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Abstract Global deep‐time plate motion models have traditionally followed a classical rigid

plate approach, even though plate deformation is known to be significant. Here we present a global

Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental

margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed

continental rifts and compressional deformation along collision zones. The outlines and timing of

regional deformation episodes are reconstructed from a wealth of published regional tectonic models and

associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference

frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global

trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently

below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation

reaches a Mesozoic peak of 30 × 106km2in the Late Jurassic (~160–155 Ma), driven by a vast network of rift

systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106km2in the Late

Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems.

About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into

65% extension and 35% compression. This community plate model provides a framework for building

detailed regional deforming plate networks and form a constraint for models of basin evolution and the

plate‐mantle system.

1. Introduction

Two fundamental assumptions of the plate tectonic paradigm are that tectonic plates are rigid and that they

are separated by narrow boundaries (McKenzie & Parker, 1967; Morgan, 1968). The rise of space geodesy

allowed Gordon and Stein (1992) to revisit these assumptions. They built a present‐day deforming plate

model and estimated that about 15% of Earth's surface area today is deforming along diffuse deformation

zones; this was later revised to 14% (Kreemer et al., 2014). A combination of GPS, geological, and seismic

observations together with a global model of rigid plate motions has been used to obtain a continuousfield

of present‐day plate deformation (Kreemer et al., 2003, 2014). Despite the enormous advances in under-

standing present‐day plate deformation over the past decades, to date there is no global plate model incor-

porating diffuse deformation for the geological past, even though a number of regional models have been

published (see Gurnis et al., 2018, for a summary). This reflects that the data and computational methods

needed to construct such a model through geological time are very different from present‐day plate modeling

approaches. The relevant geological and geophysical data are cumbersome to compile and to synthesize, and

until recently, there was no community software available to build a deep‐time deforming plate model. This

changed recently with the release of version 2.1 of the GPlates software (Müller et al., 2018), which includes

the capability to build global tectonic reconstructions with continuously evolving deforming and rigid plates
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(Gurnis et al., 2018). This advance allows users to define the geometry and lifetimes of plate deformation

zones between portions of the plates regarded as rigid. The deforming regions combine extension, compres-

sion, and shearing that accommodate the relative motion between rigid blocks that follow the traditional

concepts of plate tectonics. Users can explore how strain rates, stretching and shortening factors, and crustal

thickness evolve through space and time within deforming regions and interactively update the kinematics

associated with deformation to see how these parameters are influenced by alternative scenarios (Gurnis

et al., 2018). The geometries that define regions of deformation change over time in response to user‐defined

kinematics, and the consequences of these changes can be quantified and represented using stretching and

shortening factors. Here we use these new tools to build a global deforming plate model starting with the

onset of rifting within the supercontinent Pangea in the Early Triassic from ~240 Ma. This model includes

deformation along most major rifts and orogens and represents a starting point for more detailed and more

comprehensive future global and regional plate models with deformation.

Plate reconstructions that only consider rigid plates result in overlaps of reconstructed continental blocks in

regions of subsequent extension and gaps for times succeeded by compression. Deformation has previously

been implied in global plate models via such overlaps and gaps in an ad hoc fashion, without including

deformation explicitly. The motivation for building a plate motion model with distributed deformation

includes understanding the evolution of orogens and sedimentary basins, for example, quantifying

stretching or compression factors and crustal thickness changes through time. In addition, there is a need

to quantify the time dependence of continental deformation in the context of supercontinent cycles and

the long‐term deep carbon cycle, for example, via linking mountain building or rifting to weathering and

CO2consumption or degassing (Brune et al., 2017; Goddéris et al., 2014). Another application area for

deforming plate models is a quantification of the connection between rifting, continentalflooding, and

sea level change (Kirschner et al., 2010). A deforming plate model also allows the restoration of the spatio-

temporal relationships of data sets such as drill site locations during rifting. Lastly, a plate model including

deformation provides improved surface boundary conditions for global geodynamic models with imposed

plate motions (Bower et al., 2015) and may lead to an improved understanding of the connection between

subduction history and distributed overriding plate deformation (Liu et al., 2017). Understanding total

surface topography through time involves combining mantle convection‐driven dynamic topography with

isostatic topography driven by lithospheric thickness and density; this was demonstrated in a model for

the evolution of the South Atlantic including South America and Africa, which combined two alternative

regional deforming plate models with a mantle convection model to understand the driving forces of the

evolving relief of the South Atlantic region (Flament et al., 2014).

In addition to including deformation in plate models, there is a need to improve plate‐mantle reference

frames in order to make these models useful for understanding the interaction of the evolving mantle

through time with tectonic plates and surface topography. Previously published global plate models con-

structed with the aim of providing an absolute mantle reference frame either depend on particular types

of geodynamic models, for example, moving hot spot models (e.g., Doubrovine et al., 2012) or may be built

upon paleomagnetic data with additional imposed assumptions, such as large low‐shear‐velocity province

fixity and empirical true polar wander corrections (Steinberger & Torsvik, 2008). Such assumptions are made

to generate a mantle reference frame that is hoped to be geodynamically reasonable. However, the absolute

plate motions in such models tend to result in numerous rapid changes in plate motion direction and trench

migration that are disconnected from concurrent changes in mid‐ocean ridge and subduction zone lengths

and geometries (Matthews et al., 2016). This is problematic because the majority of the forces driving abso-

lute plate motion originate from subduction (Conrad & Lithgow‐Bertelloni, 2004) and are thought to change

only when the network of plate boundaries changes substantially, particularly through collisions, including

ridge‐trench collisions (e.g., Yamano & Uyeda, 1985), and subduction initiation (e.g., Gurnis et al., 2004).

Schellart et al. (2008) suggested that a trait of geodynamically reasonable plate models should be that trench

retreat dominates over advance and that the absolute trench‐orthogonal migration velocity in the central

portion of long subduction zones should be small, mainly focused between rollback speeds less than 2

cm/year and trench advance speeds less than 1 cm/year. During the Cenozoic, most boundaries of

rapid trench retreat are transient and limited to small plates following the initiation of subduction

(Gurnis et al., 2004). Williams et al. (2015) demonstrated that most absolute plate motion models for the last

130 million years yield broad, geodynamically unreasonable distributions of slab advance and retreat
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velocities. Matthews et al. (2016) found that their plate model includes several periods in which more than

20–30% of global subduction zones retreat or advance with speeds higher than 3 cm/year; this fraction

reaches ~40% in the Paleozoic. Such plate model behavior is not geodynamically reasonable and results in

mismatches between modeled and seismically imaged subducted slabs in global geodynamic models with

imposed plate motions. Williams et al. (2015) recommended that global optimization of trench migration

characteristics should be considered as a key criterion in the construction of absolute plate motion models

in deep geological time. In addition, a global plate net rotation rate above 0.2–0.3°/Myr is considered geody-

namically unreasonable (Becker, 2006). This condition is not well met in published plate models, for

instance, the model by Matthews et al. (2016), using a hybrid reference frame of paleomagnetic data

(Torsvik et al., 2012) and hot spot tracks, displays net rotation velocities (and root mean square speeds)

increasing back through time far beyond reasonable limits for Early Mesozoic/Paleozoic times during which

the model relies on paleomagnetic data. Rudolph and Zhong (2014) developed mantle convection models to

investigate the origin of lithospheric net rotation implied by published plate motion models over the last

