simplicity of presentation, in this paper we first
consider the scenarios where 57+ € {0, A2}. In other words,
for each game the attacker either does not attack or attacks
until running out of energy.

We seek the subgame perfect equilibrium of this game
as in [4]. To this end, one needs to divide the game into
some subgames. The equilibrium must be optimal in every
subgame. To obtain the optimal strategy for every player, a
backward induction approach is used.

In the time interval [t,,%x], given the attacker’s strategy
(E{,62), the defender chooses his strategy as

(E(Ek500).08 (€8, 01))

€ arg max UP(ER,EP,62,6P),
g(s,lg,(sg) (&1, &5 0k, 0%)

®

AR = — 15 (10)

an

with £P and 62 depending on £ and §7*. Likewise, given
the initial topology &, the attacker chooses his strategy as

(g]?*’(SA*)
€ arg max U MERERT(ER 61), 01, 0 (ER, O1).
5k7 k

12)

We assume that the players are strategic. In this research,
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TABLE 1
POSSIBLE CASES OF ATTACK AND RECOVERY ACTIONS

Case AGR) GP)
L AGR) =A9) | AGP) =AG)
2 | A@) <A9) | AGP) = AGh)
3 [ AMGR) <A@) | AGP) > @)

we study the subgame perfect equilibrium and analyze the
strategies of the players in terms of the pairs (Ek , kD) and
(EP,5P). Therefore, we seek pairs (4, 02) and (€0, 6P)
such that (P, 6P) is the best response to (Ex, d2).

A tie-break condition happens if the players have multiple
options for the choices on which edges to attack or recover,
and those edges yield the same values of the utility func-
tions. In this case, we suppose that the players choose more
edges to attack or recover. As we see later in the context of
consensus, if the utility is the same for different graphs, then
the players choose the edges to attack or recover according
to certain principles as explained in Section IV below.

III. GAME ANALYSIS

In this section, we analyze the subgame perfect equilib-
rium of the system. From the sequence of actions, we obtain
several cases that might happen and seek the equilibrium
in each case, i.e., the candidate optimal strategies of the
system. Then, we seek the optimal strategy among the
candidate strategies by using backward induction.

1) Subgame Perfect Equilibrium Analysis in Each Case:
From the problem formulation, since A(G) > A(GP) >
S\(Qf:), we can divide all possible sequences into three cases
based on the combinations of A(G), A(G), and A(GP),
as shown in Table I. We analyze the subgame perfect
equilibrium for the time interval [¢;, 5] in each case.

Case 1: In this case, we show that the optimal strategy for
the attacker is not to attack, and the optimal strategy for the
defender is not to recover any edge. Here, the generalized
edge connectivities satisfy A(G) = A\(G&) = A(GP). Thus,
the utility function in (5) of the defender becomes

UP(ER €701, 67) = MG)or — BPIER 18-

Furthermore, because the defender gets no reward by re-
covering any link, the optimal strategy for the defender is
EP* = () and 62* = 0, resulting in

UP(ER,EP* 62, 62%) = A(G)d2.
Likewise, for the attacker, the utility function in (4) becomes
UMER, E7, 01, 007) = (=A(G) — BMERDSY . (19)

Since 5\(9) is constant, the attacker gets no reward by at-
tacking any link. Thus, the optimal strategy for the attacker

(13)

(14)

is 5,?* = () and 5?* = 0. As a result, the utility functions
in Case 1 are given by
UMER 07,007,007 ) =0 = UM, (16)
UP(ER, EP*,68%,6P%) = 0 =: UPL. a7

From (6), because & = ED = (), it follows that the
game ends at f = tk + 4% + 4P, This optimal strategy
corresponding to EN*,EP* 52, 6P* is then labelled as
Strategy 1 (see Table II).

Case 2: In this case, we show that the optimal strategy
for the attacker is to attack optimal edges until running out
of energy, and the optimal strategy for the defender is not
to recover any edge. Note that in this case, the generalized
edge connectivities satisfy A\(G) > A(G2) and A(GP) =
A(G) by Table 1. Similarly with the analysis in Case 1,
because J\(g,?) =\G ), the utility function of the defender
with EP* = () and 62* = 0 as in (14) is given by

UP(ER,EP* 62,60%) = M(G)o2. (18)
For the attacker, from (4) with 6}3 =0, we have
UAER,EP, 01, 607) = (=AGR) — BMERNGE. (19)

Since )\(gk ) < A(G), it follows that ER ;é (), which means
that the attacker attacks for A Hence 5k = A? i, and
UA(gk 551?*351?*’6k )
= (SAG) — BMEMNAR = UAX(ED).
Now we only need to choose Sk , as 5{3 is already de-
termined. Specifically, we search for EAQ*, which is the

optimal EA This is done by maximizing the simplified
utility function UA2(EA) in (20), resulting in

(20)

ER?* € arg max UA2(ED). 21
ge{};ﬁ@ (&) (21

Note that with this strategy, (18) becomes
UP(ER*, EP*, 68%6P%) = N(GR¥) AR = TP (22)

This optimal strategy of £2*, ED* 5% 6P* is labelled as
Strategy 2.

