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Time-of-Use Electricity Pricing and Residential Low-carbon
Energy Technology Adoption
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ABSTRACT
This paper provides the first empirical evidence on the correlation between Time-
Of-Use (TOU) electricity pricing and the adoption of energy efficient appliances
and solar panels. We use household-level data in Phoenix, Arizona from an appli-
ance saturation survey of about 16,000 customers conducted by a major electric
utility. Our empirical results show that TOU consumers are associated with 27%
higher likelihood to install solar panels but not more likely to adopt energy-effi-
cient air conditioning based on the propensity score matching and coarsened exact
matching methods. The findings highlight that policy makers could combine TOU
and solar panels when implementing educational programs or when giving out
financial incentives to consumers. Our results imply that TOU is associated with
a similar impact of the incentive offered by $2,070~$10,472 tax credits or rebates
on solar adoption.
Keywords: Time-of-use (TOU) electricity pricing, Solar panels, Energy
efficiency

https://doi.org/10.5547/01956574.41 2 jlia
1. INTRODUCTION

Energy efficiency and solar energy are two measures promoted by policy makers to re-
duce residential fossil fuel energy consumption and the associated greenhouse gas emissions. Not
surprisingly, various policies and financial incentives (e.g., tax credits, direct rebates, etc.) exist to
encourage the adoption of these technologies. For example, the cost of typical financial incentives
(including direct rebates and tax credits) for the adoption of a solar panel system is on the magni-
tude of $5,493-$9,156 (Solar Energy Industries Association, 2014; Hughes and Podolefsky, 2015;
Gillingham and Tsvetanov, 2019). However, despite these costly policy instruments, the penetration
of energy efficiency and solar energy is still relatively low. Many organizational, behavioral, and
market factors have been analyzed in the existing literature to explain the low adoption level. Yet,
the impact of one particular factor (electricity rate structure) on energy efficiency investment and
solar panel adoption is often overlooked in empirical studies (Novan and Smith, 2018). In this paper,
we show empirically that consumers facing Time-of-use pricing (TOU) are positively correlated
with the adoption of solar energy, compared to consumers on non-dynamic pricing plans. Our results
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Figure 1: Hourly energy efficiency savings and solar electricity generation
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Notes: The left panel is for solar panel electricity generation; the right panel is for energy efficiency savings from efficient
ACs. E-21, E-22, E-23, E-25, and E-26 are different price plans as detailed in Table 1. E-23 is a non-dynamic pricing plan
while the other plans are TOU plans. The price levels in the figure are prices during July and August. The energy efficiency
savings are calculated based on data in July and August. Color figure is available online.

have important implications for policy makers to promote the adoption of solar panels and TOU
pricing.

TOU, one of the most widely adopted dynamic pricing programs, charges different elec-
tricity prices depending on the time of the day, i.e. higher prices during peak hours (e.g. late after-
noon in summer months) and lower prices during non-peak hours. TOU plan provides benefits to the
utilities because it helps decrease peak load, which has a higher marginal cost of electricity supply
compared to that of the base-load. In addition, reducing peak load helps utilities maintain the grid
stability through the reduced likelihood of blackouts during peak hours. TOU can also potentially
help the consumers save on energy bills if they switch part of their usage from peak to off-peak
hours. This study focuses on another potential positive welfare impact of TOU—its correlation with
low-carbon technology adoption, i.e. energy efficiency and solar panel installation.

Figure 1 shows how the price and hour-of-day relationship of typical TOU price plans in
Arizona (our study area) corresponds to the timing of electricity savings from solar panels and en-
ergy efficiency. The hourly savings from energy efficiency is obtained by recovering the data from
Boomhower and Davis (2019), and hourly solar panel electricity generation is obtained by convert-
ing hourly solar data from the typical meteorological year (TMY2) dataset using the PVWATTS
model (Ong et al., 2010). The figure shows that a significant portion of energy savings happen
during peak hours when electricity prices are high. Naturally, this correlation might incentivize
consumers to adopt energy efficiency and solar panels if they are on TOU pricing. However, there is
little empirical analysis quantifying the correlation between TOU and the adoption of these technol-
ogies. This study provides the first empirical evidence of such correlation and fills the gap in existing
literature along three dimensions.

First, many studies have shown that the penetration of energy efficiency and solar pan-
els falls short of optimal levels, which is widely referred to as “energy efficiency gap” (Jaffe and
Stavins, 1994). Energy efficiency gap is attributed to various organizational, behavioral and market
factors (Hirst and Brown, 1990; Weber, 1997; Gillingham et al., 2009; Gillingham and Palmer,
2014; Qiu et al., 2014; Qiu et al., 2017a), such as inefficient pricing of electricity (Gillingham et
al., 2009), lack of information (Ramos et al., 2015), and the principal-agent problems (Davis, 2011;
Gillingham et al., 2012). Meanwhile, the low adoption of solar energy is also attributed to a range
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of technical, financial and institutional barriers (Margolis and Zuboy, 2006; Timilsina et al., 2012;
Zhang et al., 2012), including high initial cost, technology risk and complexity (Drury et al., 2012),
information barriers during information-search process (Rai et al., 2016) and a lack of incentives.
However, rate design is often a factor missed in existing empirical studies (Novan and Smith, 2018).
This study contributes to this strand of studies by exploring empirically whether rate design is cor-
related with solar panel and energy efficiency adoption.

Second, there have been many studies focusing on the impacts of TOU rates on energy
consumption behaviors and the resulted change in social welfare. Some studies find that consumers
shift peak load consumption to off-peak hours (Faruqui and Sergici, 2010; Qiu, et al., 2017a) while
others do not find such load shifting behavior (Torriti, 2012; Faruqui et al., 2014). The load shifting
behavior could be a result of technology adoption (e.g., demand-side management technology and
renewable energy technology), and/or purely shifting energy consuming activities such as watching
TV or washing clothes from peak to off-peak hours. This study contributes further to studying the
impact of TOU on energy consumption behaviors by examining whether TOU is correlated with
energy technology adoption. The adoption of energy efficiency and solar panels can serve as one
underlying explanation for the observed load shifting behaviors in existing studies.

Third, despite simulation or systems type of modeling on the impact of rate design on solar
panel adoption, there is a lack of empirical evidence for such impacts. Existing simulation studies
show that solar adoption should be sensitive to the rate structure (Darghouth et al., 2011; Ong et al.,
2012; McLaren et al., 2015; Darghouth et al., 2016). Two seminal empirical studies support that a
relationship exists between rate design and adoption of energy efficiency or solar PV. Borenstein
(2007 & 2017) show that tariff design provides indirect economic incentives for solar adoption.
Specifically, Borenstein (2017) illustrates that the incentive from a tiered tariff is as much as the
30% federal tax credit in California. The calculation also indicates that the lifetime savings could
be $7000 more under a tired tariff (increasing block rate) than a flat rate structure. Our empirical
results of the correlation between TOU and solar adoption can help verify the simulation studies and
further assist policymakers in choosing the appropriate rate designs that better reflect the social cost
of providing electricity and potentially encourage the adoption of energy efficiency or solar panels
(Ong et al., 2010).

We compare adoption decisions in energy efficient appliances and solar panels between
consumers on non-dynamic rates (marginal electricity prices are constant throughout the day) and
those on TOU rates. We use household-level data in Phoenix, Arizona from an appliance saturation
survey of 16,035 customers conducted by a major electric utility in 2014 for empirical verification.
Probit model and statistical matching methods are employed, and robustness checks are conducted
using multinomial logit model, bi-variate probit model, and machine learning matching method.

We do not claim that our current finding of the correlation between TOU and technology
adoption is causal, although we take steps to try to eliminate confounding factors and endogene-
ity issues for causal identification. There are two potential threats to causal identification: reverse
causality and selection bias. Reverse causality could happen if households first adopt solar panels
and then switch to TOU pricing. In our customer level dataset, for all solar customers, only 7 solar
customers (less than 1.4% solar customers) switched to TOU after they adopted solar panels. We
dropped these 7 solar customers in order to help avoid reverse causality. Also on average solar cus-
tomers adopted solar panels several years after they enrolled in TOU pricing. In terms of selection
bias, since TOU is not mandatory, it is possible that some consumers are more likely to enroll in
TOU compared to others while these households are also more likely to adopt energy efficiency and
solar panels. If these households have specific characteristics that are not observable to us such as
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environmental awareness and knowledge on energy usage, a potential self-selection bias exists. We
apply a matching approach and include a rich set of covariates to help deal with such selection bias.
For a customer that is on TOU pricing, we find a control customer that is similar in terms of home
and socio-economic characteristics and that is not on TOU pricing. In addition, we use the adoption
of programmable thermostatas a proxy for environmental awareness.

Our empirical evidence suggests that TOU consumers are associated with a 27% higher
likelihood to install solar panels, but not more likely to adopt energy efficient AC. Despite our efforts
in overcoming the threats to causal identification, due to limitations on non-experimental cross-sec-
tional data, there could still be remaining issues such as other omitted variables that could affect both
TOU enrollment and technology adoption. However, even if our empirical finding of the correlation
between TOU and solar adoption is not fully causal, quantifying such correlation is still valuable to
policy makers. As discussed earlier, both TOU and solar adoption themselves could improve social
welfare. TOU is found to enhance social welfare through aligning marginal electricity prices with
marginal costs of electricity supply (Qiu et al., 2018; Train and Mehrez,1994). A positive correlation
between these two adoptions after controlling for other types of confounding factors implies that
if policy makers could encourage these two adoptions together either through informational/educa-
tional programs or financial incentives, then consumers could have a higher likelihood of enrolling
in TOU or adopting solar compared to just having the policies encouraging TOU or solar adoption
alone. From cost-effectiveness perspective, combining TOU and solar in policy programs can also
achieve a lower cost per additional adoption of TOU and solar.

