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Abstract— A cyber security problem is considered in a
networked system formulated as a resilient graph problem
based on a game theoretic approach. The connectivity of
the underlying graph of the network system is reduced by
an attacker who removes some of the edges whereas the
defender attempts to recover them. Both players are subject
to energy constraints so that their actions are restricted and
cannot be performed continuously. We provide a subgame
perfect equilibrium analysis and fully characterize the optimal
strategies for the attacker and the defender in terms of edge
connectivity and the number of connected components of the
graph. The resilient graph game is then applied to the multi-
agent consensus problem. We study how the attacks and the
recovery on the edges affect the consensus process.

I. INTRODUCTION

Multi-agent systems provide a framework for studying

distributed decision-making problems as a number of agents

make local decisions by interacting with each other over

networks [1]–[3]. Due to the rise in the use of general

purpose networks and wireless communication channels for

such systems, cyber security has become a major critical

issue. Each agent in the network can be vulnerable to

various threats initiated by malicious adversaries.

One of the common security threats in networked systems

is jamming attacks. The adversary can simply transmit inter-

ference signals to interrupt communication among agents.

While jamming attacks against multi-agent systems can be

harmful as it does not require any knowledge of the systems,

the danger level may further increase if the attacker is more

aware of system parameters.

In this paper, we model the interaction between an

attacker and a defender in a two-player game setting.

The attacker is motivated to disrupt the communication by

attacking individual links while the defender attempts to

recover some or all of them whenever possible. Both players

are constrained in terms of their available energy for the

actions of attacks and recovery. We extend the problem

formulation of [4], where the decision variables are limited

to the links in the graphs for both players. In our problem

setting, more dynamics are present; the time intervals for
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attacking and recovering are to be decided subject to energy

constraints.

Noncooperative game theory approaches are widely used

in security problems where multiple players are involved

[5]. Jamming attacks on networked systems were previously

analyzed through game-theoretic approaches in, e.g., [6]–

[8]. We follow the jamming attack model with energy con-

straints introduced in [9], [10] in the context of networked

control. This model has been generalized to further take

account of probabilistic packet losses in [11]. Multi-agent

consensus problems in the presence of such jamming attacks

have been studied in [12]. Also, [13] considers multi-agents

under jamming, where a stochastic communication protocol

is introduced so that the attackers do not know the exact

transmission times in advance.

More specifically, in our formulation of resilient graphs,

a sequence of games is played by the attacker and the

defender. In each attack interval, the attacker decides the

links and the duration for the attacks. His utility depends on

the number of connected components of the graph after the

attack as well as his remaining energy. On the other hand,

the defender recovers some of the links that are important

for maintaining the connectivity of the graph. Our study

is based on the analysis of the subgame perfect equilibria

of the problem, and we use backward induction to obtain

optimal strategies for both players.

To describe the relation between jamming and recovering

on a two-player game, we follow the modelling approach

of [14]. The defender can overcome the attacker’s jamming

by sending signals that have a greater signal to interference

plus noise ratio (SINR). Furthermore, our study is motivated

by [13] for formulating the maximum duration energy

constraints of the players, which are time varying. In the

current paper, we apply the game to a consensus problem

and analyze how the time for reaching consensus is affected

by the strategies of the attacker and the defender.

The paper is organized as follows. In Section II, we

introduce the problem for the resilient graph game. In

Section III, we characterize the optimal strategies for the

players. In Section IV, we apply the obtained results to a

consensus problem for multi-agent systems. We conclude

the paper in Section V. Note that for space reasons, the

proofs of the main results are omitted.

II. PROBLEM FORMULATION

We consider a multi-agent system of n agents with a

communication topology described by the undirected graph

G = (V, E). It consists of the set V of vertices with |V|= n
and the set E ⊆ V × V of edges. The agents are described

by the vertices, while the communication links between the
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Fig. 1. Illustration of graph transitions: Changes in connectivity of the four edges over time are shown. Solid lines indicate that the corresponding
edges are connected while dashed lines show that they are disconnected by attacks. At time interval [t

1
, t1], two edges e12 and e24 are attacked at

time τA
1

, but the defender recovers e24 from τD
1

until τD
1

. At time interval [t
2
, t2], the attacker removes three edges, which are not recovered by the

defender. The corresponding graphs are shown under the time intervals.

agents are represented by the edges of the graph. Every

agent is able to communicate with its neighbor agents via

the communication links. We assume that the underlying,

attack-free communication topology G is connected.

