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a b s t r a c t

Customers who adopt solar panels can reduce their energy bills and lower the effective
average electricity prices they pay. When the price falls, a solar consumer might consume
more electricity than before e a solar rebound effect. We provide the first empirical evi-
dence of residential solar rebound effects in the U.S. We use household level hourly and
daily electricity meter data as well as hourly solar panel electricity generation data from
277 solar homes and about 4000 non-solar homes from 2013 to 2017 in Phoenix Arizona.
Using matching methods and a fixed effects panel regression approach, we find that when
solar electricity generation increases by 1 kWh, solar homes increase their total electricity
consumption by 0.18 kWh. This indicates that solar rebound effects are estimated at 18%.
Building upon our theoretical framework, the increase in consumer surplus from solar
panel adoption is estimated at $972/yr.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Distributed solar energy technologies such as rooftop and ground-mounted solar photovoltaics (PV) are widely regarded
as key options for reducing society's reliance on fossil-fuel-generated electricity, the associated carbon emissions, and other
environmental challenges (Marszal et al., 2011; Parida et al., 2011). There have been many policy discussions centered around
distributed solar PV. On the benefit side, policy evaluations involve increased consumer surplus from saved energy bills and a
positive impact on the environment (Chan and Gillingham, 2015). There are also debates about potentially negative impacts.
Electric utilities need to collect sufficient revenue to recoup the upfront cost of capital investment in infrastructure. The
transmission and distribution system is sized to meet customer maximum demand. The continuously increasing penetration
of distributed solar energy technologies has raised significant challenges for the utilities to recoup their upfront cost from
kilowatt-hour (kWh) sales due to an electricity sales reduction (McLaren et al., 2015; Hledik, 2014). Electric utilities need to
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raise their electricity tariffs to deal with such issues (Johnson et al., 2017). This then leads to an ongoing discussion on the
distributional impact between solar consumers who are generally associated with higher socio-income status and non-solar
customers who are generally not (Liang et al., 2018a).

A central part of the policy discussion is that solar customers reduce their energy bills from the electric utilities. Naturally,
one can use the amount of electricity generated by solar panels to calculate the amount of reduction in electricity purchase
from the utilities. This is what has been done in existing integrated assessment and simulation models such as Global Change
Assessment Model (GCAM). If electricity consumers always consume the same amount of power, then any increase in power
generation by solar panels reduces the need for conventional power generation. This one for one displacement effect is
unlikely to unfold because solar adoption effectively reduces consumers’ energy bills and thus the average price that con-
sumers pay for electricity. When the average electricity price falls, solar consumers might consume more electricity than
before. In the language of energy economics, this triggers a rebound effect.

Rebound effects are widely discussed in energy efficiency literature (e.g., Liang et al., 2018b; Gillingham et al., 2016;
Azevedo, 2014; Qiu, 2014; Thomas and Azevedo, 2013). However residential solar literature has not quantified such rebound
effects except for one Australian study (Deng and Newton, 2017). Our unique contributions compared to Deng and Newton
(2017) are four folds. First, we are the first to examine the rebound effects of net-metered solar consumers while Deng and
Newton only look at gross-metered solar homes. These two types of solar customers might have different causal mechanisms
for solar rebound effects. For gross-metered solar homes, solar customers export all their solar electricity in return for feed-in
credits, while for net-metered customers, solar electricity is first being consumed by the customer and if there is any solar
electricity left it can be sold back to the grid. As a result, the main cause of rebound for gross-metered solar customers is the
perceived increase in “income” from selling all solar electricity while the main cause of rebound for net-metered solar
customers is the reduced perceived average price from consuming “free” solar electricity. In the U.S. more than 40 states have
net-metering policies, so our results have very important and broad policy implications. Second, the higher frequency data in
our study enables us to use more flexible fixed effects to control for more confounding factors, such as using customer-year
fixed effects to control for time-variant unobservables for individual consumer while it is impossible to use such fixed effects
for quarterly data in Deng and Newton. Third, the hourly level analysis in our paper enables us to evaluate more precisely the
environmental benefit of solar panels using actual change in hourly electricity needed from the grid, because the marginal
damage factors from environmental pollutants associated with electricity supply differ by hour of day. Last but not the least,
we provide the first empirical evidence of solar rebound effects in the U.S. while Deng and Newton look at Australian
consumers.

To the best of our knowledge, our paper is the first that uses high frequency residential meter data as well as solar meter
data at the household level of a large sample of representative households to provide precise estimation of rebound effects for
net-metered solar homes in the U.S. We answer two research questions. First, how large is the rebound effect of residential
solar customers? Second, after considering rebound effects, what are the increased consumer surplus and the value of
reduction in environmental pollutants and greenhouse gas emissions from solar panel adoption?

We first build a consumer-theoretical framework to show the relationships among price elasticity of electricity demand,
solar electricity generation, response to solar generation, and change in consumer surplus. Then we use household level
hourly and daily electricity meter data as well as hourly solar panel electricity generation data from 277 solar homes and
about 4000 non-solar homes from 2013 to 2017 in the Phoenix metropolitan area of Arizona to provide empirical evidence.
We rely on matching method and fixed effects panel regression to control for potential endogeneity issues. Results show that
on average, when solar electricity generation increases by 1 kWh, solar homes increase their total electricity consumption by
0.18 kWh, implying that solar rebound effects are 18%. We show theoretically that this response to solar electricity generation
should be equal to price elasticity of electricity consumption. We also find that consumers located in more liberal neigh-
borhoods experience lower rebound effects, suggesting that environmental awareness plays a role. The main policy impli-
cation of our paper is that when evaluating the impacts of solar panel adoption and designing the appropriate rate structure,
policy makers and utilities should consider the extra amount of electricity consumed by solar customers due to rebound
effects. We discuss in more details our contributions to existing literature in Section 7.

2. Theoretical framework

First, we need to define explicitly what types of rebound effects we are examining. We are examining only microeconomic
rebound effects and not considering macroeconomic rebound effects which include overall market adjustments and inno-
vation channels. There are two types of microeconomic rebound effects: the direct rebound and the indirect rebound. The
direct rebound is focused on change in energy use due to change in the usage of a specific service or product (e.g., an air
conditioner or a refrigerator). In existing economics literature, fuel price elasticities of demand are commonly estimated to
calculate direct rebound effects. The indirect rebound considers the change in energy use because of change in the usage of
other energy technologies (e.g., how much electricity is consumed for air conditioning after the household installs a more
energy-efficient washing machine), due to substitution and income effects. In our paper, the estimated rebound effects
include both direct and indirect rebound effects because we are focusing on electricity consumption at the household level
instead of at a specific service level.

We now provide a theoretical framework to conceptualize the rebound effects of residential solar customers. We denote a
household's daily electricity consumption prior to adopting solar panels as e0. Following Ito (2014), we assume that
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residential electric consumers respond to average electricity price instead of marginal electricity price.We denote the average
electricity price as p0. After installing solar panels, electricity generated by solar panels is es. To consumers solar electricity is
valued at the retail rate or at the same average electricity price. The new electricity bill is equal to p0ðe0 � es). Then the
effective average energy price becomes ps ¼ p0ðe0 � esÞ=e0 ¼ ð1 � es=e0Þp0 <p0. The larger the amount of solar electricity
generation, the lower the post-adoption effective electricity price compared to the original average electricity price. If con-

sumers' price elasticity of electricity consumption is x, by definition x ¼ De=e
Dp=p ¼ ve

vp
p
e. Then x ¼ De=e0
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From equation (1), we know that since consumers have negative price elasticity of demand for electricity, epost > e0. Also,
the larger the amount of electricity generated by solar panels (es), the higher epost will be. To examine the relationship be-
tween epost and es, we have

vepost
ves

¼ � x (2)
Fig. 1. Illustration of the relationship among solar electricity generation, price elasticity of consumption, and rebound effects.
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The rebound effect is then equal to x, which measures the percentage of energy savings that is “taken back” by behavioral
change. Fig. 1 illustrates the relationship among solar electricity generation, price elasticity of consumption, and rebound
effects.
3. Data and descriptive statistics

We study the residential solar sector in the Phoenix metropolitan area of Arizona. Arizona is a great case study for solar
policy research because it is abundant in solar resources and there is great potential for diffusion of distributed solar energy
(Qiu et al., 2017). As of mid 2018, the installed solar panels rank 3rd in U.S. (SEIA, 2018). We obtain the main data for our
analysis from Salt River Project (SRP), a major utility company whose service territory covers several cities in the Phoenix
metropolitan area. There are two phases of SRP's residential solar policy based on whether the solar panel permits were
applied for before or after December 2014. For permits before December 2014, solar customers could be on any type of
residential rate plans. For these rate plans, the portion of electricity generated by solar panels that is directly consumed by
customers is valued at the retail rate. The excess electricity sold back to the grid is also valued at the retail rate except for the
billing cycle of April. For April billing cycle, the excess electricity is purchased back by SRP at wholesale electricity price. In
December 2014, SRP started a new solar customer net metering plan for all solar panels whose permits were applied for after
December 2014. The new rate plan imposes a demand charge for solar customers but also lowers the marginal electricity
prices. In our dataset, there is only one solar consumer who applied for the permit after December 2014. We dropped this
solar customer to avoid any potential confounding factors because of the pricing change.

In order for consumers to perceive a lower average electricity price when there is solar electricity, they need to know the
information of their total bills and the total electricity consumption, instead of just knowing the grid-based consumption
amount. Figure A1 is an example of themonthly bills for a typical solar consumer of SRP. The portion of the bills highlighted in
the orange box shows the total electricity consumption information, including both the grid-based consumption and con-
sumption of solar electricity. As a result, solar consumers can indeed perceive a lower average price than non-solar consumers
through dividing their bills by total consumption.

We obtained several separate datasets from SRP. The first dataset is a Residential Equipment and Technology (RET) survey
conducted by SRP in early 2014. The survey asked about detailed socio-demographics, building characteristics, appliance and
other energy technology attributes, and energy consumption behaviors. About 16,000 completed responses were received.
The second dataset is detailed information of solar customers that also completed the 2014 RET survey. This includes hourly
electricity generated by each solar household from 2013 to 2017, installation date, cost per kW, system size, and financing
mode (lease or own) for each household. The third dataset contains high frequency (every 15min) electricity meter data from
2013 to 2017 for each customer that completed the RET survey. Lastly, we obtained daily register read meter data for each
customer. We now describe in more details the relationships among different types of meter data.

For any given hour h, we denote the amount of electricity delivered from the grid to the customer as kWhch, the amount of
electricity received by the grid from the customer as kWhgh, and the amount of electricity generated by the solar panel of the
customer as kWhsh . At any given hour, if solar panels generate electricity, the solar electricity will be first consumed by the
customer before sending the remainder back to the grid. If the customer consumes more than the generated solar electricity,
then the grid will deliver kWhch to the customer. If the customer consumes less than the generated solar electricity, then the
grid will receive kWhgh from the customer. For the register read data, for a given day d, we denote the register read data at the
end of day d as READd. Then the net electricity purchased from the grid for day d is kWhd ¼ READd � READd�1. We should have

kWhd ¼ P24
h¼1

ðkWhch � kWhghÞ . We can also obtain the gross electricity consumption (electricity consumed from both solar

panels and the grid) of the customer on day d by summing up the net electricity purchase and solar electricity as

follows Consd ¼
P24
h¼1

ðkWhch þ kWhsh � kWhgh Þ ¼ kWhd þ
P24
h¼1

kWhsh ¼ kWhd þ kWhsd . For high frequency meter data, we

only have the information on kWhch but not on kWhgh. As a result, we analyze gross electricity consumption at daily level
while we analyze electricity delivered to the customer at hourly level.

Table 1 (a-c) list the summary statistics for key variables. For installed solar-panel system attributes, the average system
size is 6.6 kW (in AC), and average cost per kW capacity is $5176/kW. Table 1(b) lists the electricity usage attributes. Figure A2
lists distribution of solar panel characteristics over the years in our sample. Most solar panels in our analysis were installed in
2013e2015.1 Fig. 2 shows the distribution of daily electricity generation from solar panels and there is a wide distribution of
the amount of electricity generated per panel system and also per kW. Fig. 3 shows average hourly electricity delivered for
customers for solar and for non-solar customers. Solar customers dropped their electricity delivered from the grid during
solar generation hours. Table 1(c) compares the household and building attributes between solar and non-solar customers,
prior to matching. Solar and non-solar customers differ in certain attributes. More solar customers are owner-occupied and
1 Note that even though we dropped the solar customers that are on the new net-metering plan after the policy change in 2014, there are still customers
installing solar panels after 2014 but are not on the new net-metering plan. This is because they applied for the permit prior to the policy change, but it took
them some time to install the panels.



Table 1
Summary statistics.