Our finding of the correlation between TOU and solar adoption suggests that TOU is as-
sociated with the same magnitude of impact as financial instruments such as rebates or tax credits
of $2,070~$10,472 (Section 6 shows the details of the calculation). This is significant because cur-
rently the nationwide average amount of financial incentives for a solar panel system is $5,493-
$9,156. Thus TOU’s correlation with solar adoption is equivalent to about 85% of the current size
of financial incentives for solar panels.

2. TOU PRICING PLANS OF SALT RIVER PROJECT

The empirical data used in this study is provided by Salt River Project (SRP), one of the
largest electric utilities in Arizona. The temperature in Phoenix, Arizona is high in the summer and
thus there is a large electricity demand for cooling during peak hours, which contributes to the de-
velopment of dynamic pricing plans (Kirkeide, 2012). Moreover, Arizona is a good case for studies
on solar panel installation due to its large installed capacity and large per capita cumulative solar
electric generating capacity (one of top three states in the United States) (Qiu et al., 2017b; Qiu et
al., 2019).

We use data of the Residential Equipment and Technology (RET) survey conducted by SRP
in2014. A random selection of SRP residential customers was surveyed using two methods: an online
survey and a mail survey. The number of surveys distributed online is 61,925 with 9,389 completed,
and that for mail survey is 20,625 with 6,646 completed. SRP also provides a separate dataset which
includes the timing of solar panel adoption for each solar customer and a subset of energy efficient
AC installations, as well as for each month what type of electricity rate each customer was on. In
December 2014, there was a major change in the net metering policy of SRP. However, that policy
change would not impact our results because the RET survey was conducted in early 2014.

In 2014, there were six types of electricity rates enrolled by SRP residential consumers,
numbered from E-21 to E-26. The price plans listed in Table 1 show the details of the per kWh
charges for different pricing plans. The monthly service charge is the same for all the plans and there
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Table 1: Salt River Project TOU and standard residential tariffs

Pricing Summer  Summer Winter

plan Name Categories rates peak rates  rates Notes

E-21 Price plan for residentialOn peak $0.3013  $0.3568 $0.1205  On-peak hours year-round
super peak time-of- consist of those hours from
use service Off peak $0.0820  $0.0844 $0.0748 3 p.m. to 6 p.m.; All other

hours are off-peak.

E-22 Experimental plan for On peak $0.3013  $0.3568 $0.1205  On-peak hours year-round

residential super peak consist of those hours from
Off peak $0.0820  $0.0844 $0.0748

time-of-use service 4 p.m. to 7 p.m.; All other

hours are off-peak.

E-23 Standard price plan for <700 kWh $0.1082  $0.1148 $0.0793  No increasing block during
residential service winter months.
(non-TOU) 701-2,000 kWh $0.1101  $0.1160 $0.0793
All Additional kWh ~ $0.1206  $0.1311 $0.0793
E-25  Experimental plan for On-peak $0.3013  $0.3568 $0.1205  On-peak hours year-round
residential super peak consist of those hours from
Off-peak $0.0820  $0.0844 $0.0748

time-of-use service 2 p.m. to 5 p.m.; All other
hours are off-peak.
E-26  Standard price plan for On-peak $0.1937  $0.2206 $0.1010  Summer On-peak hours
residential time-of- consist of those hours from
. Off-peak $0.0718  $0.0721 $0.0701 L.
use service 1 p.m. to 8 p.m.; winter on-
peak hours consist of hours
from 5 a.m. to 9 a.m. and

from 5 p.m. to 9 p.m.

is no demand charge. Among them, E-23 and E-24 are non-dynamic rates (flat rates) while the rest
are TOU rates. We drop households in the M-power program (E-24 plan), because E-24 is a prepaid
electricity plan and provides consumers with extra information on usage through an in-home display
and thus these consumers respond differently than consumers on other plans (Qiu et al., 2017c¢). The
flat rate is an increasing block rate and its marginal electricity price does not differ by time of day.
The four TOU rates (E-21, E-22, E-25, and E-26) differ in their on-peak times and peak hour prices
for a given day.

The survey asks questions about the adoption of different appliances including central air
conditioner and room air conditioner, and adoption of solar panels. The participants are asked to
report whether they replaced any appliance during the last 3 years and whether the appliance was
replaced by an energy efficient alternative, i.e., Energy Star certified appliance. Energy Star is con-
sidered more energy efficient compared to uncertified ones because the certified products exceed
the federal energy efficiency standard. The survey also includes questions about the consumers’
electricity pricing plans, building characteristics (square footage, stories, vintage, residence type,
etc.) and socio-demographics (household income, household size, race, age of household head, etc.).
The renter/owner information was obtained separately from Nielsen. Different kinds of dwelling are
covered in this study, including single family home, mobile home and apartment/condo/townhouse.

3. METHODOLOGY
3.1 Summary statistics

We focus on energy efficient air conditioner units rather than other appliances because air
conditioning accounts for 6% of all the electricity produced in the U.S. and the electricity use from
AC also increases the fastest among appliances (Boomhower and Davis, 2019). An understanding
of the relationship between TOU and energy efficient AC adoption can provide insights into the

Copyright © 2020 by the IAEE. All rights reserved.
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Figure 2: Adoption of energy efficient air conditioners and solar panels
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Notes: The vertical axis is the saturation level (with the range from 0 to 1) of the energy efficient air conditioners or solar
panels; the denominators for the saturation level calculation are the number of customers who reported whether they have
the technologies or not; *** means statistically different by t-test at 1% level; * is at 10% level. Color figure is available
online.

influences of TOU on other appliances. Figure 2 shows that the adoption of solar panels, energy
efficient central air conditioners, and room air conditioners are higher for TOU consumers than non-
TOU consumers. Figure 3 is a map showing the uptake of solar, energy efficient AC, and TOU at
the zip code level. In addition to central AC, we also analyze the adoption of energy efficient room
air conditioners because this should be useful for policy-makings in the developing countries where
room air conditioners are more widely adopted compared to central air conditioners.

Certain characteristics between TOU consumers and flat rate consumers differ (Table 2).
TOU consumers have higher monthly electricity usage, higher household income, and larger square
footage. Their houses are more likely to be a primary residence rather than a seasonal residence, and
the houses are more likely to have a swimming pool and programmable thermostats. Additionally,
the non-TOU households have a longer vintage of the house and an older household head.

It is possible that some consumers first adopt solar panels or energy efficient AC units and
then switch to TOU plans—a reverse causality problem. However, this is not a major concern in this
study. For all 558 solar customers in the RET survey, only 7 solar customers switched to TOU after
they adopted solar panels. We dropped these 7 solar customers in order to help avoid reverse causal-
ity. On average, based on SRP’s customer level data, the solar customers adopted solar panels five
years later than the time when they started on TOU rates. Similarly, the timing of energy efficient
appliances adoption is later than TOU enrollment. The adoption of energy efficient appliances in our
dataset happens after 2011 while average timing for TOU enrollment is between 2007 and 2008. Be-
cause of the long lag (several years) between TOU enrollment and solar adoption, it is unlikely that
TOU consumers are forward-looking. In other words, it is not likely that they take into consideration
the possibility of adopting solar when making the decision of enrolling in TOU.

3.2 Matching

In empirical studies, randomized control trials and natural experiments are ideal strate-
gies to evaluate a causality relationship (Alberini and Towe, 2015). Given only observational data
are available in this study, we use a matching approach to approximate a randomized experiment

All rights reserved. Copyright © 2020 by the IAEE.
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Figure 3: Uptake of solar panels (A), energy efficient central AC (B), energy efficient room AC
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Notes: Color indicates number of adoptions based on the survey responses. Color figure is available online.

(Stuart, 2010). The control group is matched with the treated group, and these two groups are very
similar based on observables except the variable of interest (i.e. the treatment variable). Matching
reduces the imbalance between the treated and untreated groups conditional on control variables.
There are different matching methods, among which propensity score matching is the most widely
adopted while coarsened exact matching is applied more frequently in recent studies (Stuart, 2010).
Propensity score matching and coarsened exact matching represent two known classes of matching
(Rubin, 1976; Tacus et al., 2011), which are “equal percent bias reducing” (i.e., makes the means
of covariates closer by the same amount) and “Monotonic Imbalance Bounding™ (i.e., guarantees
a reduction of imbalance). Coarsened exact matching coarsens the variables into strata and prunes
both the treated and control variables (Iacus, et al., 2012) while propensity score matching is based
on the probability of being treated (Dehejia and Wahba, 2002). Balance checking is necessary for
propensity score matching. The matching solution for propensity score matching is ex-ante and
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Table 2: Summary statistics of building characteristics and demographics for TOU and flat
rate consumers

Variable Obs Mean Std. Dev. Min Max
Flat rate

Energy efficient central AC adoption 7,988¢ 0.087 0.282 0 1
Solar panel installation 8,450 0.039 0.193 0 1
Energy efficient room AC adoption 1,025° 0.141 0.349 0 1
Ownership® (renter=0) 8,582 0.730 0.444 0 1
Monthly electricity usage (1000 kWh) 8,582 1.349 0.760 04 2.6
Household income ($1000) 8,582 46.012 41.175 0 150
Square footage (1000 ft?) 8,130 1.516 0.794 75 3
Persons in household 8,161 2.077 1.058 1.5 5
White (non-white=0) 8,035 0.755 0.430 0 1
Stories 7,908 1.167 0.413 1 3
Vintage (in years) 8,582 30.013 19.584 0 65
Age of household head 7,875 60.270 14.690 21 75
Primary (seasonal residence=0) 8,260 0.899 0.301 0 1
Swimming pool 8,495 0.158 0.365 0 1
Programmable thermostats 8,582 0.539 0.499 0 1
Dwelling (apartment=0)

