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Graph Laplacian Spectrum and Primary Frequency Regulation

Linqgi Guo, Changhong Zhao, and Steven H. Low

Abstract— We present a framework based on spectral graph
theory that captures the interplay among network topology,
system inertia, and generator and load damping in determining
the overall grid behavior and performance. Specifically, we
show that the impact of network topology on a power system
can be quantified through the network Laplacian eigenvalues,
and such eigenvalues determine the grid robustness against low
frequency disturbances. Moreover, we can explicitly decompose
the frequency signal along scaled Laplacian eigenvectors when
damping-inertia ratios are uniform across buses. The insight
revealed by this framework partially explains why load-side
participation in frequency regulation not only makes the
system respond faster, but also helps lower the system nadir
after a disturbance. Finally, by presenting a new controller
specifically tailored to suppress high frequency disturbances,
we demonstrate that our results can provide useful guidelines
in the controller design for load-side primary frequency reg-
ulation. This improved controller is simulated on the IEEE
39-bus New England interconnection system to illustrate its
robustness against high frequency oscillations compared to both
the conventional droop control and a recent controller design.

I. INTRODUCTION

Frequency regulation balances the power generation and
consumption in an electric grid. Such control is governed
by the swing dynamics and is traditionally implemented
in generators through droop control, automatic generation
control and economic dispatch [1], [2]. It has been widely
realized in the community that the increasing level of renew-
able penetration makes it harder to stabilize the system due
to higher generation volatility and lower aggregate inertia.
One popular approach to maintaining system stability in this
new era is to integrate load-side participation [3]-[11], which
not only helps stabilize the system in a more responsive
and scalable fashion, but also improves the system transient
behavior [1], [2], [12]. We redirect the readers to [13] for an
extensive survey on recent frequency regulation controller
designs.

The benefits of load-side controllers motivated a series
of work on understanding how different system parameters
and controller designs impact the grid transient performance.
For instance, iDroop is proposed in [14] to improve dynamic
performance of the power system through controlling power

Lingi Guo and Steven H. Low are with the Department of Computing
and Mathematical Sciences, California Institute of Technology, Pasadena,
CA, 91125. Email: {1guo, slow}@caltech.edu. Changhong Zhao is
with the National Renewable Energy Laboratory, Golden, CO, 80401. Email:
Changhong.Zhao@nrel.gov.

The authors thank Janusz Bialek and Oleg Khamisov from Skoltech
for helpful discussions. This work has been supported by Resnick Re-
search Fellowship, Linde Institute Research Award, DOE through the
ENERGISE program (Award #DE-EE-0007998), NSF grants through CCF
1637598, ECCS 1619352, CNS 1545096, ARPA-E grant through award
DE-AR0000699 (NODES) and GRID DATA, DTRA through grant HDTRA
1-15-1-0003 and Skoltech through collaboration agreement 1075-MRA.

978-1-5386-1395-5/18/$31.00 ©2018 IEEE

electronics or loads. Such controllers, however, can some-
times make the power system dynamics more sophisticated
and uncertain and hence make it harder to obtain a stability
guarantee [15]. In [16], methods to determine the optimal
placement of virtual inertia in power grids to accommodate
loss of system stability are proposed and studied. There has
also been work on characterizing the synchronization cost
of the swing dynamics [17]-[21] that explicitly computes the
response FHo norm in terms of system damping, inertia, resis-
tive loss, line failures etc. In certain cases, classical metrics
studied in power engineering such as nadir and maximum
rate of change of frequency can also be analytically derived
[20].

Compared to the aforementioned system parameters, the
role of transmission topology on the transient stability of
swing dynamics is less well understood. Indeed, it is usually
hard to infer without detailed simulation and computation on
how a change to the network topology affects overall grid
behaviour and performance. For example, one can argue that
the connectivity in the grid helps average the power demand
imbalance over the network and therefore higher connectivity
should enhance system stability. On the other hand, one can
also argue that higher connectivity means faster propagation
of disturbances over the network, and should therefore de-
crease system stability. Both arguments seem plausible but
they lead to (apparently) opposite conclusions (a corollary of
our results in Section III will clarify this paradox). In fact,
even the notion “connectivity” itself seems vague and can be
interpreted in different ways.