Variable Obs Mean Std. Dev. Min Max

Table 1a. Solar panel attributes

System size (KW AC) 277 6.61 2.76 0.7 21.50
Cost (1000$/kW) 265 5.18 1.67 2.2 13.30
Installation year 277 2012.57 2.16 2006 2016
All year_daily solar electricity generation per system (kWh) 459,844 30.33 18.45 0 166.56
Summer_daily solar electricity generation per system (kWh) 220,951 34.04 18.80 0 163.2
Winter_daily solar electricity generation per system (kWh) 238,893 26.90 17.43 0 166.56
All year_daily solar electricity generation per kW(kWh/kW) 458,456 4.76 1.86 0 15.38

Variable Obs Mean Std. Dev. Min Max

Table 1b. Electricity usage attributes

No Solar
Average daily electricity price ($/kWh) 5,200,885 0.10 0.02 0.0701 0.13
All year_daily electricity consumption (kWh/day) 5,200,885 37.85 28.66 0 585.72
Summer_daily electricity consumption (kWh/day) 2,673,750 47.92 32.13 0 585.72
Winter_daily electricity consumption (kWh/day) 2,527,135 27.18 19.43 0 385.10
All year_net electricity purchase from the grid (kWh/day) 5,200,885 37.85 28.66 0 585.72
Summer_net electricity purchase from the grid (kWh/day) 2,673,750 47.92 32.13 0 585.72
Winter_net electricity purchase from the grid (kWh/day) 2,527,135 27.18 19.43 0 385.10
All year_hourly electricity delivered to the customer (kWh/hour) 80,214,189 1.59 1.58 0 98.92
Summer_hourly electricity delivered to the customer (kWh/hour) 41,304,228 2.02 1.78 0 46.34
Winter_hourly electricity delivered to the customer (kWh/hour) 38,909,961 1.14 1.19 0 98.92
With solar
Average daily electricity price ($/kWh) 213,864 0.09 0.02 0.0701 0.13
All year_daily electricity consumption (kWh/day) 213,864 46.63 30.64 0 289.09
Summer_daily electricity consumption (kWh/day) 102,947 60.09 34.19 0 289.09
Winter_daily electricity consumption (kWh/day) 110,917 34.14 20.01 0 237.99
All year_net electricity purchase from the grid (kWh/day) 213,864 18.45 27.75 0 261.00
Summer_net electricity purchase from the grid (kWh/day) 102,947 28.86 30.37 0 261.00
Winter_net electricity purchase from the grid (kWh/day) 110,917 8.79 20.86 0 209.00
All year_hourly electricity delivered to the customer (kWh/hour) 7,204,364 1.29 1.50 0 24.83
Summer_hourly electricity delivered to the customer (kWh/hour) 3,538,491 1.63 1.71 0 22.29
Winter_hourly electricity delivered to the customer (kWh/hour) 3,665,873 0.96 1.18 0 24.83

Variable Obs Mean Std. Dev. Min Max

Table 1c. Household and building attributes

No Solar
Owner occupied 4058 0.73 0.45 0 1
TOU pricing 4058 0.36 0.48 0 1
Household income 4058 52.68 42.51 3.75 150
Square footage 3898 1.62 0.82 0.75 3
Number of persons in the household 3899 2.19 1.13 1.5 5
Household head being white 3824 0.75 0.43 0 1
Number of stories 3817 1.21 0.45 1 3
Vintage of the house in years 4058 29.38 18.16 7.5 65
Age of household head 3804 57.15 15.93 25 75
Primary residence 3943 0.93 0.26 0 1
Having a swimming pool 4032 0.25 0.43 0 1
Single family house 3872 0.77 0.42 0 1
Having programmable thermostats 4058 0.58 0.49 0 1
Solar customers
Owner occupied 277 0.92 0.28 0 1
TOU pricing 277 0.48 0.50 0 1
Household income 277 68.66 44.73 3.75 150
Square footage 275 2.06 0.72 0.75 3
Number of persons in the household 272 2.44 1.24 1.5 5
Household head being white 260 0.76 0.43 0 1
Number of stories 270 1.20 0.42 1 3
Vintage of the house in years 277 29.61 18.30 7.5 50
Age of household head 270 56.85 14.26 25 75
Primary residence 273 0.95 0.23 0 1
Having a swimming pool 277 0.41 0.49 0 1
Single family house 271 0.99 0.12 0 1
Having programmable thermostats 277 0.74 0.44 0 1

Y. Qiu et al. / Journal of Environmental Economics and Management 96 (2019) 310e341314
on Time-of-use (TOU) pricing than non-solar customers. Solar customers have higher household income, larger square
footage, more people in the household, as well as a higher likelihood to have a swimming pool, programmable thermostats,



Fig. 2. Daily electricity generated by solar panels.

Fig. 3. Hourly electricity delivered from the grid between solar and non-solar customers.
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and to be a single-family house. We use having programmable thermostats as a proxy for environmental awareness. Even if
this variable is not an ideal proxy, our household-year fixed effects in the panel regression can control for environmental
awareness.

4. Empirical strategy

We analyze the causal impact of electricity generated by solar panels on residential consumer electricity consumption.
There are two potential threats to identification, related to both the extensive and intensive margins. The first threat is on the
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extensive margin. Consumers choose to install solar panels voluntarily. Certain unobservable features such as environmental
awareness can impact the decision to install solar panels, the size of the system, and electricity consumption behaviors. If
these factors are time-invariant, then fixed effects can address the problem. However, there is a possibility that these factors
might be time-varying. For example, a homeowner can choose to install solar panels at the same timewhen undergoing other
remodeling projects, such as installing energy efficiency measures or adding a pool or other home expansion projects. Based
on our RET survey, solar homes in our sample are not likely to also have energy efficient heating, ventilation, and air-
conditioning (HVAC) technologies. If there are indeed other types of major energy efficient technologies being installed at
the same time with solar panels, then our estimated solar rebound effects are on the lower side because energy efficiency
reduces energy consumption.2 In addition, for all these home improvements projects and other home expansion projects
happening together with solar panel installation, we control for such time-variant changes using household-year fixed ef-
fects. We also conduct an analysis using only the post-installation data for the treatment group to eliminate the concern from
other potential contemporaneous home improvements.

The second potential threat is on the intensive margin. In particular, the amount of solar electricity generation could be
endogenous, even conditional on adoption of solar. Unobservables such as roofing directions and tree shades impact both
solar electricity generation and electricity consumption. These two endogeneity issues could impose more threats if these
confounding unobservables are time-variant. For example, a household could cut its trees to remove shading. If these un-
observables are time-variant and household specific, then traditional fixed effects are insufficient to address the challenge.
However, tree-cutting behavior is unlikely in Arizona due to its desert environment and the lack of trees in the first place. In
addition, when temperature is controlled for, sunshine only affects household energy consumption through the response to
the solar electricity production. Thus conditional on adoption, short-run fluctuations in solar electricity production (which is
mainly influenced by sunshine) should be exogenous to household electricity consumption. La Nauze (2018) makes the same
assumption. This further ensures that solar electricity production in the short run, after we control for household-year fixed
effects and temperature, should be exogenous. To summarize, we adopt a combination of matching and panel regressionwith
household-time-variant fixed effects to address potential endogeneity issues.

In our main model to estimate rebound effects using daily data, since household fixed effects are used, the rebound effect
estimates are representing the intensive margin. Our main source of variation is to look at how much more electricity solar
customers consume on days with greater solar irradiance when solar panels generate more electricity. For hourly level
analysis, we only rely on extensive margin to estimate the change of electricity needed from the grid due to solar panel
adoption: we compare the electricity needed from the grid of houses without solar panels to that of houses with solar panels.
4.1. Matching

In order to have comparable control group for solar customers, we adopt a matching approach to approximate a quasi-
experimental design (Fowlie et al., 2012; Qiu and Kahn, 2018b). In a matching approach, for each solar customer, we find a
non-solar customer that is similar in various characteristics that can impact both solar adoption and energy consumption
(Stuart, 2010). These attributes include household income, number of persons in a household, race of household head, age of
household head, building square footage, vintage of the building, whether a building has a pool, whether a building has
programmable thermostats, dwelling type (single family house, townhouse, apartment/condo, others), ownership status
(owner-occupied versus renter-occupied), and electricity rate plans. There are more than 16,000 3 customers in the RET
survey, among which 277 solar customers’ information is analyzed in our model.

We use two matching methods: propensity score matching (PSM) and coarsened exact matching (CEM). In propensity
score matching, we use logit model to calculate the predicted probability of adopting solar panels for all customers. Then for
each solar customer, control customers are assigned weights based on how close the predicted probabilities are to the solar
customer. We try different matching algorithms including kernel matching, radius matching with different calipers, and k-
nearest neighbors matching. The results of propensity score matching using different algorithms are very similar. We choose
to present the results using radius matching which finds a control for a treated individual only within the caliper (0.01). This
puts a tolerance level on the largest acceptable propensity score distance. This algorithm yields the smallest median bias. A
balancing check is necessary to ensure that the control and treatment groups are indeed comparable after matching. Table A1
in the Appendix shows balancing check results generated by STATA built-in balancing check command pstest for PSM and
results confirm the balancing.4
2 To give a hypothetical example, assume that the original electricity consumption of a household without any solar panels or energy efficiency upgrades
is 40 kWh/day. Now assume that the household only adopts solar panels but no other energy efficiency upgrades, and that the solar panels generate
30 kWh/day. The gross electricity consumption (grid-based consumption þ consumed solar electricity) becomes 46 kWh/day. Then without energy effi-
ciency upgrades, the estimated solar rebound effect is (46-40)/30 ¼ 20%. Now assume that together with the solar panel installation, the households also
added energy efficiency upgrades. The energy efficiency upgrades lower the gross electricity consumption from 46 kWh/day to 42 kWh/day. If researchers
are not aware of these energy efficiency upgrades, then the estimated solar rebound effect is only (42-40)/30 ¼ 6.7%.

3 To improve the computational efficiency, we randomly selected about 4000 non-solar customers for the matching process.
4 The variance ratio for “Number of stories” is slightly outside the allowed window [0.78; 1.29]; but according to Rubin (2001), a variance ratio between

[0.5, 2] indicates reasonable balancing.
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CEM coarsens the variables into strata and then customers are matched based on strata. CEM controls for the amount of
imbalance ex ante (Blackwell et al., 2009). To further ensure that the control and treatment groups using CEM are comparable,
we use two indicators to evaluate balancing: standardized mean difference (SMD) to check for sample mean and variance

ratio (VR) to check for sample variance. SMD ¼ jXTreat�XControljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2TreatþS2ControlÞ=2

p and VR¼ S2Treat
S2Control

, where X is the samplemean and s2 is the sample

variance. To ensure good balancing, VR should be within [0.5, 2] and SMD should be smaller than 0.25 (Rubin, 2001). In Table
A2 in the Appendix, VR and SMD are computed and results confirm balancing.

There are two important assumptions of using matching for causal inference. The first assumption is conditional inde-
pendence e after controlling for covariates X, the potential outcomes are independent of the treatment status. This
assumption is generally hard to test, so we also combine matching with fixed effects panel regression to get rid of potential
confounding unobservables. The second assumption is common supportethe probability of a customer adopting solar panels
conditional on the observed control variables should be between 0 and 1. For propensity score matching, Figure A3 in Ap-
pendix confirms common support. For CEM, all observations within a stratum containing both a treated and control unit are
by construction inside of the common support.

4.2. Fixed effects panel regression

Using daily register read data and solar electricity generation data, we analyze the impact of solar electricity generation on
daily electricity consumption Consd and then measure the rebound effects. We run the following regression on the matched
control and treatment group:

Consid ¼ aiy þ bSkWhisd þ gpid þ f ðHDDidÞqþ f ðCDDidÞhþ dHolidayd þ Day of monthþ Day of weekþmonth of year

þ εid

(3)

where kWhisd is the electricity generated by solar panels for customer i on day d; bS measures how customer's daily electricity
consumption changes with respect to 1 kWh additional solar electricity generated. As discussed in theoretical model, bS
should be equal to price elasticity of demand. From bS we can also calculate the rebound effects. We include kWhisd in the
regression because solar customers can observe accurately the amount of electricity generated by solar panels from their user
portal. pid is average daily electricity price calculated based onmarginal price. Onemight argue that customers self-select into
different rate plans so that the average daily electricity price variable constructed based on the marginal electricity price can
also be endogenous. However, this should not be an issue because we use customer-year fixed effects to control for any
unobservables that can impact customers' selection of rate plans. In addition, pid only serves the purpose of a control variable.
The variation of the price variable in the regressionmodel comes from two sources. First, seasonalmarginal prices of the same
price plan (including both TOU and non-TOU) differ by season. Second, there is also cross-sectional variation of marginal
prices across different price plans. This price variable serves as a control variable for the attributes of different price plans so
this term is identifying the impact of price plans on electricity consumption. HDD is heating degree days as calculated by 65 -
temperature; CDD is cooling degree days as calculated by temperature - 65; f is spline function for HDD and CDD5; and
Holiday is an indicator variable for federal official holidays. We include the following fixed effects: aiy is customer-year fixed
effect which can control for time-variant unobservables impacting solar adoption and solar generation such as change in
building shading conditions, change in other home technologies or attributes, and change in occupancy for each customer at
yearly level; a set of time fixed effects including hour of day, day of month, day of week, and month of year which control for
factors that change over time for all customers such as change of energy efficiency policies and incentives, and prices of solar
panels. Note that year of sample is not included since we include customer-year fixed effects. Standard errors are clustered at
the customer level to avoid autocorrelation of the error term εid.