Mobile house® 8,095 0.047 0.212 0 1
Single family house 8,095 0.751 0.432 0 1
TOU

Energy efficient central AC adoption 4,780 0.101 0.302 0 1
Solar panel installation 4,881 0.047 0.212 0 1
Energy efficient room AC adoption 5830 0.110 0.313 0 1
Ownership 4,902 0.732 0.443 0 1
Monthly electricity usage (1000 kWh) 4,902 1.666 0.861 0 2.6
Household income ($1000) 4,902 61.974 45.114 0 150
Square footage (1000 ft*) 4,794 1.875 0.787 75 3
Persons in household 4,777 2.416 1.231 1.5 5
White 4,640 0.753 0.431 0 1
Stories 4,689 1.273 0.488 1 3
Vintage 4,902 27.022 17.744 0 65
Age of household head 4,648 54.062 15.758 21 75
Primary (seasonal residence=0) 4,829 0.977 0.151 0 1
Swimming pool 4,886 0.405 0.491 0 1
Programmable thermostats 4,902 0.666 0.472 0 1
Dwelling (apartment=0)

Mobile house 4,733 0.011 0.103 0 1
Single family house 4,733 0.831 0.375 0 1

*The number of energy efficient central AC adoption is smaller than the number of solar panel installation because fewer
people reported on this variable;

" This is the number of people that reported whether they adopted energy efficient room AC or not. There are 11,882 house-
holds without room air conditioners and thus adoption of energy efficient room AC does not apply to them;

¢ Data from Nielsen. Ownership is coded as 1 if the “homeowner or renter status” is described as “definite owner” or “prob-
able owner”. It is coded as 0 if the status is “definite renter” or “probable renter”;

4 The averaged usage is calculated by diving the total usage from June through September by the number of billing months.
A consumption of zero indicates the house is probably vacant;

¢Mobile house refers to a permanent or semi-permanent residence that can be moved.

balance is ex-post. In contrast, for coarsened exact matching, the amount of imbalance is controlled
ex-ante (Blackwell et al., 2009). Both matching methodologies will be applied. The analysis is at the
household level. After matching, standardized mean difference (SMD) and variance ratio (VR) are

. . . . X, —X
applied to assess the quality of balancing, which are defined as SMD = Treat ~ Conirol__ and VR

2 \/(STzreat + SCZ'untrul) / 2

= —2”“” , where X is the vector of control covariates, X is the mean and s” is the variance. Variance

Control
ratio should be close to one, and a nearly balance variance ratio should be 4/5 < VR < 5/4 (Steiner

All rights reserved. Copyright © 2020 by the IAEE.
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et al., 2010). SMD should be smaller than 0.25 to indicate good balance (Rubin, 2001). All control
variables including the demographic and housing characteristics are used as matching variables. In
particular, we match on the variables listed in Table 6.

3.3 Basic model specification

A binomial probit model is applied to examine the relationship between TOU and energy
efficiency or solar panel adoption.

i: llflyz >O (1)
0 otherwise
J/: :ﬁ0+ﬂl(TOUi)+ﬁ2Xi+gi ()

where i indicates individual household #; y, is a binary dependent variable indicating the adoption
of an energy efficient air conditioner or solar panels. ! is the latent variable; TOU is equal to 1 if
the household is on a TOU pricing plan and is 0 if the household is on a flat rate plan. X is a vector
of control variables, including demographics (age, households, income, etc.) and housing charac-
teristics (square footage, ownership, stories, etc.). Among X, we use the adoption of programmable
thermostat as a proxy for environmental awareness. One might argue that the adoption of program-
mable thermostat itself is endogenous. However, we are not focused on interpreting the coefficient
for programmable thermostat adoption. This variable only serves the purpose as a control variable
to help eliminate the omitted variable bias from the lack of environmental awareness data. In other
words, by including the adoption of programmable thermostat, the part of the error terms that is due
to environmental awareness is now controlled for and thus the rest of the error terms are no longer
correlated with the TOU variable (Stock & Watson, 2007). Although there are financial incentives
for the adoption of energy efficient appliances or solar panels, there is no variation for these incen-
tives in our dataset because all consumers are served by the same utility company and the same
incentives are available to all of the utility’s consumers. Although characteristics such as the shade
condition and roof direction might impact solar panel adoption, these impacts are assumed to be ran-
dom and uncorrelated with the adoption of TOU pricing. Thus, shade condition and roof direction
do not interfere with the estimates of the impacts of TOU.

4. ECONOMETRIC ANALYSIS

4.1 Coarsened exact matching

Each column in Table 3 is a single probit regression on the matched control and treatment
customers after coarsened exact matching. Models in column (1), (4) and (7) simply regress the
adoption of energy efficiency or solar panels on TOU, while columns (2), (5) and (8) include house-
hold characteristics and demographics as control variables in the models. The models in the columns
(3), (6) and (9) further add the district dummy variables (zip code). Means of variables before and
after matching among TOU and non-TOU consumers are presented in Table 4, which indicates that
the control group and treatment group are well balanced. Coarsened exact matching achieves com-
mon support because all observations within a stratum containing both a treated and control unit are
by definition inside of the common support.

The main result from Table 3 is that there is a positive correlation between TOU and so-
lar panel installation. There is no evidence that TOU consumers are more likely to adopt energy
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Table 4: Weighted means® and standard errors of matching variables for TOU and non-TOU
consumers using coarsened exact matching (analysis of solar panel installation)

Before matching After matching
Non-TOU TOU Non-TOU TOU
Variable Obs. Mean Obs. Mean Obs. Mean Obs. Mean
Ownership 7,763 0.725 4,362 0.720 2,296 0.768 1,675  0.768
(0.446) (0.449) (0.422) (0.422)
Usage 7,763 1.338 4,362 1.654 2,296 1.587 1,675  1.621
(0.761) (0.868) (0.770) (0.784)
Household income 7,763 45.341 4,362 61.310 2,296 57.973 1,675  58.831
(40.871) (44.969) (38.872) (39.815)
Square footage 7,328 1.510 4264 1.864 2,277 1.732 1,662 1.732
(0.795) (0.793) (0.755) (0.755)
Persons in household 7,366 2.065 4,252 2.413 2,285 2.064 1,668  2.064
(1.052) (1.230) (1.006) (1.006)
White 7,256 0.751 4,124 0.746 2,257 0.831 1,644  0.831
(0.433) (0.435) (0.375) (0.375)
Stories 7,118 1.171 4,155 1.275 2,275 1.135 1,654  1.135
(0.418) (0.493) (0.362) (0.362)
Vintage 7,763 29.911 4,362 26.867 2,296 27.648 1,675  27.570
(19.765) (17.936) (18.717) (18.067)
Household head age 7,088 60.383 4,136 53.849 2,261 56.936 1,648  56.527
(14.744) (15.964) (15.238) (15.443)
Primary residence 7,454 0.898 4,291 0.976 2,290 0.990 1,671 0.990
(0.302) (0.154) (0.100) (0.100)
Swimming pool 7,677 0.156 4,346 0.401 2,296 0.343 1,675  0.343
(0.363) (0.490) (0.475) (0.475)
Dwelling type
Mobile home 7,299 0.045 4,196 0.011 2,280 0.008 1,658 0.008
(0.208) (0.103) (0.088) (0.088)
Single family house 7,299 0.745 4,196 0.822 2,280 0.821 1,658  0.821
(0.436) (0.383) (0.383) (0.383)
Programmable 7,763 0.524 4,362 0.651 2,296 0.641 1,675  0.641
thermostats (0.499) (0.477) (0.480) (0.480)
* Weighted means after matching indicates the observations are weighted. Unmatched units get weights of zero. A weight
N
of 1 is given to matched units in the treated group and weights of e mz are given to matched units in the control group,
where mj and m. are treated and untreated units in stratum s. My Me

efficient central AC or room AC. The coefficients on TOU for energy efficient AC units are small
and statistically insignificant. TOU consumers are more likely to install solar panels (based on mar-
ginal effects 1.4 percentage point, p<0.10) (column (3)). The marginal effect is calculated using 0
prob(y=1)/0TOU, for a reference individual. The mean of the solar adoption variable in the sample
is 0.043. Thus 1.4 percentage point increase equals 32.5% (1.4/4.3=32.5%) increase on average in
solar panel adoption.

Our finding is supported by several existing studies. Borenstein (2008) found that solar
electricity generation occurs disproportionately at times when the electricity price is higher. TOU
rate with the peak hours coincident more with solar generation thus benefits solar consumers more
(McLaren et al., 2015). As a result, TOU provides indirect incentives for adopting solar panels.
The economic benefits of solar installation are even larger when TOU is coupled with net metering
(Darghouth et al., 2011) or battery storage, which could save or store electricity for later use. From
the consumers’ perspective, if they observe or expect this situation, a TOU rate structure could in-
centivize solar adoption. In the case of the utility price plans in this paper, although the peak hours of
TOU and solar irradiance hours do not exactly overlap, the partial overlapping still generates greater
economic benefits to PV owners compared to a flat rate. Three other possibilities to explain the im-
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pact of TOU on PV adoption might exist, similar to those discussed in Comin and Rode (2015) about
the impact of PV adoption on voting for the Green Party. First, TOU helps the consumers gain more
net benefits, which may enable the consumers to use the money from TOU to further invest in green
technologies such as solar PV. However, according to existing studies, the net savings from TOU
are comparably small. Residential consumers save about 2.2% on their electricity bills from TOU
(Torriti, 2012) and commercial consumers save about 5-6% (Qiu et al., 2018). Since the money
saved is not large enough to compensate for the cost of installing PV, we think it only partially ex-
plains the link at best. The second potential mechanism is through Bayesian learning. Consumers
could acquire additional information about solar PV values with the TOU adoption, which helps to
reduce the uncertainty regarding the value of solar PV. The third mechanism is cognitive dissonant.
The consumers change their appreciation for green technologies to get greater utility from past TOU
adoption decisions.