In this work, we present a framework based on spectral
graph theory that captures the interplay among network
topology, system inertia, and generator and load damping.
Compared to existing literature [14]—-[21] that usually relies
on system norms in the analysis, our approach studies more
directly the frequency trajectory itself through a decomposi-
tion along scaled Laplacian spectrum. This allows us to arrive
at certain insights that are either difficult to derive or are
overlooked within existing methods. Our contributions can be
summarized as follows: a) We show that whether the system
oscillates or not is determined by how strong the damping
normalized by inertia is compared to network connectivity
in the “corresponding” direction; b) We prove that the power
grid robustness against low frequency disturbance is mostly
determined by network connectivity, while its robustness
against high frequency disturbance is mostly determined by
system inertia; c) We demonstrate that although increasing
system damping helps suppressing disturbences, such bene-
fits are mostly in the medium frequency band; d) We devise
a quantitative explanation on why load-side participation
helps improve system behavior in the transient state, and
demonstrate how our results suggest an improved controller



design that can suppress input noise much more effectively.

The rest of this paper is organized as follows. In Section
II, we review the system model and relevant concepts from
spectral graph theory. In particular, we provide a rigorous
definition on the “strength” of connectivity. In Section III, we
present our characterization of the system response in both
the time and Laplace domain. The practical interpretations
of our results are given in Section IV. In Section V, we
quantify the benefits of load-side controllers and present
a new controller that is specifically tailored to suppress
high frequency oscillation. In Section VI, we simulate the
improved controller on the IEEE 39-bus New England inter-
connection testbed and illustrate its robustness against mea-
surement noise and high frequency oscillation in injection.
We conclude in Section VII.

II. NETWORK MODEL

In this section, we present the system model as adopted in
[1] and review relevant concepts from spectral graph theory.

Let R and C denote the set of real and complex numbers,
respectively. For two matrices A, B with proper dimensions,
[A B] means the concatenation of A, B in a row, and [A; B|
means the concatenation of A, B in a column. A variable
without subscript usually denotes a vector with appropriate
components, e.g., W = (wj,j S /\f) e RWI. For a time-
dependent signal w(t), we use w to denote its time derivative
Z—";. The identity matrix of dimension n x n is denoted as
I,,. The column vector of length n with all entries being 1
is denoted as 1,,. The imaginary unit v/—1 is denoted as j.

We use a weighted graph G = (N, E) to describe the
power transmission network, where N' = {1,... n} is the
set of buses and £ C N x A denotes the set of transmission
lines weighted by its line susceptances. The terms bus/node
and line/edge are used interchangeably in this paper. We
assume without loss of generality that G is connected and
simple. An edge in £ is denoted either as e or (7,7). We
further assign an arbitrary orientation over £ so that if
(i,4) € € then (j,1) ¢ E.

Let n, m be the number of buses and transmission lines
respectively. The incidence matrix of G is the n X m matrix
C defined as

1 if node j is the source of e
Cje = ¢ —1 if node j is the target of e
0 otherwise

For each bus j € A, we denote its frequency deviation as
w; and denote the inertia constant as M; > 0. The symbol
P is overloaded to denote the mechanical power injection
if 7 is a generator bus and denote the aggregate power
injection from uncontrollable loads if j is a load bus. For
a generator bus, we absorb the droop control into a damping
term Dj;w; with D; > 0 and for load buses, we use the
same symbol to denote the aggregated frequency sensitive
load. For each transmission line (i, j) € &, denote as P;; the
branch flow deviation and denote as B;; the line susceptance
assuming voltage magnitudes are 1 p.u. With such notations,
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the linearized swing and network dynamics are given by

Mji; = =Djw; —dj + PJ* =Y CjePe, j €N (la)
ecé

Pij = Bij(wi — wj), (i,7) € E(1b)

We refer the readers to [1] for more detailed justification and
derivation of this model.