5. Results of main model specifications

In this section we discuss the results of our main model specifications. In Appendix B we also include the results of other
model specifications which analyze the impact on net daily electricity purchase as well as how household attributes, cost of
panel, and financing mode influence solar customer electricity consumption behaviors.

Our main source of identification is to look at how individual solar consumer's electricity consumption changes when the
amount of solar electricity generated by their solar panels changes. Such change in solar panel electricity generation is mainly
due to fluctuations in solar irradiance. Thus our primary source of identification is to look at howmuchmore solar households
consume on sunnier days when the amount of electricity generated by their solar panels is higher. Figure A4 shows a
descriptive positive relationship between individual consumer's gross daily electricity consumption and solar electricity
5 Hourly temperature data by station is obtained from the National Oceanic and Atmospheric Administration (NOAA)'s Local Climatological Data (https://
www.ncdc.noaa.gov/cdo-web/datatools/lcd). We match each customer's zip code with the nearest weather station from NOAA.

https://www.ncdc.noaa.gov/cdo-web/datatools/lcd
https://www.ncdc.noaa.gov/cdo-web/datatools/lcd


Table 2
Impact of electricity generated by solar panels on daily electricity consumption.

PSM sample; All rate plans Using all time periods for both control and
treatment groups

Using only the post-treatment
period of the treatment group

All year Summer Winter All year

Model number (1) (2) (3) (4)

Daily electricity generated by a solar panel system 0.183*** 0.186*** 0.138*** 0.192***
(0.035) (0.037) (0.034) (0.034)

Average daily electricity price �60.448** �42.526*** �117.341*** �22.077
(25.032) (11.984) (32.472) (33.962)

Holiday 0.565* 0.501 0.906*** 0.868***
(0.313) (0.399) (0.247) (0.334)

Constant 39.038*** 40.952*** 42.975*** 35.863***
(1.728) (1.525) (2.475) (2.320)

CDD Yes Yes Yes Yes
HDD Yes Yes Yes Yes
Fixed effects
Account year Yes Yes Yes Yes
Month of year Yes Yes Yes Yes
Day of month Yes Yes Yes Yes
Day of week Yes Yes Yes Yes
N 619,788 313,821 305,967 250,692

Clustered standard errors in parentheses; * p < 0.1 ** p< 0.05 *** p< 0.01.
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generation. A key potential issue with this source of identification is that on sunnier days in the summer, the cooling demand
is also higher which will translate into higher electricity consumption. Similarly, on sunnier days during the winter, the
heating demand could be lower so that the electricity consumption is lower. As a result, adequately controlling for CDD and
HDD is very important. In our main model specifications, we use linear spline function to control for CDD and HDD.

5.1. Impact on daily consumption

5.1.1. Overall impact and rebound effects
We now analyze how customers’ electricity consumption changes with respect to solar electricity generation. Results are

listed in Table 2. Our main discussion is based on results from propensity score matching which gives us larger sample. Model
(1) in Table 2 shows the results for all months. The coefficient for solar electricity generation is 0.183, meaning that if solar
panels generate 1 kWh additional electricity, the customer will consume 0.183 kWh more electricity. As illustrated in

equation (2) in the theoretical framework, we have vepost
ves

¼ �x . In the regression model vepost
ves

is the coefficient for solar elec-
tricity generation. Thus, this coefficient should be close to price elasticity.

The rebound effect is defined as the amount of energy savings that is “taken back” by behavioral change. The coefficient
that measures the change in electricity consumption in response to the change in solar electricity generation thus measures
the rebound effect. In model (1) of Table 2 the coefficient is 0.18. This means for every 1 kWh solar electricity, the increase of
0.18 kWh in total electricity consumption erodes the engineering savings by 18% and thus the coefficient itself measures the
solar rebound effect. For Model (2) the coefficient is 0.186 for the summer and in Model (3) the coefficient is 0.138 for the
winter, implying that the rebound effect is 18.6% in summer months and 13.8% in winter months.

As discussed earlier one concern for causal identification is that households might undergo contemporaneous home
improvement or expansion projects the same timewhen installing solar panels. Althoughwe use household-year fixed effects
to control for such possibility, we now add another analysis where we only use the post-installation data for the treatment
group to run the fixed effects regression. This approach relies only on the short-run exogenous variation in solar electricity
generation and thus is not confounded by other potential contemporaneous home improvements. Results are listed as Model
(4) in Table 2 and the response to an additional 1 kWh solar electricity is 0.19.

It can be relatively straightforward for solar households to observe the amount of daily6 electricity generated by solar
panels by logging into their user portal via a cellphone application or a website. With such daily level information, it is
possible that consumers can form a linkage between easily observable solar irradiance (e.g. by looking at the sky) and the
amount of electricity produced by solar panels, so that it becomes easier to get a good estimate of daily solar electricity
generation even without needing to log into the user portal. With the information on daily solar electricity generation,
consumers can get a sense of the amount of electricity that is “free” (not needing to pay for the utility). We follow Ito (2014)
and assume that households respond to average electricity price instead of marginal electricity price. Ito (2014) states that to
6 Our theoretical model is not constrained to only monthly level; it can be applied at daily level, as long as the consumers can have an assessment of the
amount of solar electricity and total consumption at daily level.



Fig. 4. Impact of solar electricity generation on daily electricity consumption. Notes: Blue dots indicate the value of coefficients for Electricity generated by a solar
panel system for that month; Vertical blue lines indicate 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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get the perceived average electricity price, households simply use the total payment divided by total consumption. When
consumers get a sense that the amount of solar electricity generation on a given day is large, theywill think that the portion of
free electricity is also large (consumers can also get the information of their gross daily electricity consumption7 from their
portal so they know the “portion” of free solar electricity among total electricity consumption), and then the average price
should be low on that day because the average price goes down as the portion of solar electricity goes up. As a result, with
intuition solar consumers can get a sense of average electricity price fluctuations even if they are naïve about the pricing
structure and how their actual bills are calculated by the utility company. The monthly level analysis shows a similar rebound
effect at 14% (Table A3). However, since daily level analysis controls for account-year fixed effects which better control for
time-variant unobservables at the individual household level, we use the 18% rebound effect found fromdaily level analysis as
our main result.

For CDD spline, the number of knots is 4 such that the data is divided into 5 equal-width groups of CDD for piecewise linear
function. The same applies to HDD spline. Figure A5 shows the graphs of howdaily electricity consumption changeswith daily
CDD and HDD using the estimated spline functions. In addition, we tried two other methods to control for CDD and HDD in
the regression model: 1) spline function with 4 knots equally spaced based on percentiles of CDD and HDD; and 2) not using
spline function but controlling for linear, square, and cubic of CDD and HDD. The results in Table A4 show that the estimated
rebound effects are almost the same using different controls of temperature.

5.1.2. Impact by month

We now estimate Consid¼ aiy þ
P12
M¼1

bSMkWhisd*IM þ gpid þ f ðHDDidÞqþ f ðCDDidÞhþ dHolidayd þ Day of month þ
Day of weekþmonth of year þ εid to look at the response by month IM . The coefficients by month are illustrated in Fig. 4.
Complete regression results are listed inTable A5 in the Appendix. The general trend is that for 1 kWh additional solar electricity
generation, consumers increase their consumption bymore kWh in the summermonths than they doduring thewintermonths.
This could be due to higher price elasticity of demand in the summer than in the winter. There is a large cooling need in the
summer months in Arizona. If solar customers know that their effective electricity price is lower due to solar electricity gener-
ation, in the summer they might consume more electricity because they can now make their room temperature more
comfortable for longer periods of time during hot summers. In contrast, there is not much need for improvement through
consumingmore electricity for heating duringwinters because Arizonawinters already have amild temperature (in the coldest
months of January and February, the average low temperature is 43.4F while the average high temperature is 65F). As a result,
consumers’ electricity demand is more price elastic in the summer.

5.1.3. Validity test
Out of the 277 solar customers analyzed in our paper, 81 adopted solar panels between 2013 and 2017. For these cus-

tomers, we observe both their pre-installation and post-installation energy consumption patterns. In our main analysis, we
7 Here are two examples showing the type of information available on user portal for a solar consumer: https://www.locusenergy.com/solutions/
software/solarnoc%E2%84%A2/site-owner-application https://itunes.apple.com/us/app/solaredge-monitoring/id384374347?mt¼8.

https://www.locusenergy.com/solutions/software/solarnoc%E2%84%A2/site-owner-application
https://www.locusenergy.com/solutions/software/solarnoc%E2%84%A2/site-owner-application
https://itunes.apple.com/us/app/solaredge-monitoring/id384374347?mt=8
https://itunes.apple.com/us/app/solaredge-monitoring/id384374347?mt=8


Fig. 5. Distribution of the impact of solar electricity generation on daily electricity consumption. Notes: The left figure shows the histogram of the coefficients for
solar electricity; the right figure shows the 95% confidence intervals of the coefficients.
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include solar customers who installed the panels prior to 2013 and thus lack the pre-installation energy consumption data for
these customers. In order to help check the validity of the analysis including solar customers with only post-installation
energy consumption data, we conduct a separate analysis for the 81 solar customers and compare the results with those
in our main analysis. For this validity check, we add the pre-installation average daily energy consumption as a matching
variable. To calculate the pre-installation consumption data for non-solar customers, we randomly assign solar installation
dates to these non-solar customers. Then using the matched control and treatment customers, we run similar fixed effects
panel regression models.

Figure A6 in the Appendix shows the change in electricity consumption in response to an additional 1 kWh solar elec-
tricity.8 Results are consistent with those using all 277 solar customers. Larger rebound effects happen during summer
months compared to winter months. On average, based on regression results for Model 1 in Table A6 in the Appendix, when
using the solar customers with both pre- and post-installation energy consumption data and with pre-installation energy
consumption added as a matching variable, the coefficient for solar electricity generation is 0.146 and is statistically signif-
icant at 5% level. This coefficient is of a similar magnitude as 0.183which is the coefficient for solar electricity generationwhen
using all solar customers. We then further check that there is no systematic difference in energy consumption patterns prior
to solar installations between the treatment and control groups, using the regression model

Consid ¼ b*Solari þ gpid þ f ðHDDidÞqþ f ðCDDidÞhþ Day of monthþ Day of weekþmonth of year þ year of sampleþ εid ,
where Consid is the daily electricity consumption prior to solar installations; Solari indicates whether a customer belongs to
the treatment group or not. Results for Model 2 in Table A6 show that the coefficient for Solari is not statistically significant,
indicating that the pre-installation electricity consumption patterns are similar between the control and treatment groups. In
addition, we plot the time trend for the weighted average monthly electricity consumption for the control and treatment
group. Figure A7 shows that in 2013 when there were relatively few solar adopters, the monthly energy consumption trends
between the control and treatment groups were very similar. Starting 2014 when more and more customers adopted solar
panels, the average consumption of control group became lower than that of the treatment group.

5.1.4. Heterogeneity: distributions of impacts
In order to examine the distributions of impacts on electricity consumption among solar customers, for each solar

customer we regress daily electricity consumption on solar electricity generation, controlling for HDD, CDD, price, holiday,
and same sets of time fixed effects. For a total of more than 200 regression models, we obtain the key coefficients for each
solar customer. In Fig. 5, we draw the histogram and 95% confidence intervals of the coefficient that measures the change in
electricity consumption in response to 1 kWh additional solar electricity generation. Some solar customers show rebound
effects (positive coefficients) while some other solar customers reduce their electricity consumption. We show next that this
could be due to environmental ideology.

5.1.5. Heterogeneity: impact by environmental ideology
We download the zip-code level voter registration data fromMaricopa county website.9 For each electric customer, we do

not have the exact address but only the zip code, so we can only use the zip code level voter registration data to merge with
8 We only show results from using PSM matching because it gives us a reasonably large sample (75 treatment customers and 3141 control customers)
while CEM only leaves 15 treatment and 29 control customers.