In this paper, we consider a game between two players,

the attacker and the defender, in terms of the communication

among the agents. The attacker is an entity capable to

block the communication by jamming some targeted links,

whereas the defender tries to recover some or all of the

attacked links. However, the actions of both players are

constrained by the limited energy resources they have.

The attacker wants to attack the communication activities

between the agents by sending jamming signals that are

stronger than the communication signals. This action by the

attacker is represented as a deletion of edges in the graph.

We call this an attack action. When the communication

links are jammed, the defender asks the agents to send even

stronger signals in certain communication links in order to

maintain the connectivity over the entire set of agents. We

call this a recovery action.

The kth game with k ∈ N is played in the time interval

[tk, tk], which is determined by the players’ actions with

tk > tk = tk−1. Initially, at the start time tk, there is no

attack or recovery, and the underlying graph is G. Then,

the attacker may start an attack on certain links, at which

point the defender will decide his actions whether to recover

some links or not. The durations and the links for the attack

and the recovery are the action variables. The end time tk is

when the attacker and hence the defender stop their actions.

The kth game may also end after a fixed time duration when

no attack occurs. The (k+1)th game starts immediately after

the kth game, that is, tk+1 = tk.

The attacker can start and end attacking, and the defender

can start and end recovering at most once in each time

interval [tk, tk]. The end of the kth time interval tk is

specified more concretely later in this section. At the start

time tk, we assume that the active communication links are

prescribed by the original edge set E ⊆ V×V for all k ∈ N.

More specifically, the attacker attacks G by deleting some

of the existing edges EA
k ⊆ E from time τAk until τAk , where

tk < τAk ≤ τAk ≤ tk. Consequently, G is changed to GA
k :=

(V, E \ EA
k ) at τAk . For transmitting jamming signals, the

attacker spends some amount of energy in proportion to the

attack duration. For the attacker, it is also an option not to

make an attack action considering its utility defined later.

We define the attack phase as [τAk , τ
A
k ] for every k ∈ N,

where the values of τAk are related to the energy of the

attacker, as discussed later. If there is no attack in the kth

time interval, it is understood that τAk = τAk .

On the other hand, the defender aims to maintain the

connectivity of the graph by recovering some of the edges

that are blocked by the attacker. The defender recovers the

edges ED
k from time τDk until τDk , with ED

k ⊆ EA
k and

tk < τAk < τDk ≤ τDk ≤ tk. As soon as the defender

starts the recovery action at τDk , the graph GA
k is changed

to GD
k := (V, (E \ EA

k ) ∪ ED
k ). By recovering the edges, the

defender spends some amount of energy similarly to the

attacker. If there is no recovery action due to the absence

of the attack action or the decision by the defender, we

set τDk = τDk . We define the recovery phase as [τDk , τ
D
k ]

for every k ∈ N, where values of τDk are related to the

energy of the defender, as discussed later. Once the attacker

stops attacking, the graph becomes G again, and a new game

((k+1)th game) begins. The timeline of the attack and the

recovery sequences is illustrated in Fig. 1.

In this formulation, we assume that there is a constant

dwell time γA between the beginning of the kth game tk
and the beginning of the attack time τAk . For the defender,

we assume that there is also a constant dwell time γD

between the beginning of attack time τAk and the beginning

of recovery time τDk unless the attacker ends attacking

earlier, i.e., τAk < τDk . Thus, τAk and τDk are given by

τAk = tk + γA, τDk = min(τAk , τ
A
k + γD). (1)

The length of the attack and the recovery intervals are

denoted by δAk and δDk , respectively. Note that

δAk := τAk − τAk , δDk := τDk − τDk . (2)

In the kth game, both of the players attempt to choose

the best strategy to maximize their own utility functions that
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are defined over the time interval [tk,tk] without foreseeing

the future activities. The attacker’s strategy is determined in

terms of (EA
k , δAk ), and the defender’s strategy is determined

in terms of (ED
k , δDk ).