120–200 million years, and found that periods of high rotation in kinematic models, sometimes exceeding

0.5°/Myr, cannot be replicated by geodynamic models. In addition, high rates of lithospheric net rotation

also cause mantle structure artifacts in mantle circulation models (Rudolph & Zhong, 2014). In the absence

of an additional, unknown mechanism to generate the“missing net rotation,”their results imply that pub-

lished absolute plate motion models contain artifacts stemming from the data and methods used to construct

them. These artifacts include noisy apparent polar wander paths without longitudinal constraints, empirical

true polar wander corrections, or moving hot spot models that are themselves dependent on geodynamic

models, usually backward advection models, which have their own shortcomings (see Rudolph & Zhong,

2014, for a discussion). Arguably, geodynamically unreasonablefluctuations in subduction zone migration

and net rotation represent absolute plate rotation noise, equivalent to thefinite rotation noise found in

Cenozoic relative plate motions (Iaffaldano et al., 2012). The difference is that absolute rotation noise tends

to be at longer wavelengths, simply because the data constraining absolute plate motions are more widely

spaced in time on average than are marine magnetic anomaly identifications. We derive an optimized

mantle reference frame for our global deforming plate model to overcome these limitations, following

a method developed by Tetley et al. (2019). This method minimizes both global trench motion and

lithospheric net rotation, without making any explicit assumption about the relative importance of different

plate driving forces.

2. Methods

2.1. Modeling Plate Deformation

The rigid global plate model we build upon is the model by Matthews et al. (2016), using the Gee and Kent

(2007) timescale. In terms of relative plate motions, this model is built upon the model by Müller et al. (2016)

with modifications in the western and eastern Tethys as described by Handy et al. (2010, 2015) and Zahirovic

et al. (2016). The deforming plate modeling methodology followed here is described in Gurnis et al. (2018)

and builds on the construction of time‐dependent plate boundary mosaics called continuously closing plate

models (Gurnis et al., 2012). The building blocks of a deforming plate reconstruction are points, lines, and

polygons that define the boundaries between deforming and rigid regions and that can partition the defor-

mation with the regions of deformation. Each of these geometries can be assigned its own history of motion

in the same way as a plate, using Euler rotations. The spatial extent of deforming meshes is constructed

based on geological and geophysical data including geological strain markers, seismic refraction profiles

or published crustal thickness grids, sediment thickness for extensional regions, the topography and

structure of mountain belts, and gravity and magnetic anomalies (Figure 1).

A comprehensive account of some key approaches involved in our interpretation of the oceanward limit of

stretched continental crust (or boundary between continental and oceanic crust [COB]) and the landward

limit of stretched continental crust (or unstretched continental crustal limit [UCCL]) from geophysical data

can be found in Williams et al. (2011) and Barnett‐Moore et al. (2018). Along volcanic margins, this approach

includes identification of magmatic underplating, where published seismic refraction profiles are available,

as for much of the North Atlantic (Barnett‐Moore et al., 2018). However, such data are not available for

many passive margins in more remote regions, particularly in the Indian Ocean. Further complicating fac-

tors can include the presence of transitional crust that may be either oceanic or continental or crust that may
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correspond to exhumed continental mantle. This uncertainty can be taken into account by outlining two

alternative sets of COBs, along the inner and outer boundaries of transitional crust (Barnett‐Moore et al.,

2018). The onset and cessation of rifting may be constrained by the stratigraphic record and tectonic

Figure 1.The upper part of the diagram highlights two general approaches to building a deforming region (rifts and
passive margins, and active margin upper plate extension or compression) and the data typically used to define their

deformation. The output of that building process is a deforming network in GPlates. The lower part of the diagram covers
how a deforming network can then be further analyzed and visualized within GPlates. This includes computing instan-
taneous quantities of the deforming network such as velocity and strain rate, as well as the cumulative effects of the

deforming network over time, including crustal thickness. Note that two boxes in the lower left feed into the four boxes in
the lower right since optional modifications to the strain rate calculation (such as smoothing and clamping) also affect

cumulative quantities such as crustal thickness.
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subsidence analyses, if available. In the case of passive margins, the end of extensional deformation coin-

cides with the onset of seafloor spreading, which provides excellent constraints along most margins, unless

continental breakup occurred during the Cretaceous Normal Superchron. Our method for restoring intra-

continental, failed rifts follows Heine et al. (2013).

Our deforming plate workflow allows for implementing multiple rift phases if sufficient information is avail-

able to constrain their spatial extent and timing. Currently, this approach has only been implemented in the

data‐rich North Atlantic region (Barnett‐Moore et al., 2018). Other extensional regions of our global model

could easily be refined in the future in this fashion. Other issues that require special consideration include

highly oblique rifting and microcontinents, that is, pieces of stretched continental crust entirely surrounded

by ocean crust, formed due to ridge jumps; see Williams et al. (2011) for details how these may be included.

The construction of deforming plate models for conjugate passive margins may often result in revisiting the

fit and early opening history of a given margin pair to ensure that reconstructions are compliant with both

geological and geophysical observations, which are complementary in the sense that geophysical data pro-

vide strong constraints for the tightness of thefit (via constraining the COB, UCCL, and crustal thickness

of the rifted margin), while geological data are most useful in constraining thefit of conjugate margins along

strike, for example, via matching geological features. How to build bestfit models for conjugate passive

margins by balancing these constraints is summarized in Williams et al. (2018).

Large regions where compressional deformation has occurred are mostly outlined by their crustal thickness

anomalies, while the duration of these episodes is typically constrained by thermochronology data and

reconstructed uplift or deformation histories. Building deforming plate models for other regions has

included combinations of paleomagnetic data, geological strain markers fromfield mapping, balanced cross

sections, and sometimes geodetic data (e.g., Arriagada et al., 2008; Liu et al., 2017; McQuarrie & Wernicke,

2005; van Hinsbergen et al., 2011); in addition, the relative motions of rigid plates or blocks bounding a

deforming region impose additional constraints on the deformation history.

Lithospheric deformation reflects the relative motions of crustal fault‐bounded blocks that extend at least

through the upper crust as well as deeper deformation that is accommodated by ductileflow (Thatcher,

2009). A simplification in our approach is that we approximate plate deformation using a pure shear,

uniform extension, or compression approach. This is unavoidable for kinematic plate models, as they are

fundamentally incapable of capturing ductileflow. However, despite this, our approach generally works well

for approximating plate deformation, at least for the crust. This is because the upper crust is brittle and elas-

tic and faults are weaker than the adjacent crust, resulting in a block‐like deformation behavior. As block

size decreases, the block model approaches the deformation of a continuum, and the kinematic distinction

between the two models becomes blurred (see Figure 3 in Thatcher, 2009). A good example for this is the

deforming model for the Basin and Range Province in southwestern North America, implemented following

McQuarrie and Wernicke (2005), composed of a large number of small rigid blocks separated by deforming

regions. The deforming network for this region is also a good example for illustrating how local/regional

strike‐slip processes can be embedded in extending regions; see Gurnis et al. (2018) for more details.