9 https://recorder.maricopa.gov/voterregistration/redirect_new.aspx?view¼zip.

https://recorder.maricopa.gov/voterregistration/redirect_new.aspx?view=zip
https://recorder.maricopa.gov/voterregistration/redirect_new.aspx?view=zip
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each customer. We assume that liberal voters will be more likely to be pro-environment (Cragg et al., 2013; Dastrup et al.,
2012). We calculate the share of liberal voters in a zip code using

Liberal ¼ Registered democrat votersþRegistered Green party voters
Total number of registered voters . We use Liberal as a proxy for environmental ideology. We then run

regression model in electricity consumption adding interaction terms between solar panel adoption and environmental
ideology. Results are listed in Table B4. The coefficient for the interaction term is negative and statistically significant, indi-
cating that consumers located in more liberal neighborhoods experience lower rebound effects. This is consistent with
existing literature such as Costa and Kahn (2013) that environmental ideology plays a role in consumer energy consumption
behaviors. More environmentally aware consumers might pay more attention on conserving energy and as a result after
adopting solar panels, they might intentionally adopt other conserving activities as well.

5.1.6. Robustness check: price variable
The price variable constructed in this study is based on the marginal price only and does not depend on each individual

customer's consumption pattern, in order to avoid the issue of endogenous average price issues. To show the robustness of
our estimation for the key coefficient of intereste the response to solar electricity generation, we remove the price variable in
the regression. Results in Table A7 show that removing the price variable does not impact the coefficient for solar electricity
generation. In addition, we add an interaction term between price and a dummy variable indicating whether a price plan is
TOU or not. The coefficient for solar electricity generation remains 0.18. The interaction term between TOU and price is
positive meaning that households with TOU pricing are less sensitive to the electricity price than non-TOU consumers. This
might be due to the fact that non-TOU consumers in our sample are on increasing-block pricing so they might need to pay
extra attention than TOU consumers to prices because the average price increases as they consumemore electricity in a given
month. We then interact TOU with solar electricity generation and find that the interaction term is indeed negative (rebound
effects are lower) although it is not statistically significant.

5.1.7. Robustness check: machine learning
We use classification and regression trees (CART)-based propensity score model to identify control and treatment groups.

The CART-based propensity score model has the ability to better deal with interaction and non-linearity of key attributes (Lee
et al., 2010). It is also better than traditional propensity score model which is sensitive to misspecifications. The regression
model run on the matched control and treatment group from CART model shows that the coefficient for solar electricity
generation is still 0.18 (see Table A7). Table A8 shows the balancing check. Second, we use LASSO and Ridge to predict the
electricity consumption of each customer in all time periods using their electricity consumption data in the pre-treatment
period. For solar customers in the post-treatment period the predicted value without solar electricity generation is the
counterfactual electricity consumption. The predictors include household characteristics, temperature, location, and time
indicator variables. Then we regress the differences between the actual value and the predicted value for each customer on
the amount of solar electricity generation. The coefficient for solar electricity obtained this way is around 0.16 (see Table A7).

5.1.8. Robustness check: solar irradiance
In order to justify the assumption that sunshine only affects household electricity consumption through the response to

solar electricity production, we conduct two additional robustness checks. First, we regress the electricity consumption of
non-adopters on solar irradiance (Direct Normal Irradiance, DNI)10 while controlling for CDD and HDD splines and other
variables and fixed effects same as in the main model. Second, for each non-adopter, we create a hypothetical solar electricity
generation variable using the actual solar generation of the matched solar adopter. We then regress the electricity con-
sumption of non-adopters on the hypothetical solar electricity generation while controlling for the same set of control
variables. If after controlling for temperature and other variables, the solar irradiance and the hypothetical solar electricity do
not have statistically significant impact on the electricity consumption of non-solar consumers, then it justifies that indeed
our main finding of the response to solar electricity generation of solar consumers is all due to rebound effects rather than
direct impact of solar irradiance. Results in Table A7 confirm that solar irradiance does not have statistically significant impact
on electricity consumption after controlling for temperature and other key variables and fixed effects. The same applies to the
hypothetical solar electricity variable. If a household has the tendency to close blinds and curtains on a sunny day, then that
habit and tendency can be captured by the household-year fixed effects so that the average electricity consumption of these
households with such habits will be different than households without such habits in our model.

5.2. Impact on hourly electricity delivered to customers

We now look at the impact on hourly electricity delivered from the grid to customers which reflects howmuch electricity
the utility company needs to purchase from electricity generators or from electricity trading in a given hour, after any
10 The DNI solar irradiance data is obtained from the National Solar Radiation Data Base maintained by National Renewable Energy Laboratory (NREL)
https://maps.nrel.gov/nsrdb-viewer. We match each zip code with the nearest location with NREL solar irradiance data. Whenever there is a lack of solar
irradiance data for a given time period for a given location, we use the NREL simulated solar irradiance data for a given day in a typical meteorological year
as a replacement for that location.

https://maps.nrel.gov/nsrdb-viewer
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behavior change such as rebound effects. kWhch can be used to calculate emissions associated with the electricity that the
utility company needs to purchase for its customers. We use the following panel regression:

kWhich ¼ aiy þ
X24
H¼1

bHSolar panelih*IH þ gpih þ f ðHDDihÞqþ f ðCDDihÞhþ dHolidayd þ Hour of dayþ Day of month

þ Day of weekþmonth of year þ year of sampleþ εih

(4)

where i indicates individual customer; h indicates hour of sample;H indicates hour of day; IH is an indicator variable for each
hour of day;Solar panelih is equal to 1 if customer i has solar panels installed at h; pih is marginal electricity price based on
SRP's price plan for customer i at h. The key coefficients of interest are the series of bH which measure the change in hourly
kWh delivered from the grid to the customer after adopting solar panels.

Running regression equation (4), we obtain the coefficients that measure the impact of solar panel adoption on each hour's
electricity delivered to the customers. We show the values and 95% confidence intervals of these coefficients in Fig. 6. A
negative and statistically significant coefficient means that there is a reduction in electricity needed from the grid. The co-
efficients for all variables in regression equation (4) are listed in Table A9 in Appendix. There are two key takeaways from
Fig. 6. First, in terms of the magnitude of reduction, in the summer, the maximum hourly reduction happens at 2pm with a
2.2 kWh/hr reduction. In the winter, the maximum hourly reduction happens at noon and 1pmwith a 1.19 kWh/hr reduction.
Second, in the winter there is a reduction in electricity needed from the grid even during evening hours. This could be due to
the fact that solar panels could potentially function as adding strengthened insulation to the roof. As illustrated in engineering
studies (e.g. Dominguez et al., 2011), during the daytime, ceiling temperatures under PV panels in solar homes are lower
compared to those of non-solar roofs, while during nighttime ceiling temperatures are higher. This will reduce heating needs
during winter evening hours, while it will not reduce cooling needs during summer evening hours because of higher ceiling
temperatures. In Arizona, 58% of homes use electric heating (EIA, 2009), which helps explain why there is reduction of
electricity delivery for solar homes during winter evening hours.
Fig. 6. Change in hourly electricity delivered from the grid due to solar panel adoption. Notes: Blue dots indicate the value of coefficients for Solar panel adoption
for that hour; Vertical blue lines indicate 95% confidence intervals; Summer months are MayeOctober and winter months are the rest months. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)



Fig. 7. Consumer surplus calculation. Notes: The change in consumer surplus is the benefit of bill savings minus the deadweight loss from incremental con-
sumption which is the added bill costs in excess of willingness to pay (WTP).
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6. Discussions

6.1. Consumer surplus change

Building upon our theoretical model in Section 2, assuming constant elasticity of electricity demand near the price regions

around p0 and ps, then the constant price elasticity demand curve should be p ¼ k

e
1
�x
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x .11 Now to find what k is equal to, we
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0 .
Consumers think that they are paying a reduced effective average price of ps so they increase their gross consumption from

e0 to epost but in fact for the incremental consumption (epost � e0) they are actually paying p0. Consumers’ willingness to pay
(WTP) as measured by the demand curve for the increased consumption is lower thanwhat they are paying ( p0Þ. As a result,
there is a deadweight loss from incremental consumption which is equal to the added bill payment minus the value of the
incremental consumption to consumers. As Fig. 7 illustrates, the change in consumer surplus from generating es amount of

solar electricity and with rebound effects is the benefit of bill savings (esp0) minus the deadweight loss (
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Wewill then use our estimated parameters from empirical analysis to calculate the change in consumer surplus from solar

panel adoption. Recall we have vepost
ves

¼ �x . We use the coefficient for solar electricity generation as the value for�x to calculate

change in consumer welfare. From model (1) in Table 2, x ¼ -0.183. On average, the electricity price before solar adoption is
$0.1/kWh; the daily electricity consumption before solar adoption is 37.8 kWh/day; the daily electricity consumption after
solar adoption is 46.6 kWh/day; and the average daily solar electricity generation is 30.3 kWh/day. Plug in all the parameters,
the daily change in CS ¼ 0.1*30.3-(0.1*(46.6e37.8)-0.1*37.8̂(-1/(-0.183))*((-0.183)/(1e0.183)*46.6̂((1e0.183)/(-0.183))-
(-0.183)/(1e0.183)*37.8̂((1e0.183)/(-0.183)))) ¼ $2.664/day. Then for a year, the increase in consumer surplus is
$2.664*365 ¼ $972/year. Based on the sample in this study, on average, solar panel systems cost $5176*6.61 ¼ $34,213. A
simple payback period assuming a zero discount rate is thus 35 years. From themainmodel specificationModel (1) in Table 2,
the coefficient for the price variable g is �60.4. At the average price level of $0.1/kWh and average electricity consumption
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level of 37.8 kWh (from Table 1), the price elasticity is equal to g p
cons ¼ -60.4*0.1/37.8 ¼ -0.16 which is close to the estimated

rebound effects. We then test the equality statistically and the F-test (p value 0.5096) fails to reject that the coefficient for
solar electricity is equal to the estimated price elasticity.

Without considering the rebound effects, we can use the value of solar electricity as the change in consumer surplus when
consumers do not change their gross electricity consumption (no rebound). At the average electricity price and at the average
amount of daily solar electricity generation, such increase in consumer surplus is $3.03/day or $1106/year without consid-
ering solar rebound effects. The estimated difference in the consumer surplus change calculations between ignoring rebound
effects and considering rebound effects is 12%.
6.2. Environmental impact evaluation

We now use the results from hourly analysis to evaluate the environmental impact from solar panel adoption. Our
environmental impact evaluation is more precise because we consider solar rebound effects, which will partially offset the
environmental benefits from the amount of electricity generated by solar panels. Estimating savings in electricity delivered
from the grid at an hourly level can help better evaluate the environmental impact. Marginal emissions factors and marginal
damages of air emissions from electricity supply differ intra-day (Holland et al., 2016), and saved electricity from solar panels
will have different environmental impacts by hour of day. We use the annual average marginal emissions factors at an hourly
level for Western Electricity Coordinating Council (WECC), where Arizona is located, from Holland et al. (2016). The main
assumption is that electricity saved in a given location in WECC has the same impact as that saved elsewhere in WECC due to
electricity trading. We choose to look at the key types of air emissions including CO2, SO2, NOX and particulate matter. We
multiply the hourlymarginal damages by hourly saved electricity delivered from the grid. Table A10 in the Appendix show the
detailed calculation of the environmental impact. Results show that on average, each solar panel can reduce environmental
damage from CO2, SO2, NOX and particulate matter by a total of $122 per year (2000 U.S. dollar, or $178 in 2018 U.S. dollar).

