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abstract

This paper provides the first empirical evidence on the correlation between Time-
Of-Use (TOU) electricity pricing and the adoption of energy efficient appliances 
and solar panels. We use household-level data in Phoenix, Arizona from an appli-
ance saturation survey of about 16,000 customers conducted by a major electric 
utility. Our empirical results show that TOU consumers are associated with 27% 
higher likelihood to install solar panels but not more likely to adopt energy-effi-
cient air conditioning based on the propensity score matching and coarsened exact 
matching methods. The findings highlight that policy makers could combine TOU 
and solar panels when implementing educational programs or when giving out 
financial incentives to consumers. Our results imply that TOU is associated with 
a similar impact of the incentive offered by $2,070~$10,472 tax credits or rebates 
on solar adoption. 
Keywords: Time-of-use (TOU) electricity pricing, Solar panels, Energy 
efficiency
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1. INTRODUCTION

Energy efficiency and solar energy are two measures promoted by policy makers to re-
duce residential fossil fuel energy consumption and the associated greenhouse gas emissions. Not 
surprisingly, various policies and financial incentives (e.g., tax credits, direct rebates, etc.) exist to 
encourage the adoption of these technologies. For example, the cost of typical financial incentives 
(including direct rebates and tax credits) for the adoption of a solar panel system is on the magni-
tude of $5,493–$9,156 (Solar Energy Industries Association, 2014; Hughes and Podolefsky, 2015; 
Gillingham and Tsvetanov, 2019). However, despite these costly policy instruments, the penetration 
of energy efficiency and solar energy is still relatively low. Many organizational, behavioral, and 
market factors have been analyzed in the existing literature to explain the low adoption level. Yet, 
the impact of one particular factor (electricity rate structure) on energy efficiency investment and 
solar panel adoption is often overlooked in empirical studies (Novan and Smith, 2018). In this paper, 
we show empirically that consumers facing Time-of-use pricing (TOU) are positively correlated 
with the adoption of solar energy, compared to consumers on non-dynamic pricing plans. Our results 
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have important implications for policy makers to promote the adoption of solar panels and TOU 
pricing. 

TOU, one of the most widely adopted dynamic pricing programs, charges different elec-
tricity prices depending on the time of the day, i.e. higher prices during peak hours (e.g. late after-
noon in summer months) and lower prices during non-peak hours. TOU plan provides benefits to the 
utilities because it helps decrease peak load, which has a higher marginal cost of electricity supply 
compared to that of the base-load. In addition, reducing peak load helps utilities maintain the grid 
stability through the reduced likelihood of blackouts during peak hours. TOU can also potentially 
help the consumers save on energy bills if they switch part of their usage from peak to off-peak 
hours. This study focuses on another potential positive welfare impact of TOU—its correlation with 
low-carbon technology adoption, i.e. energy efficiency and solar panel installation. 

Figure 1 shows how the price and hour-of-day relationship of typical TOU price plans in 
Arizona (our study area) corresponds to the timing of electricity savings from solar panels and en-
ergy efficiency. The hourly savings from energy efficiency is obtained by recovering the data from 
Boomhower and Davis (2019), and hourly solar panel electricity generation is obtained by convert-
ing hourly solar data from the typical meteorological year (TMY2) dataset using the PVWATTS 
model  (Ong et al., 2010). The figure shows that a significant portion of energy savings happen 
during peak hours when electricity prices are high. Naturally, this correlation might incentivize 
consumers to adopt energy efficiency and solar panels if they are on TOU pricing. However, there is 
little empirical analysis quantifying the correlation between TOU and the adoption of these technol-
ogies. This study provides the first empirical evidence of such correlation and fills the gap in existing 
literature along three dimensions. 

First, many studies have shown that the penetration of energy efficiency and solar pan-
els falls short of optimal levels, which is widely referred to as “energy efficiency gap” (Jaffe and 
Stavins, 1994). Energy efficiency gap is attributed to various organizational, behavioral and market 
factors (Hirst and Brown, 1990; Weber, 1997; Gillingham et al., 2009; Gillingham and Palmer, 
2014; Qiu et al., 2014; Qiu et al., 2017a), such as inefficient pricing of electricity (Gillingham et 
al., 2009), lack of information (Ramos et al., 2015), and the principal-agent problems (Davis, 2011; 
Gillingham et al., 2012). Meanwhile, the low adoption of solar energy is also attributed to a range 

Figure 1: Hourly energy efficiency savings and solar electricity generation

Notes: The left panel is for solar panel electricity generation; the right panel is for energy efficiency savings from efficient 
ACs. E-21, E-22, E-23, E-25, and E-26 are different price plans as detailed in Table 1. E-23 is a non-dynamic pricing plan 
while the other plans are TOU plans. The price levels in the figure are prices during July and August. The energy efficiency 
savings are calculated based on data in July and August. Color figure is available online.
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of technical, financial and institutional barriers (Margolis and Zuboy, 2006; Timilsina et al., 2012; 
Zhang et al., 2012), including high initial cost, technology risk and complexity (Drury et al., 2012), 
information barriers during information-search process (Rai et al., 2016) and a lack of incentives. 
However, rate design is often a factor missed in existing empirical studies (Novan and Smith, 2018). 
This study contributes to this strand of studies by exploring empirically whether rate design is cor-
related with solar panel and energy efficiency adoption. 

Second, there have been many studies focusing on the impacts of TOU rates on energy 
consumption behaviors and the resulted change in social welfare. Some studies find that consumers 
shift peak load consumption to off-peak hours (Faruqui and Sergici, 2010; Qiu, et al., 2017a) while 
others do not find such load shifting behavior (Torriti, 2012; Faruqui et al., 2014). The load shifting 
behavior could be a result of technology adoption (e.g., demand-side management technology and 
renewable energy technology), and/or purely shifting energy consuming activities such as watching 
TV or washing clothes from peak to off-peak hours. This study contributes further to studying the 
impact of TOU on energy consumption behaviors by examining whether TOU is correlated with 
energy technology adoption. The adoption of energy efficiency and solar panels can serve as one 
underlying explanation for the observed load shifting behaviors in existing studies. 

Third, despite simulation or systems type of modeling on the impact of rate design on solar 
panel adoption, there is a lack of empirical evidence for such impacts. Existing simulation studies 
show that solar adoption should be sensitive to the rate structure (Darghouth et al., 2011; Ong et al., 
2012; McLaren et al., 2015; Darghouth et al., 2016). Two seminal empirical studies support that a 
relationship exists between rate design and adoption of energy efficiency or solar PV. Borenstein 
(2007 & 2017) show that tariff design provides indirect economic incentives for solar adoption. 
Specifically, Borenstein (2017) illustrates that the incentive from a tiered tariff is as much as the 
30% federal tax credit in California. The calculation also indicates that the lifetime savings could 
be $7000 more under a tired tariff (increasing block rate) than a flat rate structure. Our empirical 
results of the correlation between TOU and solar adoption can help verify the simulation studies and 
further assist policymakers in choosing the appropriate rate designs that better reflect the social cost 
of providing electricity and potentially encourage the adoption of energy efficiency or solar panels 
(Ong et al., 2010). 

We compare adoption decisions in energy efficient appliances and solar panels between 
consumers on non-dynamic rates (marginal electricity prices are constant throughout the day) and 
those on TOU rates. We use household-level data in Phoenix, Arizona from an appliance saturation 
survey of 16,035 customers conducted by a major electric utility in 2014 for empirical verification. 

Probit model and statistical matching methods are employed, and robustness checks are conducted 
using multinomial logit model, bi-variate probit model, and machine learning matching method. 

We do not claim that our current finding of the correlation between TOU and technology 
adoption is causal, although we take steps to try to eliminate confounding factors and endogene-
ity issues for causal identification. There are two potential threats to causal identification: reverse 
causality and selection bias. Reverse causality could happen if households first adopt solar panels 
and then switch to TOU pricing. In our customer level dataset, for all solar customers, only 7 solar 
customers (less than 1.4% solar customers) switched to TOU after they adopted solar panels. We 
dropped these 7 solar customers in order to help avoid reverse causality. Also on average solar cus-
tomers adopted solar panels several years after they enrolled in TOU pricing. In terms of selection 
bias, since TOU is not mandatory, it is possible that some consumers are more likely to enroll in 
TOU compared to others while these households are also more likely to adopt energy efficiency and 
solar panels. If these households have specific characteristics that are not observable to us such as 
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environmental awareness and knowledge on energy usage, a potential self-selection bias exists. We 
apply a matching approach and include a rich set of covariates to help deal with such selection bias. 
For a customer that is on TOU pricing, we find a control customer that is similar in terms of home 
and socio-economic characteristics and that is not on TOU pricing. In addition, we use the adoption 
of programmable thermostat as a proxy for environmental awareness. 

Our empirical evidence suggests that TOU consumers are associated with a 27% higher 
likelihood to install solar panels, but not more likely to adopt energy efficient AC. Despite our efforts 
in overcoming the threats to causal identification, due to limitations on non-experimental cross-sec-
tional data, there could still be remaining issues such as other omitted variables that could affect both 
TOU enrollment and technology adoption. However, even if our empirical finding of the correlation 
between TOU and solar adoption is not fully causal, quantifying such correlation is still valuable to 
policy makers. As discussed earlier, both TOU and solar adoption themselves could improve social 
welfare. TOU is found to enhance social welfare through aligning marginal electricity prices with 
marginal costs of electricity supply (Qiu et al., 2018; Train and Mehrez,1994). A positive correlation 
between these two adoptions after controlling for other types of confounding factors implies that 
if policy makers could encourage these two adoptions together either through informational/educa-
tional programs or financial incentives, then consumers could have a higher likelihood of enrolling 
in TOU or adopting solar compared to just having the policies encouraging TOU or solar adoption 
alone. From cost-effectiveness perspective, combining TOU and solar in policy programs can also 
achieve a lower cost per additional adoption of TOU and solar. 