The boundaries of deforming regions are composed of a set of intersecting lines. Each line is attached to, or

moves relative to, a rigid tectonic plate. GPlates is designed to connect this set of lines, the relative position of

which changes during deformation, to form closed time‐dependent polygons. The relative changes in

positions between lines bounding deformation zones are defined byfinite rotations, analogous to the way

conventional rigid plate models are built. A deforming region is called a topological network in GPlates.

Its time‐dependent deformation is represented by a triangulation in which the rotations and the local

velocities of each node are calculated through linear interpolation within each triangle. The triangulation

density in interior deforming regions (farthest from boundaries) is determined by the density of interior

points placed by the user building the topologies, whereas near boundaries it is determined by the density

of points along the boundary geometry.

Horizontal divergence or convergence in deforming regions results in vertically uniform thinning or

thickening, and the rate of thinning/thickening is proportional to the surface dilatation rate. The surface

dilatation rate (rate of change of surface area per unit area) is calculated from the divergence of the surface

velocityfield in the deforming region, as follows:DH/dt=−H*dilatation_rate=−H*divergence(velocity),

whereHisthickness. Each triangle in the deforming mesh has a velocity gradient calculated from its three
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vertex velocities, and smoothing can optionally be applied to these gradients. The stretching/compression

(ß) factor isß=Hi/H. HereHiis initial crustal thickness, andHis determined by integratingDH/dt=

−H*divergence(velocity)over time. Values greater than 1 represent extensional regions, and values between

0 and 1 represent compressional regions. The thinning/thickening (γ) factor isγ=(1−H/Hi). Here values

between 0 and 1 represent extensional regions, and negative values represent compressional regions. Synrift

subsidence in extending regions is linearly related toγ, as is uplift in compressional regions. In addition to

computing and visualizingβandγfactors in deforming regions, crustal (or plate) thickness can be computed

and displayed in GPlates by specifying a given initial crustal (or plate) thickness (Figure 1).

A simplification in our current model is the absence of deformation partitioning within rift zones; that is,

there is currently no distinction between high extension factors expected in central rift areas and the more

moderate amounts of extension closer to the rift edge; instead, the displayed values represent average

stretching factors for each margin segment that vary along strike. The reconstruction here is limited to the

time between 240 Ma and present day. While this time period captures the majority of rifting that has shaped

Pangea's margins, there are continental margins whose extension started during the Paleozoic (e.g., the

Northwest Shelf of Australia). Considering these earlier extension phases is beyond the scope of this paper.

Equally, our model does not include a number of intracontinental rifts or the complex Jurassic–Cretaceous

deformation history of western North America (Sigloch & Mihalynuk, 2017), much of which is not well

enough constrained in space and time to be implemented in our current model. In the case of orogenesis,

the crustal thickness evolution implied by our approach is generally an overestimation as it does not account

for the inevitable erosion that would accompany uplift. However, future links to surface process models will

address the lack of erosion and deposition that would occur as a result of compression or extension

of lithosphere.

We assimilate observations constraining plate deformation into a model of rigid plate motions and compute

time‐dependent uniform stretching, compression, and strain rates within deforming regions based on the

kinematic motions of the rigid surrounding blocks. The technical details of implementing plate deformation

can be found in Gurnis et al. (2018) and in GPlates software tutorials (https://sites.google.com/site/gplates-

tutorials/). To infer stretching factors, an estimate of the crustal thickness prior to extension must be made,

usually based on seismological crustal thickness measurements from unstretched regions along a given zone

of extension.

2.2. Absolute Plate Model Optimization

We apply a recently developed approach to reconstructing absolute plate motions in a mantle reference

frame using a joint global inversion of multiple constraints including hot spot location and associated trail

data for the last 80 million years, global trench migration behavior, and estimates of net lithospheric rotation

(Tetley et al., 2019). The unoptimized model is our global deforming plate model with a hybrid reference

frame corresponding to that used in Matthews et al. (2016). Prior to the main iterative optimization stage

of the workflow, some initial data preprocessing stages are carried out. First, subduction zones are recon-

structed in 10‐million‐year intervals and stored infiles ready for quick retrieval during the optimization.

This is done as a preprocessing step as resolving the boundaries of continuously closing plates and deforming

networks is time consuming. Next, age‐coded hot spot trails are interpolated at 5‐million‐year intervals for

80 Ma to the present. Subsequently, net rotations are computed and exported using GPlates to generate a

time sequence of total net rotations from the starting rotation model. These are used in turn to create a

no‐net‐rotation model used in the optimization stage. In the optimization stage the large total number of

candidate global plate models is associated with a computational cost that is proportional to the number

of plate IDs in the rotationfiles, so performance is dramatically improved by reducing the set of rotations

in an additional preprocessing stage to only those plate circuit paths supporting the plate IDs required by

the optimization process.

The aim of the optimization is tofind absolute plate rotations for Africa that minimize global net rotation

and global trench migration velocities, with a user‐provided weighting, whilefitting both the geometry

and age progression of age‐dated hot spot tracks. Here we restrict ourselves to using eight well‐studied

present‐day hot spot locations including the Cobb, Foundation, St. Helena, Tristan, Réunion, Tasmantid,

Samoa, Louisville, and Hawaii hot spots and their associated hot spot trails and age dates (Tetley et al.,

2019). The optimization approach involves generating optimized Africa rotations from 0 to 240 Ma in 10‐
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million‐year intervals progressing backward in time. Tofind the globally optimized rotation in 10‐million‐

year intervals, a random distribution of 100 starting rotation poles is projected onto the sphere within a circle

with a radius of 60° centered on a starting stage rotation pole of Africa relative to the spin axis calculated

from global paleomagnetic data (Torsvik et al., 2012) with a quality score ofQ≥3, using Van der Voo

(1990) quality criteria. Each of those random starting rotations is then minimized within its local neighbor-

hood by iteratively perturbing the pole latitude, longitude, and angle of the starting rotation, evaluating a

cost equal to the sum of individual constraints (involving global net rotation, trench migration, and hot

spots) and converging to the locally perturbed rotation with the minimum cost. See Tetley et al. (2019) for

additional details. Since the local minimizations are independent of each other, they are distributed over

multiple cores in a high‐performance computing cluster using mpi4py (Python bindings for Message

Passing Interface).

The net rotation constraint cost is based on computing the global net rotationωnetcalculated as implemen-

ted in GPlates (Müller et al., 2018), following Torsvik et al. (2010). It is computed via an offset of the Africa

rotation in the perturbed rotation model compared to the no‐net‐rotation model. The constraint cost for

trench migration is the mean of the trench‐normal velocity vector, resulting from the perturbed rotation

model, plus the standard deviation in order to converge on models that minimize global trench‐normal

velocities (and velocity variations). The total costJis therefore calculated as follows:

J¼
HSm
σ1
þ
TMk
σ2
þ
ωnet
σ3

(1)

whereHSmis the global hot spot trail misfit,TMkis the global trench migration kinematics value, andωnet
is the calculated rate of net lithospheric rotation, whileσ1,σ2, andσ3are the relative weightings for each

constraint, with hot spot trail misfits only used for the last 80 million years.