For the other variables, a house with longer vintage, more senior household head, or a
swimming pool is associated with a higher likelihood of solar panel adoption, as is a single-family
house compared to apartment or mobile house. In contrast, a house with higher monthly electricity
usage during summer or owner-occupied is associated with lower likelihood of installing solar pan-
els after controlling for other related variables. A house occupied by the owner or with programma-
ble thermostats is more likely to adopt energy efficient central AC while a house with more stories is
less likely to adopt energy efficient central AC. In terms of the adoption of energy efficient room AC,
an owner-occupied house or if the race of the owner happens to be white, a house with more stories,
more senior household head or higher-income households is associated with higher probability of
adopting energy efficient room AC.

4.2 Propensity score matching

Similar to the coarsened exact matching, the demographics and building characteristics are
used as the matching variables for propensity score matching. Different algorithms of propensity
score matching are attempted, including radius matching with different calipers, kernel matching,
k-nearest neighbors matching. The results after propensity score matching of different algorithms
are very similar. The results with the smallest median bias, as listed in Table 5, are yielded by using
the radius matching. Radius matching finds a control for a treated individual only within the caliper
(e.g., 0.01), which puts a tolerance level on the largest acceptable propensity score distance. Logit
model is used to generate propensity scores. The results show TOU consumers are 0.9 percentage
point more likely to adopt solar panels, and the coefficient is statistically significant at the 10-percent
level. The correlation between TOU enrollment and energy efficiency adoption is small in magni-
tude and statistically insignificant. Means of the variables before and after matching among TOU
and non-TOU consumers are listed in Table 6. All the variables in the control group are comparable
to those in the treatment group after a balancing check using SMD and VR. Figure 4 confirms the
common support assumption.

We further add on-peak prices into the model in order to test whether a higher peak price
is correlated with higher energy efficient air conditioner and solar panel adoption. Table Al in the
Appendix shows that the coefficients on the interaction term between TOU and peak rate are not
statistically significant both before and after matching. Theoretically, when TOU peak rate is higher,
there should be more adoption of solar panels, and the coefficient should have a positive sign. The
possible reason for the insignificance is that there are only two different peak rates for different
TOU rates, which are $0.3568 and $0.2206. Hence, TOU peak rates lack sufficient variation for its
positive relationship with TOU*(peak price) to be reflected empirically.
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Table 6: Mean of variables before and after matching in TOU and non-TOU consumers using
propensity score matching (analysis of solar panel installation)

Before matching After matching
Non-TOU TOU Non-TOU TOU
Variable Obs Mean Obs Mean Obs Mean Obs Mean
Ownership (renter=0) 7,763 0.725 4,362  0.720 6,158  0.709 3,728  0.712
(0.446) (0.449) (0.454) (0.453)
Monthly electricity usage (1000 kWh) 7,763  1.338 4,362  1.654 6,158  1.606 3,728  1.607
(0.761) (0.868) (0.809) (0.879)
Household income ($1000) 7,763  45.341 4,362 61.310 6,158  64.582 3,728  64.646
(40.871) (44.969) (43.370) (42.583)
Square footage (1000 ft?) 7,328 1.510 4264 1.864 6,158 1.816 3,728  1.827
(0.795) (0.793) (0.777) (0.780)
Persons in household 7,366 2.065 4,252 2413 6,158  2.371 3,728 2.384
(1.052) (1.230) (1.202) (1.218)
White (non-white=0) 7,256  0.751 4,124 0.746 6,158  0.757 3,728  0.762
(0.433) (0.435) (0.429) (0.426)
Stories 7,118 1.171 4,155 1.275 6,158  1.265 3,728  1.256
(0.418) (0.493) (0.499) (0.478)
Vintage (in years) 7,763 29911 4,362  26.867 6,158 27.034 3,728  27.116
(19.765) (17.936) (18.867) (17.821)
Age of household head 7,088  60.383 4,136 53.849 6,158  53.243 3,728  53.455
(14.744) (15.964) (15.756) (15.715)
Primary (seasonal residence=0) 7,454  0.898 4291 0976 6,158 0.979 3,728  0.978
(0.302) (0.154) (0.142) (0.148)
Swimming pool 7,677  0.156 4346  0.401 6,158  0.365 3,728  0.370
(0.363) (0.490) (0.481) (0.483)
Dwelling type
Mobile home 7,299  0.045 4,196  0.011 6,158  0.009 3,728  0.010
(0.208) (0.103) (0.096) (0.099)
Single family house 7,299  0.745 4,196  0.822 6,158  0.805 3,728 0.814
(0.436) (0.383) (0.396) (0.390)
Programmable thermostats 7,763  0.524 4362  0.651 6,158  0.648 3,728  0.651
(0.499) (0.477) (0.478) (0.477)

Notes: Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
4.3 Heterogeneity of TOU’s correlation with solar panel adoption

We conduct an additional analysis with the renters excluded from our regression models
(Table A2 in the Appendix). We find that the results are consistent with those using full sample with
both renters and owners, and the magnitudes only differ slightly. The impact of TOU on PV adoption
is higher for owners than for renters, which is consistent with the intuition that the owners are more
likely to adopt low-carbon technologies. Our main models have controlled for the ownership by
including a dummy variable indicating the ownership status.

We conduct separate analyses for mail versus web survey respondents (Table A3 in the
Appendix). Theoretically, we would expect that people’s adoption of other technologies such as the
internet could influence their adoption of green technologies such as solar PV (Comin and Rode,
2015). The results obtained for participants of mail surveys are different from those of web surveys.
We found that the results based on mail surveys only are similar to the results of using all surveys.
Also, our results are more statistically significant for mail survey respondents. In addition to the
difference in the sample size, another potential explanation might be that the mail respondents are
more permanent (i.e., more likely to own the house) and thus are more likely to invest in expensive
energy technologies such as solar panels.
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Figure 4: Check for common support for propensity score matching
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Notes: Color figure is available online.

Using the sample from propensity score matching, we also examine if the probability of
solar adoption conditional on TOU pricing varies across other consumer/building characteristics
(see Appendix B). The characteristics examined are monthly electricity usage, household income,
square footage of the property, persons in the household, property vintage (in years), and age of
household head.

5. ROBUSTNESS CHECKS

We conduct the following robustness checks to analyze further the differences in the adop-
tion of energy efficient central air conditioners and solar panels between TOU and non-TOU con-
sumers.

5.1 Multinomial logit model

Multinomial logit model is applied to the matched control and treatment groups in order to
analyze various combinations of technology choices. The four alternatives of the dependent variable
are households with (1) both energy efficient AC and solar panel adopted; (2) only energy efficient
AC adopted; (3) only solar panel adopted; (4) none of the two adopted. The number of observed
outcomes for the dependent variable is listed in Table 7.

Suppose there are j alternatives, y,=1 if j is the observed outcome and is O other-

Lif ve i
wise. y, = i’y ]. The probability that the individual i chooses alternative j is P,=P(y,=j)=
b0y =
exp(w;y,) . . o . . .
m—],‘ P, is the probability for an individual with characteristics w; facing m (m=4)
> exp(wi7,)

choices; w]y ; together is equal to equation (2), and the covariates include the specific demographics

Copyright © 2020 by the IAEE. All rights reserved.



18 / The Energy Journal

Table 7: Distribution of the observed outcomes

Solar panels  Energy efficient central AC No. of observations Percentage of total observations
(@) No No 10,816 86.2%
?2) No Yes 1,148 9.2%
3) Yes No 514 4.1%
4) Yes Yes 65 0.52%

Notes: We drop the observations with room AC in this robustness checks because the number of households adopting room
AC is much smaller than those for central AC. Including room AC into bundles of technologies will complicate the number
of choices in multinomial logit models.

Table 8: Adoption of energy efficiency or solar panels for treatment groups and control groups
using multinomial logit model

Adoption of both solar panel
Solar panel adoption only ~ Energy efficient central AC only  and energy efficient central AC

Without matching

TOU 0.327%** —0.0004 0.095
(0.126) (0.075) (0.289)

N 10,061

Log pseudolikelihood —4840.908

Pseudo R? 0.051

Coarsened exact matching

TOU 0.269 0.112 -1.060*
(0.246) (0.137) (0.586)

N 3,437

Log pseudolikelihood -1673.499

Pseudo R? 0.065

Propensity score matching

TOU 0.274%* —-0.026 0.200
(0.132) (0.079) (0.296)

N 9,826

Log pseudolikelihood —3857.412

Pseudo R? 0.054

Notes: The base level is the households that neither adopt solar panel nor energy efficient central AC; all the regressions
include the demographics and the house characteristics; Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.

and housing characteristics for individual i. The results of the multinomial logit model (Table 8)
further indicate that TOU consumers are only more likely to install solar panels while TOU does not
influence energy efficiency adoption.

5.2 Bivariate probit

A bivariate probit model can also examine the correlation between the adoption of so-
lar panels or energy efficiency and TOU enrollment: y, = B, + X, +&, TOU, =1, +1 X, +e, and

e 0

the correlation coefficient. If p is significantly different from zero, the two decisions are interrelated.
Table 9 shows that the correlation coefficient p is positive and statistically significant for the adop-
tion of solar panels, which indicates that the decision of solar panel installation is correlated with
TOU enrollment. However, our estimate of the correlation coefficient p is small and statistically
insignificant for energy efficient central AC and room AC adoption, suggesting that the adoption of
energy efficient AC unit is not correlated with TOU pricing.