Our finding of the correlation between TOU and solar adoption suggests that TOU is as-
sociated with the same magnitude of impact as financial instruments such as rebates or tax credits 
of $2,070~$10,472 (Section 6 shows the details of the calculation). This is significant because cur-
rently the nationwide average amount of financial incentives for a solar panel system is $5,493-
$9,156. Thus TOU’s correlation with solar adoption is equivalent to about 85% of the current size 
of financial incentives for solar panels. 

2. TOU PRICING PLANS OF SALT RIVER PROJECT

The empirical data used in this study is provided by Salt River Project (SRP), one of the 
largest electric utilities in Arizona. The temperature in Phoenix, Arizona is high in the summer and 
thus there is a large electricity demand for cooling during peak hours, which contributes to the de-
velopment of dynamic pricing plans (Kirkeide, 2012). Moreover, Arizona is a good case for studies 
on solar panel installation due to its large installed capacity and large per capita cumulative solar 
electric generating capacity (one of top three states in the United States) (Qiu et al., 2017b; Qiu et 
al., 2019). 

We use data of the Residential Equipment and Technology (RET) survey conducted by SRP 
in 2014. A random selection of SRP residential customers was surveyed using two methods: an online 
survey and a mail survey. The number of surveys distributed online is 61,925 with 9,389 completed, 
and that for mail survey is 20,625 with 6,646 completed. SRP also provides a separate dataset which 
includes the timing of solar panel adoption for each solar customer and a subset of energy efficient 
AC installations, as well as for each month what type of electricity rate each customer was on. In 
December 2014, there was a major change in the net metering policy of SRP. However, that policy 
change would not impact our results because the RET survey was conducted in early 2014. 

In 2014, there were six types of electricity rates enrolled by SRP residential consumers, 
numbered from E-21 to E-26. The price plans listed in Table 1 show the details of the per kWh 
charges for different pricing plans. The monthly service charge is the same for all the plans and there 
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is no demand charge. Among them, E-23 and E-24 are non-dynamic rates (flat rates) while the rest 
are TOU rates. We drop households in the M-power program (E-24 plan), because E-24 is a prepaid 
electricity plan and provides consumers with extra information on usage through an in-home display 
and thus these consumers respond differently than consumers on other plans (Qiu et al., 2017c). The 
flat rate is an increasing block rate and its marginal electricity price does not differ by time of day. 
The four TOU rates (E-21, E-22, E-25, and E-26) differ in their on-peak times and peak hour prices 
for a given day. 

The survey asks questions about the adoption of different appliances including central air 
conditioner and room air conditioner, and adoption of solar panels. The participants are asked to 
report whether they replaced any appliance during the last 3 years and whether the appliance was 
replaced by an energy efficient alternative, i.e., Energy Star certified appliance. Energy Star is con-
sidered more energy efficient compared to uncertified ones because the certified products exceed 
the federal energy efficiency standard. The survey also includes questions about the consumers’ 
electricity pricing plans, building characteristics (square footage, stories, vintage, residence type, 
etc.) and socio-demographics (household income, household size, race, age of household head, etc.). 
The renter/owner information was obtained separately from Nielsen. Different kinds of dwelling are 
covered in this study, including single family home, mobile home and apartment/condo/townhouse.

3. METHODOLOGY

3.1 Summary statistics

We focus on energy efficient air conditioner units rather than other appliances because air 
conditioning accounts for 6% of all the electricity produced in the U.S. and the electricity use from 
AC also increases the fastest among appliances (Boomhower and Davis, 2019). An understanding 
of the relationship between TOU and energy efficient AC adoption can provide insights into the 

Table 1: Salt River Project TOU and standard residential tariffs
Pricing 
plan Name Categories

Summer 
rates

Summer 
peak rates

Winter 
rates Notes

E-21 Price plan for residential 
super peak time-of-
use service

On peak $0.3013 $0.3568 $0.1205 On-peak hours year-round 
consist of those hours from 
3 p.m. to 6 p.m.; All other 
hours are off-peak.

Off peak $0.0820 $0.0844 $0.0748

E-22 Experimental plan for 
residential super peak 
time-of-use service

On peak $0.3013 $0.3568 $0.1205 On-peak hours year-round 
consist of those hours from 
4 p.m. to 7 p.m.; All other 
hours are off-peak.

Off peak $0.0820 $0.0844 $0.0748

E-23 Standard price plan for 
residential service 
(non-TOU)

≤ 700 kWh $0.1082 $0.1148 $0.0793 No increasing block during 
winter months.

701-2,000 kWh $0.1101 $0.1160 $0.0793
All Additional kWh $0.1206 $0.1311 $0.0793

E-25 Experimental plan for 
residential super peak 
time-of-use service

On-peak $0.3013 $0.3568 $0.1205 On-peak hours year-round 
consist of those hours from 
2 p.m. to 5 p.m.; All other 
hours are off-peak.

Off-peak $0.0820 $0.0844 $0.0748

E-26 Standard price plan for 
residential time-of-
use service

On-peak $0.1937 $0.2206 $0.1010 Summer On-peak hours 
consist of those hours from 
1 p.m. to 8 p.m.; winter on-
peak hours consist of hours 
from 5 a.m. to 9 a.m. and 
from 5 p.m. to 9 p.m.

Off-peak $0.0718 $0.0721 $0.0701
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influences of TOU on other appliances. Figure 2 shows that the adoption of solar panels, energy 
efficient central air conditioners, and room air conditioners are higher for TOU consumers than non-
TOU consumers. Figure 3 is a map showing the uptake of solar, energy efficient AC, and TOU at 
the zip code level. In addition to central AC, we also analyze the adoption of energy efficient room 
air conditioners because this should be useful for policy-makings in the developing countries where 
room air conditioners are more widely adopted compared to central air conditioners.

Certain characteristics between TOU consumers and flat rate consumers differ (Table 2). 
TOU consumers have higher monthly electricity usage, higher household income, and larger square 
footage. Their houses are more likely to be a primary residence rather than a seasonal residence, and 
the houses are more likely to have a swimming pool and programmable thermostats. Additionally, 
the non-TOU households have a longer vintage of the house and an older household head. 

It is possible that some consumers first adopt solar panels or energy efficient AC units and 
then switch to TOU plans—a reverse causality problem. However, this is not a major concern in this 
study. For all 558 solar customers in the RET survey, only 7 solar customers switched to TOU after 
they adopted solar panels. We dropped these 7 solar customers in order to help avoid reverse causal-
ity. On average, based on SRP’s customer level data, the solar customers adopted solar panels five 
years later than the time when they started on TOU rates. Similarly, the timing of energy efficient 
appliances adoption is later than TOU enrollment. The adoption of energy efficient appliances in our 
dataset happens after 2011 while average timing for TOU enrollment is between 2007 and 2008. Be-
cause of the long lag (several years) between TOU enrollment and solar adoption, it is unlikely that 
TOU consumers are forward-looking. In other words, it is not likely that they take into consideration 
the possibility of adopting solar when making the decision of enrolling in TOU. 

3.2 Matching

In empirical studies, randomized control trials and natural experiments are ideal strate-
gies to evaluate a causality relationship (Alberini and Towe, 2015). Given only observational data 
are available in this study, we use a matching approach to approximate a randomized experiment 

Figure 2: Adoption of energy efficient air conditioners and solar panels 

Notes: The vertical axis is the saturation level (with the range from 0 to 1) of the energy efficient air conditioners or solar 
panels; the denominators for the saturation level calculation are the number of customers who reported whether they have 
the technologies or not; *** means statistically different by t-test at 1% level; * is at 10% level. Color figure is available 
online.
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(Stuart, 2010). The control group is matched with the treated group, and these two groups are very 
similar based on observables except the variable of interest (i.e. the treatment variable). Matching 
reduces the imbalance between the treated and untreated groups conditional on control variables. 
There are different matching methods, among which propensity score matching is the most widely 
adopted while coarsened exact matching is applied more frequently in recent studies (Stuart, 2010). 
Propensity score matching and coarsened exact matching represent two known classes of matching 
(Rubin, 1976; Iacus et al., 2011), which are “equal percent bias reducing” (i.e., makes the means 
of covariates closer by the same amount) and “Monotonic Imbalance Bounding’’ (i.e., guarantees 
a reduction of imbalance). Coarsened exact matching coarsens the variables into strata and prunes 
both the treated and control variables (Iacus, et al., 2012) while propensity score matching is based 
on the probability of being treated (Dehejia and Wahba, 2002). Balance checking is necessary for 
propensity score matching. The matching solution for propensity score matching is ex-ante and 

Figure 3: �Uptake of solar panels (A), energy efficient central AC (B), energy efficient room AC 
(C) and TOU rates (D)

Notes: Color indicates number of adoptions based on the survey responses. Color figure is available online.