To characterize how much the nodes are connected or

disconnected in a unified way, we introduce the generalized

edge connectivity λ̂ as an extension of the notion of

edge connectivity. Specifically, for any undirected graph G′,

define

λ̂(G′) :=

{

λ(G′), if G′ is connected,

−λ̃(G′), otherwise,
(3)

where λ(G′) denotes the edge connectivity, i.e., the min-

imum number of edges required to be removed in order

to make the connected graph G′ disconnected, and λ̃(G′)
denotes the minimum number of edges required to make

the disconnected graph G′ connected. Note that a larger

positive value of λ̂ implies that the graph G′ has more links

to be removed by the attacker, and a smaller negative value

of λ̂ indicates that the graph G′ requires more links to be

recovered by the defender. Since GA
k ⊆ GD

k ⊆ G, note that

λ̂(GA
k ) ≤ λ̂(GD

k ) ≤ λ̂(G).
The attacker chooses the edges to attack based on the

generalized edge connectivity of the graph G, and the de-

fender chooses the edges to recover based on the generalized

edge connectivity of the graph GA
k . The attacker should

strategically choose the edges to destroy in order to reduce

λ̂(GA
k ) (and make GA

k more disconnected), and the defender

also should strategically choose the edges to efficiently

increase λ̂(GD
k ) (and make GD

k more connected).

For the game of the kth time interval [tk, tk], we define

the utility function UA of the attacker as

UA(EA
k , ED

k , δAk , δ
D
k ) :=− λ̂(GA

k )(δ
A
k − δDk )− λ̂(GD

k )δDk

− βA|EA
k |δAk , (4)

where βA > 0 is the attacker’s cost to destroy one edge per

one time unit. Similarly, we define the utility function UD

of the defender as

UD(EA
k , ED

k , δAk , δ
D
k ) := λ̂(GA

k )(δ
A
k − δDk ) + λ̂(GD

k )δDk

− βD|ED
k |δDk , (5)

where βD > 0 is the defender’s cost to recover one edge per

one time unit. Note that the utility function (4) represents

the total generalized edge connectivity (with the negative

sign) for the attacker over the game horizon [τAk , tk] plus

the cost for jamming EA
k . Similarly, (5) represents the total

generalized edge connectivity for the defender over the

game horizon [τAk , tk] plus the cost for recovering ED
k .

If the attacker decides to attack at least one edge or the

defender decides not to recover, the attacker can end the

game at τAk . Otherwise, the game ends at tk + γA + γD.

Hence, the end time tk of the kth game is

tk :=

{

τAk , if EA
k 6= ∅,

tk + γA + γD, otherwise.
(6)

From (6), it is understood that if the defender stops recov-

ering ED
k before the game ends while the attacker keeps

sending jamming signals at EA
k , the graph is changed back

to GA
k at τDk , with generalized edge connectivity λ̂(GA

k ).
Therefore, in [τDk , tk], the utilities of both players in (4)

and (5) are computed based on λ̂(GA
k ).

The players cannot keep sending signals for very long

durations due to energy resource constraints. We follow the

approach in [13] to model such energy constraints. The total

energy used for the attacker must satisfy

k−1
∑

m=1

βA|EA
m|δAm + βA|EA

k |(t− τAk ) ≤ κA + ρAt, (7)

for any time t ∈ [τAk , τ
A
k+1], with κA > 0, ρA ∈ (0, 1),

βA > ρA, and k ∈ N. For the defender, the total energy

used must satisfy

k−1
∑

m=1

βD|ED
m|δDm + βD|ED

k |(t− τDk ) ≤ κD + ρDt, (8)

for any time t ∈ [τDk , τ
D
k+1], with κD > 0, ρD ∈ (0, 1),

βD > ρD, and k ∈ N. Note that κA and κD denote the initial

energy that the attacker and the defender have, respectively.

Moreover, ρA and ρD denote the recharge rate of energy for

the attacker and the defender, respectively. In this paper, we

assume that each player knows all parameters of the other

player, including ρA, ρD, κA, and κD.

Under this problem formulation, if the attacker keeps

sending signals from τAk until he runs out of energy, then

from (7) we obtain an explicit expression for the maximum

time interval δAk when the attacker completes the attack as

∆A
k :=

κA + βA|EA
k |τAk −

∑k−1
m=1 β

A|EA
m|δAm

βA|EA
k |−ρA

− τAk . (9)

Similarly, from (8), we obtain an explicit form for the time

δDk when the defender completes the recovery as

∆D
k :=

κD + βD|ED
k |τDk −

∑k−1
m=1 β

D|ED
m|δDm

βD|ED
k |−ρD

− τDk . (10)

For simplicity of presentation, in this paper we first

consider the scenarios where δAk ∈ {0,∆A
k }. In other words,

for each game the attacker either does not attack or attacks

until running out of energy.