Case 3: In this case, we show that the optimal strategy
for the attacker is to attack optimal edges until running
out of energy, and the optimal strategy for the defender
is to recover optimal edges until either he runs out of
energy or the attacker runs out of energy. Note that in this
case, by Table I, the generalized edge connectivities satisfy
AMG) > M(GP) > A(GL). From (5), the utility function of
the defender can be written as

UP(EREL,00.00) = dwdp) + MGM)or,  (23)

with ¢y, := (A(GP) = A(G) — BP|EP]) for simplicity. Since

A(GL) < A(GP), in order to maximize the term ¢5), the
defender recovers Ek as long as possible if ¢5 > 0, so that
7 = min(Ap + 17,7 ). Alternatively, if ¢;, < 0, then the
defender’s utility is less than )\(g A )A?, which is the utility
if the defender does not recover. Hence the defender should
not recover at all.

From (23), it is clear that the defender should also
maximize the term ¢5. Hence, the utility function of the
defender is given by

UD(£I??£I?7 §I?ﬂ min(A£7F£ - IE))
— ) MG 24
MG), thus Ek # (). Hence the

= qﬁk(min(AE,?ﬁ

By assumption, A( A{“)
attacker attacks for A;* so that 6A* = %

If the attacker ends attackrng before AP+ TP 75, then t =
Tk = AA + Tk Otherwise, the defender recovers for A]k),
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TABLE II
POSSIBLE OPTIMAL STRATEGIES OF SUBGAME PERFECT EQUILIBRIUM

Strategy 5?* 5,]3* §kD* 5,‘3‘*
1 0 0 0 0
2 Ep2x 0 0 | A2
3 5}?3* 5,?3* (51?3*) &k A?

and t, = A? + 1?. Therefore, we can rewrite (24) as
UD(&??EI?? 6?*7 51?*) = stfk' + 5\(gllj)AkA
= UP3(&R, ED), (25)
with & := min(AP, A% + & — D). Then the optimal
number of edges to be recovered for 5,? is obtained by

EXP(ER) € arg max UP (&R, ED). (26)

For the attacker, the utility function becomes
UA (€700 007
= —MGM(AR — &) = MG (ER))en — BHIEN AR
= UA3(ED). 27
The attacker looks for 5,?3* by maximizing the simplified
utility function UA(ER). Specifically,

EA3* ¢ arg max UA3(ER).
k gg;j;g(z) (&)

(28)

Note that to obtain £ ;?3*, the attacker needs to obtain 5,?3*.
Hence, the attacker solves the maximization problem in (26)
beforehand to obtain £P3*(ER).

Finally, after the attacker obtains & ,‘33*, the defender
searches for 5,?3*, based on UDB(E?S*,S,?) in (25), as

gD3* gAS* € are max UDS 5A3*75D )
ko (&) g max 78 (29

We call this strategy as Strategy 3. The summary of the
optimal strategy in each case is shown in Table II.

2) Subgame Perfect Equilibrium Analysis of All Cases:
Here, we discuss the subgame perfect equilibrium analysis
of the system among all cases. To do so, we must find the
strategy that yields the maximum utility out of the three
possible optimal strategies described in Section III.B.1, in
accordance with the subgame perfect equilibrium principle.
Specifically, we compare UAL, UA2(ER2), UA(E37),
UDI, 0D2, and 0D3(5?3*7511€33*(5’?3*)).

_ For simplicity, we define [7D3+ _
qD3(5?3*7E£3*(5?3*))’ ) UDS(Ag]?Z*) —
UD3(5]?2*,€]]€D3* (5]?2*))’ UAQ* UAQ(gkAQ*)’ and

A3+ .— UA3(51?3*).
Theorem 3.1: The subgame perfect equilibrium of the
kth game in the time interval [t;, )] satisfies the following:
1) Strategy 1 is the optimal strategy if
o UA2* <0, or
A3 o 0, {7D3+
UD3(5;€A2*) > b2,
2) Strategy 2 is the optimal strategy if UA%* > 0 and
o UP¥ < \(GP**)AR or
o UDP3(EL2Y) < UP2.
The optimal edges 6,?* for the attacker are given by

> S\(Q,‘?:;*)Aﬁ, and

. SAB* if UD3(5?2*) > UA'D2’
o & otherwise.
3) Strategy 3 is the optimal strategy if UA3x > 0,

UD3(51?2*> > UDQ’ and UP3* > ;\(g,f‘S*)Af.

This theorem covers all possible cases of actions.

Combinations of the conditions of the possible optimal
strategies in all cases are shown in Table IIl. Note that
UA?* < 0 and UA3* > 0 cannot happen.

IV. APPLICATION TO CONSENSUS PROBLEM

In this section, a consensus problem of a multi-agent
system in the face of jamming attacks is investigated.
Specifically, we apply our game approach to the consensus
problem and provide a numerical example.