B

D
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balance is ex-post. In contrast, for coarsened exact matching, the amount of imbalance is controlled 
ex-ante (Blackwell et al., 2009). Both matching methodologies will be applied. The analysis is at the 
household level. After matching, standardized mean difference (SMD) and variance ratio (VR) are 

applied to assess the quality of balancing, which are defined as 
2 2

 
( ) / 2

−
=

+
Treat Control

Treat Control

X XSMD
S S

 and VR
2

2= Treat

Control

S
S

, where X is the vector of control covariates, X  is the mean and 2s  is the variance. Variance 

ratio should be close to one, and a nearly balance variance ratio should be 4/5 < VR < 5/4 (Steiner 

Table 2: �Summary statistics of building characteristics and demographics for TOU and flat 
rate consumers

Variable Obs Mean Std. Dev. Min Max

Flat rate
Energy efficient central AC adoption 7,988a 0.087 0.282 0 1
Solar panel installation 8,450 0.039 0.193 0 1
Energy efficient room AC adoption 1,025b 0.141 0.349 0 1
Ownershipc (renter=0) 8,582 0.730 0.444 0 1
Monthly electricity usage (1000 kWh) 8,582 1.349 0.760 0d 2.6
Household income ($1000) 8,582 46.012 41.175 0 150
Square footage (1000 ft2) 8,130 1.516 0.794 .75 3
Persons in household 8,161 2.077 1.058 1.5 5
White (non-white=0) 8,035 0.755 0.430 0 1
Stories 7,908 1.167 0.413 1 3
Vintage (in years) 8,582 30.013 19.584 0 65
Age of household head 7,875 60.270 14.690 21 75
Primary (seasonal residence=0) 8,260 0.899 0.301 0 1
Swimming pool 8,495 0.158 0.365 0 1
Programmable thermostats 8,582 0.539 0.499 0 1
Dwelling (apartment=0)    
Mobile housee 8,095 0.047 0.212 0 1
Single family house 8,095 0.751 0.432 0 1
TOU    
Energy efficient central AC adoption 4,780 0.101 0.302 0 1
Solar panel installation 4,881 0.047 0.212 0 1
Energy efficient room AC adoption 583b 0.110 0.313 0 1
Ownership 4,902 0.732 0.443 0 1
Monthly electricity usage (1000 kWh) 4,902 1.666 0.861 0 2.6
Household income ($1000) 4,902 61.974 45.114 0 150
Square footage (1000 ft2) 4,794 1.875 0.787 .75 3
Persons in household 4,777 2.416 1.231 1.5 5
White 4,640 0.753 0.431 0 1
Stories 4,689 1.273 0.488 1 3
Vintage 4,902 27.022 17.744 0 65
Age of household head 4,648 54.062 15.758 21 75
Primary (seasonal residence=0) 4,829 0.977 0.151 0 1
Swimming pool 4,886 0.405 0.491 0 1
Programmable thermostats 4,902 0.666 0.472 0 1
Dwelling (apartment=0)    
Mobile house 4,733 0.011 0.103 0 1
Single family house 4,733 0.831 0.375 0 1
a The number of energy efficient central AC adoption is smaller than the number of solar panel installation because fewer 
people reported on this variable;
b This is the number of people that reported whether they adopted energy efficient room AC or not. There are 11,882 house-
holds without room air conditioners and thus adoption of energy efficient room AC does not apply to them;
c Data from Nielsen. Ownership is coded as 1 if the “homeowner or renter status” is described as “definite owner” or “prob-
able owner”. It is coded as 0 if the status is “definite renter” or “probable renter”;
d The averaged usage is calculated by diving the total usage from June through September by the number of billing months. 
A consumption of zero indicates the house is probably vacant; 
e Mobile house refers to a permanent or semi-permanent residence that can be moved. 
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et al., 2010). SMD should be smaller than 0.25 to indicate good balance (Rubin, 2001). All control 
variables including the demographic and housing characteristics are used as matching variables. In 
particular, we match on the variables listed in Table 6. 

3.3 Basic model specification

A binomial probit model is applied to examine the relationship between TOU and energy 
efficiency or solar panel adoption. 

*1  0
0 
 >

= 


i
i

if y
y

otherwise
 (1)

( )*
0 1 2β β β ε= + + +i i iy TOU iX  (2)

where i indicates individual household i; iy  is a binary dependent variable indicating the adoption 
of an energy efficient air conditioner or solar panels. *

iy  is the latent variable; TOU is equal to 1 if 
the household is on a TOU pricing plan and is 0 if the household is on a flat rate plan.  X  is a vector 
of control variables, including demographics (age, households, income, etc.) and housing charac-
teristics (square footage, ownership, stories, etc.). Among X , we use the adoption of programmable 
thermostat as a proxy for environmental awareness. One might argue that the adoption of program-
mable thermostat itself is endogenous. However, we are not focused on interpreting the coefficient 
for programmable thermostat adoption. This variable only serves the purpose as a control variable 
to help eliminate the omitted variable bias from the lack of environmental awareness data. In other 
words, by including the adoption of programmable thermostat, the part of the error terms that is due 
to environmental awareness is now controlled for and thus the rest of the error terms are no longer 
correlated with the TOU variable (Stock & Watson, 2007). Although there are financial incentives 
for the adoption of energy efficient appliances or solar panels, there is no variation for these incen-
tives in our dataset because all consumers are served by the same utility company and the same 
incentives are available to all of the utility’s consumers. Although characteristics such as the shade 
condition and roof direction might impact solar panel adoption, these impacts are assumed to be ran-
dom and uncorrelated with the adoption of TOU pricing. Thus, shade condition and roof direction 
do not interfere with the estimates of the impacts of TOU. 

4. ECONOMETRIC ANALYSIS

4.1 Coarsened exact matching

Each column in Table 3 is a single probit regression on the matched control and treatment 
customers after coarsened exact matching. Models in column (1), (4) and (7) simply regress the 
adoption of energy efficiency or solar panels on TOU, while columns (2), (5) and (8) include house-
hold characteristics and demographics as control variables in the models. The models in the columns 
(3), (6) and (9) further add the district dummy variables (zip code). Means of variables before and 
after matching among TOU and non-TOU consumers are presented in Table 4, which indicates that 
the control group and treatment group are well balanced. Coarsened exact matching achieves com-
mon support because all observations within a stratum containing both a treated and control unit are 
by definition inside of the common support.

The main result from Table 3 is that there is a positive correlation between TOU and so-
lar panel installation. There is no evidence that TOU consumers are more likely to adopt energy 
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efficient central AC or room AC. The coefficients on TOU for energy efficient AC units are small 
and statistically insignificant. TOU consumers are more likely to install solar panels (based on mar-
ginal effects 1.4 percentage point, p<0.10) (column (3)). The marginal effect is calculated using ∂
prob(yi=1)/∂TOUi for a reference individual. The mean of the solar adoption variable in the sample 
is 0.043. Thus 1.4 percentage point increase equals 32.5% (1.4/4.3=32.5%) increase on average in 
solar panel adoption. 

Our finding is supported by several existing studies. Borenstein (2008) found that solar 
electricity generation occurs disproportionately at times when the electricity price is higher. TOU 
rate with the peak hours coincident more with solar generation thus benefits solar consumers more 
(McLaren et al., 2015). As a result, TOU provides indirect incentives for adopting solar panels. 
The economic benefits of solar installation are even larger when TOU is coupled with net metering 
(Darghouth et al., 2011) or battery storage, which could save or store electricity for later use. From 
the consumers’ perspective, if they observe or expect this situation, a TOU rate structure could in-
centivize solar adoption. In the case of the utility price plans in this paper, although the peak hours of 
TOU and solar irradiance hours do not exactly overlap, the partial overlapping still generates greater 
economic benefits to PV owners compared to a flat rate. Three other possibilities to explain the im-

Table 4: �Weighted meansa and standard errors of matching variables for TOU and non-TOU 
consumers using coarsened exact matching (analysis of solar panel installation)

Before matching After matching

Non-TOU TOU Non-TOU TOU

Variable Obs. Mean Obs. Mean Obs. Mean Obs. Mean

Ownership 7,763 0.725 4,362 0.720 2,296 0.768 1,675 0.768
(0.446) (0.449) (0.422) (0.422)

Usage 7,763 1.338 4,362 1.654 2,296 1.587 1,675 1.621
(0.761) (0.868) (0.770) (0.784)

Household income 7,763 45.341 4,362 61.310 2,296 57.973 1,675 58.831
(40.871) (44.969) (38.872) (39.815)

Square footage 7,328 1.510 4,264 1.864 2,277 1.732 1,662 1.732
(0.795) (0.793) (0.755) (0.755)

Persons in household 7,366 2.065 4,252 2.413 2,285 2.064 1,668 2.064
(1.052) (1.230) (1.006) (1.006)

White 7,256 0.751 4,124 0.746 2,257 0.831 1,644 0.831
(0.433) (0.435) (0.375) (0.375)

Stories 7,118 1.171 4,155 1.275 2,275 1.135 1,654 1.135
(0.418) (0.493) (0.362) (0.362)

Vintage 7,763 29.911 4,362 26.867 2,296 27.648 1,675 27.570
(19.765) (17.936) (18.717) (18.067)

Household head age 7,088 60.383 4,136 53.849 2,261 56.936 1,648 56.527
(14.744) (15.964) (15.238) (15.443)

Primary residence 7,454 0.898 4,291 0.976 2,290 0.990 1,671 0.990
(0.302) (0.154) (0.100) (0.100)

Swimming pool 7,677 0.156 4,346 0.401 2,296 0.343 1,675 0.343
(0.363) (0.490) (0.475) (0.475)