Now using z to denote the system state x = [w; P], and
putting M, D and B to be the diagonal matrices with M,
D; and B;; as diagonal entries respectively, we can rewrite
the system dynamics (1) in the state-space form

. —-M~'D —M-1C M1 m
x_[BCT 0 ]x—i—{o}(P —d) ()
The matrix
A -M~'D —M~IC
~ | BCT 0

is referred to as the system matrix in the sequel. The system
(2) can be interpreted as a multi-input-multi-output linear
system with input P™ — d and output x. We emphasize
that the variables [w; P] denote deviations from their nominal
values so that z(t) = 0 means the system is in its nominal
state at time ¢.

For any node i € N, we denote the set of its neighbors
as N (7). The (scaled) graph Laplacian matrix of G is the
n x n symmetric matrix L = M~/2CBCTM~/2, which
is explicitly given by

Bij C .
W i#j,(i,5) € or(j,i) €&

0 otherwise

It is well known that if the graph G is connected, then L has
rank n — 1, and any principal minor of L is invertible [23].
For any vector x € R", we have

2
Ty = B, i >
o= 3 (M m) =0

(i,5)€€

This implies that L is a positive semidefinite matrix and thus
diagonalizable. We denote its eigenvalues and corresponding
orthonormal eigenvectors as 0 = A\; < Ay < --- < A\, and
V1,02, - ,U,. When the matrix L has repeated eigenvalues,
for each repeated eigenvalue A\; with multiplicity m;, the
corresponding eigenspace of L always has dimension m;,
hence an orthonormal basis consisting of eigenvectors of L
exists (yet such bases are not unique). We assume one of the
possible orthonormal bases is chosen and fixed throughout
the paper.

The eigenvalues of the graph Laplacian matrix measure the
graph connectivity from an algebraic perspective, and larger
Laplacian eigenvalues suggest stronger connectivity. To make
such discussion more concrete, we define a partial order <
over the set of all weighted graphs (possibly disconnected)
with vertex set A as follows: For two weighted graphs G =
(N, &) and G = (N, &), we say G; < Gs if £ C &, and
for any e € &1, the weight of e in Gy is no larger than that

Lq




in Go. It is routine to check that < defines a partial order’.
A more interesting result is that the mapping from a graph
to its Laplacian eigenvalues preserves this order:

Lemma IL.1. Let Ly and Lo be the (scaled) Laplacian
matrices of two weighted graphs G1 and Gs with G1 < Go.
Let 0=A <A< <A and 0=A <A <--- < A2
be the eigenvalues of L1 and Lo respectively. Then

M<Ni=1,2,...,n

Proof. This result follows from the fact that Lo, — Lq is
positive semidefinite, which is easy to check from our
definition of <. O

In fact we can devise better estimates on the relative orders
of the eigenvalues \. Interested readers are refered to [24]
for more discussions and results therein. Throughout this
paper, whenever we compare two graphs in terms of their
connectivity, we always refer to the partial order <.

In the sequel, we further assume that the inertia and
damping of the buses are proportional to its power ratings.
That is, we assume there is a baseline inertia ;x and damping
0 such that for each generator j with power rating f;, we
have M; = fju and D; = f;6. This is a natural setting as
machines with high ratings are typically “heavy” and have
more significant impact on the overall system dynamics. See
[20], [21] for more details. Under such assumptions, the
ratios D /M ; is independent of j, and therefore M -1p =
~I,, where v = 6/u > 0. We will study both the transmission
graph Laplacian matrix and Laplace domain properties of
(2). To clear potential confusion, we agree that whenever
the adjective Laplacian is used, we refer to quantities related
to the Laplacian matrix L, while whenever the noun Laplace
is used, we refer to notions about the Laplace transform

L{s(D)} (7) = / T s(tetdt

0

or notions defined in the Laplace domain.

III. CHARACTERIZATION OF SYSTEM RESPONSE

In this section, we give a complete characterization of the
system response of (2) based on spectral decomposition in
both time and Laplace domain.

A. Stability under zero input

We first determine the modes of the system (2). That is,
we compute the eigenvalues of the system matrix A. Such
eigenvalues indicate whether the system is stable and if it is,
how fast the system converges to an equilibrium state.