We seek the subgame perfect equilibrium of this game

as in [4]. To this end, one needs to divide the game into

some subgames. The equilibrium must be optimal in every

subgame. To obtain the optimal strategy for every player, a

backward induction approach is used.

In the time interval [tk, tk], given the attacker’s strategy

(EA
k , δAk ), the defender chooses his strategy as

(ED∗
k (EA

k , δAk ),δ
D∗
k (EA

k , δAk ))

∈ arg max
(ED

k
,δD

k
)
UD(EA

k , ED
k , δAk , δ

D
k ), (11)

with ED
k and δDk depending on EA

k and δAk . Likewise, given

the initial topology E , the attacker chooses his strategy as

(EA∗
k , δA∗

k )

∈ arg max
(EA

k
,δA

k
)
UA(EA

k , ED∗
k (EA

k , δAk ), δ
A
k , δ

D∗
k (EA

k , δAk )).

(12)

We assume that the players are strategic. In this research,
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TABLE I

POSSIBLE CASES OF ATTACK AND RECOVERY ACTIONS

Case λ̂(GA

k
) λ̂(GD

k
)

1 λ̂(GA

k
) = λ̂(G) λ̂(GD

k
) = λ̂(GA

k
)

2 λ̂(GA

k
) < λ̂(G) λ̂(GD

k
) = λ̂(GA

k
)

3 λ̂(GA

k
) < λ̂(G) λ̂(GD

k
) > λ̂(GA

k
)

we study the subgame perfect equilibrium and analyze the

strategies of the players in terms of the pairs (EA
k , δAk ) and

(ED
k , δDk ). Therefore, we seek pairs (EA

k , δAk ) and (ED
k , δDk )

such that (ED
k , δDk ) is the best response to (EA

k , δAk ).
A tie-break condition happens if the players have multiple

options for the choices on which edges to attack or recover,

and those edges yield the same values of the utility func-

tions. In this case, we suppose that the players choose more

edges to attack or recover. As we see later in the context of

consensus, if the utility is the same for different graphs, then

the players choose the edges to attack or recover according

to certain principles as explained in Section IV below.

III. GAME ANALYSIS

In this section, we analyze the subgame perfect equilib-

rium of the system. From the sequence of actions, we obtain

several cases that might happen and seek the equilibrium

in each case, i.e., the candidate optimal strategies of the

system. Then, we seek the optimal strategy among the

candidate strategies by using backward induction.

1) Subgame Perfect Equilibrium Analysis in Each Case:

From the problem formulation, since λ̂(G) ≥ λ̂(GD
k ) ≥

λ̂(GA
k ), we can divide all possible sequences into three cases

based on the combinations of λ̂(G), λ̂(GA
k ), and λ̂(GD

k ),
as shown in Table I. We analyze the subgame perfect

equilibrium for the time interval [tk, tk] in each case.

Case 1: In this case, we show that the optimal strategy for

the attacker is not to attack, and the optimal strategy for the

defender is not to recover any edge. Here, the generalized

edge connectivities satisfy λ̂(G) = λ̂(GA
k ) = λ̂(GD

k ). Thus,

the utility function in (5) of the defender becomes

UD(EA
k , ED

k , δAk , δ
D
k ) = λ̂(G)δAk − βD|ED

k |δDk . (13)

Furthermore, because the defender gets no reward by re-

covering any link, the optimal strategy for the defender is

ED∗
k = ∅ and δD∗

k = 0, resulting in

UD(EA
k , ED∗

k , δAk , δ
D∗
k ) = λ̂(G)δAk . (14)

Likewise, for the attacker, the utility function in (4) becomes

UA(EA
k , ED∗

k , δAk , δ
D∗
k ) = (−λ̂(G)− βA|EA

k |)δAk . (15)

Since λ̂(G) is constant, the attacker gets no reward by at-

tacking any link. Thus, the optimal strategy for the attacker

is EA∗
k = ∅ and δA∗

k = 0. As a result, the utility functions

in Case 1 are given by

UA(EA∗
k , ED∗

k , δA∗
k , δD∗

k ) = 0 =: ÛA1, (16)

UD(EA∗
k , ED∗

k , δA∗
k , δD∗

k ) = 0 =: ÛD1. (17)

From (6), because EA
k = ED

k = ∅, it follows that the

game ends at tk = tk + γA + γD. This optimal strategy

corresponding to EA∗
k , ED∗

k , δA∗
k , δD∗

k is then labelled as

Strategy 1 (see Table II).