Dwelling type
Mobile home 7,299 0.045 4,196 0.011 2,280 0.008 1,658 0.008

(0.208) (0.103) (0.088) (0.088)
Single family house 7,299 0.745 4,196 0.822 2,280 0.821 1,658 0.821

(0.436) (0.383) (0.383) (0.383)
Programmable 

thermostats
7,763 0.524 4,362 0.651 2,296 0.641 1,675 0.641

(0.499) (0.477) (0.480) (0.480)
a Weighted means after matching indicates the observations are weighted. Unmatched units get weights of zero. A weight 

of 1 is given to matched units in the treated group and weights of  
S

C T
s

T C

m m
m m

 are given to matched units in the control group, 
where S

Tm  and s
Cm  are treated and untreated units in stratum s. 
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pact of TOU on PV adoption might exist, similar to those discussed in Comin and Rode (2015) about 
the impact of PV adoption on voting for the Green Party. First, TOU helps the consumers gain more 
net benefits, which may enable the consumers to use the money from TOU to further invest in green 
technologies such as solar PV. However, according to existing studies, the net savings from TOU 
are comparably small. Residential consumers save about 2.2% on their electricity bills from TOU 
(Torriti, 2012) and commercial consumers save about 5–6% (Qiu et al., 2018). Since the money 
saved is not large enough to compensate for the cost of installing PV, we think it only partially ex-
plains the link at best. The second potential mechanism is through Bayesian learning. Consumers 
could acquire additional information about solar PV values with the TOU adoption, which helps to 
reduce the uncertainty regarding the value of solar PV. The third mechanism is cognitive dissonant. 
The consumers change their appreciation for green technologies to get greater utility from past TOU 
adoption decisions.

For the other variables, a house with longer vintage, more senior household head, or a 
swimming pool is associated with a higher likelihood of solar panel adoption, as is a single-family 
house compared to apartment or mobile house. In contrast, a house with higher monthly electricity 
usage during summer or owner-occupied is associated with lower likelihood of installing solar pan-
els after controlling for other related variables. A house occupied by the owner or with programma-
ble thermostats is more likely to adopt energy efficient central AC while a house with more stories is 
less likely to adopt energy efficient central AC. In terms of the adoption of energy efficient room AC, 
an owner-occupied house or if the race of the owner happens to be white, a house with more stories, 
more senior household head or higher-income households is associated with higher probability of 
adopting energy efficient room AC. 

4.2 Propensity score matching

Similar to the coarsened exact matching, the demographics and building characteristics are 
used as the matching variables for propensity score matching. Different algorithms of propensity 
score matching are attempted, including radius matching with different calipers, kernel matching, 
k-nearest neighbors matching. The results after propensity score matching of different algorithms 
are very similar. The results with the smallest median bias, as listed in Table 5, are yielded by using 
the radius matching. Radius matching finds a control for a treated individual only within the caliper 
(e.g., 0.01), which puts a tolerance level on the largest acceptable propensity score distance. Logit 
model is used to generate propensity scores. The results show TOU consumers are 0.9 percentage 
point more likely to adopt solar panels, and the coefficient is statistically significant at the 10-percent 
level. The correlation between TOU enrollment and energy efficiency adoption is small in magni-
tude and statistically insignificant. Means of the variables before and after matching among TOU 
and non-TOU consumers are listed in Table 6. All the variables in the control group are comparable 
to those in the treatment group after a balancing check using SMD and VR. Figure 4 confirms the 
common support assumption.

We further add on-peak prices into the model in order to test whether a higher peak price 
is correlated with higher energy efficient air conditioner and solar panel adoption. Table A1 in the 
Appendix shows that the coefficients on the interaction term between TOU and peak rate are not 
statistically significant both before and after matching. Theoretically, when TOU peak rate is higher, 
there should be more adoption of solar panels, and the coefficient should have a positive sign. The 
possible reason for the insignificance is that there are only two different peak rates for different 
TOU rates, which are $0.3568 and $0.2206. Hence, TOU peak rates lack sufficient variation for its 
positive relationship with TOU*(peak price) to be reflected empirically. 
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4.3 Heterogeneity of TOU’s correlation with solar panel adoption

We conduct an additional analysis with the renters excluded from our regression models 
(Table A2 in the Appendix). We find that the results are consistent with those using full sample with 
both renters and owners, and the magnitudes only differ slightly. The impact of TOU on PV adoption 
is higher for owners than for renters, which is consistent with the intuition that the owners are more 
likely to adopt low-carbon technologies. Our main models have controlled for the ownership by 
including a dummy variable indicating the ownership status.

We conduct separate analyses for mail versus web survey respondents (Table A3 in the 
Appendix). Theoretically, we would expect that people’s adoption of other technologies such as the 
internet could influence their adoption of green technologies such as solar PV (Comin and Rode, 
2015). The results obtained for participants of mail surveys are different from those of web surveys. 
We found that the results based on mail surveys only are similar to the results of using all surveys. 
Also, our results are more statistically significant for mail survey respondents. In addition to the 
difference in the sample size, another potential explanation might be that the mail respondents are 
more permanent (i.e., more likely to own the house) and thus are more likely to invest in expensive 
energy technologies such as solar panels.

Table 6: �Mean of variables before and after matching in TOU and non-TOU consumers using 
propensity score matching (analysis of solar panel installation)

Before matching After matching

Non-TOU TOU Non-TOU TOU

Variable Obs Mean Obs Mean Obs Mean Obs Mean

Ownership (renter=0) 7,763 0.725 4,362 0.720 6,158 0.709 3,728 0.712
(0.446) (0.449) (0.454) (0.453)

Monthly electricity usage (1000 kWh) 7,763 1.338 4,362 1.654 6,158 1.606 3,728 1.607
(0.761) (0.868) (0.809) (0.879)

Household income ($1000) 7,763 45.341 4,362 61.310 6,158 64.582 3,728 64.646
(40.871) (44.969) (43.370) (42.583)

Square footage (1000 ft2) 7,328 1.510 4,264 1.864 6,158 1.816 3,728 1.827
(0.795) (0.793) (0.777) (0.780)

Persons in household 7,366 2.065 4,252 2.413 6,158 2.371 3,728 2.384
(1.052) (1.230) (1.202) (1.218)

White (non-white=0) 7,256 0.751 4,124 0.746 6,158 0.757 3,728 0.762
(0.433) (0.435) (0.429) (0.426)

Stories 7,118 1.171 4,155 1.275 6,158 1.265 3,728 1.256
(0.418) (0.493) (0.499) (0.478)

Vintage (in years) 7,763 29.911 4,362 26.867 6,158 27.034 3,728 27.116
(19.765) (17.936) (18.867) (17.821)

Age of household head 7,088 60.383 4,136 53.849 6,158 53.243 3,728 53.455
(14.744) (15.964) (15.756) (15.715)

Primary (seasonal residence=0) 7,454 0.898 4,291 0.976 6,158 0.979 3,728 0.978
(0.302) (0.154) (0.142) (0.148)

Swimming pool 7,677 0.156 4,346 0.401 6,158 0.365 3,728 0.370
(0.363) (0.490) (0.481) (0.483)

Dwelling type        
Mobile home 7,299 0.045 4,196 0.011 6,158 0.009 3,728 0.010

(0.208) (0.103) (0.096) (0.099)
Single family house 7,299 0.745 4,196 0.822 6,158 0.805 3,728 0.814

(0.436) (0.383) (0.396) (0.390)
Programmable thermostats 7,763 0.524 4,362 0.651 6,158 0.648 3,728 0.651

(0.499) (0.477) (0.478) (0.477)

Notes: Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Using the sample from propensity score matching, we also examine if the probability of 
solar adoption conditional on TOU pricing varies across other consumer/building characteristics 
(see Appendix B). The characteristics examined are monthly electricity usage, household income, 
square footage of the property, persons in the household, property vintage (in years), and age of 
household head.

5. ROBUSTNESS CHECKS

We conduct the following robustness checks to analyze further the differences in the adop-
tion of energy efficient central air conditioners and solar panels between TOU and non-TOU con-
sumers. 

5.1 Multinomial logit model

Multinomial logit model is applied to the matched control and treatment groups in order to 
analyze various combinations of technology choices. The four alternatives of the dependent variable 
are households with (1) both energy efficient AC and solar panel adopted; (2) only energy efficient 
AC adopted; (3) only solar panel adopted; (4) none of the two adopted. The number of observed 
outcomes for the dependent variable is listed in Table 7.

Suppose there are j alternatives, jy  =1 if j is the observed outcome and is 0 other-

wise. 
1  
0  

=
=  ≠

j

if y j
y

if y j
. The probability that the individual i chooses alternative j is Pij = P(yi = j) = 

1

exp( )

exp( )

γ

γ
=

′

′∑
j

m
kk

i

i

w

w
. ijP  is the probability for an individual with characteristics  iw  facing m (m=4) 

choices; γ′ jiw  together is equal to equation (2), and the covariates include the specific demographics 

Figure 4: Check for common support for propensity score matching

Notes: Color figure is available online.
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and housing characteristics for individual i. The results of the multinomial logit model (Table 8) 
further indicate that TOU consumers are only more likely to install solar panels while TOU does not 
influence energy efficiency adoption. 