&, 0)(1
( ,] ~N K ],[ fﬂ v, and X, have the same meaning as indicated in equations (1) and (2). p is
P
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Table 9: Adoption of energy efficiency or solar panels and TOU pricing enrollment using a
bivariate probit model®

Bivariate probit model for Bivariate probit model for
Bivariate probit model for ~ adoption of energy efficient  adoption of energy efficient

solar panel installation central AC room AC
Solar panel Energy efficient Energy efficient
Dependent variable installation TOU central AC TOU room AC TOU
Ownership 0.098 0.050 0.101 0.043 0.250 0.438%*
(0.203) (0.081) (0.122) (0.080)  (0.339) (0.235)
Usage -0.262%** -0.026 -0.004 -0.026  0.040 -0.078
(0.041) (0.023) (0.031) (0.023)  (0.100) (0.068)
Household income 0.0002 0.0008 0.001* -0.0001  -0.002 -0.001
(0.001) (0.000) (0.001) (0.0005) (0.002) (0.001)
Square footage 0.152%** -0.010 -0.059* -0.0001  -0.036 0.095
(0.050) (0.024) (0.031) (0.024)  (0.088) (0.069)
Persons in household 0.050%* 0.012 -0.002 0.010 0.147%** -0.037
(0.027) (0.015) (0.020) (0.015)  (0.054) (0.040)
White -0.071 0.004 0.124%* 0.0001  0.496%** 0.097
(0.075) (0.038) (0.052) (0.037)  (0.152) (0.100)
Stories -0.063 -0.037 -0.112%* -0.030  0.197 0.085
(0.076) (0.035) (0.050) (0.035)  (0.156) (0.102)
Vintage -0.001 -0.003***  -0.007*** -0.003** 0.005 -0.014%**
(0.002) (0.001) (0.002) (0.001)  (0.005) (0.004)
Household head age 0.012%** 0.0004 0.0005 0.0004  0.011* 0.006
(0.003) (0.001)  (0.002) (0.001)  (0.006) (0.004)
Primary residence 0.607%** -0.027 0.152 -0.037 0.152 0.204
(0.183) (0.086) (0.118) (0.083)  (0.358) (0.288)
Swimming pool 0.193%** 0.019 -0.045 0.002 0.074 -0.044
(0.067) (0.038) (0.049) (0.037)  (0.146) (0.116)
Programmable thermostats  0.025 -0.004 0.389%** -0.023 0.138 -0.143
(0.064) (0.032) (0.047) (0.032)  (0.123) (0.090)
Dwelling (apartment=0)
Single family house 0.009 0.006 0.266 -0.019  0.740%* -0.465
(0.376) (0.131) (0.171) (0.130)  (0.337) (0.332)
Mobile house 0.281%* 0.001 0.149* 0.012 0.233 -0.058
(0.116) (0.051) (0.078) (0.050)  (0.221) (0.158)
Constant -3.227%%* 0.143 -1.498%** 0.159 -3.617%** -0.261
(0.353) (0.158) (0.218) (0.154)  (0.724) (0.460)
0.075%* -0.008 -0.051
(0.037) (0.026) (0.077)
N 9,187 9,474 1,084

*The regression uses the matched sample from propensity score matching; the specifications are without areas included
because the standard errors are inflated by collinearity if areas are all included.
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.

5.3 Matching using machine learning

Machine learning approach is adopted by using classification and regression trees (CART)-
based propensity score model (see details of the methods and results in Appendix C). CART-based
model uses decision trees or regression trees to incorporate additionality, interaction and non-linear-
ity (Lee et al., 2010). Boosted CART is used based on twang package (Ridgeway et al., 2015). The
results show that the positive correlation between solar panel installation and TOU enrollment still
holds while the coefficient on TOU is not statistically significant for the analysis of energy efficient
central AC.
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6. MONETARY VALUATION OF TOU’S ASSOCIATION WITH SOLAR ADOPTION
6.1 Remaining issues and usefulness of our results

We use a matching approach plus controlling for a rich set of covariates to try to identify
the impact of TOU on solar panel and energy efficiency adoption. The key assumption for a causal
identification using our approach is that the factors influencing the TOU enrollment and technology
adoption are observable. Our estimated correlation might not reflect the causal relationship if there
are unobservables impacting both TOU enrollment and solar or energy efficiency adoption. Exam-
ples of these unobservables include whether local solar contractors’ marketing information includes
the benefits of TOU, individual consumers’ energy financial literacy, and so on.

Estimating the correlation, although not fully causal, between TOU and solar adoption is
still meaningful. For example, if indeed one of the unobservables is whether a household has en-
countered a local solar contractor that promotes the large benefit from solar under TOU, then our
results would imply that such marketing campaign bundling TOU and solar could potentially be
effective at promoting both TOU and solar adoption. If the unobservable is energy financial literacy
(although this unobservable could be partially controlled for using our programmable thermostat
variable), then our results would imply that policy makers should identify the group of consumers
that are environmentally friendly and energy-savvy and then bundle TOU and solar together when
providing educational programs to these consumers.

To better justify that our estimated correlation is causal, in future studies better data are
needed such as information on exogenous variation impacting TOU enrollment. In terms of external
validity, our study only examines the TOU plan under SRP’s service territory. In some other states,
TOU peak hours are in different hours than the ones with SRP, which could imply different magni-
tudes of correlation between TOU and solar adoption.

6.2 Emission impact of TOU-correlated solar panel adoptions

In light of the estimated correlation between solar-panel adoption and TOU pricing, we
now assess the emission impacts associated with the additional solar-panels correlated with TOU
enrollment. We first come up with an assessment of how many solar panel installations are asso-
ciated with TOU pricing as of 2014 in SRP’s service territory using our estimated impact of TOU.
Next, we combine this assessment with the estimated reduction in greenhouse-gas and environmen-
tal pollution emissions per installation to obtain the overall emission impact. We obtain estimates of
emission reductions from solar panels using average hourly marginal damages of different emissions
(CO,, SO, NOy and particulate matter) per kWh from (Holland et al., 2016) and simulated hourly
electricity generation using PVWATTS model. Details of calculation can be found in Appendix D.

We get the total annual savings from solar panel installation correlated with TOU enroll-
ment. The results are summarized in Appendix Table D1. As the final row of Table D1 indicates, the
annual monetary equivalent of emission reduction is approximately $0.42 million.

6.3 Fiscal-subsidy equivalent of TOU impact

In this section, we conduct a back-of-the-envelope analysis to quantify what dollar amount
of financial incentive would achieve the same impact on solar adoption associated with TOU pric-
ing (detailed calculations can be found in Appendix D). TOU is estimated to be associated with the
same magnitude of impact on promoting solar adoption as an increase in financial incentives (such
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as rebates and tax credits) by $2,070~$10,472. The average nationwide financial incentives for solar
panel adoption are $5,493-$9,156. The association between TOU and solar adoption is thus equiv-
alent to about 85% (based on (2,070+10,472)/(5,493+9,156)) of the amount of existing financial
incentives. Note our back-of-the-envelope calculation imposes restrictive assumptions including a
linear relationship between monetary incentive and adoption rate. When we assume a more realistic,
decreasing influence of monetary impact, our calculations should be treated as the upper bound.
Nonetheless, these calculations provide us a ballpark number on the monetary equivalence effect
regarding the association between TOU and solar panel adoption.

7. CONCLUSIONS

This study explores the correlation between TOU and the adoption of solar panels and
energy efficient air conditioners among residential consumers. We find that consumers in Arizona
enrolled in TOU are 27% on average more likely to install solar panels. However, this study does
not show a clear correlation between TOU plan and energy efficiency adoption. The possible reason
might be that while it is obvious that solar panels generate most electricity during peak hours (be-
cause the solar radiation is the strongest during afternoon hours which coincide with peak hours in
summer months in most TOU plans) (Ong et al., 2010; McLaren et al., 2015), it is not obvious to
consumers whether energy efficiency saves the most electricity during peak hours. Although Figure
1 shows that most energy efficiency savings from retrofits on AC are correlated with TOU peak
time, this information may be not salient to energy efficiency consumers and is not easily noticed
by people. Another reason could be related to the “lock-in” effect. People usually have their ACs
replaced after using 15 years or over and need to replace their old HVAC system (some retrofits may
be possible, which could happen earlier than 15 years). This creates one additional barrier to the
adoption of energy efficiency. There are some programs to incentivize consumers to replace their
ACs to energy efficient ones earlier, and the subsidies motivate the consumers to enter the market
faster. Entering of energy efficient AC market only after a long period of time can be seen as a type
of technological “lock- in” (Unruh, 2000), where the low-carbon technologies and policies cannot
change fast enough and the old technologies still dominate. Such lock-in effect could partially ex-
plain why we do not observe a significant impact of TOU pricing on energy efficient AC adoption.

The results have important implications for policymakers and utilities. First, the result that
TOU is positively correlated with solar panel adoption implies that utilities could provide more in-
formation for their customers regarding the benefit of TOU for solar adopters. When government or
utilities implement educational or informational programs to electric customers, they should bundle
the information about the benefits from both solar and TOU, which could potentially increase the
adoption of both TOU and solar panels. From cost-effectiveness perspective, combining TOU and
solar in policy programs can also achieve a lower cost per additional adoption of TOU and solar.
The exact welfare impacts of TOU and solar adoption is not the focus of this study. There could
also be potential issues of redistribution effects from TOU that could decrease welfare (Joskow and
Wolfram, 2012). But according to Train and Mehrez (1994) and Action and Mitchell (1984), the net
impact of TOU on social welfare could be positive for certain TOU price designs.