We then calculate the environmental benefit from an average sized solar panel system in our sample if we use a naïve
model of electricity consumption that fails to consider solar rebound effects. In this case, the average hourly solar electricity is
equal to the amount of hourly reduction in electricity needed from the grid. We then multiply the hourly solar electricity by
the marginal damage factor for each environmental pollutant to obtain the overall environmental impact. Results are listed in
Table A11. We show that without considering solar rebound effects, the environmental benefit of an average sized solar panel
in Phoenix is $162 per year (2000 U.S. dollar) compared to the actual environmental benefit of $122 when we do consider
solar rebound effects. The difference in avoided environmental damage estimates between these two methods is statistically
significant based on the F-test (p value ¼ 0.0001). Such difference is also economically significant as illustrated by the
following calculation. For SRP's service territory there are about 20,000 residential solar consumers. Then for SRP's service
territory alone, ignoring rebound effects can over-estimate the environmental benefits of distributed solar panels by $0.8
million/year (calculated by 20,000*(162-122)). Assuming a lifetime of 20 years of solar panels and a 3% discount rate, the
difference in lifetime environmental benefit estimates is equal to $11.9 million. Difference of such magnitude in the expected
environmental benefit of solar panels suggests that ignoring or being unaware of the rebound effect will likely lead to
suboptimal policy. One immediate implication is when policy makers consider incentivizing distributed solar panel instal-
lation in the future, they should perhaps structure the incentives contingent on overall post-installation electricity con-
sumption in addition to post-installation solar electricity generation. In addition, when evaluating the contributions of
different technologies in carbon emissions reduction target and in reducing other environmental pollutants, the contribution
from residential distributed solar should be discounted from the contribution calculated by engineering estimates. This
means the cost-effectiveness of different technology options in terms of carbon reduction and thus the policy priority of
deploying other technologies relative to residential distributed solar will change. Furthermore, such difference implies that
policy makers should put more emphasis on cleaning the electric grid, meaning reducing the emission factors of utility-scale
electricity generation, so that the increase in electricity consumption due to solar rebound effects is associated with smaller
environmental and carbon footprints.
6.3. Literature review and our contributions

Our paper contributes to mainly two strands of energy and environmental economics literature. First, an emerging strand
of literature examines the impact of energy technology adoption on electric load profile and thus better estimates the private
and social benefits of such adoption (Qiu and Kahn, 2018a; Qiu and Patwardhan, 2018; Novan and Smith, 2018; Boomhower
and Davis, 2017). These studies focus on the impact of energy efficiency on hourly energy consumption profiles. Compared to
most existing studies that use aggregate monthly energy consumption data, using hourly data provides a more precise
evaluation of the private and social benefits of energy-efficiency measures because the marginal emissions factors, the ca-
pacity values, and the marginal cost of providing electricity vary throughout the day (Holland et al., 2016; Siler-Evans et al.,
2012). Our study joins a few other solar studies (e.g., Gowrisankaran et al., 2016;Mau and Jahn, 2006) by looking at the impact
of solar panel adoption on the electricity load profile using actual energy consumption data (and thus considering behavior
changes) and solar electricity generation, instead of just using simulated solar production data.
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Second, there has been little empirical evidence on the impact of solar panels on subsequent consumer electricity con-
sumption behavior, although there have been an increasing number of empirical studies examining the adoption decisions of
solar panels among residential consumers (e.g., Bollinger and Gillingham, 2012; Graziano and Gillingham, 2014; Noll et al.,
2014; Reeves et al., 2017; Liang et al., 2018a). The only four other papers that explore solar customer electricity consump-
tion behaviors at a household level using large sample of households are Deng and Newton (2017), La Nauze (2018), McKenna
et al. (2018) and Pless and McKenna (2018). We already discussed our contributions compared to Deng and Newton (2017) in
the introduction.

The working paper by La Nauze (2018) uses high frequency smart meter data from 2012 to 2013 of 528 households with
solar panels in Victoria, Australia to examine household electricity consumption in response to electricity price and income
from selling electricity to the grid. Our paper provides new contributions to the literature compared to La Nauze (2018) in the
following ways. First, our study has the actual hourly solar generation data for each solar panel system in our sample. In
contrast, the solar generation data and thus gross household consumption data in La Nauze (2018) are predicted or computed
solar generation data based on solar radiation, other weather data, solar panel attributes, and building attributes. Numerous
studies show that such computations can be different from the actual solar electricity generation data (Leloux et al., 2012;
Oozeki et al., 2010). Thus, our paper provides more precise analysis of solar customers' gross electricity consumption be-
haviors compared to La Nauze (2018). Second, our paper looks at both the extensive and intensive margin of solar panels. La
Nauze (2018) only has the data on solar customers (and lacking control customers) and thus focuses on the intensive margin.

McKenna et al. (2018) use annual solar generation for about 300 customers in UK and find that solar customers consume
about 45% of the electricity generated by solar panels. The working paper by Pless and McKenna (2018) uses 15-min interval
data for same sample of households to analyze the impact of providing in-home displays showing solar generation infor-
mation on solar customers' self-consumption of solar electricity generation (where self-consumption is the amount of solar-
generated electricity consumed by customers instead of sold back to the grid). Our study also differentiates from these two UK
studies in the following ways. First, we focus on gross energy consumption (electricity purchased from the grid e electricity
sold to the gridþ solar electricity generation) instead of self-consumption (solar electricity generatione electricity sold to the
grid). Gross consumption is needed in order to quantify precisely the rebound effect. Only looking at self-consumption is
insufficient for rebound effect analysis because if consumers increase their consumption bymore than the amount generated
from solar panels, then self-consumption cannot reflect that extra amount exceeding solar generation. Second, there are no
control customers (non-solar customers) in McKenna et al. (2018) and Pless and McKenna (2018).

7. Conclusions and policy implications

We examine the impact of solar panels on consumer electricity consumption behaviors. We estimate that when solar
electricity generation increases by 1 kWh, solar homes increase their total electricity consumption by 0.18 kWh. Our empirical
exercise is for Phoenix Arizona only. There are two unique attributes of this region: 1) high solar irradiance; 2) high cooling
needs but low heating needs. While our results have implications for other similarly warm and sunny regions such as Texas
and Florida, caution is needed when extending our results to regions with different climates. When solar irradiance is on
average very high which translates into a higher amount of solar electricity generation, consumers might be more likely to be
under the impression that they are facing lower average electricity price and thus more likely to have rebound effects. In
addition, when electricity consumption is high especially in the summer due to high cooling needs, the marginal electricity
consumption might be more elastic so the rebound effects could be higher in Arizona in the summer than other regions. For
example, when electricity consumption is high, on the margin, change in electricity consumption could be due to change in
thermostat settings rather than change in usage from other appliances such as dish washer, lighting, or refrigerator. Change in
thermostat settings is relatively easy and straightforward, making electricity consumption more elastic and rebound effects
larger.

Our results have important policy implications. First, in terms of evaluating the impacts of distributed solar panel
adoption, ignoring rebound effects can miscalculate these impacts. For the benefits to consumers, we demonstrate that
ignoring rebound effects can miscalculate the increase in consumer surplus by 12%. For environmental benefits, ignoring
rebound effects can over-estimate the values of solar panels in reducing the major environmental pollutants and carbon
emissions. When evaluating the contribution of distributed solar energy for helping states meet their Renewable Portfolio
Standard (RPS), rebound effects indicate that it will take more efforts to meet RPS than before when rebound effects were not
considered. Similarly for any other evaluations that involve the impact of distributed solar on energy consumption (e.g. such
as the economic evaluation in Holland et al. (2018)), rebound effects need to be considered. Currently systems simulation
models such as climate models and integrated assessment models (e.g. MARKAL) have considered rebound effects from
energy efficiency improvements. Our paper points out that rebound effects from solar panels should also be explicitly
considered in simulation models.

Second, as discussed in the Introduction, a key debate around distributed solar energy concerns the distributional impact
among different parties. This includes a potentially negative impact on electric utilities and non-solar customers. Solar
customers reduce their electricity payment to the utilities. For residential rate plans that do not have demand charges, utilities
rely on kWh sales to recover the cost of infrastructure needed to supply electricity to these residential customers. Thus,
reduced bills from solar customers mean that utilities need to increase their per kWh prices to recover upfront investment
(Johnson et al., 2017). This leads to discussion of subsidization of solar adopters (who are likely to already enjoy higher
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income) by non-solar customers (who are more likely to have lower income). Our finding of 18% rebound effects from solar
customers imply that when calculating the necessary increase in electricity rates and/or demand charge, utilities and policy
makers need to consider the increase in electricity consumption from solar customers. This implies that previously discussed
problem of “subsidizing the rich” should be mitigated by about 18%.

Third, our estimated payback period is more than 30 years without considering financial subsidies. A 30 þ year payback is
long enough to deter private investment in solar panels. Based on Census population statistics (Qiu et al., 2014), on average in
Arizona, people only stay in the same house for 9 years. Homeowners face the risk of howmuch the solar panels can be valued
in housing prices when they resell their houses. Our study implies that even in Arizona, where solar radiation is abundant,
distributed solar panels are still not financially attractive without government subsidies. The cost of solar panels still needs to
continue to drop or subsidies are still needed to accelerate adoption.

Fourth, we estimate that the environmental benefit on average per solar panel system is $178/year (2018 USD). Assuming a
lifetime of 20 years of solar panels and a 3% discount rate, the lifetime environmental benefit is then equal to $2650 (2018
USD). If the lifetime assumption increases to 30 years, the environmental benefit is $3491(2018 USD). The total social benefit
of distributed solar panel installation should also consider any benefits enjoyed by the electricity supply infrastructure and
also the knowledge spillover during the technology diffusion (Verdolini and Galeotti, 2011). Thus the subsidies to a solar panel
system in Arizona should at least be on the magnitude of $2600-$3400 (2018 USD), when considering only the externality
associated with carbon and environmental pollution. Currently the financial subsidies for a typical solar panel system are
$5000-$9000 (SEIA, 2014).
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Appendix A

Fig. A1. An example of solar customer electricity bills. Note: The text highlighted in the orange rectangle shows the gross electricity consumption, including both
grid-based consumption and consumption of solar electricity.
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Fig. A2. Characteristics of the solar panels analyzed in the study.
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Fig. A3. Check for common support assumption for propensity score matching results.

Fig. A4. The correlation between daily solar electricity generation and gross electricity consumption.

Fig. A5. Estimated spline functions of CDD and HDD.
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Fig. A6. Impact of solar electricity generation on daily electricity consumption; using only solar customers with both pre- and post-installation energy con-
sumption data. Notes: Blue dots indicate the value of coefficients for Electricity generated by a solar panel system for that month; Vertical blue lines indicate 95%
confidence intervals; Using propensity score matching.

Fig. A7. Monthly average electricity consumption for the control and treatment group and the installation dates for the treatment group; using only solar
customers with both pre- and post-installation energy consumption data.

Table A1
Balancing check for propensity score matching results

a
Mean
 %reduction
jbiasj
t-test
 V(T)/V(C)
Variable
 Unmatched/Matched
 Treated
 Control
 %bias
 t
 p>jtj
TOU pricing
 U
 0.50
 0.38
 22.8
 3.48
 0.001
 .

M
 0.50
 0.48
 3.3
 85.4
 0.36
 0.718
 .
Owner occupied
 U
 0.92
 0.71
 56.7
 7.18
 0
 .

M
 0.92
 0.91
 3.3
 94.2
 0.49
 0.625
 .
Household income
 U
 72.92
 58.24
 33.6
 5.16
 0
 1.09

M
 72.92
 74.59
 �3.8
 88.6
 �0.41
 0.682
 0.98
Square footage
 U
 2.08
 1.62
 58.5
 8.42
 0
 0.8

M
 2.08
 2.08
 �0.4
 99.3
 �0.05
 0.962
 1.18
# of persons in the household
 U
 2.49
 2.21
 23.5
 3.72
 0
 1.24

M
 2.49
 2.37
 10.4
 56
 1.12
 0.264
 1.12
Household head being white
 U
 0.77
 0.77
 0.9
 0.14
 0.887
 .

M
 0.77
 0.77
 1
 �3.4
 0.11
 0.914
 .
# of stories
 U
 1.20
 1.22
 �4.8
 �0.69
 0.489
 0.79

M
 1.20
 1.23
 �8.5
 �76.1
 �0.9
 0.37
 0.68
Vintage of house
 U
 30.35
 28.70
 9.7
 1.34
 0.179
 0.66

M
 30.35
 31.72
 �8.1
 16.5
 �0.94
 0.347
 0.79
Household head age
 U
 56.55
 56.56
 �0.1
 �0.02
 0.986
 0.87

M
 56.55
 56.48
 0.4
 �229.6
 0.05
 0.963
 1.05
Primary residence
 U
 0.95
 0.93
 6.9
 0.99
 0.323
 .

M
 0.95
 0.96
 �3.5
 49.1
 �0.44
 0.663
 .
(continued on next page)
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Table A1 (continued )
Mean
 %reduction
jbiasj
t-test
 V(T)/V(C) a
Variable
 Unmatched/Matched
 Treated
 Control
 %bias
 t
 p>jtj
Swimming pool
 U
 0.44
 0.26
 38.8
 6.2
 0
 .

M
 0.44
 0.49
 �11.4
 70.7
 �1.18
 0.239
 .
Programmable thermostats
 U
 0.75
 0.58
 34.7
 4.97
 0
 .

M
 0.75
 0.77
 �5.3
 84.8
 �0.63
 0.527
 .
Single family house
 U
 0.98
 0.77
 69.7
 8.01
 0
 .

M
 0.98
 0.99
 �2.6
 96.2
 �0.82
 0.412
 .
a Variance ratio.