5.2 Bivariate probit 

A bivariate probit model can also examine the correlation between the adoption of so-
lar panels or energy efficiency and TOU enrollment: *

0 1β β ε= + +i iy iX , *
0 1= + +i iTOU r r eiX , and 

0 1
~ ,

0 1
ε ρ

ρ
      
      
      

i

i

N
e

. iy  and iX  have the same meaning as indicated in equations (1) and (2). ρ is 

the correlation coefficient. If ρ is significantly different from zero, the two decisions are interrelated. 
Table 9 shows that the correlation coefficient ρ  is positive and statistically significant for the adop-
tion of solar panels, which indicates that the decision of solar panel installation is correlated with 
TOU enrollment. However, our estimate of the correlation coefficient ρ  is small and statistically 
insignificant for energy efficient central AC and room AC adoption, suggesting that the adoption of 
energy efficient AC unit is not correlated with TOU pricing. 

Table 7: Distribution of the observed outcomes
Solar panels Energy efficient central AC No. of observations Percentage of total observations

(1) No No 10,816 86.2%
(2) No Yes 1,148 9.2%
(3) Yes No 514 4.1%
(4) Yes Yes 65 0.52%

Notes: We drop the observations with room AC in this robustness checks because the number of households adopting room 
AC is much smaller than those for central AC. Including room AC into bundles of technologies will complicate the number 
of choices in multinomial logit models. 

Table 8: �Adoption of energy efficiency or solar panels for treatment groups and control groups 
using multinomial logit model

Solar panel adoption only Energy efficient central AC only
Adoption of both solar panel 
and energy efficient central AC

Without matching
TOU 0.327*** –0.0004 0.095 

(0.126) (0.075) (0.289) 
N 10,061
Log pseudolikelihood –4840.908
Pseudo R2 0.051
Coarsened exact matching
TOU 0.269 0.112 –1.060*

(0.246) (0.137) (0.586)
N 3,437
Log pseudolikelihood –1673.499
Pseudo R2 0.065
Propensity score matching
TOU 0.274** –0.026  0.200 

(0.132) (0.079)  (0.296) 
N  9,826
Log pseudolikelihood –3857.412
Pseudo R2 0.054

Notes: The base level is the households that neither adopt solar panel nor energy efficient central AC; all the regressions 
include the demographics and the house characteristics; Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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5.3 Matching using machine learning

Machine learning approach is adopted by using classification and regression trees (CART)-
based propensity score model (see details of the methods and results in Appendix C). CART-based 
model uses decision trees or regression trees to incorporate additionality, interaction and non-linear-
ity (Lee et al., 2010). Boosted CART is used based on twang package (Ridgeway et al., 2015). The 
results show that the positive correlation between solar panel installation and TOU enrollment still 
holds while the coefficient on TOU is not statistically significant for the analysis of energy efficient 
central AC. 

Table 9: �Adoption of energy efficiency or solar panels and TOU pricing enrollment using a 
bivariate probit modela

Bivariate probit model for 
solar panel installation

Bivariate probit model for 
adoption of energy efficient 
central AC

Bivariate probit model for 
adoption of energy efficient 
room AC

Dependent variable
Solar panel 
installation TOU

Energy efficient 
central AC TOU

Energy efficient 
room AC TOU

Ownership 0.098 0.050 0.101 0.043 0.250 0.438* 
(0.203) (0.081) (0.122) (0.080) (0.339) (0.235) 

Usage -0.262*** -0.026 -0.004 -0.026 0.040 -0.078 
(0.041) (0.023) (0.031) (0.023) (0.100) (0.068) 

Household income 0.0002 0.0008 0.001* -0.0001 -0.002 -0.001 
(0.001) (0.000) (0.001) (0.0005) (0.002) (0.001) 

Square footage 0.152*** -0.010 -0.059* -0.0001 -0.036 0.095 
(0.050) (0.024) (0.031) (0.024) (0.088) (0.069) 

Persons in household 0.050* 0.012 -0.002 0.010 0.147*** -0.037 
(0.027) (0.015) (0.020) (0.015) (0.054) (0.040) 

White -0.071 0.004 0.124** 0.0001 0.496*** 0.097 
(0.075) (0.038) (0.052) (0.037) (0.152) (0.100) 

Stories -0.063 -0.037 -0.112** -0.030 0.197 0.085 
(0.076) (0.035) (0.050) (0.035) (0.156) (0.102) 

Vintage -0.001 -0.003*** -0.007*** -0.003** 0.005 -0.014***
(0.002) (0.001) (0.002) (0.001) (0.005) (0.004) 

Household head age 0.012*** 0.0004 0.0005 0.0004 0.011* 0.006 
(0.003) (0.001) (0.002) (0.001) (0.006) (0.004) 

Primary residence 0.607*** -0.027 0.152 -0.037 0.152 0.204 
(0.183) (0.086) (0.118) (0.083) (0.358) (0.288) 

Swimming pool 0.193*** 0.019 -0.045 0.002 0.074 -0.044 
(0.067) (0.038) (0.049) (0.037) (0.146) (0.116) 

Programmable thermostats 0.025 -0.004 0.389*** -0.023 0.138 -0.143 
(0.064) (0.032) (0.047) (0.032) (0.123) (0.090) 

Dwelling (apartment=0)
Single family house 0.009 0.006 0.266 -0.019 0.740** -0.465 

(0.376) (0.131) (0.171) (0.130) (0.337) (0.332) 
Mobile house 0.281** 0.001 0.149* 0.012 0.233 -0.058 

(0.116) (0.051) (0.078) (0.050) (0.221) (0.158) 
Constant -3.227*** 0.143 -1.498*** 0.159 -3.617*** -0.261 

(0.353) (0.158) (0.218) (0.154) (0.724) (0.460) 
0.075** -0.008 -0.051 
(0.037) (0.026) (0.077) 

N 9,187 9,474 1,084 
a The regression uses the matched sample from propensity score matching; the specifications are without areas included 
because the standard errors are inflated by collinearity if areas are all included. 
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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6. MONETARY VALUATION OF TOU’S ASSOCIATION WITH SOLAR ADOPTION

6.1 Remaining issues and usefulness of our results

We use a matching approach plus controlling for a rich set of covariates to try to identify 
the impact of TOU on solar panel and energy efficiency adoption. The key assumption for a causal 
identification using our approach is that the factors influencing the TOU enrollment and technology 
adoption are observable. Our estimated correlation might not reflect the causal relationship if there 
are unobservables impacting both TOU enrollment and solar or energy efficiency adoption. Exam-
ples of these unobservables include whether local solar contractors’ marketing information includes 
the benefits of TOU, individual consumers’ energy financial literacy, and so on. 

Estimating the correlation, although not fully causal, between TOU and solar adoption is 
still meaningful. For example, if indeed one of the unobservables is whether a household has en-
countered a local solar contractor that promotes the large benefit from solar under TOU, then our 
results would imply that such marketing campaign bundling TOU and solar could potentially be 
effective at promoting both TOU and solar adoption. If the unobservable is energy financial literacy 
(although this unobservable could be partially controlled for using our programmable thermostat 
variable), then our results would imply that policy makers should identify the group of consumers 
that are environmentally friendly and energy-savvy and then bundle TOU and solar together when 
providing educational programs to these consumers. 

To better justify that our estimated correlation is causal, in future studies better data are 
needed such as information on exogenous variation impacting TOU enrollment. In terms of external 
validity, our study only examines the TOU plan under SRP’s service territory. In some other states, 
TOU peak hours are in different hours than the ones with SRP, which could imply different magni-
tudes of correlation between TOU and solar adoption. 

6.2 Emission impact of TOU-correlated solar panel adoptions

In light of the estimated correlation between solar-panel adoption and TOU pricing, we 
now assess the emission impacts associated with the additional solar-panels correlated with TOU 
enrollment. We first come up with an assessment of how many solar panel installations are asso-
ciated with TOU pricing as of 2014 in SRP’s service territory using our estimated impact of TOU. 
Next, we combine this assessment with the estimated reduction in greenhouse-gas and environmen-
tal pollution emissions per installation to obtain the overall emission impact. We obtain estimates of 
emission reductions from solar panels using average hourly marginal damages of different emissions 
(CO2, SO2, NOX, and particulate matter) per kWh from (Holland et al., 2016) and simulated hourly 
electricity generation using PVWATTS model. Details of calculation can be found in Appendix D. 

We get the total annual savings from solar panel installation correlated with TOU enroll-
ment. The results are summarized in Appendix Table D1. As the final row of Table D1 indicates, the 
annual monetary equivalent of emission reduction is approximately $0.42 million. 

6.3 Fiscal-subsidy equivalent of TOU impact

In this section, we conduct a back-of-the-envelope analysis to quantify what dollar amount 
of financial incentive would achieve the same impact on solar adoption associated with TOU pric-
ing (detailed calculations can be found in Appendix D). TOU is estimated to be associated with the 
same magnitude of impact on promoting solar adoption as an increase in financial incentives (such 
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as rebates and tax credits) by $2,070~$10,472. The average nationwide financial incentives for solar 
panel adoption are $5,493-$9,156. The association between TOU and solar adoption is thus equiv-
alent to about 85% (based on (2,070+10,472)/(5,493+9,156)) of the amount of existing financial 
incentives. Note our back-of-the-envelope calculation imposes restrictive assumptions including a 
linear relationship between monetary incentive and adoption rate. When we assume a more realistic, 
decreasing influence of monetary impact, our calculations should be treated as the upper bound. 
Nonetheless, these calculations provide us a ballpark number on the monetary equivalence effect 
regarding the association between TOU and solar panel adoption. 