Theorem IIL.1. Let 0 = Ay < Ao < -+ < N\, be the eigen-
values of L with corresponding orthonormal eigenvectors
V1,02, ..., Un. Then:
1) 0 is an eigenvalue of A of multiplicity m —n + 1. The
corresponding eigenvectors are of the form [0; P] with
P € kernel(C)

'We emphasize that this is not a complete order over all graphs. That
is, not any pair of graphs of the same number of vertices are comparable
through this order.
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2) —~ is a simple eigenvalue of A with [Mfl/%l; O} as
a corresponding eigenvector

3) Fori=23,...,n, ¢;1x = —rEV A V;2_4)\i are eigen-
values of A. For any such ¢; 1, an eigenvector is given
by [M~/v;; ¢; L BCT M~/ ?v;].

Proof. Please refer to our online report [25]. O

When m — n 4+ 1 = 0 or equivalently when the network
is a tree, item 1) of Theorem IIL.1 is understood to mean
that the system matrix A does not have 0 as an eigenvalue.
We remark that a similar characterization of the system (2)
under different state representation can be found in [21].

Assuming 72 — 4)\; # 0 for all 4, we get 2n — 1 nonzero
eigenvalues of A from item 2) and item 3) of Theorem III.1,
counting multiplicity, which together with the m — n + 1
multiplicity from item 1) gives m + n eigenvalues as well
as m + n linearly independent eigenvectors. Therefore we
know A is always diagonalizable over the complex field C,
provided critical damping, that is 72 — 4)\; = 0 for some 1,
does not occur. We assume this is the case in all following
derivations. When critical damping does occur, our results
can be generalized using the standard Jordan decomposition.

Theorem III.1 explicitly reveals the impact of the trans-
mission network connectivity as captured by its Laplacian
eigenvalues on the system (2) and tells us that the system
mode shape is closely related to the corresponding Laplacian
eigenvectors. In particular, we note that the real parts of
¢; + are nonpositive, from which we deduce the following
corollary.

Corollary IIL2. The system (2) is marginally stable, with
marginal stable states of the form [0; P] with P € kernel(C).
Therefore the system (2) is asymptotically stable on a tree.

The kernel of C' corresponds to the set of branch flow
vectors P such that -, ;) Pij = 0 for all i € N. They
can be interpreted as flows that are balanced at all the buses
(e.g. circulation flows on a loop) for which each bus 7 is
neither a source node (ZjeN(i) P;; > 0) nor a sink node
(Zje N (i) P;; < 0). This corollary tells us that the only
possible signals that can persist in (2) are the balancing
branch flows. Of course, such marginally stable flows cannot
exist in a real system because of losses in transmission lines
(in which case our network dynamics (1b) is no longer
accurate). Even if we take the simplified model (2), as long as
the initial system branch flow does not belong to kernel(C'),
the system (2) under zero input P™ — d = 0 converges to
the nominal state.

B. System response to step input

Next we determine the system response to a step function.
More precisely, we define s(t) := P™(t)—d(t) as the surplus
function and compute the frequency trajectory w(t) with
s(t) as input to (2), assuming s(t) takes constant value s
over time. The components s; can be different over j. We
put s = >, 3;M'/?v; to be the decomposition of s along
the scaled Lapalacian eigenvectors (note the decomposition
scaling M'/?v; is different from the scaling M ~1/2v; in the
following theorem statement).



Theorem ITL3. Let 0 = Ay < Ay < --- <\, be the eigen-
values of L with corresponding orthonormal eigenvectors
V1, V2, ..., Uy ASSume:

1) The system (2) is initially at the nominal state x(0) = 0
2) 2 —4\; # 0 for all i.

Then

Z (ePtt — Pty M~ 2y, (3)

TV - 4)\
where
7+ VY AN Y =V AN
¢i,+ = ¢i,f =
2 2

Proof. Please refer to our online report [25]. O

We remark that all conditions in this theorem are for
presentation simplicity and the frequency trajectory (3) can
be generalized by adding correction terms to the case where
neither condition is imposed. We opt to not doing so here as
these terms lead to more tedious notations yet do not reveal
any new insights.