The constraint cost for hot spots is the median trail misfit distance (between observed trail and trail predicted

by the perturbed rotation model) plus the standard deviation. In this approach the motion of individual hot

spots relative to the Earth's spin axis through time is obtained through the optimization process rather than

via a mantle convection model (Tetley et al., 2019). A relative weighting can be applied to each constraint

before summing for a total cost. In our case the hot spot constraint is only included for times between 0

and 80 Ma, and the net rotation constraint has half the weight for 80–240 Ma. We prefer to assign a smaller

weight to net rotation because the need to construct synthetic oceanic plates to generate complete global

plate models for the geological past contaminates net rotation results in ways that are difficult to quantify.

A parameter sensitivity analysis, including a comparison of the results with a diverse suite of absolute plate

motion models, can be found in Tetley et al. (2019).

2.3. Revised Oceanic Age Grids

Our deforming plate model is accompanied by a set of grids of the paleo‐age of the oceanfloor in 1‐million‐

year intervals. The grids are updated with respect to the grids by Müller et al. (2016) in a number of ways,

incorporating revisions of the regional plate tectonic evolution as described in the next section. Major changes

have been made in the eastern Tethys following Zahirovic et al. (2016), with minor updates in the Arctic, the

Mediterranean, and the Caribbean/equatorial Atlantic. The age gridding is now carried out using spherical

interpolation (Wessel et al., 2013), resulting in a major improvement, particularly for the Arctic region.

3. Deforming Regions Within the Global Plate Model

3.1. North Atlantic Region

The oldest deforming network in our model represents rifting between Africa and North America, which we

implement following Kneller et al. (2012) in terms of its geometry and its Early Triassic initiation age of 240

Ma and a rift cessation age of 155 Ma, leading to the opening of the central North Atlantic. Our model for the

progressive rifting of the remainder of the North Atlantic is based on Barnett‐Moore et al. (2018). In this

model rifting between Greenland and northern Europe is active from 200 to 120 Ma (Figure 2); at this time

the rift geometry north of the Iberian‐Newfoundland conjugate margins changes to reflect rifting between

Greenland and North America from 120 to 61 Ma, while rifting between Greenland and northern Europe

ceases temporarily until starting again at 79 Ma, leading to a second phase of rifting in this region, which
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lasts until about 56 Ma when breakup occurs (Barnett‐Moore et al., 2018). Deformation between Iberia and

the remainder of northern Europe lasts until 34 Ma (Barnett‐Moore et al., 2018), marking the end of major

continental deformation related to the opening of the Atlantic.

3.2. Arctic Region

The Arctic region has experienced numerous periods of deformation starting in our model with Early

Jurassic (~195 Ma) rifting between the North Slope of Alaska and the northern Canadian margin (Embry

Figure 2.Cretaceous and Cenozoic plate deformation around the Arctic, eastern Asia, and North America. Continents are

shown in medium gray, with submerged continental regions (relative to present‐day coastlines) in light gray. The
paleo‐age of the ocean crust is outlined in light colors progressing from red to green, blue and magenta from young to
old crust. Subduction zones are black lines with triangles, while mid‐ocean ridges are shown as light gray lines. Deforming

regions are outlined in light to dark blue colors if in extension, denoted by a stretching factor >1, while plate compression
is outlined in orange/red colors, denoted by a compression factor <1. Orthographic projection.
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& Dixon, 1990). Our deforming model follows the rigid plate model by Shephard et al. (2013), using crustal

thickness models (Pease et al., 2014; Petrov et al., 2016) to delineate the spatial extent of deforming regions.

The extent of the Canada and Amerasia ocean basins has been updated based on the crustal structure of

Petrov et al. (2016), significantly reducing the extent of oceanic crust compared to our previous rigid plate

model (Müller et al., 2016). We model the initiation of seafloor spreading in the Canada and Amerasia basins

at 145 and 160 Ma, respectively, following Shephard et al. (2013) (Figure 2).

We model the crust that underlies the Aleutian Basin as a trapped piece of 83‐to 68‐million‐year‐old Pacific

Ocean crust (Scholl et al., 1975) with entrapment occurring at 46 Ma. A recent crustal velocity structure ana-

lysis of the Aleutian Basin failed tofind differences in crustal structure to support an alternative back‐arc

basin model (Christeson & Barth, 2015). The opening of the Makarov Basin between the Alpha and

Lomonosov Ridges from 57 to 69 Ma is modeled after Alvey et al. (2008) and Døssing et al. (2017)

(Figure 2). The counterclockwise rotation of Greenland relative to North America in the course of the open-

ing of the Labrador Sea and Baffin Bay resulted in the Eurekan Orogeny from 68 to 19 Ma, implemented fol-

lowing Gion et al. (2017).

3.3. South Atlantic Region

In most global plate kinematic models, the African plate occupies a position in the top of the rotation tree

hierarchy with post‐Jurassic plate motions relative to it, specified through in situ ocean basin records.

Hence, constructing the internal Mesozoic deformation history of Africa and its conjugate passive margin

systems is a critical step toward more precise global plate kinematic models. Our deforming plate model

for the South Atlantic Rift system, encompassing Africa and South America, is built on the rigid plate model

by Heine et al. (2013) and starts with intracontinental deformation in the Patagonian part of South America

at 150 Ma (Figure 3). Here Jurassic‐aged basins in between rigid continental blocks define a broad area of

lithosphere extension between Antarctica, southern Africa, and South America predating the formation of

the main South Atlantic rift (Heine et al., 2013; König & Jokat, 2006; Macdonald et al., 2003). From 145

Ma the main South Atlantic and intraplate African rifts document the formation of a Gondwana‐wide

network of transient, divergent plate boundaries (Chang et al., 1992; Genik, 1992; Heine et al., 2013),

marking thefinal phase of supercontinent dispersal. Using the rift basin architecture to derive quantitative

estimates of extension directions and amount of extension, the plate kinematic models provide a quantita-

tive framework for the pre‐breakup kinematics of the South Atlantic rift. Rift obliquity causes the termina-

tion of extension in unfavorably oriented rift branches in Africa and South America around the early Aptian,

leading to diachronous continental breakup between South America and Africa and the formation of the

equatorial Atlantic oceanic gateway around 105 Ma (Heine & Brune, 2014; Heine & Müller, 2005). The

model also includes compressive deformation along the Patagonian Andes from 150 to 126 Ma (Flament

et al., 2014) and from 45 Ma to the present day along the central Andes based on Arriagada et al. (2008).

Miocene compression along the northern Andes after 20 Ma is based on Pindell and Kennan (2009). The

geometry of the deformation associated with the opening of the Scotia Sea, postdating 50 Ma, follows

Eagles and Jokat (2014) and Nerlich et al. (2013) and persists to the present.

3.3.1. African Region

This section is focused on the Cenozoic East African rift, as our implementation of Cretaceous rifts in Africa

are found in the South Atlantic section. We implement the East African Rift following the rigid plate model

of Iaffaldano et al. (2014), with motion between Somalia and Southern Africa initiating from 19.7 Ma. The

geometry of the rift system is based on Chorowicz (2005). The incorporation of an independent Somalia

Plate results in a plate hierarchy for Central Indian Basin motion relative to the South Mascarene Basin

between 55.9 and 40.1 Ma (magnetic chrons 25y and 18, respectively), rather than moving relative to

Southern Africa, as in our previous rigid plate model (Müller et al., 2016).