7. CONCLUSIONS

This study explores the correlation between TOU and the adoption of solar panels and 
energy efficient air conditioners among residential consumers. We find that consumers in Arizona 
enrolled in TOU are 27% on average more likely to install solar panels. However, this study does 
not show a clear correlation between TOU plan and energy efficiency adoption. The possible reason 
might be that while it is obvious that solar panels generate most electricity during peak hours (be-
cause the solar radiation is the strongest during afternoon hours which coincide with peak hours in 
summer months in most TOU plans) (Ong et al., 2010; McLaren et al., 2015), it is not obvious to 
consumers whether energy efficiency saves the most electricity during peak hours. Although Figure 
1 shows that most energy efficiency savings from retrofits on AC are correlated with TOU peak 
time, this information may be not salient to energy efficiency consumers and is not easily noticed 
by people. Another reason could be related to the “lock-in” effect. People usually have their ACs 
replaced after using 15 years or over and need to replace their old HVAC system (some retrofits may 
be possible, which could happen earlier than 15 years). This creates one additional barrier to the 
adoption of energy efficiency. There are some programs to incentivize consumers to replace their 
ACs to energy efficient ones earlier, and the subsidies motivate the consumers to enter the market 
faster. Entering of energy efficient AC market only after a long period of time can be seen as a type 
of technological “lock- in” (Unruh, 2000), where the low-carbon technologies and policies cannot 
change fast enough and the old technologies still dominate. Such lock-in effect could partially ex-
plain why we do not observe a significant impact of TOU pricing on energy efficient AC adoption.

The results have important implications for policymakers and utilities. First, the result that 
TOU is positively correlated with solar panel adoption implies that utilities could provide more in-
formation for their customers regarding the benefit of TOU for solar adopters. When government or 
utilities implement educational or informational programs to electric customers, they should bundle 
the information about the benefits from both solar and TOU, which could potentially increase the 
adoption of both TOU and solar panels. From cost-effectiveness perspective, combining TOU and 
solar in policy programs can also achieve a lower cost per additional adoption of TOU and solar. 
The exact welfare impacts of TOU and solar adoption is not the focus of this study. There could 
also be potential issues of redistribution effects from TOU that could decrease welfare (Joskow and 
Wolfram, 2012). But according to Train and Mehrez (1994) and Action and Mitchell (1984), the net 
impact of TOU on social welfare could be positive for certain TOU price designs.

Second, for energy efficiency appliances, policies or programs could be implemented to 
provide more information to consumers about the timing when energy savings occur. More studies 
are needed to show empirical evidence about the exact savings by hour of day for energy efficient 
appliances. With more high-frequency data available from increasing penetration of smart meters, 
the timing of energy savings can be accurately tracked, which helps quantify the value of energy 
efficiency (Boomhower and Davis, 2019; Qiu and Kahn, 2018). 
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APPENDIX —THEORETICAL MODEL

We develop a theoretical model to illustrate the relationship between rate plans and invest-
ment in energy efficiency and solar panels. We construct a two-period model to illustrate consumers’ 
decision process. In period 1, a consumer decides to 1) purchase energy efficient appliances (e.g., 
energy star air conditioner) or 2) adopt solar panels. In period 2, she decides on how much energy 
service to use after the decision in the first period. For simplification, the use of energy service in 
period 2 is considered as the total net benefits from all future energy services. Also, we assume that 
one consumer can only choose an energy star conditioner or adopt a solar panel system, an assump-
tion justified by the empirical evidence that only a small percentage (0.49%) of consumers choose 
both in our data. 
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A consumer’s choice set contains two alternative choices and the status quo: energy effi-
cient appliance (E), solar panel system (S) and the status quo choice (Q). We assume that consumers 
are forward looking. In period 1, the consumer chooses the energy efficient appliance (E), solar 
panel system (S) or stays at the status quo choice (Q), with the initial cost 0= < <Q E Sc c c . In period 
2, the consumer chooses the amount of the energy service usage, e, that needs to be used. The elec-
tricity prices during the peak hours and off-peak hours are denoted as pp  and op  , respectively, for 
the TOU plan. The marginal price in flat rate group fp  is higher than the off-peak time price op  and 
lower than the peak time price pp .

Compared to the cost of installing a solar panel system, an energy efficient appliance has a 
lower initial cost ( <E Sc c ).1 We assume the electricity used from the grid after purchasing the energy 
efficiency appliance is Er e and electricity used after the solar panel installation is Sr e. Note in our 
context, >E Sr r , which indicates, the solar panel system will save more electricity (or use less elec-
tricity) compared to the energy efficient appliance.2

In period 2, a consumer’s net benefit equals the total benefit derived from energy service 
usage minus the cost of energy service usage. ( )b e  is the benefit function. Furthermore, consumers’ 
benefits are heterogeneous and depend on a type variable θ . We assume a continuum of consumer 
types distributed on the interval , θ θ  . As a result, a type θ  consumer’s benefit from energy service 
usage in the TOU group is3

( ) ( ) ( )( ) { }1 , , ,π θ θ α α= − + − ∈p l o lb e p re p re l E S

where e is the daily energy service usage; αe and ( )1 α− e are energy services used during the peak 
hours and off-peak hours in the TOU group, respectively. Similarly, the pp  and op  are the electricity 
prices during the peak hours and off-peak hours in the TOU group.

A type θ  consumer’s benefit from energy service usage in the flat rate group is

( ) ( ) { }, , .π θ θ= − ∈f lb e p re l E S

We assume a standard benefit function that has the properties ( ) ( )0, 0′ ′′> <b e b e , so that 
consumer benefit increases as more energy service is used but there is decreasing marginal return. 
A consumer will choose the type of technology that maximizes the consumer’s benefit in period 1, 
where the total benefit from two periods in the flat rate group can be denoted as,

( ) ( )( ) { }, , , .θ δ θΠ = − − ∈l f f l lb e p re c l E S

The total benefit from two periods in the TOU group can be denoted as,

1.  On average, the cost of a typical AC installation ranges $4,416–$7,212 and that of a higher energy efficient air 
conditioner could cost approximately $1,500 more. The average cost for a 6 kW residential solar panel is about $12,642 
(after tax credits) in Arizona, respectively. (Source: https://www.homeadvisor.com/cost/heating-and-cooling/install-an-
ac-unit/; http://www.centralairconditionerprice.com/#Prices-by-Efficiency; http://news.energysage.com/much-solar-
panels-cost-phoenix-arizona/).

2.  According to Boomhower and Davis (2019), the average largest electricity savings of energy efficient ACs during 
peak hours is less than 0.4 kWh/household/hour based on data from California, while based on engineering calculation, the 
average electricity generated from a typical sized solar panel system in Phoenix could reach 3.8 kWh/household/hour (the 
20-year savings is $81,083 on average) (source: http://news.energysage.com/much-solar-panels-cost-phoenix-arizona/). 

3.  Compared to the price difference during peak hour in the TOU group and the corresponding price in the flat rate group, 
the price difference during off peak hours is much smaller. We therefore ignore the off-peak hour difference in the theoretical 
model to focus on the major incentive factor that may lead to difference in the adoption rate between the TOU group and flat 
rate group. 
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Proposition 1. A higher initial investment cost would increase the type threshold and 
lead to a smaller subset of consumers willing to switch; a higher saving rate (a smaller r) 
leads to a larger set of consumers (a smaller f ) to switch away from status quo. 
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Therefore, 

( ) ( )
 

. θ −∂
=

∂ −

l Q
l f f
l Q
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r e e
p b e b e

When the rebound effect (consumers use more energy than the theoretical energy from energy efficient 

technologies due to lower marginal cost of using energy service) is large (i.e., 0− >l Q
l f fr e e ), 0θ∂

>
∂p

, 

we have ( )θ θ= =t fp p , ( ) ( )θ θ θ> > = = t t fp p p p , and ( ) ( )θ θ θ< < = = t t fp p p p . When the re-

bound effect is small (i.e., 0− <l Q
l f fr e e ), 0θ∂

<
∂p

, we have ( )θ θ= =t fp p , ( ) ( )θ θ θ> < = = t t fp p p p , 

and ( ) ( )θ θ θ< > = = t t fp p p p .
Existing literature shows that the rebound effect is very likely to be small, i.e. 0− <l Q

l f fr e e . 
Because the demand for electricity tends to be inelastic, the rebound effect is not very large and the 
energy efficiency measures will yield net energy savings (Gillingham, et al. 2013; Alberini, 2018). 

Therefore, we have

Proposition 2. When the rebound effect is small (or large), compared to the flat rate pric-
ing, if the effective price > fp p , more (or fewer) consumers in the TOU group will adopt 
the solar panel system or purchase the energy efficient appliance; if the effective price 
< fp p , fewer (or more) consumers in the TOU group will adopt the solar panel system or 

purchase the energy efficient appliance. 