Let V = {1,2,...,n} represent the set of agents and &
the set of edges connecting the agents. Let N () be the set
of neighbors of agent ¢, i.e., the agents sharing edges with
agent ¢ at time ¢. We assume that the agents communicate
with their neighbors continuously in time. Every agent ¢ has
the scalar state z; and the local control input u; as

If the attacker attacks some edges £ ,? (resp., the defender
recovers &£F), then the neighbors of each agent i may
change. In this problem setting, it makes sense if the
attacker attacks the edges connecting agents that take more
different values in states, especially if the utility is the same
for different strategies. The same argument applies to the
defender’s action.

Here we employ the control input u;(t) with

(30)

wit) == Y (a(t) — @i(t)), (31)
JEN;(t)
so that the state of all agents = [x1,Z2,...,2,]T is

expected to converge to a consensus state .

In this paper, we use the notion of approximate con-
sensus. For a given € > 0, the approximate consensus set
D. C R" is given by D, := {x € R™: V(x) < ¢}, where

V(z) = maxz; —minz;, xz € R". (32)
eV %

We characterize the effect of jamming attacks in terms of the

time it takes the agents to reach the approximate consensus

set D.. In particular, for the initial state x(0) = zg € R™ \

D., the approximate consensus time T, (x¢) is given by

T, (zo) := inf{t > 0: z(t) € D.}. (33)

In our analysis, we also use the Laplacian matrix L € R™*"
. . A
associated with graph G. Moreover, let P := e~ © and

P ;, (34)

‘= max min
je{l,...,n}ie{l,...,n}
where P; ; denotes the (i, j)th entry of the matrix P. Notice
that since G is connected and WA >0, we have P; ; € (0,1),
and hence, p € (0,1).

Proposition 4.1: Consider the multi-agent system (30)
and (31) with initial condition zy € R™ \ D.. Under the
optimal attack and defense strategies for the resilient graph
game described in Section III, the approximate consensus
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TABLE III

CONDITIONS OF THE OPTIMAL STRATEGY OF ALL CASES

UDS* < 5\ gAB* AA UDS* > 5\ gAS* AA
Condition TD3(cA2 1D2 ( Ist) zz 7D2 D3 (cA2 3 1;2 ( Ist) 1]§2 1D2
UP3 (&%) <U ‘ UP3 (") > U UP3 (&) <U UP3(&E2*) 22U
UA2x >0 | UA3* >0 Strategy 3
~ ~ Strategy 2
UA2x >0 | UA3* <0 Strategy 1
UA2x <0 | U3 <0 Strategy 1
0 e ‘ Remaining Energy of Attacker Remaining Energy of Defender
1.5 T T T T T
& 1 .
@ © 5
g 0.5 B
) o ) 0 i . . , .
Fig. 2. G used in simulation. 0 05 1 15 2 25 3
4 ; ; ; ; ; time
. . | Optimal Strategy
3t ] g °f
2 g 2f 1
z2r B 1 1
b i . . . .
1 | 0 0.5 1 1.5 2 25 3
time
0 : ‘ ' : ‘ I i Optimal \
0 0.5 1 1.5 2 25 3 2r
time Aor 1
Fig. 3. Simulation result. The grey area indicates the interval where the 2 ‘ | 0 ‘ i 1
attacker is able to attack but chooses to be silent. The red and green areas 0 05 1 15 5 o5 3
indicate the intervals where the attacker attacks and the defender recovers, ’ tirﬁe '

respectively.

time satisfies
A A ) 1116—11’1[/ xr A
/3 (’)/ +y ) Y — (]717() o) + K

BA_pA

T (20) < (35)

Proposition 4.1 provides an upper bound of the approx-
imate consensus time in terms of the scalars %, k, p*
that characterize the attacker’s energy constraints together
with the scalars v and P that respectively represent the
attacker’s and the defender’s waiting durations before taking
actions in each game.

We demonstrate the efficacy of the presented results in
the approximate consensus problem through a numerical
example. We use the graph shown in Fig. 2 with n = 4,
and parameters BA =04, f° = 0.6, kA =05, kP =1,
pAr =0.3, p® =0.1, v = 0.1, and 4 = 0.3. Figs. 3 and
4 show the states of the agents and properties of the players,
with the agents eventually achieving approximate consensus
in t ~ 2.1 with € = 0.5. For comparison, when there is no
jamming, it takes t ~ 1.85 to achieve the same level of
approximate consensus. The boundary in this example is
T, (zo) < 41.8.

V. CONCLUSION

We have provided the subgame perfect equilibrium anal-
ysis between two players, the attacker and the defender,
in terms of communications among agents in a multi-agent
system, by considering the generalized edge connectivity of
communication graphs. Specifically, we have obtained the
optimal strategies of the players in terms of the number of
edges and duration of action intervals. For the consensus
problem, we have seen that the time for the agents to reach
approximate consensus will be delayed due to attacks and
have derived an upper bound.

Fig. 4. Properties of the players and the system. In this case, the attacker
attacks ej2 in the 3rd game to make A(g?) = —1.
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