3.4. North America, Gulf of Mexico, and Caribbean Regions

The model for the circum‐Caribbean region is largely based on the rigid plate model by Müller et al. (2016),

which is primarily based on Boschman et al. (2014) with some modifications. We have extended the central

North Atlantic spreading ridge southward to the west of the Demerara Rise from 175 Ma, forming a small

pocket of Jurassic‐aged oceanic crust offshore Guyana bounded by the Demerara‐Guinea transform to the

north (Reuber et al., 2016). Spreading along this segment continued until the inception of the Equatorial

Atlantic spreading system at 120 Ma. Rifting between North and South America is contemporaneous with
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the onset of rifting between North America and Africa at 240 Ma, persisting until about 150 Ma when sea-

floor spreading along the proto‐Caribbean gateway commenced (Müller et al., 2016; Figure 3). Late

Triassic to Middle Jurassic divergence between North America and the Yucatan block led to continental rift-

ing along the future Gulf of Mexico (Marton & Buffler, 1994) starting around 190 Ma, translating the

Yucatan and Florida‐Bahamas blocks southeastward relative to North America. Subsequently, from 170 to

158 Ma, the Yucatan block is separated from southern Florida terranes by a complex NW trending

Jurassic rift system leading to a separation of the Yucatan block from southern Florida terranes and exten-

sion of the Florida‐Bahamas block (Marton & Buffler, 1994). The following phase of Early Cretaceous proto‐

Caribbean seafloor spreading between the Americas is accompanied by a Cretaceous Quebradagrande back‐

arc basin along the northern Andean margin from 145 to 100 Ma (Braz et al., 2018), which is included in our

model (Figure 3). Basin and Range Province extension since 36 Ma is based on McQuarrie and Wernicke

Figure 3.Cretaceous to present plate deformation in the Atlantic Ocean. See Figure 2 caption for details.
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(2005) (Figure 4). The implementation of this model is described in detail in Gurnis et al. (2018). Extension

around the Gulf of California, initiating at 12 Ma, follows Stock and Hodges (1989), with the onset of seafloor

spreading in the southern Gulf of California at ~3.5 Ma (Figure 3). The spatial extent of the deforming mesh

is based on the regional crustal thickness map from Lewis et al. (2001).

3.5. Indian Ocean Region

Contemporaneous with Jurassic rifting in the North Atlantic, rifting between Africa, East Antarctica, and

India initiates around 180 Ma and ceases with the onset of seafloor spreading around 148 Ma, while rifting

between India, West Australia, and Antarctica is active from about 160 to 126 Ma (Figure 5); see Gibbons

et al. (2013) for a summary of constraints. Most of the passive margin extension of northern Greater India,

as reflected in Tethys Himalaya sections, is Paleozoic and thus predates our current model (Sciunnach &

Garzanti, 2012). However, regional sedimentary sections suggest some minor Jurassic rifting (Sciunnach

& Garzanti, 2012). Jurassic rifting is also well documented along the northern margin of Papua New

Guinea. Here we follow the model by Gibbons et al. (2015) to include a short‐lived rifting event along

northern Greater India in the Late Jurassic. Rifting between Australia and East Antarctica initiates at 160

Ma and ends at ~83 Ma, following the models by Williams et al. (2011) and Kharazizadeh et al. (2016) to

constrain the timings and regional geometry through time of this rift system (Figure 5). Many alternative

models for the rifting and breakup history of this region have been published, putting emphasis on interpre-

tations of different sets of regional geological or geophysical data. These models are evaluated in Williams

et al. (2018), illustrating why a balanced combination of geological and geophysical observations does not

lead to reconstructions such as that by White et al. (2013), which features an extant ocean basin between

Figure 4.Neogene deformation in western North America. See Figure 2 caption for details.
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Australia and East Antarctica for much of the Mesozoic, for which there is no evidence. The central Indian

Ocean plate deformation zone (Kreemer et al., 2003) is not included in our model as we are focused on

deforming continental crust.

3.6. Tethys Ocean and Southern and Eastern Eurasian Margins

The Mesozoic and Cenozoic geological evolution of the Tethys eastward to Southeast Asia has been

dominated by convergent tectonics, with major episodes of orogenic growth as part of the Africa‐Eurasia,

India‐Eurasia, and Australia‐Asia collision systems. However, major extension occurred contempora-

neously in adjacent regions, leading to a complex deformation history. The earliest collision occurred along

the Alpine chain in the Dinarides, starting around 67 Ma and recording a complex series of events driven by

Adria‐Europe collision and subduction zone dynamics including switches in subduction polarity and slab

tearing (Handy et al., 2015; Figure 2). Our reconstruction of the region is based on the rigid plate model

of Hosseinpour et al. (2016) with modifications following published tectonic reconstructions of the western

Mediterranean area (van Hinsbergen et al., 2014), the Adriatic plate (Le Breton et al., 2017), the so‐called

AlCaPa (Alps‐Carpathians‐Pannonian) and the Tisza and Dacia continental blocks involved in the Alpine

orogen (Handy et al., 2010, 2015). The timing and outlines of deforming regions since 67 Ma broadly follow

Handy et al. (2015) (Figure 2). We have implemented an early to middle Carboniferous age (340 ± 25 Ma) for

the Herodotus Basin within the eastern Mediterranean based on Granot (2016).

The deforming model for the central and eastern Tethys and adjacent regions in Eurasia is embedded in the

rigid plate reconstructions of Zahirovic et al. (2016), where the India‐Eurasia continent‐continent collision

initiates at ~45 Ma and boundaries of deforming regions are delineated using a combination of crustal thick-

ness and gravity anomaly data (Figure 6). The extent of Greater India is taken from Gibbons et al. (2015), and

Figure 5.Jurassic to Eocene breakup of Gondwana and plate deformation in the Indian Ocean, Zealandia, and West
Antarctica. See Figure 2 caption for details.
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the deforming Eurasian margin is implemented largely following the regional deformation synthesis of van

Hinsbergen et al. (2011). However, the precollisional position of Lhasa in our model is further south at

~15°N than it is in van Hinsbergen et al. (2011), largely based on the 53‐Ma paleomagnetic‐derived latitude

of 14.4°N ± 5.8°N for mafic dykes intruding the Linzizong Formation (Liebke et al., 2010).

The collision between Arabia and Eurasia is initiated at 40 Ma and implemented following the model by

McQuarrie and van Hinsbergen (2013) for the Zagros region. The oroclinal bending of Sundaland resulting

from the India‐Eurasia collision to the west and the Australia‐Asia collision to the east captures the broad

deformation style of this region as represented in the model of Yang et al. (2016). How this model was

constrained and implemented is described in Gurnis et al. (2018). Deformation associated with the opening

of the South China Sea since 40 Ma follows the model by Bai et al. (2015), including the delineation of bound-

aries of deforming regions (Figure 6). The model for Mesozoic–Cenozoic deformation of Northeast Asia is

taken from Liu et al. (2017). Deformation starts with NW‐SE oriented shortening from 200 to 137 Ma,

followed by several phases of extension and compression with varying orientations, culminating in roughly

N‐S oriented extension in the Cenozoic (Liu et al., 2017; Figure 2).