This result tells us that the frequency trajectory of (2) can
be decomposed along scaled eigenvectors of the Laplacian
matrix L. Moreover, we note that all ¢; + have negative real
parts except ¢1 4 = 0. Therefore the only term in (3) that
persists is the term involving ¢ 4 given as:

S1

\/’)/2 - 4/\1

Thus under the input s = P™ —d, the w(t) signal converges
to the steady state LA/~'/2y; exponentially fast. This
allows us to recover the following well-known result in
frequency-regulation literature [26], using a new argument.

et N1 2y, = S—lel/Qvl
gl

Corollary II1.4. Under step input s, the system (2) converge
to a steady state with synchronized frequencies w; = w; =:
we. Moreover, w. = 0 if and only if the power injection is
balanced ), s s; = 0.

Proof. 1t is easy to show
M1/2

-1,
\/ Zje/\/ Mi

By Theorem II.3, we know the steady state of (2) is
(51 /)M ~'/2vy, which then has all entries equal to the same
value

v =

51

'V\/Zj M;

Therefore w; = w; =: w, for all 4,5 € N. From s =
> 8iMY 20 we see 51 = (M~Y25)Tvy = sTM~1/2y,
and thus

Z s; = st ZM sTM~ 1/2111 ZMj§1

ieN J J

=7 ZMj We = ZDj We
J JEN

Hence w,. = 0 if and only if ), s; = 0. O

C. Spectral transfer functions for arbitrary input

It is also informative to look at the system behavior of
(2) from the Laplace domain. Instead of analyzing transfer
functions from any input to any output as in the classical
multi-input-multi-output system analysis, we take a slightly
different approach such that the Laplacian matrix spectral
information is preserved. More precisely, for a time-variant
surplus signal s(t), we first decompose it to the spectral rep-
resentation s(t) = .1 | §;(t)M*/%v;. Now §;(t) is a real-
valued signal and thus assuming enough regularity, we can
rewrite 3;(t) as the integral of exponential signals ™ through
inverse Laplace transform. It can be shown that when the in-
put to system (2) takes the form e™*M/2v;, the steady-state
frequency trajectory w(t) is given by H;(T)e™* M ~1/2y;,
where H;(7) is a complex-valued function of 7 specifying
the system gain and phase shift. We refer to the function
H;(7) as the i-th spectral transfer function. Compared to
classical transfer functions, the spectral version does not
capture the relationship between any input-output pair, but in
contrast captures the behavior of system (2) from a network
perspective. Once the spectral transfer functions are known,
we can compute the steady-state trajectories for general input
signal s(t) through the following synthesis formula

w(t)=> LT{H(r)L
=1

Theorem IILS. For each i, assuming v* —4)\; # 0, the i-th
spectral transfer function is given by

{8:(0)} (1)} M~

-
H; =
(7) T2 4T+ N

Proof. Please refer to our online report [25]. O

We remark that a similar formula also shows up in [20]
as the representative machine transfer function for swing
dynamics.

IV. INTERPRETATIONS

In this section, we present a collection of intuition that can
be devised from the results in Section III. They are useful
for making general inferences and for the controller design
in Section V.

A. Network connectivity and system stabilization

We first clarify how the network connectivity affects the
system stability. Towards this goal, we rewrite (3) as

n
= s@ ()M,
i=1

The signal &'(t) captures the response of system (2) along
M~1/2y; to a step function input. By Theorem IIL1, we see
that whether the system oscillates or not is determined by
the signs of ~% — 4);. For \; such that 72 —4X;, > 0, we
have !

\/"}/2 — 4)\1

(e¢i,+t _ e¢i,—t)



with ¢; + < 0. Thus the system is over-damped along
M~1/2y;, and deviations along M ~'/2y; exponentially fades
away without oscillation. The slower-decaying exponential
has a decaying rate determined by ¢; 1, which is a decreas-
ing function in A;. Thus a larger \; implies faster decay.
Intuitively, this tells us that when the system damping is
strong with respect to its inertia, adding connectivity helps
move more disturbances to the damping component so that
disturbances can be absorbed sooner.
For « such that v2 — 4)\; < 0, we have

2
VAN — 2

Thus the system is under-damped along M ~*/“v; and oscil-
lations do occur. We also note that larger values of \; lead
to oscillations of higher frequency. This intuitively can be
interpreted as the following: When the system damping is not
strong enough compared to its inertia, adding connectivity
causes the un-absorbed oscillations to propagate throughout
the network faster, bringing disturbances to the already over-
burdened damping components, making the system oscillate
in a higher frequency.