Case 2: In this case, we show that the optimal strategy

for the attacker is to attack optimal edges until running out

of energy, and the optimal strategy for the defender is not

to recover any edge. Note that in this case, the generalized

edge connectivities satisfy λ̂(G) > λ̂(GA
k ) and λ̂(GD

k ) =
λ̂(GA

k ) by Table I. Similarly with the analysis in Case 1,

because λ̂(GD
k ) = λ̂(GA

k ), the utility function of the defender

with ED∗
k = ∅ and δD∗

k = 0 as in (14) is given by

UD(EA
k , ED∗

k , δAk , δ
D∗
k ) = λ̂(GA

k )δ
A
k . (18)

For the attacker, from (4) with δDk = 0, we have

UA(EA
k , ED∗

k , δAk , δ
D∗
k ) = (−λ̂(GA

k )− βA|EA
k |)δAk . (19)

Since λ̂(GA
k ) < λ̂(G), it follows that EA

k 6= ∅, which means

that the attacker attacks for ∆A
k . Hence, δAk = ∆A

k , and

UA(EA
k , ED∗

k , δA∗
k , δD∗

k )

= (−λ̂(GA
k )− βA|EA

k |)∆A
k =: ÛA2(EA

k ). (20)

Now we only need to choose EA
k , as δAk is already de-

termined. Specifically, we search for EA2∗
k , which is the

optimal EA
k . This is done by maximizing the simplified

utility function ÛA2(EA
k ) in (20), resulting in

EA2∗
k ∈ arg max

EA

k
6=∅

ÛA2(EA
k ). (21)

Note that with this strategy, (18) becomes

UD(EA∗
k , ED∗

k , δA∗
k , δD∗

k ) = λ̂(GA2∗
k )∆A

k =: ÛD2. (22)

This optimal strategy of EA∗
k , ED∗

k , δA∗
k , δD∗

k is labelled as

Strategy 2.

Case 3: In this case, we show that the optimal strategy

for the attacker is to attack optimal edges until running

out of energy, and the optimal strategy for the defender

is to recover optimal edges until either he runs out of

energy or the attacker runs out of energy. Note that in this

case, by Table I, the generalized edge connectivities satisfy

λ̂(G) ≥ λ̂(GD
k ) > λ̂(GA

k ). From (5), the utility function of

the defender can be written as

UD(EA
k , ED

k , δAk , δ
D
k ) = φkδ

D
k + λ̂(GA

k )δ
A
k , (23)

with φk := (λ̂(GD
k )−λ̂(GA

k )−βD|ED
k |) for simplicity. Since

λ̂(GA
k ) < λ̂(GD

k ), in order to maximize the term φkδ
D
k , the

defender recovers ED
k as long as possible if φk ≥ 0, so that

τDk = min(∆D
k +τDk , τ

A
k ). Alternatively, if φk < 0, then the

defender’s utility is less than λ̂(GA
k )∆

A
k , which is the utility

if the defender does not recover. Hence the defender should

not recover at all.

From (23), it is clear that the defender should also

maximize the term φk. Hence, the utility function of the

defender is given by

UD(EA
k , ED

k , δAk ,min(∆D
k , τ

A
k − τDk ))

= φk(min(∆D
k , τ

A
k − τDk )) + λ̂(GA

k )δ
A
k . (24)

By assumption, λ̂(GA
k ) < λ̂(G), thus EA

k 6= ∅. Hence the

attacker attacks for ∆A
k so that δA∗

k = ∆A
k .

If the attacker ends attacking before ∆D
k + τDk , then tk =

τDk = ∆A
k + τAk . Otherwise, the defender recovers for ∆D

k ,
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TABLE II

POSSIBLE OPTIMAL STRATEGIES OF SUBGAME PERFECT EQUILIBRIUM

Strategy EA∗

k
ED∗

k
δD∗

k
δA∗

k

1 ∅ ∅ 0 0

2 EA2∗

k
∅ 0 ∆A

k

3 EA3∗

k
ED3∗

k
(EA3∗

k
) ξk ∆A

k

and tk = ∆A
k + τAk . Therefore, we can rewrite (24) as

UD(EA
k , ED

k , δA∗
k , δD∗

k ) = φkξk + λ̂(GA
k )∆

A
k

=: ÛD3(EA
k , ED

k ), (25)

with ξk := min(∆D
k ,∆

A
k + τAk − τDk ). Then the optimal

number of edges to be recovered for EA
k is obtained by

ED3∗
k (EA

k ) ∈ arg max
ED

k
6=∅

ÛD3(EA
k , ED

k ). (26)