Second, for energy efficiency appliances, policies or programs could be implemented to
provide more information to consumers about the timing when energy savings occur. More studies
are needed to show empirical evidence about the exact savings by hour of day for energy efficient
appliances. With more high-frequency data available from increasing penetration of smart meters,
the timing of energy savings can be accurately tracked, which helps quantify the value of energy
efficiency (Boomhower and Davis, 2019; Qiu and Kahn, 2018).
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APPENDIX —THEORETICAL MODEL

We develop a theoretical model to illustrate the relationship between rate plans and invest-
ment in energy efficiency and solar panels. We construct a two-period model to illustrate consumers’
decision process. In period 1, a consumer decides to 1) purchase energy efficient appliances (e.g.,
energy star air conditioner) or 2) adopt solar panels. In period 2, she decides on how much energy
service to use after the decision in the first period. For simplification, the use of energy service in
period 2 is considered as the total net benefits from all future energy services. Also, we assume that
one consumer can only choose an energy star conditioner or adopt a solar panel system, an assump-
tion justified by the empirical evidence that only a small percentage (0.49%) of consumers choose
both in our data.
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A consumer’s choice set contains two alternative choices and the status quo: energy effi-
cient appliance (E), solar panel system (S) and the status quo choice (Q). We assume that consumers
are forward looking. In period 1, the consumer chooses the energy efficient appliance (E), solar
panel system (S) or stays at the status quo choice (Q), with the initial cost ¢, =0 < ¢, <c;. In period
2, the consumer chooses the amount of the energy service usage, e, that needs to be used. The elec-
tricity prices during the peak hours and off-peak hours are denoted as p, and p, , respectively, for
the TOU plan. The marginal price in flat rate group p, is higher than the off-peak time price p, and
lower than the peak time price p,.

Compared to the cost of installing a solar panel system, an energy efficient appliance has a
lower initial cost (¢, < cg).! We assume the electricity used from the grid after purchasing the energy
efficiency appliance is r,e and electricity used after the solar panel installation is rge. Note in our
context, 7, > rg, which indicates, the solar panel system will save more electricity (or use less elec-
tricity) compared to the energy efficient appliance.?

In period 2, a consumer’s net benefit equals the total benefit derived from energy service
usage minus the cost of energy service usage. b(e) is the benefit function. Furthermore, consumers’
benefits are heterogeneous and depend on a type variable 8. We assume a continuum of consumer
types distributed on the interval [Q,é ] As aresult, a type 6 consumer’s benefit from energy service
usage in the TOU group is?

z(0)= Hb(e)—(appr,e—i-(l—a)por,e),l e{E,S},

where e is the daily energy service usage; ae and (1 —a)e are energy services used during the peak
hours and off-peak hours in the TOU group, respectively. Similarly, the p, and p, are the electricity
prices during the peak hours and oft-peak hours in the TOU group.

A type € consumer’s benefit from energy service usage in the flat rate group is

72'(9) = Gb(e)— p/.r,e,l € {E,S}.

We assume a standard benefit function that has the properties 5'(e) > 0,6"(e) <0, so that
consumer benefit increases as more energy service is used but there is decreasing marginal return.
A consumer will choose the type of technology that maximizes the consumer’s benefit in period 1,
where the total benefit from two periods in the flat rate group can be denoted as,

I,,(9) =5(6’b(e)—pfrle)—cl,l e{E,S}.

The total benefit from two periods in the TOU group can be denoted as,

1. On average, the cost of a typical AC installation ranges $4,416-$7,212 and that of a higher energy efficient air
conditioner could cost approximately $1,500 more. The average cost for a 6 kW residential solar panel is about $12,642
(after tax credits) in Arizona, respectively. (Source: https://www.homeadvisor.com/cost/heating-and-cooling/install-an-
ac-unit/;  http://www.centralairconditionerprice.com/#Prices-by-Efficiency;  http://news.energysage.com/much-solar-
panels-cost-phoenix-arizona/).

2. According to Boomhower and Davis (2019), the average largest electricity savings of energy efficient ACs during
peak hours is less than 0.4 kWh/household/hour based on data from California, while based on engineering calculation, the
average electricity generated from a typical sized solar panel system in Phoenix could reach 3.8 kWh/household/hour (the
20-year savings is $81,083 on average) (source: http://news.energysage.com/much-solar-panels-cost-phoenix-arizona/).

3. Compared to the price difference during peak hour in the TOU group and the corresponding price in the flat rate group,
the price difference during off peak hours is much smaller. We therefore ignore the off-peak hour difference in the theoretical
model to focus on the major incentive factor that may lead to difference in the adoption rate between the TOU group and flat
rate group.
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1_[1,,(49):5(6’b(e)—(apprle+(l—a)p”r,e))—c,,l e{E,S}.

The parameter J is the discount factor in the period 2. According to the first order conditions of the
profit function in period 2, in the flat rate group,

b'(e}):% Je {E,S}

and
b (eQ ) =P
S 0 ’
where e} and e/Q are the optimal usage from the alternative / and status quo choice Q under the flat

rate pricing, respectively. Since b'(-) is decreasing and b’(e[/) < b'(e,Q. ), we can infer ¢}, > €.

In the TOU group, similarly, have

b’(ef)z(app +(1—a)p0)r, /16 ,1e{E,S}

and

0 ((pr+(1—0()p0)
b(ef)= :
0
where ¢! and e? are the optimal usage in the alternative / and status quo choice Q under the time of
use pricing, respectively. Since 5”(+) < 0 and b'(e,’) < b’(ef) ), we can infer ¢/ > e?.

Substitute the optimal usage function into the total benefit function, we can derive the
maximized benefit of choosing the energy efficient appliance or solar panel system. The maximized
benefits of remaining in the status quo Q (where 7, =1) in the flat rate and the TOU groups are de-
noted as IT,, (#) and IT, , (), respectively.

Therefore, the cutoff point to switch to alternative / (E or S) in the flat price group can be
found by setting I1; , (0,) =11, (Hf ),4 and we get,

i oo\, S
pf(rlef ef)+5

K AR ()

If 6 > 6, then flat rate consumers will adopt energy efficiency or solar panel. The cutoff point to
switch to alternative / in the TOU group can be found by letting IT;, (6,) =TT, (6} )-

Je(E,S).

c
(ap, +(A=a)p, )(re; —€7 )+ 2
0,= 1 5 Le{E,S}.
b(ef)_ b(ef )
If &> 6, then TOU consumers will adopt energy efficiency or solar panels. According to &, and 6,

00, 1 00, 1 o . I
we can find —=——————>0and —- =—————— >0, indicating a higher initial

o S(bter)=blef) T ae o(ber)-b(ef)
investment cost would increase the type threshold and lead to a smaller subset of consumers willing
to switch. In addition, when the saving rate 7, changes, we have (note that e}. is a function of 7;; also
note that b'(e’f) =p,110)

4. Note that T, ,(8)—I1,,(#) is always decreasing as 6 increases.
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o e,
20, (pf g ae, +pe f](b(elf)—b(??))—@;rl’(p_f.(rle;_eg)Jrg]

o (b(e)-o(e5)

When the above derivative evaluated at (0 =6,) ,

00 !
s P >0,

o bley)-b(ef)
as €, > e? and b'(-) > 0. One can also apply the Envelop Theorem directly here to simplify the der-

ivation process. Similarly, we can conclude that in the TOU group, who choose to remain in the
status quo (0 =0)

00, (app +(1—a)p0)ei,

(e )-b(ef)

Therefore, we have the following proposition.

Proposition 1. 4 higher initial investment cost would increase the type threshold and
lead to a smaller subset of consumers willing to switch; a higher saving rate (a smaller r)
leads to a larger set of consumers (a smaller 0,) to switch away from status quo.

Comparing 6, and 6,, we show that depending on the relative magnitude of p, and the “ef-
fective” TOU price p=ap, +(1 a) Py» We can compare 6, and 6,. First, we need to see whether
there exists a monotonic relationship between the function

e ()= (P

b(e; (P))-b(ef ()
and the price variable . Take the first order derivative with respect to

(0020 = e 408l -t | 25 2%

0 p

v (p(e)-0(5)
) [(”elf ‘e?)ﬂb(" = ﬁf’ﬂ(b(e’f)—b(e? )-2 (50, (5122 1 2 —”J

op Op

0

(1) =7 )(b(ef)=b(ef ))+p@6;f a;][b( ¢))-b(e?) - (ref(iy)—ef(ﬁ))@ci]
(b(e)-0(e0) |

According to the definition of 4, at the cutoff point,
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Therefore,
00 _ ne,—¢}
@ b{e)-b(ef)
When the rebound effect (consumers use more energy than the theoretical energy from energy efficient

technologies due to lower marginal cost of using energy service) is large (i.e., r,ej, - efQ >0), g—? >0,
P

we have 6, (p=p)=06,,0,(p>p)>6,(p=p)=0,,and 6,(p< p)<6,(p=p)=0,. When the re-

bound effect is small (i.e., e} —e? <0),%<0,wehave(9t(ﬁ=p)=6’f,6’,([7>p)<¢9t(13=p)=9,

andet(ﬁ<p)>0t(l~7:p):9f'
Existing literature shows that the rebound effect is very likely to be small, i.e. r,elf - efQ <0.
Because the demand for electricity tends to be inelastic, the rebound effect is not very large and the
energy efficiency measures will yield net energy savings (Gillingham, et al. 2013; Alberini, 2018).
Therefore, we have

Proposition 2. When the rebound effect is small (or large), compared to the flat rate pric-
ing, if the effective price p > p,, more (or fewer) consumers in the TOU group will adopt

the solar panel system or purchase the energy efficient appliance; if the effective price

D < p,, fewer (or more) consumers in the TOU group will adopt the solar panel system or
purchase the energy efficient appliance.