Table A2
Balancing check for coarsened exact matching results
Solar customer
 Balancing check
Variable
 Obs
 Mean
 Std. Dev.
 Min
 Max
 SMD
 VR
Owner occupied
 116
 0.97
 0.18
 0
 1
 0.10
 1.87

TOU pricing
 116
 0.53
 0.50
 0
 1
 0.13
 1.00

Household income
 116
 70.34
 37.37
 3.75
 150
 0.10
 1.06

Square footage
 116
 2.04
 0.59
 0.75
 3
 0.08
 0.99

Number of persons in the household
 116
 2.13
 1.09
 1.5
 5
 0.23
 1.51

Household head being white
 113
 0.89
 0.31
 0
 1
 0.22
 2.10

Number of stories
 114
 1.12
 0.33
 1
 2
 0.18
 1.67

Vintage of the house in years
 116
 27.93
 18.79
 7.5
 50
 0.16
 1.09

Age of household head
 116
 58.53
 12.60
 25
 75
 0.29
 1.43

Primary residence
 116
 0.96
 0.20
 0
 1
 0.12
 1.94

Having a swimming pool
 116
 0.42
 0.50
 0
 1
 0.13
 1.06

Single family house
 115
 1
 0
 1
 1
 NyA
 NyA

Having programmable thermostats
 116
 0.79
 0.41
 0
 1
 0.10
 0.89

Non-solar customer

Variable
 Obs
 Mean
 Std. Dev.
 Min
 Max

Owner occupied
 275
 0.98
 0.13
 0
 1

TOU pricing
 275
 0.47
 0.50
 0
 1

Household income
 275
 66.55
 36.37
 3.75
 150

Square footage
 275
 1.99
 0.59
 0.75
 3

Number of persons in the household
 275
 1.89
 0.89
 1.5
 5

Household head being white
 273
 0.95
 0.21
 0
 1

Number of stories
 273
 1.07
 0.25
 1
 2

Vintage of the house in years
 275
 30.87
 18.00
 7.5
 50

Age of household head
 275
 61.87
 10.52
 25
 75

Primary residence
 275
 0.98
 0.15
 0
 1

Having a swimming pool
 275
 0.36
 0.48
 0
 1

Single family house
 274
 1
 0
 1
 1

Having programmable thermostats
 275
 0.75
 0.43
 0
 1
Table A3
Monthly level analysis to examine the impact of solar electricity generation on monthly electricity consumption

PSM sample; All rate plans; Using all time periods for both control and treatment groups
Solar electricity
 0.144***
(0.035)
Price
 �2405.203**
(1090.435)
Constant
 1172.067***
(79.121)
CDD
 Yes

HDD
 Yes

Fixed effects

Account
 Yes

Year of sample
 Yes

Month of year
 Yes

N
 21,478
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Table A4
Results using other forms to control for CDD and HDD (with propensity score matching)
Percentile spline
 Cubic equation
Solar electricity
 0.183***
 0.182***

(0.035)
 (0.035)
Price
 �60.945**
 �60.646**

(25.034)
 (25.033)
Holiday
 0.522*
 0.543*

(0.314)
 (0.314)
Constant
 38.372***
 38.624***

(1.722)
 (1.722)
CDD
 Percentile spline
 Cubic equation

HDD
 Percentile spline
 Cubic equation

Fixed effects

Account year
 Yes
 Yes

Month of year
 Yes
 Yes

Day of month
 Yes
 Yes

Day of week
 Yes
 Yes

N
 619,788
 619,788
Table A5
Impact of solar electricity generation on daily electricity consumption
all rate
PSM
 CEM
Solar Electricity*MONTH1
 0.061
 0.094

(0.055)
 (0.084)
Solar Electricity*MONTH2
 0.088**
 0.102*

(0.044)
 (0.054)
Solar Electricity*MONTH3
 0.105***
 0.089*

(0.038)
 (0.046)
Solar Electricity*MONTH4
 0.129***
 0.117***

(0.036)
 (0.041)
Solar Electricity*MONTH5
 0.136***
 0.133***

(0.033)
 (0.045)
Solar Electricity*MONTH6
 0.211***
 0.209***

(0.044)
 (0.075)
Solar Electricity*MONTH7
 0.181***
 0.155**

(0.046)
 (0.077)
Solar Electricity*MONTH8
 0.220***
 0.199***

(0.045)
 (0.076)
Solar Electricity*MONTH9
 0.208***
 0.201***

(0.040)
 (0.066)
Solar Electricity*MONTH10
 0.206***
 0.205***

(0.036)
 (0.050)
Solar Electricity*MONTH11
 0.108**
 0.118*

(0.047)
 (0.061)
Solar Electricity*MONTH12
 0.041
 0.075

(0.058)
 (0.088)
Average daily electricity price
 �55.807**
 �72.811**

(24.937)
 (33.663)
Holiday
 0.977***
 0.832**

(0.285)
 (0.382)
Constant
 39.489***
 36.759***

(1.758)
 (2.495)
CDD
 Yes
 Yes

HDD
 Yes
 Yes

Fixed effects

Account year
 Yes
 Yes

Month of year
 Yes
 Yes

Day of month
 Yes
 Yes
(continued on next page)
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Table A5 (continued )
all rate
PSM
 CEM
Day of week
 Yes
 Yes

N
 619,788
 504,795
Table A6
Analysis using only solar customers with both pre- and post-installation energy consumption data
Model number
 Estimating response to solar electricity generation
 Checking pre-installation energy trend
1
 2
Solar Electricity
 0.146**
 SOLAR
 �0.170

(0.06)
 (0.279)
Average daily electricity price
 �96.710**
 Average daily electricity price
 �355.149***

(45.444)
 (12.557)
Constant
 42.018***
 Constant
 61.947***

(2.878)
 (1.642)
CDD
 Yes
 CDD
 Yes

HDD
 Yes
 HDD
 Yes

Fixed effects
 Control

Account year
 Yes
 Year of sample
 Yes

Month of year
 Yes
 Month of year
 Yes

Day of month
 Yes
 Day of month
 Yes

Day of week
 Yes
 Day of week
 Yes

N
 182,706
 N
 47,192
Table A7
Robustness checks
No price P
rice*TOU
 Solar
electricity*TOU

M
achine learning
 Solar irradiance
check using non-
solar consumers only
PSM C
EM P
SM C
EM
 PSM C
ART
 LASSO R
idge
 PSM
 PSM
Solar electricity
 0.186*** 0
.176*** 0
.181*** 0
.169***
 0.191** 0
.184***
 0.161*** 0
.162***

(0.036) (
0.059) (
0.035) (
0.058)
 (0.077) (
0.033)
 (0.041) (
0.041)
Solar electricity*TOU
 �0.099

(0.070)
Solar irradiance (DNI)
 0.001

(0.001)
Hypothetical solar
electricity
0.032

(0.022)
Electricity price
 �
94.492** �
109.124**
 �57.117** �
52.393***
 �88.253**
 �89.793**

(
38.799) (
54.832)
 (24.589) (
16.746)
 (35.086)
 (44.851)
Price*TOU
 8
8.865** 8
2.802

(
38.468) (
52.908)
Holiday
 0.975*** 1
.142*** 0
.904*** 0
.933**
 0.593* 0
.507*
 0.555**
 0.662***

(0.248) (
0.350) (
0.266) (
0.369)
 (0.310) (
0.270)
 (0.229)
 (0.198)
Constant
 34.894*** 3
1.547*** 3
8.622*** 3
6.206***
 38.793*** 3
8.448***
 39.774***
 36.191***

(0.524) (
0.642) (
1.619) (
2.227)
 (1.705) (
1.122)
 (2.515)
 (3.351)
CDD
 Yes Y
es Y
es Y
es
 Yes Y
es
 Yes
 Yes

HDD
 Yes Y
es Y
es Y
es
 Yes Y
es
 Yes
 Yes

Fixed effects

Account year
 Yes Y
es Y
es Y
es
 Yes Y
es
 Yes
 Yes

Month of year
 Yes Y
es Y
es Y
es
 Yes Y
es
 Yes
 Yes

Day of month
 Yes Y
es Y
es Y
es
 Yes Y
es
 Yes
 Yes

Day of week
 Yes Y
es Y
es Y
es
 Yes Y
es
 Yes
 Yes

N
 619,788 5
04,795 6
19,788 5
04,795
 619,788 4
,308,092
 5,414,752 5
,414,752
 368,842
 321,361
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Table A8
Balancing check for machine learning CART-based matching (using ks stopping rule)
Treatment
 Control
 std.eff.sz
 stat
 p
 ks
 ks.pval
Mean
 Std. Dev.
 Mean
 Std. Dev.
TOU pricing
 0.496
 0.501
 0.504
 0.5
 �0.015
 �0.224
 0.823
 0.008
 1

Owner occupied
 0.922
 0.269
 0.917
 0.276
 0.02
 0.3
 0.764
 0.005
 1

Household income
 72.92
 44.653
 73.051
 44.549
 �0.003
 �0.042
 0.966
 0.005
 1

Square footage
 2.078
 0.731
 2.07
 0.719
 0.011
 0.156
 0.876
 0.015
 1

Number of persons in the household
 2.492
 1.268
 2.482
 1.258
 0.008
 0.115
 0.909
 0.004
 1

Household head being white
 0.775
 0.419
 0.779
 0.415
 �0.01
 �0.151
 0.88
 0.004
 1

Number of stories
 1.197
 0.409
 1.195
 0.406
 0.005
 0.071
 0.944
 0.002
 1

Vintage of the house in years
 30.348
 15.119
 30.242
 15.149
 0.007
 0.102
 0.918
 0.009
 1

Age of household head
 56.545
 14.657
 56.641
 14.611
 �0.007
 �0.094
 0.925
 0.008
 1

Primary residence
 0.951
 0.217
 0.953
 0.211
 �0.012
 �0.18
 0.857
 0.003
 1

Having a swimming pool
 0.439
 0.497
 0.436
 0.496
 0.006
 0.087
 0.931
 0.003
 1

Having programmable thermostats
 0.746
 0.436
 0.74
 0.438
 0.012
 0.184
 0.854
 0.005
 1

Single family house
 0.004
 0.064
 0.004
 0.066
 �0.004
 �0.057
 0.955
 0
 1
Table A9
Regression results for the impact of solar panel adoption on hourly delivered electricity
Summer
 Winter
PSM
 CEM
 PSM
 CEM
Solar*Hour1
 �0.020
 �0.263*
 �0.240***
 �0.324***

(0.093)
 (0.134)
 (0.069)
 (0.083)
Solar*Hour2
 �0.027
 �0.256*
 �0.263***
 �0.341***

(0.095)
 (0.135)
 (0.070)
 (0.086)
Solar*Hour3
 �0.055
 �0.254*
 �0.272***
 �0.330***

(0.096)
 (0.138)
 (0.070)
 (0.084)
Solar*Hour4
 �0.038
 �0.164
 �0.270***
 �0.300***

(0.096)
 (0.138)
 (0.071)
 (0.088)
Solar*Hour5
 �0.008
 �0.023
 �0.259***
 �0.190**

(0.097)
 (0.140)
 (0.071)
 (0.088)
Solar*Hour6
 �0.034
 �0.014
 �0.278***
 �0.139

(0.095)
 (0.137)
 (0.071)
 (0.094)
Solar*Hour7
 �0.216**
 �0.133
 �0.283***
 �0.068

(0.095)
 (0.137)
 (0.074)
 (0.099)
Solar*Hour8
 �0.586***
 �0.452***
 �0.370***
 �0.133

(0.100)
 (0.144)
 (0.067)
 (0.098)
Solar*Hour9
 �1.011***
 �0.880***
 �0.725***
 �0.479***

(0.101)
 (0.143)
 (0.068)
 (0.080)
Solar*Hour10
 �1.366***
 �1.246***
 �0.999***
 �0.794***

(0.102)
 (0.141)
 (0.072)
 (0.076)
Solar*Hour11
 �1.673***
 �1.557***
 �1.146***
 �0.981***

(0.103)
 (0.145)
 (0.073)
 (0.082)
Solar*Hour12
 �1.926***
 �1.800***
 �1.190***
 �1.031***

(0.105)
 (0.150)
 (0.074)
 (0.086)
Solar*Hour13
 �2.126***
 �1.964***
 �1.193***
 �1.015***

(0.107)
 (0.154)
 (0.074)
 (0.084)
Solar*Hour14
 �2.225***
 �2.040***
 �1.159***
 �0.979***

(0.105)
 (0.147)
 (0.072)
 (0.080)
Solar*Hour15
 �2.217***
 �2.068***
 �1.095***
 �0.933***

(0.106)
 (0.144)
 (0.070)
 (0.080)
Solar*Hour16
 �2.049***
 �1.925***
 �0.996***
 �0.836***

(0.103)
 (0.136)
 (0.066)
 (0.077)
Solar*Hour17
 �1.573***
 �1.535***
 �0.805***
 �0.667***