Figure M1 below illustrates the basic concepts, given the assumption of a reasonable small 
rebound effect ( 0− <l Q

l f fr e e ). The horizontal axis is the consumer’s type, the vertical axis is the 
benefit of energy usage. Based on the above model and the SRP TOU plans, we assume > fp p  in 
the figure. Threshold values under the cost lc  and saving rate lr  are denoted as ( ),θ l lc r . Figure 
M1 shows that when > fp p , more consumers will buy energy efficient appliances ( =l E ) or adopt 
solar panel systems ( =l S) in the TOU group compared to the flat price group. For the influence of 
saving rate r, a higher saving rate (a smaller r) will induce more consumers to switch away from 
the status quo. Using the flat rate group as an example and assuming ′<l lr r, the new threshold value 
( ),θ ′f l lc r  is lower than ( ),θ f l lc r  and fewer consumers will stay at the status quo. The switching cost 

lc  for alternative l also influences the switching threshold. Using the TOU group as an example and 
assuming ′ >l lc c , the new threshold value ( ),θ ′t l lc r  is higher than ( ),θt l lc r  and more consumers will 
stay at the status quo. 
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Figure M1: �Theoretical framework on the impact of investment cost and saving rate on type 
threshold of consumers

APPENDIX A

Table A1: Interaction of TOU and peak price
Probit model for energy 
efficient central AC

Probit model for energy 
efficient room AC

Probit model for solar 
panel installation

Without matching
TOU –0.017 0.123 –0.064

(0.127) (0.170) (0.131)
TOU*peak rate –0.029 0.033 0.442

(0.452) (0.616) (0.450)
N 10,045 9,656 9,110
Pseudo R2 0.066 0.056 0.104
Coarsened exact matching 
TOU 0.147 0.283 0.008

(0.221) (0.229) (0.320)
TOU*peak rate –0.487 –0.740 –0.095

(0.809) (0.820) (1.173) 
N 3,355 2,932 2,758
Pseudo R2 0.106  0.076 0.145
Propensity score matching 
TOU –0.009 0.112 –0.039

(0.131) (0.174) (0.371)
TOU*peak rate –0.067 0.058 0.687

(0.467) (0.633) (1.355) 
N 9,810 9,436 3,998
Pseudo R2 0.076 0.117 0.159

Notes: All regressions include socio-demographics and house characteristics; 
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Table A2: �Adoption of energy efficiency or solar panels for owners & 
renters and only owners

Owners & renters Owners 

Central AC
Coarsened exact matching 
TOU 0.087 0.102

(0.064) (0.069) 
N 4,039 3,233 
Propensity score matching
TOU –0.027 0.014

(0.042) (0.048) 
N 9,461 6,754
Solar panel
Coarsened exact matching 
TOU 0.176* 0.256** 

(0.098) (0.104) 
N 3,200 2,550
Propensity score matching
TOU 0.107* 0.149** 

(0.060) (0.066) 
N 8,682 5,945
Room AC
Coarsened exact matching
TOU 0.062 0.317

(0.265) (0.302)
N 256 173
Propensity score matching
TOU –0.137 –0.031

(0.140) (0.164)
N 847 544 

Table A3: Adoption of energy efficiency or solar panels for internet and mail respondents
All respondents Internet respondents Mail respondents

Central AC
Coarsened exact matching 
TOU 0.087 0.061 0.078

(0.064) (0.076) (0.122) 
Propensity score matching
TOU –0.027 –0.077 –0.059

(0.042) (0.048) (0.091)
Solar panel  
Coarsened exact matching
TOU 0.176* 0.116 0.270** 

(0.098) (0.139) (0.135) 
Propensity score matching
TOU 0.107* –0.0004 0.278***

(0.060) (0.081) (0.094) 
Room AC
Coarsened exact matching
TOU 0.062 2.967*** –0.600

(0.265) (0.893) (0.420) 
Propensity score matching
TOU –0.137 –0.056 –0.056

(0.140) (0.187) (0.187)
Socio-demographics and home characteristics Yes Yes Yes
Area (zip codes) Yes Yes Yes
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APPENDIX B: HETEROGENEITY BY CONSUMER/BUILDING 
CHARACTERISTICS

Using the sample from propensity score matching, we also examine if the probability of 
solar adoption conditional on TOU pricing varies across other consumer/building characteristics. 
The characteristics examined are monthly electricity usage, household income, square footage of 
the property, persons in the household, property vintage (in years), and age of household head. The 
specification builds on column (3) of Table 5 by introducing the interaction variable TOU*(variable 
of interest) into the specification. To reduce the number of combinations, we only introduce one 
interaction variable for each specification instead of having multiple interaction terms introduced at 
once. This approach also keeps the interpretation of the results relatively straight forward. The co-
efficients are listed in Appendix Table B1. Although each specification includes all of the variables 
included in column (3) of Table 5, for presentational ease we only show the coefficients of TOU 
and the interaction term in question. The marginal effects of TOU with 95% confidence intervals at 
various values of the variables of interest are shown in Figure B1.

The results show that the marginal effect of TOU on solar panel adoption probability 
does not vary significantly with respect to monthly electricity usage, household income, persons in 
household, and property vintage. In contrast, the marginal effect of TOU on solar adoption appears 
to decrease with square footage and increase with household age. Properties facing TOU pricing 
are less likely to adopt solar panels as the size of property (measured in square footage) increases. 
This likely reflects the fact that larger properties probably require more solar panels and hence the 
adoption cost becomes higher, hence lowering the probability of adoption. From a policy making 
perspective, increasing TOU availability (and also awareness of this availability) to smaller-size 
properties might achieve a higher adoption rate of solar panels. 

The result that older head of household who faces TOU pricing is more likely to adopt 
solar panels is only significant at the 10-percent level as indicated by the interaction term. There is 
no obvious reason why older decision makers should be more inclined to adopt solar panels when 
facing TOU pricing, especially when electricity usage and household income are already controlled. 
In light of the lack of clear economic rationalization and relatively low statistical significance, this 
particular result might not be too valuable for policy discussions and should be viewed with caution. 

Table B1: �Heterogeneity of TOU’s association with solar panel adoption (using the sample 
from propensity score matching)

Interaction term list

Monthly 
electricity usage 
(1000 kWh)

Household income 
($1000)

Square footage 
(1000 ft2)

Persons in 
household

Vintage 
(in years) 

Age of 
household 
head

TOU –0.037 0.111 0.516*** 0.081 0.080 –0.323
(0.123) (0.104) (0.180) (0.133) (0.126) (0.260)

TOU* Variable of interest 0.089 –0.00006 –0.200** 0.011 0.001 0.007*
(0.071) (0.001) (0.089) (0.053) (0.003) (0.004) 

N 8682 8682 8682 8682 8682 8682
Pseudo R2 0.1062  0.1055 0.1079 0.1055  0.1055 0.1069
Demographics and building 

characteristics
Yes Yes Yes Yes Yes Yes

Area (zip codes) Yes Yes Yes Yes Yes Yes

Notes: Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Figure B1: Heterogeneity of marginal effects of TOU on solar panel installation

Notes: The variables of electricity consumption, household income, square footage, household size, vintage and household 
head age in the survey are asked as categorical variables indicating ranges of values. 
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APPENDIX C: MACHINE LEARNING

Classification and regression trees (CART)-based propensity score model is applied, which 
is an alternative of logistic regression to estimate propensity scores. CART-based model uses de-
cision trees or regression trees, and has advantages over simple regressions which are sensitive 
to misspecification. It incorporates additionality, interaction and non-linearities (Lee et al., 2010). 
Boosted CART is used based on twang package (Ridgeway et al., 2015). 

The level of interactions is two, meaning that the interaction terms of each two covariates 
put in the model are included. n.trees is increased from 5,000 to 10,000 to enable a larger maximum 
number of iterations. Two default stopping rules that use two balance metrics are applied, which are 
absolute standardized bias (standardized effect sizes) and Kolmogorov-Smirnov (KS) statistic. The 
other parameters are default. Figure C1 shows the two stopping rules consistent with each other, 
indicating the results are not sensitive to the stopping rule. Table C1 shows the balance table using 
standard effect sizes. Missing values of covariates are also balanced. Table C2 shows the results that 
the positive correlation still holds between solar panel installation and TOU enrollment. The coeffi-
cient on TOU is not statistically significant for the analysis of energy efficient central AC. 

Figure C1: Balance measure of stopping rules



34 / The Energy Journal

All rights reserved. Copyright © 2020 by the IAEE.

Table C1: �Mean of variables before and after matching in TOU and non-TOU consumers 
(analysis of solar panel installation)

Before matching After matching

Non-TOU TOU Non-TOU TOU

Variable Obs Mean Obs Mean Obs Mean Obs Mean

Ownership 7,763 0.725 4,362 0.720 7,522 0.725 4,375 0.721 
(0.446) (0.449) (0.447)   (0.448) 

Usage 7,763 1.338 4,362 1.654 7,522 1.359 4,375 1.661 
(0.761) (0.868) (0.763)   (0.867) 

Household income 7,763 45.341 4,362 61.310 7,522 46.124 4,375 61.381
(40.871) (44.969) (41.020)   (44.908)

Square footage 7,328 1.510 4,264 1.864 7,522 1.518 4,375 1.868 
(0.795) (0.793) (0.795)   (0.790)

Persons in household 7,366 2.065 4,252 2.413 7,522 2.077 4,375 2.424 
(1.052) (1.230) (1.061)   (1.237)

White 7,256 0.751 4,124 0.746 7,522 0.755 4,375 0.746 
(0.433) (0.435) (0.430)   (0.435)

Stories 7,118 1.171 4,155 1.275 7,522 1.171 4,375 1.273 
(0.418) (0.493) (0.420)   (0.490)

Vintage 7,763 29.911 4,362 26.867 7,522 29.972 4,375 27.017
(19.765) (17.936) (19.610)   (17.948)

Household head age 7,088 60.383 4,136 53.849 7,522 60.131 4,375 53.861
(14.744) (15.964) (14.847)   (15.904)

Primary residence 7,454 0.898 4,291 0.976 7,522 0.898 4,375 0.976 
(0.302) (0.154) (0.302)   (0.154)

Swimming pool 7,677 0.156 4,346 0.401 7,522 0.159 4,375 0.401 
(0.363) (0.490) (0.366)   (0.490)