We thus see that Theorem III.1 and Theorem III.3
precisely clarify our seemingly contradictory intuition on
whether connectivity is beneficial to stabilization - it depends
on how strong the system is damped compared to its inertia,
i.e. how fast the system can dissipate energy.

i(t) = e ?

w

1/2

B. Robustness to disturbance

The impact of different system parameters in the Laplace
domain can be understood from the spectral transfer func-
tions H;. Recall by Theorem III.5, for a signal of the form
s(t) = eTw;, the steady state output signal of (2) is

TeTt

TZHT+ N
In particular, if we focus on the j-th component of @;(t),

which corresponds to the frequency trajectory of bus j, we
have

-1

wi(t;T) = v;

B Tv; €7t

o Mj7'2 + DjT + )\ZM]

Under the proportional rating assumption mentioned in Sec-
tion II, one can show that \;M; = X;, where }\; is the
i-th Laplacian eigenvalue when the “heaviest” generator is
normalized to have unit inertia max;jen M; = 1 and can
be interpreted as the pure topological part in the Laplacian
eigenvalues );. This allows us to compute

Wi, (t;7)

o]

“4)

|wi,;(io)| = — =
V/M2ot + (D2 — 2N, M;)o? + X,

and conclude the following (See Fig. 1 for an illustration): a)
For high frequency signals, the gain can be approximated by
|@;,j(jo)| & 57 and therefore the key parameter to suppress
such disturbence is the rotational inertia Mj; b) For small
frequency signals, the gain approximates to |w; ;(jo)| ~ Xl
and hence low frequency disturbences are mostly suppressed
by the network topology; c) For any fixed frequency o,
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(i7)]

[« f

Fig. 1.

Tlustration of the gain |@; ;(jo)| as a funciton of o.

|@; j(jo)| is decreasing in D;. This means that a larger
damping leads to smaller gains for all frequencies. Such
decrease, however, is negligible for very large or very small
o, and therefore increasing ); mostly helps the system to
suppress oscillations in the medium frequency band.

C. Impact of damping

As a by-product of our study, we can also examine how the
system damping impacts the system performance. Towards
this goal, we study two common metrics for &*(¢): a) settling
time, which is the time it takes @*(t) to get within a certain
range2 around the steady state; b) nadir, which is defined to
be the sup norm of @&*(¢). Table I summarises the formulae?
for these metrics, and one can show using basic calculus that
both the settling time and nadir are decreasing functions of +,
and thus decreasing in the damping constants D; (provided
that the inertia constants M are fixed).

This result of course does not generalize to w(t) in a
straightforward way because of the possibility of negative §;.
Instead of focusing on w(t) for a specific s(t), we can look at
all possible w(t) and generalize our previous interpretations
to the worst case performance metric. To be concrete, let
us take nadir as an example. By (3), we see the nadir of
frequency trajectory at bus j satisfies

A

lw; (D)o <

Mj_1/2 Z |54 Hvi,jwi(t)Hoo
=1

IN

n n
—-1/2 ~ 12 g 2
MV ST s Y et )]
=1 =1

2
o0

>l @i (@)

i=1

= M s e

v
2

The range is specified as [w} — ¢, w] + ], where w* is the equilibrium
state and c is a constant.

3We define A; = |72 - 4)\i| to simplify the formulae. The settling
time formula is an upper bound as finding its exact value requires solving
transcendental equations, which is generally hard.



TABLE I
SYSTEM PERFORMANCE IN TERMS OF NETWORK LAPLACIAN EIGENVALUES, GENERATOR INERTIA AND DAMPING.