(0.101)
 (0.128)
 (0.060)
 (0.069)
Solar*Hour18
 �0.855***
 �0.884***
 �0.447***
 �0.372***

(0.101)
 (0.128)
 (0.060)
 (0.067)
Solar*Hour19
 �0.234**
 �0.321**
 �0.213***
 �0.168**

(0.101)
 (0.125)
 (0.063)
 (0.075)
Solar*Hour20
 �0.003
 �0.069
 �0.187***
 �0.108

(0.097)
 (0.126)
 (0.064)
 (0.078)
(continued on next page)



Y. Qiu et al. / Journal of Environmental Economics and Management 96 (2019) 310e341334
Table A9 (continued )
Summer
 Winter
PSM
 CEM
 PSM
 CEM
Solar*Hour21
 �0.017
 �0.129
 �0.183***
 �0.124

(0.095)
 (0.131)
 (0.062)
 (0.077)
Solar*Hour22
 �0.026
 �0.217*
 �0.206***
 �0.184**

(0.092)
 (0.123)
 (0.064)
 (0.075)
Solar*Hour23
 �0.008
 �0.262*
 �0.245***
 �0.279***

(0.094)
 (0.134)
 (0.066)
 (0.081)
Solar*Hour24
 �0.026
 �0.283**
 �0.245***
 �0.308***

(0.092)
 (0.132)
 (0.066)
 (0.079)
Marginal electricity price
 �3.317***
 �4.103***
 �4.969***
 �6.440***

(0.370)
 (0.468)
 (0.863)
 (1.171)
Holiday
 0.003
 �0.001
 0.044***
 0.039***

(0.010)
 (0.012)
 (0.006)
 (0.007)
Constant
 1.058***
 1.121***
 1.556***
 1.606***

(0.073)
 (0.082)
 (0.075)
 (0.108)
CDD
 Yes
 Yes
 Yes
 Yes

HDD
 Yes
 Yes
 Yes
 Yes

Fixed effects

Account-year
 Yes
 Yes
 Yes
 Yes

Month of year
 Yes
 Yes
 Yes
 Yes

Day of week
 Yes
 Yes
 Yes
 Yes

Hour of day
 Yes
 Yes
 Yes
 Yes

N
 7,856,493
 4,661,933
 7,588,691
 4,500,138
Clustered standard errors in parentheses; *p < 0.1 **p < 0.05 ***p < 0.01.

Table A10
Environmental impact evaluation with rebound effects

a
Hour
 Estimated coefficient for solar panel (delta kWh per
hour)

M
arginal damages for emissions
 Annual savings from reduced
emissions by a typical solar panel
system by hour
CO2

($/kWh)
S
k

O2($/
Wh)

N
k

OX($/
Wh)
PMb

($/kWh)

CO2

($)
S
O2($) N
OX($) P
M ($)
1
 �0.183 0
.0204 0
.0055 0
.0021
 0.0007
 �1.36 �
0.37 �
0.14 �
0.05

2
 �0.196 0
.021 0
.0054 0
.0021
 0.0009
 �1.50 �
0.39 �
0.15 �
0.06

3
 �0.215 0
.0183 0
.0049 0
.002
 0.0005
 �1.44 �
0.38 �
0.16 �
0.04

4
 �0.205 0
.0208 0
.0052 0
.0022
 0.0007
 �1.56 �
0.39 �
0.16 �
0.05

5
 �0.183 0
.0207 0
.0049 0
.0021
 0.0009 �
1.38 �
0.33 �
0.14 �
0.06

6
 �0.203 0
.0176 0
.0038 0
.0018
 0.0008 �
1.30 �
0.28 �
0.13 �
0.06

7
 �0.291 0
.0148 0
.0035 0
.0016
 0.0004 �
1.57 �
0.37 �
0.17 �
0.04

8
 �0.515 0
.0153 0
.0034 0
.0015 0
.0005 �
2.88 �
0.64 �
0.28 �
0.09

9
 �0.904 0
.0153 0
.0036 0
.0014 0
.0005 �
5.05 �
1.19 �
0.46 �
0.16

10
 �1.22 0
.0151 0
.0034 0
.0014
 0.0004
 �6.72 �
1.51 �
0.62 �
0.18

11
 �1.45 0
.0149 0
.003 0
.0013
 0.0004
 �7.89 �
1.59 �
0.69 �
0.21

12
 �1.603 0
.0148 0
.0029 0
.0013
 0.0004
 �8.66 �
1.70 �
0.76 �
0.23

13
 �1.709 0
.0142 0
.0027 0
.0013
 0.0003
 �8.86 �
1.68 �
0.81 �
0.19

14
 �1.742 0
.014 0
.0026 0
.0013
 0.0003 �
8.90 �
1.65 �
0.83 �
0.19

15
 �1.716 0
.014 0
.0024 0
.0013
 0.0003 �
8.77 �
1.50 �
0.81 �
0.19

16
 �1.594 0
.0139 0
.0025 0
.0013
 0.0003 �
8.09 �
1.45 �
0.76 �
0.17

17
 �1.265 0
.0136 0
.0026 0
.0013 0
.0004 �
6.28 �
1.20 �
0.60 �
0.18

18
 �0.725 0
.0133 0
.0024 0
.0012 0
.0003 �
3.52 �
0.64 �
0.32 �
0.08

19
 �0.289 0
.0132 0
.0025 0
.0012 0
.0002 �
1.39 �
0.26 �
0.13 �
0.02

20 �
0.158 0
.014 0
.0026 0
.0013
 0.0003
 �0.81 �
0.15 �
0.07 �
0.02

21
 �0.162 0
.0149 0
.0032 0
.0014
 0.0004
 �0.88 �
0.19 �
0.08 �
0.02

22
 �0.178 0
.0167 0
.0039 0
.0015
 0.0005
 �1.08 �
0.25 �
0.10 �
0.03

23
 �0.185 0
.0181 0
.0045 0
.0017
 0.0006
 �1.22 �
0.30 �
0.11 �
0.04

24
 �0.191 0
.0198 0
.0051 0
.002
 0.0007 �
1.38 �
0.36 �
0.14 �
0.05

Total
 $
122.34/

year
Notes.
a The average annual marginal damages for emissions in WECC are obtained from (Holland et al., 2016).
b PM: particulate matter.
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Table A11
Environmental impact evaluation without rebound effects using solar electricity generation as the reduction of grid-based electricity consumption

a
Hour N
egative of average hourly solar electricity (kWh/hr) M
arginal damages for emissions
 Annual savings from reduced
emissions by a typical solar panel
system by hour
CO2 ($/kWh)
 SO2($/
kWh)
NOX($/
kWh)

P
Mb ($/kWh)
 CO2 ($) S
O2($) N
OX($) P
M ($)
1 0
.000 0
.0204
 0.0055
 0.0021 0
.0007
 0.00 0
.00 0
.00 0
.00

2 0
.000 0
.021
 0.0054
 0.0021 0
.0009
 0.00 0
.00 0
.00 0
.00

3 0
.000 0
.0183
 0.0049
 0.002 0
.0005
 0.00 0
.00 0
.00 0
.00

4 0
.000 0
.0208
 0.0052
 0.0022 0
.0007
 0.00 0
.00 0
.00 0
.00

5 0
.000 0
.0207
 0.0049
 0.0021 0
.0009
 0.00 0
.00 0
.00 0
.00

6 �
0.006 0
.0176
 0.0038
 0.0018 0
.0008
 �0.04 �
0.01 0
.00 0
.00

7 �
0.124 0
.0148
 0.0035
 0.0016 0
.0004
 �0.67 �
0.16 �
0.07 �
0.02

8 �
0.572 0
.0153
 0.0034
 0.0015 0
.0005
 �3.20 �
0.71 �
0.31 �
0.10

9 �
1.376 0
.0153
 0.0036
 0.0014 0
.0005
 �7.68 �
1.81 �
0.70 �
0.25

10 �
2.188 0
.0151
 0.0034 0
.0014 0
.0004
 �12.06 �
2.71 �
1.12 �
0.32

11 �
2.794 0
.0149
 0.003 0
.0013 0
.0004
 �15.20 �
3.06 �
1.33 �
0.41

12 �
3.154 0
.0148
 0.0029 0
.0013 0
.0004
 �17.04 �
3.34 �
1.50 �
0.46

13 �
3.262 0
.0142
 0.0027 0
.0013 0
.0003
 �16.91 �
3.22 �
1.55 �
0.36

14 �
3.124 0
.014
 0.0026 0
.0013 0
.0003
 �15.96 �
2.96 �
1.48 �
0.34

15 �
2.746 0
.014
 0.0024 0
.0013 0
.0003
 �14.03 �
2.41 �
1.30 �
0.30

16 �
2.121 0
.0139
 0.0025
 0.0013 0
.0003
 �10.76 �
1.94 �
1.01 �
0.23

17 �
1.315 0
.0136
 0.0026
 0.0013 0
.0004
 �6.53 �
1.25 �
0.62 �
0.19

18 �
0.542 0
.0133
 0.0024
 0.0012 0
.0003
 �2.63 �
0.48 �
0.24 �
0.06

19 �
0.120 0
.0132
 0.0025
 0.0012 0
.0002
 �0.58 �
0.11 �
0.05 �
0.01

20 �
0.006 0
.014
 0.0026 0
.0013 0
.0003
 �0.03 �
0.01 0
.00 0
.00

21 0
.000 0
.0149
 0.0032 0
.0014 0
.0004
 0.00 0
.00 0
.00 0
.00

22 0
.000 0
.0167
 0.0039 0
.0015 0
.0005
 0.00 0
.00 0
.00 0
.00

23 0
.000 0
.0181
 0.0045 0
.0017 0
.0006
 0.00 0
.00 0
.00 0
.00

24 0
.000 0
.0198
 0.0051 0
.002 0
.0007
 0.00 0
.00 0
.00 0
.00

Total
 $
161.83/

year
Notes.
a The average annual marginal damages for emissions in WECC are obtained from (Holland et al., 2016).
b PM: particulate matter.
Appendix B. Results of other model specifications

Impact on hourly electricity delivered from an additional 1 kW system

In order to examine the impact from an additional 1 kW (AC) solar installation on hourly electricity delivered to the
customer, we run the following regression:

kWhich ¼ aiy þ
X24
H¼1

bACH Solar panelih*KWACih*IH þ gpih þ f ðHDDihÞqþ f ðCDDihÞhþ dHolidayd þ Hour of day

þ Day of monthþ Day of weekþmonth of year þ year of sampleþ εih

AC
where KWACih is the size of solar panel system with the unit kW. bH measures the impact of additional 1 kW (AC) of solar
panel system for each hour of day. This regression model looks at the impact of an additional kW solar system on hourly
electricity needed from the grid. Figure B1 shows the results of the coefficients that measure the change in hourly kWh due to
an additional 1 kW solar panel system. Detailed regression results are listed in Table B1. We only run the equation on the
matched sample using propensity score matching and for all rates. Figure B1 shows similar results compared to Fig. 6. The
magnitude of hourly kWh reduction is smaller, given that it is now only the reduction from an additional 1 kW system,
whereas on average the size of solar panel systems in our dataset is 6.6 kW (AC). During the summer, the maximum reduction
is �0.32 kWh/hr/kWAC. If wemultiply this by the average system size (0.32*6.6 ¼ 2.1), we obtain similar results compared to
2.2 kWh/hr from directly examining the solar panel system adoption in Fig. 6.
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Fig. B1. Impact of an additional 1 kW solar system on hourly electricity delivered from the grid. Notes: Blue dots indicate the value of coefficients for Solar panel
adoption*kW for that hour; Vertical blue lines indicate 95% confidence intervals.

