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Failure Localization in Power Systems via Tree Partitions
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Abstract— Cascading failures in power systems propagate
non-locally, making the control and mitigation of outages ex-
tremely hard. In this work, we use the emerging concept of the
tree partition of transmission networks to provide an analytical
characterization of line failure localizability in transmission
systems. Our results rigorously establish the well perceived
intuition in power community that failures cannot cross bridges,
and reveal a finer-grained concept that encodes more precise in-
formation on failure propagations within tree-partition regions.
Specifically, when a non-bridge line is tripped, the impact of
this failure only propagates within well-defined components,
which we refer to as cells, of the tree partition defined by
the bridges. In contrast, when a bridge line is tripped, the
impact of this failure propagates globally across the network,
affecting the power flow on all remaining transmission lines.
This characterization suggests that it is possible to improve
the system robustness by femporarily switching off certain
transmission lines, so as to create more, smaller components
in the tree partition; thus spatially localizing line failures and
making the grid less vulnerable to large-scale outages. We
illustrate this approach using the IEEE 118-bus test system
and demonstrate that switching off a negligible portion of
transmission lines allows the impact of line failures to be
significantly more localized without substantial changes in line
congestion.

I. INTRODUCTION

Power system reliability is a crucial component in the
development of sustainable modern power infrastructure.
Recent blackouts, especially the 2003 and 2012 blackouts
in Northwestern U.S. [1] and India [2], demonstrated the
devastating economic impact a grid failure can cause. In
even worse cases, where facilities like hospitals are involved,
blackouts pose direct threat to people’s health and lives.

Because of the intricate interactions among power system
components, outages may cascade and propagate in a very
complicated, non-local manner [3]-[5], exhibiting very dif-
ferent patterns for different networks [6]. Such complexity
originates from the interplay between network topology and
power flow physics, and is aggravated by possible hidden
failures [7] and human errors [8]. This complexity is the
key challenge for research into the modeling, control, and
mitigation of cascading failures in power systems.

There are three traditional approaches for characterizing
the behavior of cascades in the literature: (i) using simulation
models [9] that rely on Monte-Carlo approaches to account
for the steady state power flow redistribution on DC [5],
[8], [10], [11] or AC [12]-[14] models; (b) studying purely
topological models that impose certain assumptions on the
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cascading dynamics (e.g., failures propagate to adjacent lines
with high probability) and infer component failure prop-
agation patterns from graph-theoretic properties [15]-[17];
(c) investigating simplified or statistical cascading failure
dynamics [3], [18]-[20]. In each of these approaches, it
is typically challenging to make general inferences across
different scenarios due to the lack of structural understanding
of power redistribution after line failures.

A new approach has emerged in recent years, which seeks
to use spectral properties of the network graph in order
to derive precise structural properties of the power system
dynamics, e.g., [21]-[24]. The spectral view is powerful
as it often reveals surprisingly simple characterizations of
the complicated system behaviors. In the cascading failure
context, a key result from this approach is about the line
outage distribution factor [6], [25]. Specifically, it is shown
in [22] that the line outage distribution factor is closely
related to transmission graph spanning forests.

While this literature has yet to yield a precise characteri-
zation of cascades, it has suggested a new structural repre-
sentation of the transmission graph called the tree partition,
which is particularly promising. For example, [22] shows that
line failures in a transmission system cannot propagate across
different regions of the tree partition (for more background
on the tree partition, see Section III).

Contributions of this paper: We prove that the tree par-
tition proposed in [22] can be used to provide an analytical
characterization of line failure localizability, under a DC
power flow model, and we show how to use this characteriza-
tion to mitigate failure cascades by temporarily switching off
a small number of transmission lines. Our results rigorously
establish the well perceived intuition in power community
that failures cannot cross bridges, and reveal a finer-grained
concept that encodes more precise information on failure
propagations within tree-partition regions. This work builds
on the recent work focused on the line outage distribution
factor, e.g., [6], [22], [26], and shows that the tree partition
is a particularly useful representation of this factor, one that
captures many aspects of how line failures can cascade.

The formal characterization of localizability is given in
Theorem 6, which summarizes the technical results in Sec-
tions V and VI. In particular, in Section V, we characterize
the power redistribution after the tripping of a non-bridge
line and show that the impact of such failures only prop-
agates within well-defined components, which we refer to
as cells, inside the tree partition regions. In Section VI, we
consider the failure of bridge lines and prove that, in normal
operating conditions, such failures propagate globally across
the network and impact the power flow on all transmission
lines. In order to prove these results, we depend on properties
of the tree partition proved in [22] as well as some novel
properties derived in Section III. Further, we make use of the
block decomposition of tree partition regions to completely
eliminate the graph spanning forests among distinct cells,
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which in the spectral view means failure localization [22].
Lastly, we apply classical techniques from algebraic geom-
etry to address potential pathological system specifications
and establish our results.

The characterization we provide in Theorem 6 yields
many interesting insights for the planning and management
of power systems and, further, suggests a new approach
for mitigating the impact of cascading failures. Specifically,
our characterization highlights that switching off certain
transmission lines femporarily in responds to the real-time
injection profile can lead to more, smaller regions/cells,
which localize line failures, thus making the grid less vul-
nerable against line outages. In Section VII, we illustrate
this approach using the IEEE 118-bus test system. We
demonstrate that switching off only a negligible portion of
transmission lines can lead to significantly better control of
cascading failures. Further, we highlight that this happens
without significant increases in line congestion across the
network.