Dwelling type          
Mobile home 7,299 0.045 4,196 0.011 7,522 0.210 4,375 0.165 

(0.208) (0.103) (0.407)   (0.371)
Single family house 7,299 0.745 4,196 0.822 7,522 0.745 4,375 0.824 

(0.436) (0.383) (0.436)   (0.381)
Programmable thermostats 7,763 0.524 4,362 0.651 7,522 0.536 4,375 0.651 

(0.499) (0.477) (0.499) (0.477) 

Notes: Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.
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Table C2: �Adoption of energy efficiency or solar panels using matching from classification and 
regression trees (CART)-based propensity score model a

Solar panel installation Energy efficient AC adoption

TOU 0.111** 0.122* –0.089 –0.084
(0.052) (0.063) (0.082) (0.093)

Ownership (renter=0) 0.090 –0.110
(0.210) (0.218)

Monthly electricity usage (1000 kWh) –0.001*** –0.028
(0.001) (0.076)

Household income ($1000) –0.001 –0.001
(0.001) (0.001)

Square footage (1000 ft2) 0.154*** 0.038
(0.054) (0.058)

Persons in household 0.056** 0.087**
(0.027) (0.038)

White (non-white=0) –0.098 –0.050
(0.083) (0.097)

Stories –0.031 –0.245*
(0.073) (0.130)

Vintage (in years) 0.001 0.008**
(0.002) (0.004)

Age of household head 0.010*** 0.001
(0.003) (0.004)

Primary (seasonal residence=0) 0.520*** 0.346*
(0.176) (0.196)

Swimming pool 0.179** –0.011
(0.071) (0.122)

Dwelling type(apartment=0) 
Mobile house –0.024 –0.483*

(0.336) (0.269)
Single family house 0.283 –0.485**

(0.329) (0.239)
Programmable thermostats 0.022 0.239**

(0.069) (0.107)
Constant –1.746*** –3.174 *** –2.232*** –2.301

(0.041) (0.442) (0.060) (0.501)
a Analysis of energy efficient room AC adoption is not included when machine learning is applied due to its small sample 
size; areas are not included due to concerns of co-linearity; 
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01.

APPENDIX D: CALCULATIONS FOR MONETARY VALUATION OF TOU IMPACT

Emission impact of TOU-correlated solar panel adoptions

We first calculate the number of installations correlated with TOU enrollment. The number 
of total SRP residential consumers is about 690,200 and 30% are on TOU pricing. Based on our 
findings, consumers enrolled in TOU are about 0.9-1.4 percentage points more likely to install so-
lar panels. For simplicity, we take the mid-point of 1.2 percentage points for calculations to come. 
Then based on the above parameters, the total increase in solar panel adoption associated with TOU 
would be 690,200 *0.3*1.2 /100=2,485. We then obtain estimates of emission reductions from solar 
panels. We start with the hourly average electricity generation activity per installation. The annual 
average hourly marginal damages of different emissions (CO2, SO2, NOX and particulate matter) per 
kWh are obtained from (Holland et al., 2016). The North American Electric Reliability Corporation 
(NERC) is a regulatory authority to ensure the reliability and security of the grid. It is divided into 
nine regions. We use the values from Western Electricity Coordinating Council (WECC) where Ar-
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izona is located. We assume that the marginal emissions factors of a unit of energy savings from all 
customers of a given NERC region are the same due to trading in electricity in the same region. The 
annual average hourly solar panel electricity generation is based on the PVWATTS model5 for a typ-
ical 5kW system.6 By multiplying the marginal damages and solar panel electricity generation, we 
can calculate the annual hourly savings from reduced emissions created by a solar panel installation. 
By multiplying the total increase in solar panel adoption and the savings by a solar panel installa-
tion, we get the total annual savings from solar panel installation correlated with TOU enrollment. 
The results are summarized in Appendix Table D1.

Table D1: �Annual savings from reduced emissions by solar panel installation for by SRP 
consumers

Hour
Output of solar 
generation (W)

Marginal damages for emissionsa
Annual savings from reduced emissions by 
all SRP TOU consumersb

CO2 ($/ kWh) SO2($/ kWh) NOX($/ kWh) PMc ($/ kWh) CO2 ($) SO2($) NOX($) PM ($)

1 0 0.0204 0.0055 0.0021 0.0007 0 0 0 0
2 0 0.0210 0.0054 0.0021 0.0009 0 0 0 0
3 0 0.0183 0.0049 0.0020 0.0005 0 0 0 0
4 0 0.0208 0.0052 0.0022 0.0007 0 0 0 0
5 5.486 0.0207 0.0049 0.0021 0.0009 103.219 24.432 10.417 4.493
6 60.784 0.0176 0.0038 0.0018 0.0008 970.547 212.067 99.653 45.695
7 548.903 0.0148 0.0035 0.0016 0.0004 7344.126 1744.982 791.820 210.475
8 1495.810 0.0153 0.0034 0.0015 0.0005 20728.745 4645.352 2090.361 707.594
9 2345.964 0.0153 0.0036 0.0014 0.0005 32517.508 7592.369 2995.459 1092.314
10 2937.702 0.0151 0.0034 0.0014 0.0004 40268.564 8968.463 3615.680 1032.138
11 3283.802 0.0149 0.0030 0.0013 0.0004 44484.103 9003.260 3997.875 1113.234
12 3324.895 0.0148 0.0029 0.0013 0.0004 44527.549 8666.930 4008.101 1103.946
13 3149.649 0.0142 0.0027 0.0013 0.0003 40697.246 7714.232 3771.707 871.229
14 2802.403 0.0140 0.0026 0.0013 0.0003 35687.863 6589.764 3281.920 746.203
15 2173.906 0.0140 0.0024 0.0013 0.0003 27565.042 4728.404 2537.996 610.791
16 1348.279 0.0139 0.0025 0.0013 0.0003 17002.453 3057.206 1600.258 403.030
17 505.608 0.0136 0.0026 0.0013 0.0004 6222.897 1208.455 585.106 168.379
18 65.920 0.0133 0.0024 0.0012 0.0003 792.740 145.486 72.501 15.102
19 7.296 0.0132 0.0025 0.0012 0.0002 87.158 16.751 7.864 1.377
20 0 0.0140 0.0026 0.0013 0.0003 0 0 0 0
21 0 0.0149 0.0032 0.0014 0.0004 0 0 0 0
22 0 0.0167 0.0039 0.0015 0.0005 0 0 0 0
23 0 0.0181 0.0045 0.0017 0.0006 0 0 0 0
24 0 0.0198 0.0051 0.0020 0.0007 0 0 0 0
Total 318999.758 64318.153 29466.717 8126.000

a The average annual marginal damages for emissions in WECC are obtained from (Holland et al., 2016); 
b The number of total SRP residential consumers is about 690,200 and 30% are on TOU rate, and based on our estimates, 
TOU increases the adoption by 1.2 percentage points. Then the increase in solar panel adoption due to TOU would be 
690,200 *0.3*1.2 /100=2,485);
c PM: particulate matter.

Fiscal-subsidy equivalent of TOU impact

In this section, we conduct a back-of-the-envelope analysis to quantify what dollar amount 
of financial incentive would achieve the same impact on solar adoption associated with TOU pric-
ing. To do this, we use the findings from several empirical studies that quantify the impact of solar 
adoption from rebates and other financial incentives. According to Hughes and Podolefsky (2015), 
an increase of $470 in solar incentives (from $5,600 to $6,070 per installation) increases the solar 
panel adoption by 10% in California; that is, an increase of $4,700 in rebates would lead to a 100% 

5.  http://pvwatts.nrel.gov/pvwatts.php.
6.  https://news.energysage.com/much-solar-panels-cost-phoenix-arizona/.
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increase in solar panel installation, assuming a constant ratio of percentage change in adoption over 
the dollar value of change in incentives. Similarly, according to Lasco Crago and Chernyakhovskiy 
(2017), approximately an increase of $5,000 per installation in the solar rebates could result in an 
increase of solar panel adoption by 47% in the Northeast of United States; that is, an increase of 
$10,638 in incentives could cause a 100% increase in adoption. Moreover, according to Gillingham 
and Tsvetanov (2019) an increase of $9,092 per installation leads to a 9% increase in solar panel 
installation in Connecticut; that is $101,022 for a 100% increase in adoption. Based on all these 
estimates, on average, an increase of $38,787 in incentives could lead to a 100% increase in solar 
panel installation. 

This study finds that consumers in Arizona enrolled in TOU are associated with about 
0.9–1.4 percentage point or 27% on average higher likelihood to install solar panels. The 27% is 
obtained using (0.9+1.4)/2/4.3, where 4.3% is the percentage of solar consumers in our sample. 
The 27% impact is equivalent to the impact caused by an increase of $10,472 in solar incentives 
($10,472=$38,787*0.27).7 However, since the increase in financial incentives in Gillingham and 
Tsvetanov (2019) is much larger than the other two studies, if we exclude this study then the equiv-
alent amount of incentives would be $2,070 (based on (4,700+10,638)/2*0.27). Based on the above 
analysis, TOU is estimated to be associated with the same magnitude of impact on promoting solar 
adoption as an increase in financial incentives (such as rebates and tax credits) by $2,070~$10,472.

7.  Note that this is a rough estimate because (1) studies of the impacts of subsidies on new adoption are few (Hughes and 
Podolefsky, 2015); (2) incentives can vary significantly across states and years; (3) we assume constant ratio of percentage 
change in adoption over the dollar value of change in incentives. 