3.7. Australasia, Zealandia, and Antarctica

Australasia is a region characterized by complex deformation, mainly reflecting the effects of adjacent plate

collisions. The onset of rifting between Australia's eastern margin and Zealandia is constrained to have com-

menced around the mid‐Cretaceous (~100 Ma) based on the widespread occurrence of felsic volcanism in

New Zealand and the Lord Howe Rise, thought to be linked to crustal thinning (Tulloch et al., 2009). The

magnitude of extension in this region in our model is based on the crustal thickness model by Grobys

et al. (2008). Rifting east of Australia ceased with the onset of seafloor spreading in the Tasman Sea, starting

around 80 Ma in the southern Tasman Sea and at 58 Ma in the northernmost Tasman Sea (Müller et al.,

Figure 6.Cenozoic plate deformation in Asia and Zealandia. See Figure 2 caption for details.
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2016). Rifting in the Coral Sea between 90 and 52 Ma is implemented following the crustal thickness model

of Segev et al. (2012) and the rigid plate model of Müller et al. (2016). Along Papua New Guinea's northern

margin, compression initiated around 15–14 Ma, driven by the Halmahera Arc colliding with New Guinea,

along the New Guinea Mobile Belt (Figure 6; Baldwin et al., 2012; Zahirovic et al., 2016). Cenozoic deforma-

tion within Zealandia postdating 40 Ma is implemented following the rigid plate model by Wood and

Stagpoole (2007). The West Antarctic Rift system was initiated in the mid‐Cretaceous and can be separated

into a Cretaceous rift event between 105 and 90 Ma (Figure 5) contemporaneous with the separation

between West Antarctica and southern Zealandia (Wobbe et al., 2012) and an Early Cenozoic rift stage

starting in the Eocene with continuous slow extension between these two events (Matthews et al., 2015).

The outline of the rift in our model follows Wilson and Luyendyk (2009).

4. Results and Discussion

4.1. Evolution of Plate Deformation

Our global deforming plate model has been integrated with an updated set of paleo‐age grids of the ocean

crust through time (Figures 7a and 7b). These grids are constructed following the method described in

Müller et al. (2016). At present day, our model includes an area of about 8% of the Earth's surface where

distributed deforming of the lithosphere occurs. This value is significantly smaller than Kreemer et al.'s

(2014) estimate of 14%. The reason for the discrepancy is that we solely focus on deformation of continental

lithosphere. Therefore, our model excludes large deforming regions in ocean basins, particularly in the

Indian Ocean. Our model also excludes deforming edges of overriding plates along subduction zones, which

form another significant portion of Kreemer et al.'s (2014) geodetic strain‐rate model. Here we review the

evolution of lithospheric stretching and shortening since 240 Ma.

In the Jurassic, distributed plate deformation reaches a maximum around ~160–155 Ma, covering ~30 × 106

km2, largely driven by a vast network of extending continental margins, dropping to a third of this size in the

mid‐Cretaceous (~105 Ma; Figure 8). Distributed extension decreases throughout the Late Jurassic to the

Early Cretaceous (155–110 Ma; Figure 8), reflecting the onset of seafloor spreading along many rift systems

(Figure 7). The continental area subject to compression increases roughly in parallel with increasing rift area

after 200 Ma,fluctuating between 4 and 7 × 106km2between 190 and 70 Ma. Starting at 70 Ma, and accel-

erating after 50 Ma, the continental area in compression rises to a peak of ~25 × 106km2at 35 Ma (Figure 8),

initially reflecting the Late Cretaceous onset of the Alpine collision along southern Europe, and after 50 Ma

the onset of the India‐Eurasia collision, followed by other collisions along Eurasia's margins (Figure 7). After

100 Ma, the total extensional area increases due to the extension within Zealandia and a partial switch from

compression to extension in Northeast Asia (Figure 7). The total area of plate deformation reaches a high of

~50 × 106km2in the Early Miocene (~20 Ma) mainly driven by the progressive growth of plate collisions in

the Cenozoic.

The vast proportion of all plate areas in extension are stretched in the range of beta (stretching) factors of 1–2

(Figure 8). A peak in more highly extended regions (beta = 2–3) occurs at 155 Ma (~4 × 106km2), reflecting

the peak of extension during the Jurassic breakup of Pangea (Figure 8). In the Late Cretaceous (~90–60 Ma)

and Late Cenozoic (~20–0 Ma) broad peaks of the area stretched by factors larger than 2 occur, reflecting the

formation of highly extended regions in Southeast and Northeast Asia, within Zealandia and between

Australia and Antarctica (Figure 7). Extension by factors larger than 3 is rare, never amounting to more than

a maximum of about 1 × 106km2(Figure 8). Cumulatively, 35% of the total area of continental crust has been

deformed. About two thirds of the area subject to deformation over the last 240 million years has been

extended, while one third has been compressed (Figure 8). Before the disintegration of the supercontinent

Pangea started at 240 Ma, we estimate the continental area to have been about 198 × 106km2. The combined

action of extension and compression has resulted in a net increase of the area to about 220 × 106km2at pre-

sent day, that is, roughly a 10% increase in area. We may speculate that by the time the next supercontinent

has formed, this net gain in area will be much reduced or even reversed by the progression of future plate

collisions. As we are unable to investigate plate deformation over a full supercontinent cycle, it remains

unknown what the continental crustal area evolution from one supercontinental assembly to the next

may be. In addition, our model does not take into account continental crustal growth by accretionary

processes or loss via tectonic erosion along subduction zones.
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Figure 7.Plate reconstructions for the Triassic to present, showing continents in medium gray, with submerged continental regions (relative to present‐day coast-
lines) in light gray. The paleo‐age of the ocean crust is outlined in light colors progressing from red to green, blue and magenta from young to old crust. Subduction

zones are black lines with triangles, while mid‐ocean ridges are shown as light gray lines. Deforming regions are outlined in light to dark blue colors if in
extension, denoted by a stretching factor >1, while plate shortening is outlined in orange/red colors denoted by a shortening factor <1. Absolute plate velocities in

a mantle reference frame are shown as black arrows. Hammer projection.

Figure 8.Total deforming plate area through time (black) from the Early Triassic to present, separated into areas of
shortening (red) and areas in extension (blue). Extensional regions are further separated into those with stretching fac-
tor beta = 1–2 (turquoise), beta = 2–3(lightblue),andbeta=3–4 (light green). Note the peak in total extensional areas at

160–155 Ma, reflecting the vast extension of Pangea's rift system in the Late Jurassic, and the rise in compression after
50 Ma, mainly representing the progressive growth in collisions along southern Eurasia. The increasing length of rift

systems after 50 Ma (seeŞengör & Natal'in, 2001), mainly reflecting extension in Asia, is partly driven by the India‐Eurasia
collision and partly by interactions between subducting slabs and overriding plates along the western and eastern Pacificrim.
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4.2. Model Uncertainty

Our deforming plate model can be used to compute a variety of quantities, including the evolution offinite

strain, crustal thickness, lithospheric temperature, isostatic topography, and heatflux (Gurnis et al., 2018),

helping with validating the model if appropriate observations are available. For extending regions, the

uncertainty of a deforming plate model can be estimated by comparison of observed versus predicted crustal

thickness or stretching factor estimates from stratigraphic successions derived from exploration wells with

modeled stretching factors; for compressional regions, this approach is more difficult because thickened

crust is not preserved due to erosion. GPlates allows the user to create a grid of points in deforming regions

at which quantities such as time‐dependent stretching or thinning factors and crustal thickness can be com-

puted (see workflows in Figure 1). By default, a uniform point spacing of 0.625° is used, but this can be easily