Case Settling Time Nadir
ERARvLY —1=/B;
2S5 4N 1 ln( 1 ) 1 VA VA /A 2VB;
7 Coaeva: t\aea) | A | \-vas NS
2 . 1 4 2 _ 27y
7 <4 P () \/AT-eXp< \/F)

It is easy to see that all the inequalities above can at-
tain equalities. Therefore among all input s with scaled
unit energy ||M~'/2s||, = 1, the worst possible nadir is

M ;1/ 2 lw||% , which is a decreasing function of § from our
previous discussions.

This worst case nadir is a system level metric that is
independent of the input. Although this metric does not
predict the exact nadir for any specific input, it does reveal to
what extent the system can tolerate disturbances of certain
energy, which is a property that is intrinsic to the system
itself. Moreover, for secure and robust operation of the grid,
we need to make sure that the worst case nadir is well-
controlled. Similar argument can be also applied to the
settling time for w; (¢).

D. System tradeoffs

When choosing system control parameters, there are usu-
ally tradeoffs among different performance goals and we
must balance different aspects to obtain a good design. A
key tradeoff of this type revealed by our previous disucs-
sions is the tradeoff between having small network intrinsic
frequency and improving system robustness against low
frequency disturbance.

More specifically, it is easy to show that [&; ;(jo)| is

.. * o i
maximized at o;; = VA

interpreted as an intrinsic frequency of the network and
oscillations around o ; are amplified at bus j through the
transmission system. Typically high frequency oscillations
should be suppressed and thus we want smaller o7 ;, which
in turn leads to smaller )\;. On the other hand, we have shown
that in order for the system (2) to be robust against low
frequency noise (such as periodic load oscillations within
a day), the transmission network should be designed with
as large connectivity ); as possible. As a result, we cannot
make the system (2) having small intrinsic frequency and
being robust against low frequency noise at the same time.

In other words o7 ; can be
,

V. CONTROLLER DESIGN FOR LOAD-SIDE
PARTICIPATION

In this section, we discuss two implications of our results
in Section IV to load-side controller design.

A. Benefits of load-side participation

We adopt the controller design from [1] as an example to
explain the benefits of load-side participation. We assume the
system deviation is small so that the capacity bounds of load
side controllers are not binding. In this setting, the control
law of [1] is simplified to

dj = prj' (5)
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which when plugged into (2) can be absorbed into the
damping term D;w;. Therefore the integration of controller
(5) effectively increases the system damping level. Based on
our discussions in Section IV, we conclude that load-side
participation decreases both the settling time and nadir of
(2). This means with load-side participation, the system (2)
is more responsive and its nadir under a disturbance is also
better controlled.

Such benefits have been observed and confirmed in a series
of work [1], [2], [12], [27], [28] in their simulations. With our
framework, it is possible to analytically derive such results
and quantify how beneficial the load-side integration can
be when we use a certain system gain K. Moreover, it
is observed in [27] that load-side participation also helps
maintain system stability when the generator output fluctu-
ates. Using our characterization in the Laplace domain, we
see that such benefit comes from the improved system ability
in suppressing oscillations of medium band frequency.

B. Proportional-Derivative (PD) controller

Despite the many benefits of load-side controllers we have
explained so far, one component still missing in (5) is that
they only affect the system damping but cannot increase the
system inertia. As we mentioned in Section IV, the system
inertia is the key parameter affecting the system robustness
against high frequency oscillations. Nevertheless, a quick
glimpse to (2) suggests that in order to have larger M,
it suffices to add a derivative term in (5), which can be
implemented through power electronics or invertors [14]:

dj = Kpo.)j —+ Kdd)j (6)

Although it is a natural idea to generalize proportional
controllers to PD controllers for performance tuning, we
see that the need of this derivative term can actually be
reversed engineered from our characterizations. Moreover,
our framework reveals how the parameters K, and K affect
the system performance precisely, allowing us to optimize
such gains subject to different design goals.