For the attacker, the utility function becomes

UA(EA
k , ED∗

k , δA∗
k , δD∗

k )

= −λ̂(GA
k )(∆

A
k − ξk)− λ̂(GD3∗

k (EA
k ))ξk − βA|EA

k |∆A
k

=: ÛA3(EA
k ). (27)

The attacker looks for EA3∗
k by maximizing the simplified

utility function ÛA3(EA
k ). Specifically,

EA3∗
k ∈ arg max

EA

k
6=∅

ÛA3(EA
k ). (28)

Note that to obtain EA3∗
k , the attacker needs to obtain ED3∗

k .

Hence, the attacker solves the maximization problem in (26)

beforehand to obtain ED3∗
k (EA

k ).
Finally, after the attacker obtains EA3∗

k , the defender

searches for ED3∗
k , based on ÛD3(EA3∗

k , ED
k ) in (25), as

ED3∗
k (EA3∗

k ) ∈ arg max
ED

k
6=∅

ÛD3(EA3∗
k , ED

k ). (29)

We call this strategy as Strategy 3. The summary of the

optimal strategy in each case is shown in Table II.

2) Subgame Perfect Equilibrium Analysis of All Cases:

Here, we discuss the subgame perfect equilibrium analysis

of the system among all cases. To do so, we must find the

strategy that yields the maximum utility out of the three

possible optimal strategies described in Section III.B.1, in

accordance with the subgame perfect equilibrium principle.

Specifically, we compare ÛA1, ÛA2(EA2∗
k ), ÛA3(EA3∗

k ),
ÛD1, ÛD2, and ÛD3(EA3∗

k , ED3∗
k (EA3∗

k )).
For simplicity, we define ÛD3∗ :=

ÛD3(EA3∗
k , ED3∗

k (EA3∗
k )), ÛD3(EA2∗

k ) :=
ÛD3(EA2∗

k , ED3∗
k (EA2∗

k )), ÛA2∗ := ÛA2(EA2∗
k ), and

ÛA3∗ := ÛA3(EA3∗
k ).

Theorem 3.1: The subgame perfect equilibrium of the

kth game in the time interval [tk, tk] satisfies the following:

1) Strategy 1 is the optimal strategy if

• ÛA2∗ < 0, or

• ÛA3∗ < 0, ÛD3∗ ≥ λ̂(GA3∗
k )∆A

k , and

ÛD3(EA2∗
k ) ≥ ÛD2.

2) Strategy 2 is the optimal strategy if ÛA2∗ ≥ 0 and

• ÛD3∗ < λ̂(GA3∗
k )∆A

k or

• ÛD3(EA2∗
k ) < ÛD2.

The optimal edges EA∗
k for the attacker are given by

• EA3∗
k if ÛD3(EA2∗

k ) ≥ ÛD2,

• EA2∗
k otherwise.

3) Strategy 3 is the optimal strategy if ÛA3∗ ≥ 0,

ÛD3(EA2∗
k ) ≥ ÛD2, and ÛD3∗ > λ̂(GA3∗

k )∆A
k .

This theorem covers all possible cases of actions.

Combinations of the conditions of the possible optimal

strategies in all cases are shown in Table III. Note that

ÛA2∗ < 0 and ÛA3∗ ≥ 0 cannot happen.

IV. APPLICATION TO CONSENSUS PROBLEM

In this section, a consensus problem of a multi-agent

system in the face of jamming attacks is investigated.

Specifically, we apply our game approach to the consensus

problem and provide a numerical example.

Let V = {1, 2, . . . , n} represent the set of agents and E
the set of edges connecting the agents. Let Ni(t) be the set

of neighbors of agent i, i.e., the agents sharing edges with

agent i at time t. We assume that the agents communicate

with their neighbors continuously in time. Every agent i has

the scalar state xi and the local control input ui as

ẋi(t) = ui(t), t ≥ 0, x(0) = x0. (30)

If the attacker attacks some edges EA
k (resp., the defender

recovers ED
k ), then the neighbors of each agent i may

change. In this problem setting, it makes sense if the

attacker attacks the edges connecting agents that take more

different values in states, especially if the utility is the same

for different strategies. The same argument applies to the

defender’s action.