Figure 9.(a) Crystalline crustal thickness with histogram‐equalized color scale from CRUST 1.0 (Pasyanos et al.,
2014). (b) Total distributed continental deformation accumulated over 240 million years of rifting and compression.
The total area covered by continental crust is 219.7 × 10

6
km
2
(43% of the total surface area), while the area covered

by ocean crust is 290.4 × 10
6
km
2
. A total of about 35% of the continental crustal area has been deformed over the last

240 million years, partitioned into ~50.5 × 10
6
km
2
that have been extended (~65%) and ~27 × 10

6
km
2
that have

been compressed (~35%). This is a minimum estimate. Some key passive margins are numbered, and crustal thick-
nesses are analyzed in Figure 10.
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changed by the user. A complication along rifts and passive margins is

that magmatic underplating may thicken the crust, thus making a direct

comparison between predicted and observed crustal thickness difficult,

unless underplated material can clearly be identified from seismic ima-

ging. In addition, due to the simplicity of our uniform stretching and com-

pression models, our kinematic model is unable to represent effects of

strain localization and depth‐dependent stretching during rifting. In other

words, our model rifts are wide rifts and lack margin‐orthogonal strain

rate and crustal thickness gradients. As a consequence, we restrict our-

selves to comparing our modeled versus observed mean crustal thickness

along individual passive margins to crustal thickness from CRUST 1.0

(Pasyanos et al., 2014; Figure 10). We sample CRUST 1.0 along the

UCCL of 16 passive margins (Figure 10) at 0.1° (along great circle) inter-

vals and compute the mean UCCL crustal thickness and standard devia-

tion for each passive margin. We choose CRUST 1.0 because it is the

most up‐to‐date global crustal thickness model available to us and allows

us to check our model for consistency with a single global crustal thick-

ness model. We note, however, that we used regional, more detailed crus-

tal thickness models to constrain our model in some regions in the North

Atlantic and Indian Ocean (see, e.g., Barnett‐Moore et al., 2018;

Hosseinpour et al., 2013; Williams et al., 2011). The Lord Howe Rise repre-

sents a special case, where no original, unthinned crust is preserved. Here

the extension model was designed following the assumption that the

Figure 10.Predicted crustal thickness for passive continental margins is

compared to the cryscrustal thickness from CRUST 1.0, with numbers
corresponding to regions in Figure 9b. Black triangles represent margins

where the predicted crustal thickness differ by 5 km or less on average with
CRUST 1.0 crystalline crustal thicknesses, while red diamonds represent a
difference greater than 5 km. Dashed line represents a slope of 1.

Figure 11.(a) Global plate root mean square (RMS) speeds compared between this study (thick black line) and the Müller
et al. (2016) model (thin gray line), computed using the method of Zahirovic et al. (2015). Note that the new model is

smoother and that some short‐lived peaks in RMS speeds have been reduced in magnitude or entirely alleviated (e.g.,
between 50 and 60 Ma, 100–110 Ma, 120–140 Ma, and 160–170 Ma). (b) Global subduction zone lengths for the model

presented in this study (thick black line) compared to the Müller et al. (2016) model (thin gray line). The observed
differences primarily reflect changes in modeled subduction history in the eastern and western Tethys (see text). Some
significant changes in global subduction zone length, contemporaneous to global plate speed changes, include (1) the

onset of subduction in the Arctic, (2) a gradual lengthening of the circum‐Pangea girdle of subduction zones following
supercontinental breakup, (3) the shutdown of a number of Tethyan subduction zones, (4) changes to subduction zone

lengths in the Philippine Sea Plate and New Guinea regions, and (5) changes in subduction zone evolution in the SW
Pacific.
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region was a cordillera‐type mountain belt before extension started with an initial thickness of 45 km.

The median difference between modeled and observed crystalline crustal thickness in the 16 passive margins

investigated here is 4.0 km. The cases where the crustal thickness is underestimated by our model are volca-

nic margins, which have likely experienced underplating during their synrift phase, which we cannot take

into account. There are six cases where the difference between modeled and observed thickness is negligible

(3 km or less in regions 1, 8, 10, 11, 13, and 15 in Figures 9 and 10), two of which (1 and 15) are nonvolcanic

margins. In four cases (8, 14, 15, and 16) we have overestimated crustal thickness (Figure 10), reflecting the

joint uncertainties in CRUST 1.0 and our crustal stretching model, including the interpreted placement of

the UCCL and the boundary between continental and oceanic crust. We also note that there are cases where

we overestimate crustal thickness on one margin while underestimating it on the conjugate margin by a

similar amount. As an example, this is the case for the Africa‐North America conjugate margins and indi-

cates a lateral partitioning of strain across the margins more asymmetric than that implied by our uniform

stretching model.

4.3. Optimized Plate‐Mantle Absolute Reference Frame

Our optimized model generates absolute plate motions through time that are smoother and undergo less

frequent short‐term changes in global root mean square speed as compared to the unoptimized model,

Figure 12.Histogram of the trench‐orthogonal overriding plate velocity for (a) our unoptimized deforming plate model, using the absolute reference frame
from Matthews et al. (2016); and (b) our preferred optimized plate model, using equal weights forfitting hot spot tracks, trench migration, and net rotation opti-

mization for 0–80 Ma and weights of 1 and 0.5 for trench migration and net rotation optimization, respectively, for earlier times. (c) A model with reversed
weighting, that is, of 0.5 and 1 for trench migration and net rotation optimization for times before 80 Ma. (d) A model purely based on trench migration (weight 1)
and net rotation (weight 0.5) optimization for all model times. Colors are proportional to the length of subduction zones, which is retreating (blue) versus

advancing (red) at a given rate. Note the overall improvement in scatter via model optimization, particularly in limiting the majority of trench advance to a relatively
narrow band of rates to 0–3cm/year in all optimized models. Subduction zone retreat still shows somewhat more scatter, but the bulk of retreating trench speeds are

confined to 0–4 cm/year in all optimized models.
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using a hybrid hot spot/paleomagnetic reference frame (Figure 11). Some

significant changes in plate speeds, contemporaneous with changes in

global subduction zone length, relate at least partially to (1) increase in

the speed related to Pangea breakup in the central and north Atlantic,

(2) northwestward speedup of Africa propagating globally, (3) speedup

of the Indian and Izanagi plates, and (4) the acceleration and deceleration

of India (Figure 11).

Compared to the unoptimized model, our preferred optimized model

exhibits reduced trench migration scatter (Figure 12) and median trench

motion (Figure 13), particularly for the Jurassic and Triassic periods,

and net rotation is consistently below 0.2°/Myr (Figure 14). Our preferred

model is based on using equal weights forfitting hot spot tracks, trench

migration, and net rotation optimization for 0–80 Ma and weights of 1

and 0.5 for trench migration and net rotation optimization, respectively,

for earlier times. There is substantial overall improvement in the scatter

of trench migration velocities, especially in limiting the bulk of trench

advance to a relatively narrow band of rates to 0–3cm/year (Figures 12a

and 12b). Subduction zone retreat exhibits more scatter, particularly

between 100 and 150 Ma and before 190 Ma, but the majority of retreating

trench speeds are confined to 0–4 cm/year for most of the model.