Using derivative terms in controller design is often prob-
lematic in practice due to the amplified noise in its measure-
ment. However, we know from Section IV that neither adding
damping nor increasing network connectivity is particularly
effective in suppressing disturbences in the high frequency
regime. Thus in order to improve the grid stability under
high frequency fluctuations, having certain components of
the network that are able to measure the signal derivatives
either explicitly or implicitly to provide the necessary inertia
is inevitable. We are still investigating the optimal tradeoff
between the increased virtual inertia yet also the amplified
noise from using PD controllers.



Fig. 2. Line diagram of the IEEE 39-bus interconnection testbed.

VI. EVALUATION

In this section, we simulate the controller design (6) over
the IEEE 39-bus New England interconnection system as
shown in Fig. 2 and compare its performance to that of (5)
and the conventional droop control. There are 10 generators
and 29 load nodes in the system and we take the system
parameters from the Matpower Simulation Package [29]. In
contrast to our theoretical analysis, the simulation data does
not satisfy the proportional rating assumption in Section II.
The droop control is implemented as the D;w; term for
generator buses and is deactivated for simulations with the
controllers (5) and (6). We assume all the buses (including
the generator buses) have load-side participation enabled and
pick the controller gains K, and K, heterogeneously in
proportional to the bus damping D;.

A. Robustness against measurement noise

We first look at the controller performances against mea-
surement noise. Towards this goal, we add a white Gaussian
measurement noise of power —20 dBW to the frequency
sensor at bus 30 and observe its frequency trajectory, which
is shown in Fig. 3. We can see that the controller (5) is less
prone to measurement noise compared to the conventional
droop control, because it increases the system damping level
and therefore helps suppress the medium frequency part of
the noise. However, its benefit in suppressing high frequency
noise is limited, as one can see from its performance gap
compared with the controller (6). To more clearly see such
distinction, we replace the measurement noise at bus 30
with the signal 0.2sin(107t) p.u. that contains only high
frequency component and observe its trajectory. The result
is shown in Fig. 4. In this case, we see that controller (5)
performs nearly the same as the conventional droop control,
while the system under the improved controller (6) exhibits
much smaller oscillation.

B. Wind power data

Next, we look at the performance of the controllers under
real wind power generation data from [30]. We choose bus
30 to be the wind generator, whose output follows the profile
given in [30] and look at the frequency trajectory at bus 36.
The two buses are specifically chosen to be geographically
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Fig. 4. Frequency trajectory at bus 30 when we add a signal following the
sine curve 0.2sin(107t) p.u.

far away so that the simulation results reflect end user per-
ception of such renewable penetration. The simulation result
is shown in Fig. 5. As one can see, compared to controller
(5), the improved controller (6) incurs smaller frequency
deviation at almost all time, and the resulting trajectory is
smoother. This is because (6) filters away high frequency
fluctuations in the generator profile. We expect such benefit
to be more significant when the system aggregate load
fluctuates more frequently because of increasing renewable
penetration.

VII. CONCLUSION

In this work, we proposed a framework using spectral
graph theory that captures the interplay among different
system parameters. It leads to precise characterizations on
how control parameters affect the system performance and
allows us to make general inferences without extensive sim-
ulation. We quantified the benefits of load-side participation



60.15¢
------- droop control
60.1¢ — - controller (5)
~ —improved controller (6)
< 60.05 : P
3
5 60
]
@ 59.95
L :
59.9
59.85 : : '
0 50 100 150
Time (sec)

Fig. 5. Frequency trajectory at bus 36 under wind power output at bus 30.

within this framework and explained how we can improve
the controller design so that the system is more robust against
high frequency oscillations.

We remark that our framework can be generalized to
include secondary frequency controllers. In particular, load-
side controllers for secondary frequency regulation can usu-
ally be locally interpreted as the control law (5) plus a
term that captures the overall supply-demand imbalance
from other parts of the network. Therefore in terms of
system stabilization, all of our discussion about how load-
side participation helps system (2) in both transient and
steady state will still apply. In terms of driving the system
back to the nominal state, the framework explains how the
cyber and physical network topologies interact with each
other and suggest methods to improve the overall system
convergence rate. Due to space limitation, we refer interested
readers to [31] for more detailed discussions. We are still
investigating how our results can be generalized to more
detailed models (say where the generators have higher order
or nonlinear dynamics).
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