Table B1
Impact of 1 additional kW system size on hourly delivered electricity
All rate plans
 Summer
 Winter
Solar*Hour*kWAC1
 �0.009
 �0.028***

(0.015)
 (0.011)
Solar*Hour*kWAC2
 �0.011
 �0.032***

(0.015)
 (0.011)
Solar*Hour*kWAC3
 �0.014
 �0.031***

(0.015)
 (0.011)
Solar*Hour*kWAC4
 �0.015
 �0.031***

(0.015)
 (0.011)
Solar*Hour*kWAC5
 �0.011
 �0.029***

(0.014)
 (0.010)
Solar*Hour*kWAC6
 �0.021
 �0.032***

(0.013)
 (0.010)
Solar*Hour*kWAC7
 �0.046***
 �0.024**

(0.014)
 (0.012)
Solar*Hour*kWAC8
 �0.101***
 �0.043***

(0.015)
 (0.010)
Solar*Hour*kWAC9
 �0.159***
 �0.140***

(0.014)
 (0.010)
Solar*Hour*kWAC10
 �0.206***
 �0.101***

(0.013)
 (0.010)
Solar*Hour*kWAC11
 �0.247***
 �0.160***

(0.013)
 (0.010)
Solar*Hour*kWAC12
 �0.280***
 �0.166***

(0.013)
 (0.010)
Solar*Hour*kWAC13
 �0.307***
 �0.167***

(0.014)
 (0.010)
Solar*Hour*kWAC14
 �0.317***
 �0.154***

(0.015)
 (0.009)
Solar*Hour*kWAC15
 �0.315***
 �0.163***

(0.015)
 (0.009)
Solar*Hour*kWAC16
 �0.293***
 �0.141***

(0.014)
 (0.009)
Solar*Hour*kWAC17
 �0.220***
 �0.111***

(0.015)
 (0.008)
Solar*Hour*kWAC18
 �0.108***
 �0.054***

(0.016)
 (0.008)
Solar*Hour*kWAC19
 �0.013
 �0.016*

(0.017)
 (0.009)
Solar*Hour*kWAC20
 0.020
 �0.012

(0.016)
 (0.009)
Solar*Hour*kWAC21
 0.014
 �0.013
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Table B1 (continued )
All rate plans
 Summer
 Winter
(0.016)
 (0.009)

Solar*Hour*kWAC22
 0.004
 �0.020**
(0.015)
 (0.009)

Solar*Hour*kWAC23
 �0.002
 �0.030***
(0.015)
 (0.010)

Solar*Hour*kWAC24
 �0.008
 �0.031***
(0.015)
 (0.010)

Marginal electricity price
 �3.400***
 �4.717***
(0.368)
 (0.842)

Holiday
 0.003
 �0.025***
(0.010)
 (0.006)

Constant
 1.080***
 0.100***
(0.073)
 (0.019)

CDD
 Yes
 Yes

HDD
 Yes
 Yes

Fixed effects

Account year
 Yes
 Yes

Month of year
 Yes
 Yes

Day of week
 Yes
 Yes

Hour of day
 Yes
 Yes

N
 7,856,493
 7,588,691
Clustered standard errors in parentheses; *p < 0.1 **p < 0.05 ***p < 0.01.
Impact on daily net purchase from the grid

Herewe analyze the impact of solar adoption on net electricity purchase from the grid kWhd, which is electricity delivered
from the grid minus the electricity sold by the customer to the grid. We do this analysis at the daily level using register read
meter data. The reduction in net purchase is after rebound effects, meaning that it reflects not only the amount of electricity
generated by solar panels, but also the change in customer electricity consumption behavior, such as rebound effects and
load-shifting behaviors. We run the following panel regression:

kWhid ¼ aiy þ
X12
M¼1

bMSolar panelid*IM þ gpid þ f ðHDDidÞqþ f ðCDDidÞhþ dHolidayd þ Day of monthþ Day of week

þmonth of year þ εid

whereM indicates month of year; d indicates day of sample; IM is an indicator variable for eachmonth of year. The coefficients
of bM measure the impact by month and are illustrated in Figure B2. Results of all coefficients for the regressions are listed in
Table B2 in the Appendix. Again PSM and CEM generate similar results while we focus our discussion on PSM. The impact on
net electricity purchase is statistically significant in all months, ranging from �26 to �42 kWh/day. The largest reduction in
net purchase happens in May.

In order to examine the impact on electricity consumption from an additional 1 kW (AC) solar installation, we run the
following regression:

kWhid ¼ aiy þ bACSolar panelid *KWACid þ gpid þ f ðHDDidÞqþ f ðCDDidÞhþ dHolidayd þ Day of monthþ Day of week

þmonth of year þ εid

AC
where KWACid is the size of solar panel systemwith the unit kW. b measures the impact of an additional 1 kW (AC) of solar
panel system. Results are listed in Table B3 in the Appendix. In the summer, 1 additional kW can reduce daily net electricity
purchase by about 4.9 kWh; in winter months, that reduction is 3.9 kWh per day.
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Fig. B2. Impact of solar panel adoption on daily net electricity purchased from the grid. Notes: Blue dots indicate the value of coefficients for Solar panel adoption
for that month; Vertical blue lines indicate 95% confidence intervals.

Table B2
Impact of solar adoption on daily net electricity purchase from the grid
All rate
CEM
 PSM
Solar*Month1
 �26.643***
 �27.190***

(3.024)
 (2.077)
Solar*Month2
 �31.515***
 �31.441***

(2.917)
 (2.068)
Solar*Month3
 �37.896***
 �37.292***

(2.915)
 (2.080)
Solar*Month4
 �41.024***
 �41.292***

(2.873)
 (2.070)
Solar*Month5
 �42.234***
 �43.129***

(2.638)
 (1.944)
Solar*Month6
 �40.470***
 �41.076***

(2.686)
 (2.092)
Solar*Month7
 �40.907***
 �41.379***

(2.913)
 (2.319)
Solar*Month8
 �37.993***
 �38.794***

(2.679)
 (2.126)
Solar*Month9
 �34.645***
 �35.289***

(2.367)
 (1.848)
Solar*Month10
 �30.284***
 �30.483***

(2.442)
 (1.773)
Solar*Month11
 �28.624***
 �28.505***

(2.702)
 (1.938)
Solar*Month12
 �25.838***
 �26.468***

(2.809)
 (1.992)
Average daily electricity price
 �75.382**
 �61.618**

(33.158)
 (24.676)
Holiday
 0.276
 0.322

(0.364)
 (0.273)
Constant
 38.691***
 42.493***

(2.524)
 (1.816)
CDD
 Yes
 Yes

HDD
 Yes
 Yes

Fixed effects

Account year
 Yes
 Yes

Month of year
 Yes
 Yes

Day of month
 Yes
 Yes

Day of week
 Yes
 Yes

N
 504,795
 619,788
Clustered standard errors in parentheses; *p < 0.1 **p < 0.05 ***p < 0.01.
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Table B3
Impact of 1 additional kW solar panel system on daily net electricity purchase from the grid
all months
 summer
 winter
Solar * kWAC
 �4.505***
 �4.881***
 �3.949***

(0.245)
 (0.411)
 (0.286)
Average daily electricity price
 �43.538*
 �42.001***
 �127.957***

(25.287)
 (12.011)
 (32.574)
Holiday
 2.408***
 1.650***
 2.341***

(0.323)
 (0.401)
 (0.266)
Constant
 41.460***
 41.361***
 46.006***

(1.805)
 (1.648)
 (2.537)
CDD
 Yes
 Yes
 Yes

HDD
 Yes
 Yes
 Yes

Fixed effects

Account year
 Yes
 Yes
 Yes

Month of year
 Yes
 Yes
 Yes

Day of month
 Yes
 Yes
 Yes

Day of week
 Yes
 Yes
 Yes

N
 619,788
 313,821
 305,967
Clustered standard errors in parentheses; *p < 0.1 **p < 0.05 ***p < 0.01.

Impact by leasing or owning of the solar panels

We have the information on whether a solar panel system is leased or owned by the adopter. Theoretically, leasing or
owning should not influence the impact of solar adoption on consumption behavior. We run the regression models adding
interaction terms between solar variable and leasing/own variable. Results are listed in Table B4.We are interested in financial
gain from leasing or owning panels, so we focus on the impact on net electricity purchase. When not controlling for system
size, panel systems that are leased can reduce a larger amount of net electricity purchase. However, after controlling for
system size, leasing and owning do not show a statistically significant difference. This is because leasing is associated with a
larger size of panel system as shown in Figure B3.

Fig. B3. Solar panel sizes by financing mode.

Impact by cost of panel

If higher per kWpanel cost is associatedwith higher quality (thus higher efficiency) of solar panels, thenwemight expect a
higher impact from an additional 1 kW solar installation for higher-cost panels. To test this empirically, we run regression
model with interaction terms between cost of panel, solar panel installation, and size of solar panels. Results are listed in Table
B4 and confirm our hypothesis. It shows that higher per kW cost is associatedwith larger reduction in net electricity purchase.

Impact by household attributes

To analyze how the solar-panel's impacts on electricity consumption Change with respect to household attributes, we add
interaction terms between solar electricity generation and attributes in regression models. Results are listed in Table B5. The
coefficients of the interaction terms are positive for household income, number of persons in a household, square footage, and
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owner occupied home, indicating that these types of households increasemore of their electricity consumption in response to
1 kWh additional solar electricity generation. For homes with older household heads, the increase in electricity consumption
in response to solar electricity generation is less than those with younger heads.

Table B4
Analysis of financing mode, panel cost, and environmental ideology
Financing mode
 Cost
 Environmental ideology
Dependent variable
 Daily net electricity purchase from the grid
 Daily net electricity purchase from
the grid
Daily gross consumption
SOLAR a
 �18.363*** S
OLAR
*kWAC
�4.094***
 SOLAR
*kWAC
�3.207***
 SOLAR
 6.982
(2.859)
 (0.736)
 (0.892)
 (4.383)

SOLAR*
LEASE
�20.885*** S
OLAR*kWAC
*LEASE
�0.798
 SOLAR
*kWAC*COST
�0.340*
 SOLAR* LIBERAL
 �21.578*
(3.701)
 (0.778)
 (0.187)
 (11.279)

Average daily electricity

price

�24.159 A
verage daily electricity

price

�24.075
 Average daily electricity

price

�8.066
 Average daily electricity

price

�44.655**
(22.436)
 (22.457)
 (33.12)
 (18.729)

Holiday
 1.277*** H
oliday
 1.244**
 Holiday
 1.477***
 Holiday
 0.736
(0.472)
 (0.478)
 (0.328)
 (0.487)

Constant
 48.647*** C
onstant
 46.100***
 Constant
 45.364***
 Constant
 42.055***
(1.993)
 (1.944)
 (2.561)
 (1.271)

CDD
 Yes C
DD
 Yes
 CDD
 Yes
 CDD
 Yes

HDD
 Yes H
DD
 Yes
 HDD
 Yes
 HDD
 Yes

Fixed effects

Account year
 Yes A
ccount year
 Yes
 Account year
 Yes
 Account year
 Yes

Month of year
 Yes M
onth of year
 Yes
 Month of year
 Yes
 Month of year
 Yes

Day of month
 Yes D
ay of month
 Yes
 Day of month
 Yes
 Day of month
 Yes

Day of week
 Yes D
ay of week
 Yes
 Day of week
 Yes
 Day of week
 Yes

N
 119,433 N
 119,433
 N
 119,433
 N
 269,429
Clustered standard errors in parentheses; *p < 0.1 **p < 0.05 ***p < 0.01.
a SOLAR is a dummy variable indicating solar adoption status.

Table B5
Analysis of household attributes
Model number
 (1)
 (2)
 (3)
 (4)
 (5) (
6) (
7)
Household
income
Household
age
Number of people in a
household
Square
footage
Vintage of the
house

O
o

wner
ccupy

P
r

rimary
esidence
Solar Electricity a
 0.064
 0.588***
 �0.168**
 �0.280***
 0.254*** �
0.099 �
0.095

(0.064)
 (0.152)
 (0.075)
 (0.100)
 (0.071) (
0.158) (
0.423)
Solar Electricity*Attribute
 0.002*
 �0.007***
 0.123***
 0.202***
 �0.002 0
.295* 0
.283

(0.001)
 (0.003)
 (0.026)
 (0.049)
 (0.002) (
0.162) (
0.424)
Average daily electricity
price
�60.741**
 �60.463**
 �60.161**
 �61.847**
 �60.254** �
60.217** �
60.335**
(24.990)
 (24.969)
 (24.887)
 (24.923)
 (25.007) (
25.019) (
25.024)

Holiday
 0.565*
 0.554*
 0.516*
 0.532*
 0.571* 0
.575* 0
.559*
(0.312)
 (0.313)
 (0.311)
 (0.312)
 (0.312) (
0.312) (
0.313)

Constant
 39.100***
 39.098***
 39.191***
 39.243***
 39.016*** 3
9.012*** 3
9.056***
(1.725)
 (1.738)
 (1.736)
 (1.724)
 (1.727) (
1.726) (
1.727)

CDD
 Yes
 Yes
 Yes
 Yes
 Yes Y
es Y
es

HDD
 Yes
 Yes
 Yes
 Yes
 Yes Y
es Y
es

Fixed effects

Account year
 Yes
 Yes
 Yes
 Yes
 Yes Y
es Y
es

Month of year
 Yes
 Yes
 Yes
 Yes
 Yes Y
es Y
es

Day of month
 Yes
 Yes
 Yes
 Yes
 Yes Y
es Y
es

Day of week
 Yes
 Yes
 Yes
 Yes
 Yes Y
es Y
es

N
 619,788
 619,788
 619,788
 619,788
 619,788 6
19,788 6
19,788
Clustered standard errors in parentheses; *p < 0.1 **p < 0.05 ***p < 0.01.
a Solar Electricity is the daily electricity generated by the solar panels of a household.
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