Figure M1 below illustrates the basic concepts, given the assumption of a reasonable small
rebound effect (r,ej, —e? < 0). The horizontal axis is the consumer’s type, the vertical axis is the
benefit of energy usage. Based on the above model and the SRP TOU plans, we assume p> p, in
the figure. Threshold values under the cost ¢, and saving rate 7, are denoted as 6(c,,7;) . Figure
MI shows that when p > p,, more consumers will buy energy efficient appliances (/= E') or adopt
solar panel systems (/ = §) in the TOU group compared to the flat price group. For the influence of
saving rate 7, a higher saving rate (a smaller ») will induce more consumers to switch away from
the status quo. Using the flat rate group as an example and assuming 7 < 7, the new threshold value
0, (c;,) is lower than 6, (c,,7; ) and fewer consumers will stay at the status quo. The switching cost
¢, for alternative / also influences the switching threshold. Using the TOU group as an example and
assuming ¢; > ¢;, the new threshold value 6, (c/,# ) is higher than 6, (¢,,# ) and more consumers will
stay at the status quo.
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Figure M1: Theoretical framework on the impact of investment cost and saving rate on type
threshold of consumers
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APPENDIX A
Table Al: Interaction of TOU and peak price
Probit model for energy Probit model for energy Probit model for solar
efficient central AC efficient room AC panel installation
Without matching
TOU —-0.017 0.123 —0.064
(0.127) (0.170) (0.131)
TOU*peak rate -0.029 0.033 0.442
(0.452) (0.616) (0.450)
N 10,045 9,656 9,110
Pseudo R? 0.066 0.056 0.104
Coarsened exact matching
TOU 0.147 0.283 0.008
(0.221) (0.229) (0.320)
TOU*peak rate —0.487 —0.740 —0.095
(0.809) (0.820) (1.173)
N 3,355 2,932 2,758
Pseudo R? 0.106 0.076 0.145
Propensity score matching
TOU —0.009 0.112 —0.039
(0.131) (0.174) (0.371)
TOU*peak rate -0.067 0.058 0.687
(0.467) (0.633) (1.355)
N 9,810 9,436 3,998
Pseudo R? 0.076 0.117 0.159

Notes: All regressions include socio-demographics and house characteristics;
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Table A2: Adoption of energy efficiency or solar panels for owners &
renters and only owners

Owners & renters Owners

Central AC

Coarsened exact matching

TOU 0.087 0.102
(0.064) (0.069)

N 4,039 3,233

Propensity score matching

TOU —0.027 0.014
(0.042) (0.048)

N 9,461 6,754

Solar panel

Coarsened exact matching

TOU 0.176* 0.256%*
(0.098) (0.104)

N 3,200 2,550

Propensity score matching

TOU 0.107* 0.149%*
(0.060) (0.066)

N 8,682 5,945

Room AC

Coarsened exact matching

TOU 0.062 0.317
(0.265) (0.302)

N 256 173

Propensity score matching

TOU —-0.137 —0.031
(0.140) (0.164)

N 847 544

Table A3: Adoption of energy efficiency or solar panels for internet and mail respondents

All respondents

Internet respondents

Mail respondents

Central AC
Coarsened exact matching

TOU 0.087 0.061 0.078
(0.064) (0.076) (0.122)

Propensity score matching

TOU —-0.027 -0.077 -0.059
(0.042) (0.048) (0.091)

Solar panel

Coarsened exact matching

TOU 0.176* 0.116 0.270%**
(0.098) (0.139) (0.135)

Propensity score matching

TOU 0.107* —0.0004 0.278***
(0.060) (0.081) (0.094)

Room AC

Coarsened exact matching

TOU 0.062 2.967%** —0.600
(0.265) (0.893) (0.420)

Propensity score matching

TOU —0.137 —0.056 —0.056
(0.140) (0.187) (0.187)

Socio-demographics and home characteristics Yes Yes Yes

Area (zip codes) Yes Yes Yes
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APPENDIX B: HETEROGENEITY BY CONSUMER/BUILDING
CHARACTERISTICS

Using the sample from propensity score matching, we also examine if the probability of
solar adoption conditional on TOU pricing varies across other consumer/building characteristics.
The characteristics examined are monthly electricity usage, household income, square footage of
the property, persons in the household, property vintage (in years), and age of household head. The
specification builds on column (3) of Table 5 by introducing the interaction variable TOU*(variable
of interest) into the specification. To reduce the number of combinations, we only introduce one
interaction variable for each specification instead of having multiple interaction terms introduced at
once. This approach also keeps the interpretation of the results relatively straight forward. The co-
efficients are listed in Appendix Table B1. Although each specification includes all of the variables
included in column (3) of Table 5, for presentational ease we only show the coefficients of TOU
and the interaction term in question. The marginal effects of TOU with 95% confidence intervals at
various values of the variables of interest are shown in Figure B1.

The results show that the marginal effect of TOU on solar panel adoption probability
does not vary significantly with respect to monthly electricity usage, household income, persons in
household, and property vintage. In contrast, the marginal effect of TOU on solar adoption appears
to decrease with square footage and increase with household age. Properties facing TOU pricing
are less likely to adopt solar panels as the size of property (measured in square footage) increases.
This likely reflects the fact that larger properties probably require more solar panels and hence the
adoption cost becomes higher, hence lowering the probability of adoption. From a policy making
perspective, increasing TOU availability (and also awareness of this availability) to smaller-size
properties might achieve a higher adoption rate of solar panels.

The result that older head of household who faces TOU pricing is more likely to adopt
solar panels is only significant at the 10-percent level as indicated by the interaction term. There is
no obvious reason why older decision makers should be more inclined to adopt solar panels when
facing TOU pricing, especially when electricity usage and household income are already controlled.
In light of the lack of clear economic rationalization and relatively low statistical significance, this
particular result might not be too valuable for policy discussions and should be viewed with caution.

Table B1: Heterogeneity of TOU’s association with solar panel adoption (using the sample
from propensity score matching)

Interaction term list

Monthly Age of
electricity usage Household income Square footage Personsin  Vintage household
(1000 kWh) ($1000) (1000 ft*) household  (in years) head
TOU -0.037 0.111 0.516%** 0.081 0.080 -0.323
(0.123) (0.104) (0.180) (0.133) (0.126) (0.260)
TOU* Variable of interest ~ 0.089 —0.00006 —0.200%* 0.011 0.001 0.007*
(0.071) (0.001) (0.089) (0.053) (0.003) (0.004)
N 8682 8682 8682 8682 8682 8682
Pseudo R? 0.1062 0.1055 0.1079 0.1055 0.1055 0.1069
Demographics and building  Yes Yes Yes Yes Yes Yes
characteristics
Area (zip codes) Yes Yes Yes Yes Yes Yes

Notes: Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Figure B1: Heterogeneity of marginal effects of TOU on solar panel installation
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APPENDIX C: MACHINE LEARNING

Classification and regression trees (CART)-based propensity score model is applied, which
is an alternative of logistic regression to estimate propensity scores. CART-based model uses de-
cision trees or regression trees, and has advantages over simple regressions which are sensitive
to misspecification. It incorporates additionality, interaction and non-linearities (Lee et al., 2010).
Boosted CART is used based on twang package (Ridgeway et al., 2015).

The level of interactions is two, meaning that the interaction terms of each two covariates
put in the model are included. n.trees is increased from 5,000 to 10,000 to enable a larger maximum
number of iterations. Two default stopping rules that use two balance metrics are applied, which are
absolute standardized bias (standardized effect sizes) and Kolmogorov-Smirnov (KS) statistic. The
other parameters are default. Figure C1 shows the two stopping rules consistent with each other,
indicating the results are not sensitive to the stopping rule. Table C1 shows the balance table using
standard effect sizes. Missing values of covariates are also balanced. Table C2 shows the results that
the positive correlation still holds between solar panel installation and TOU enrollment. The coeffi-
cient on TOU is not statistically significant for the analysis of energy efficient central AC.

Figure C1: Balance measure of stopping rules
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Table C1: Mean of variables before and after matching in TOU and non-TOU consumers
(analysis of solar panel installation)

Before matching After matching
Non-TOU TOU Non-TOU TOU
Variable Obs Mean Obs Mean Obs Mean Obs Mean
Ownership 7,763 0.725 4,362 0.720 7,522 0.725 4,375 0.721
(0.446) (0.449) (0.447) (0.448)
Usage 7,763 1.338 4,362 1.654 7,522 1.359 4,375 1.661
(0.761) (0.868) (0.763) (0.867)
Household income 7,763 45.341 4,362 61.310 7,522 46.124 4,375 61.381
(40.871) (44.969) (41.020) (44.908)
Square footage 7,328 1.510 4,264 1.864 7,522 1.518 4,375 1.868
(0.795) (0.793) (0.795) (0.790)
Persons in household 7,366 2.065 4,252 2413 7,522 2.077 4,375 2.424
(1.052) (1.230) (1.061) (1.237)
White 7,256 0.751 4,124 0.746 7,522 0.755 4,375 0.746
(0.433) (0.435) (0.430) (0.435)
Stories 7,118 1.171 4,155 1.275 7,522 1.171 4,375 1.273
(0.418) (0.493) (0.420) (0.490)
Vintage 7,763 29.911 4,362 26.867 7,522 29.972 4,375 27.017
(19.765) (17.936) (19.610) (17.948)
Household head age 7,088 60.383 4,136 53.849 7,522 60.131 4,375 53.861
(14.744) (15.964) (14.847) (15.904)
Primary residence 7,454 0.898 4,291 0.976 7,522 0.898 4,375 0.976
(0.302) (0.154) (0.302) (0.154)
Swimming pool 7,677 0.156 4,346 0.401 7,522 0.159 4,375 0.401
(0.363) (0.490) (0.366) (0.490)
Dwelling type
Mobile home 7,299 0.045 4,196 0.011 7,522 0.210 4,375 0.165
(0.208) (0.103) (0.407) (0.371)
Single family house 7,299 0.745 4,196 0.822 7,522 0.745 4,375 0.824
(0.436) (0.383) (0.436) (0.381)
Programmable thermostats 7,763 0.524 4,362 0.651 7,522 0.536 4,375 0.651
(0.499) (0.477) (0.499) (0.477)