Here we employ the control input ui(t) with

ui(t) :=
∑

j∈Ni(t)

(xj(t)− xi(t)), (31)

so that the state of all agents x = [x1, x2, . . . , xn]
T is

expected to converge to a consensus state x∗.

In this paper, we use the notion of approximate con-

sensus. For a given ǫ > 0, the approximate consensus set

Dǫ ⊂ R
n is given by Dǫ := {x ∈ R

n:V (x) ≤ ǫ}, where

V (x) := max
i∈V

xi −min
i∈V

xi, x ∈ R
n. (32)

We characterize the effect of jamming attacks in terms of the

time it takes the agents to reach the approximate consensus

set Dǫ. In particular, for the initial state x(0) = x0 ∈ R
n \

Dǫ, the approximate consensus time T∗(x0) is given by

T∗(x0) := inf{t ≥ 0:x(t) ∈ Dǫ}. (33)

In our analysis, we also use the Laplacian matrix L ∈ R
n×n

associated with graph G. Moreover, let P := e−γAL and

p := max
j∈{1,...,n}

min
i∈{1,...,n}

Pi,j , (34)

where Pi,j denotes the (i, j)th entry of the matrix P . Notice

that since G is connected and γA > 0, we have Pi,j ∈ (0, 1),
and hence, p ∈ (0, 1).

Proposition 4.1: Consider the multi-agent system (30)

and (31) with initial condition x0 ∈ R
n \ Dǫ. Under the

optimal attack and defense strategies for the resilient graph

game described in Section III, the approximate consensus
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TABLE III

CONDITIONS OF THE OPTIMAL STRATEGY OF ALL CASES

Condition
ÛD3∗ < λ̂(GA3∗

k
)∆A

k
ÛD3∗ ≥ λ̂(GA3∗

k
)∆A

k

ÛD3(EA2∗

k
) < ÛD2 ÛD3(EA2∗

k
) ≥ ÛD2 ÛD3(EA2∗

k
) < ÛD2 ÛD3(EA2∗

k
) ≥ ÛD2

ÛA2∗ ≥ 0 ÛA3∗ ≥ 0
Strategy 2

Strategy 3

ÛA2∗ ≥ 0 ÛA3∗ < 0 Strategy 1

ÛA2∗ < 0 ÛA3∗ < 0 Strategy 1

1

2

3

4

Fig. 2. G used in simulation.
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Fig. 3. Simulation result. The grey area indicates the interval where the
attacker is able to attack but chooses to be silent. The red and green areas
indicate the intervals where the attacker attacks and the defender recovers,
respectively.

time satisfies

T∗(x0) ≤

βA(γA + γD)

⌈

ln ǫ−lnV (x0)
ln(1−p)

⌉

+ κA

βA − ρA
. (35)

Proposition 4.1 provides an upper bound of the approx-

imate consensus time in terms of the scalars βA, κA, ρA

that characterize the attacker’s energy constraints together

with the scalars γA and γD that respectively represent the

attacker’s and the defender’s waiting durations before taking

actions in each game.

We demonstrate the efficacy of the presented results in

the approximate consensus problem through a numerical

example. We use the graph shown in Fig. 2 with n = 4,

and parameters βA = 0.4, βD = 0.6, κA = 0.5, κD = 1,

ρA = 0.3, ρD = 0.1, γA = 0.1, and γD = 0.3. Figs. 3 and

4 show the states of the agents and properties of the players,

with the agents eventually achieving approximate consensus

in t ≈ 2.1 with ǫ = 0.5. For comparison, when there is no

jamming, it takes t ≈ 1.85 to achieve the same level of

approximate consensus. The boundary in this example is

T∗(x0) ≤ 41.8.

V. CONCLUSION

We have provided the subgame perfect equilibrium anal-

ysis between two players, the attacker and the defender,

in terms of communications among agents in a multi-agent

system, by considering the generalized edge connectivity of

communication graphs. Specifically, we have obtained the

optimal strategies of the players in terms of the number of

edges and duration of action intervals. For the consensus

problem, we have seen that the time for the agents to reach

approximate consensus will be delayed due to attacks and

have derived an upper bound.
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Fig. 4. Properties of the players and the system. In this case, the attacker

attacks e12 in the 3rd game to make λ̂(GA
3
) = −1.
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