In order to explore the effect of different parameter choices and weights in

our optimization, we show two additional models, one with reversed

weighting of trench migration and net rotation optimization for times

before 80 Ma, that is, of 0.5 and 1, respectively (Figure 12c), and another

model that is purely based on trench migration (weight 1) and net rotation

(weight 0.5) optimization for all model times (Figure 12d), without using

hot spot tracks. The overarching result of this comparison is that all mod-

els provide similar results in terms of trench migration histograms

through time (Figures 12b–12d). This implies that hot spot tracks natu-

rally record plate motions in a fairly optimal subduction reference frame.

Most hot spots have not moved substantially in a mantle reference frame

over the last 80 million years, with only a few exceptions (Doubrovine

et al., 2012), and such exceptions are automatically detected in our optimi-

zation method. They also record latitudinal and longitudinal plate

motions well, unlike paleomagnetic data, and thus provide a reference

frame that is compatible with a global distribution of trench migration

(Schellart et al., 2008). This also implies that whenever a reference frame

is constructed that results in a much broader distribution of trench

motion, including high percentages of fast trench advance or retreat, this is likely an artifact, unless plate

tectonics worked in a different way for particular time periods. Such an argument may hold for the early

Earth, but likely not for the Phanerozoic. Williams et al. (2015) compared a number of reference frames

in this regard, and it is worth noting that moving hot spot reference frames derived from geodynamic models

can suffer from the shortcoming of unreasonable trench motion behavior if not constructed in a sensible

fashion, certainly for times before 70 Ma.

We note that irrespective of how we assign weights to net rotation and trench migration optimization, we

obtain very similar results. This reflects that the two parameters are closely linked. Large net rotation will

always result in large spreads in trench migration distributions, and vice versa. However, the connection

is nonlinear, as other equivalent relationships, for example, those betweenfinite rotations on a sphere

and data constraining plate reconstructions, particularly magnetic anomaly and fracture zone identifications

(Chang et al., 1990). Therefore, it is not sufficient to optimize for trench migration or net rotation alone. A

comparison of median trench motion and its median absolute deviation (Figure 13), comparing the two opti-

mized models with opposite weighting between trench motion and net rotation, illustrates that the model

that favors trench migration minimization (Figure 13a) is free of major artifacts in trench movement

Figure 13.(a) Median trench motion with median absolute deviation

error envelope for our unoptimized absolute plate motion model in red
and our preferred optimized model in blue, and (b) the same comparison but

using an optimized model in which the weighting between trench motion
(TM) and net rotation (NR) in the optimization is reversed relative to the
bestfit model. The models are generally quite similar, illustrating that the

optimization does not strongly depend on these parameter weights.
However, note that around 80 million years the optimized model in

Figure 13b produces a peak in median global trench advance that is signif-
icantly smaller in our preferred model, even though net rotation is similar in
both models (Figure 14), suggesting that our preferred optimization

approach is more robust.
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patterns, whereas the model that favors net rotation (Figure 13b) produces

a peak in trench advance around 80 Ma. However, both models result in

about the same value for net rotation during that time (Figure 14). This

suggests that our preferred optimization approach is more robust than

the one biased toward net rotation. This is particularly important for the

period before 80 Ma, where increasing amounts of synthetic plates pro-

vide an independent motivation for relying more on minimizing trench

migration than on net rotation, because we generally know much more

about the location of subduction zones as compared to our knowledge

of now subducted oceanic plates. In conclusion, we assign a smaller

weight to net rotation relative to trench migration in our preferred model,

particularly because the need to construct synthetic oceanic plates to gen-

erate complete global plate models for the geological past contaminates

net rotation results in deep time in ways that are difficult to quantify.

5. Conclusions

We have constructed thefirst global plate model that includes plate defor-

mation along major rifts and orogens since rifting of Pangea started in the

Early Triassic (240 Ma). The model allows us to quantify how extensional

and compressional processes have evolved through space and time during

supercontinent fragmentation and dispersal. Distributed plate deformation

driven by riftingfirst peaks in the Late Jurassic (~160–155 Ma) reaching

30 × 106km2. In the following 50 million years, deformation drops signifi-

cantly to a low of 10 × 106km2in the mid‐Cretaceous (~105 Ma), reflecting the transformation of many rifts

into passive margins. The total area of plate deformation reaches a high of 48 × 106km2in the Late Eocene

(~35 Ma), driven by the progressive growth of plate collisions as well as the formation of new rift systems in

the mid‐late Cenozoic. A total of about 35% of the present continental crustal area has been deformed over the

last 240 million years, partitioned into ~50.5 × 106km2that have been extended (~65%) and ~27 × 106km2

that have been compressed (53%). This is a minimum estimate. Along the major passive margins included

in this model, the median misfit between modeled crustal thickness and that obtained from the CRUST 1.0

model (Pasyanos et al., 2014) is 4.5 km. This misfit can be reduced in future models by improved assimilation

of crustal thickness data into regional rotation models, capturing the synrift phase of passive margins and by

accounting for magmatic underplating, where suitable data are available.

We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot

spot tracks for the last 80 million years and minimizing global trench migration velocities and net litho-

spheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration

scatter is substantially reduced compared to that in unoptimized models. The model results in smoother

plate motion paths than conventional mantle reference frames and minimizes major changes in absolute

plate motions that are disconnected from concurrent reorganizations of subduction. Therefore, our model

is more consistent with the rules of subduction dynamics than are previously published models, considering

that absolute plate motions are mainly driven by subduction (Conrad & Lithgow‐Bertelloni, 2004).

This community plate model provides a framework for building detailed regional deforming plate networks

and for forming a constraint for models of basin evolution and the plate‐mantle system. Higher‐precision

plate models, including deformation and assimilating many more constraints from regional geology than

previously possible, will have a range of benefits to different communities, including the study of crustal

and lithosphere structure and dynamics, basin analysis, resource exploration, and regional geodynamic

models. Our current model still represents a broad simplification of the detailed outlines of the boundaries

of stretched or thickened regions, which need to be further refined in the future. The model still lacks many

failed rifts and regional orogens. Microcontinents that have been separated from large continents during

protracted episodes of rifting are particularly difficult to incorporate in our model and have been excluded.

Other challenges include modeling strain rate and crustal thickness gradients across rifts and passive mar-

gins and computing surface topography through time considering both lithospheric thinning and postrift

Figure 14.Net lithospheric rotation for our unoptimized (red) and pre-
ferred optimized (blue) plate model. TM is trench motion optimization,
and NR is net rotation optimization, and the values in the inset legend

refer to their relative weights. Two other models are shown, one identical to
the preferred model optimization but without using hot spot tracks and

another with the weights between TM and NR reversed. This time series is
computed with a 5‐Myr medianfilter applied to suppress high‐frequency
noise. Note that all optimized models do not display net rotation higher than

0.2°/Myr at any time, in compliance with recommendations based on geo-
dynamic models (Becker et al., 2015).
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thermal subsidence. Next generation models may also be extended to include deformation of ocean crust. In

the future, deforming plate models will provide a basis for creating global paleotopography models, useful

for surface process and paleoclimate models. Improvements to regional deforming plate models will

benefit from more detailed regional data sets on basin scales being made available by industry and

government organizations, including structural and stratigraphic data.
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