Notes: Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Table C2: Adoption of energy efficiency or solar panels using matching from classification and
regression trees (CART)-based propensity score model *

Solar panel installation Energy efficient AC adoption

TOU 0.111%** 0.122* —0.089 —0.084
(0.052) (0.063) (0.082) (0.093)
Ownership (renter=0) 0.090 -0.110
(0.210) (0.218)
Monthly electricity usage (1000 kWh) —0.001 *** —-0.028
(0.001) (0.076)
Household income ($1000) —-0.001 —0.001
(0.001) (0.001)
Square footage (1000 ft*) 0.154%** 0.038
(0.054) (0.058)
Persons in household 0.056%* 0.087%*
(0.027) (0.038)
White (non-white=0) —-0.098 —-0.050
(0.083) (0.097)
Stories —0.031 —0.245%
(0.073) (0.130)
Vintage (in years) 0.001 0.008**
(0.002) (0.004)
Age of household head 0.010%** 0.001
(0.003) (0.004)
Primary (seasonal residence=0) 0.520%*%* 0.346*
(0.176) (0.196)
Swimming pool 0.179%* -0.011
(0.071) (0.122)
Dwelling type(apartment=0)
Mobile house —-0.024 —0.483*
(0.336) (0.269)
Single family house 0.283 —0.485%*
(0.329) (0.239)
Programmable thermostats 0.022 0.239%**
(0.069) (0.107)
Constant —1.746%** —3.174 *** —2.301
(0.041) (0.442) (0.060) (0.501)

* Analysis of energy efficient room AC adoption is not included when machine learning is applied due to its small sample
size; areas are not included due to concerns of co-linearity;
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.

APPENDIX D: CALCULATIONS FOR MONETARY VALUATION OF TOU IMPACT
Emission impact of TOU-correlated solar panel adoptions

We first calculate the number of installations correlated with TOU enrollment. The number
of total SRP residential consumers is about 690,200 and 30% are on TOU pricing. Based on our
findings, consumers enrolled in TOU are about 0.9-1.4 percentage points more likely to install so-
lar panels. For simplicity, we take the mid-point of 1.2 percentage points for calculations to come.
Then based on the above parameters, the total increase in solar panel adoption associated with TOU
would be 690,200 *0.3*1.2 /100=2,485. We then obtain estimates of emission reductions from solar
panels. We start with the hourly average electricity generation activity per installation. The annual
average hourly marginal damages of different emissions (CO,, SO, NOy and particulate matter) per
kWh are obtained from (Holland et al., 2016). The North American Electric Reliability Corporation
(NERC) is a regulatory authority to ensure the reliability and security of the grid. It is divided into
nine regions. We use the values from Western Electricity Coordinating Council (WECC) where Ar-
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izona is located. We assume that the marginal emissions factors of a unit of energy savings from all
customers of a given NERC region are the same due to trading in electricity in the same region. The
annual average hourly solar panel electricity generation is based on the PVWATTS model® for a typ-
ical 5SkW system.® By multiplying the marginal damages and solar panel electricity generation, we
can calculate the annual hourly savings from reduced emissions created by a solar panel installation.
By multiplying the total increase in solar panel adoption and the savings by a solar panel installa-
tion, we get the total annual savings from solar panel installation correlated with TOU enrollment.
The results are summarized in Appendix Table D1.

Table D1: Annual savings from reduced emissions by solar panel installation for by SRP
consumers

Annual savings from reduced emissions by

Output of solar Marginal damages for emissions® all SRP TOU consumers®

Hour generation (W) CO,($/kWh) SO,(S/kWh) NO(S/kWh) PMe ($/kWh) CO,($) SO,(8) NOL($) PM ($)
1 0 0.0204 0.0055 0.0021 0.0007 0 0 0 0
20 0.0210 0.0054 0.0021 0.0009 0 0 0 0

3 0 0.0183 0.0049 0.0020 0.0005 0 0 0 0

4 0 0.0208 0.0052 0.0022 0.0007 0 0 0 0

5 5.486 0.0207 0.0049 0.0021 0.0009 103219 24.432 10.417 4.493

6 60.784 0.0176 0.0038 0.0018 0.0008 970.547  212.067  99.653 45.695
7 548.903 0.0148 0.0035 0.0016 0.0004 7344.126 1744982 791.820 210475
8 1495.810 0.0153 0.0034 0.0015 0.0005 20728745 4645352 2090.361  707.594
9 2345964 0.0153 0.0036 0.0014 0.0005 32517.508 7592369 2995459  1092.314
10 2937.702 0.0151 0.0034 0.0014 0.0004 40268.564 8968.463  3615.680  1032.138
11 3283.802 0.0149 0.0030 0.0013 0.0004 44484103 9003260  3997.875  1113.234
12 3324.895 0.0148 0.0029 0.0013 0.0004 44527.549  8666.930  4008.101  1103.946
13 3149.649 0.0142 0.0027 0.0013 0.0003 40697.246 7714232 3771707 871.229
14 2802.403 0.0140 0.0026 0.0013 0.0003 35687.863  6589.764  3281.920  746.203
15 2173.906 0.0140 0.0024 0.0013 0.0003 27565.042 4728404  2537.996  610.791
16 1348279 0.0139 0.0025 0.0013 0.0003 17002.453 3057206  1600.258  403.030
17 505.608 0.0136 0.0026 0.0013 0.0004 6222.897 1208455  585.106 168379
18 65.920 0.0133 0.0024 0.0012 0.0003 792740 145.486  72.501 15.102
19 7296 0.0132 0.0025 0.0012 0.0002 87.158 16.751 7.864 1.377
20 0 0.0140 0.0026 0.0013 0.0003 0 0 0 0
2000 0.0149 0.0032 0.0014 0.0004 0 0 0 0

2 0 0.0167 0.0039 0.0015 0.0005 0 0 0 0
230 0.0181 0.0045 0.0017 0.0006 0 0 0 0
240 0.0198 0.0051 0.0020 0.0007 0 0 0 0

Total 318999.758 64318.153  29466.717  8126.000

*The average annual marginal damages for emissions in WECC are obtained from (Holland et al., 2016);

*The number of total SRP residential consumers is about 690,200 and 30% are on TOU rate, and based on our estimates,
TOU increases the adoption by 1.2 percentage points. Then the increase in solar panel adoption due to TOU would be
690,200 *0.3*1.2 /100=2,485);

¢PM: particulate matter.

Fiscal-subsidy equivalent of TOU impact

In this section, we conduct a back-of-the-envelope analysis to quantify what dollar amount
of financial incentive would achieve the same impact on solar adoption associated with TOU pric-
ing. To do this, we use the findings from several empirical studies that quantify the impact of solar
adoption from rebates and other financial incentives. According to Hughes and Podolefsky (2015),
an increase of $470 in solar incentives (from $5,600 to $6,070 per installation) increases the solar
panel adoption by 10% in California; that is, an increase of $4,700 in rebates would lead to a 100%

5. http://pvwatts.nrel.gov/pvwatts.php.
6. https://news.energysage.com/much-solar-panels-cost-phoenix-arizona/.

All rights reserved. Copyright © 2020 by the IAEE.



Time-of-Use Electricity Pricing and Residential Low-carbon Energy Technology Adoption /37

increase in solar panel installation, assuming a constant ratio of percentage change in adoption over
the dollar value of change in incentives. Similarly, according to Lasco Crago and Chernyakhovskiy
(2017), approximately an increase of $5,000 per installation in the solar rebates could result in an
increase of solar panel adoption by 47% in the Northeast of United States; that is, an increase of
$10,638 in incentives could cause a 100% increase in adoption. Moreover, according to Gillingham
and Tsvetanov (2019) an increase of $9,092 per installation leads to a 9% increase in solar panel
installation in Connecticut; that is $101,022 for a 100% increase in adoption. Based on all these
estimates, on average, an increase of $38,787 in incentives could lead to a 100% increase in solar
panel installation.

This study finds that consumers in Arizona enrolled in TOU are associated with about
0.9—-1.4 percentage point or 27% on average higher likelihood to install solar panels. The 27% is
obtained using (0.9+1.4)/2/4.3, where 4.3% is the percentage of solar consumers in our sample.
The 27% impact is equivalent to the impact caused by an increase of $10,472 in solar incentives
($10,472=$38,787*0.27).” However, since the increase in financial incentives in Gillingham and
Tsvetanov (2019) is much larger than the other two studies, if we exclude this study then the equiv-
alent amount of incentives would be $2,070 (based on (4,700+10,638)/2*0.27). Based on the above
analysis, TOU is estimated to be associated with the same magnitude of impact on promoting solar
adoption as an increase in financial incentives (such as rebates and tax credits) by $2,070~$10,472.

7. Note that this is a rough estimate because (1) studies of the impacts of subsidies on new adoption are few (Hughes and
Podolefsky, 2015); (2) incentives can vary significantly across states and years; (3) we assume constant ratio of percentage
change in adoption over the dollar value of change in incentives.
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