II. PRELIMINARIES

We use the graph G = (N,€) to describe a power
transmission network, where A" = {1,...,n} is the set of
buses and £ C N x N is the set of transmission lines. The
terms bus/vertex and line/edge are used interchangeably. An
edge in £ between vertices ¢ and j is denoted either as e
or (i,7). We assume G is connected and simple, and assign
an arbitrary orientation over & so that if (i,5) € & then
(4,4) ¢ £. The line susceptance of e is denoted as B, and the
branch flow on e is denoted as P.. The susceptance matrix
is defined to be the diagonal matrix B = diag(B. : e € £).

We denote the power injection and phase angle at bus ¢ as
p; and #;, and use n and m to denote the number of buses and
transmission lines in G. The vertex-edge incidence matrix of
G is the n x m matrix C defined as

1 if vertex 7 is the source of e
Cie = ¢ —1 if vertex i is the target of e
0 otherwise.
With the above notation, the DC power flow model can be
written as
p=CP
P = BC7o,

(1a)
(1b)

where (la) is the flow conservation constraint and (1b) is
Kirchhoff’s and Ohm’s Laws. The slack bus phase angle in
0 is typically set to O as a reference to other buses. With this
convention, the DC model (1) has a unique solution # and
P for each injection vector p such that . _\,p; = 0.

When a line e is tripped, the power flow redistributes
according to the DC model (1) on the newly formed graph
G = (N,E\{e}). If G’ is still connected, then the branch
flow change on a line é is given as

AP; = P, x Keg,

where K.; is the line outage distribution factor [25] from e
to é. It is known that this distribution factor is independent
of the original power injection p and can be computed from
the matrices B and C [25].

If the new graph G’ is disconnected, then it is possible that
the original injection p is no longer balanced in the connected

Fig. 1. An example element in 7 (N7, N2), where circles correspond to
elements in N7 and squares correspond to elements in A5. The two trees
containing N7 and N> are highlighted as solid lines.

components of G’. Thus, to compute the new power flow, a
certain power balance rule B needs to be applied. Several
such rules have been proposed and evaluated in literature
based on load shedding or generator response [5], [6], [27]-
[29]. In this work, we do not specialize to any such rule and
instead opt to identify the key properties of these rules that
allow our results to hold. With this more abstract approach,
we can characterize the power flow redistribution under a
class of power balance rules.

The line outage distribution factor has been extensively
studied in previous work, and we make use of some impor-
tant properties from this literature. In [22], by studying the
spectrum of the graph Laplacian, a formula for K.; is given
in terms of the graph structure of G. This formula plays
a central role in proving almost all of the results in this
paper, and we thus restate it here. To do so, we need some
more notation. For two subsets of vertices N7, No C N, let
T (N1, N2) be the set of spanning forests of G consisting of
exactly two trees that contain A7 and N> respectively!. See
Fig. 1 for an illustration. Given a set £ C &£ of lines, we
assign a weight to £ by multiplying the susceptances over

all lines in F/
X(E) = [] B.
ecE

and denote the set of all spanning trees of G with edges only
from F by Tg (which can be empty if E is too small). The
following result from [22] is used throughout this paper.

Theorem 1. Let e = (i,5),é = (w, 2) be edges such that
the G' = (N, E\ {e}) is connected. Then K. is given by
o ety i) XB) — Xper i tiwn X(F)

Bs
ZEGTS\{(M)} X(E)

This result reflects Kirchhoff’s Law in a precise way and
shows that the impact of a line failure propagages through
spanning forests inside G. Interested readers are directed to
[22] for a more detailed discussion.

III. TREE PARTITION: DEFINITION AND PROPERTIES

The idea of tree partition for analyzing cascading failure
was first introduced in [22]. Here, we define the tree partition,
discuss its uniqueness and show that the “finest” tree partition
of a general graph can be computed in linear time.

'This definition does not require N7 and A2 to be disjoint, and
T (Ni1,N2) is understood to be empty when N7 N N2 # (. See [22]
for more discussions.
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Fig. 2.

The construction of Gp from P.

For a power network G = (N,€&), a collection P =
{N1, N, -+, N} of subsets of NV is said to form a partition
of G if N; NN =0 for i # j and U¥_,N; = N. For any
partition, we can define a reduced multi-graph Gp from G as
follows. First, we reduce each subset V; to a super node (see
Fig. 2). The collection of all super nodes forms the node set
for Gp. Second, we add an undirected edge connecting the
super nodes NV; and N for each pair of n;,n; € N with the
property that n; € Nj, n; € N and n; and n; are connected
in G. Note that multiple ledges are added when multiple pairs
of such n;,n; exist. Unlike the graph G to which we assign
an arbitrary orientation (and thus is a directed graph), the
reduced multi-graph Gp is undirected.

Definition 2. A partition P = {N1,Na, - \Ni} of G is
said to be a tree partition if the reduced graph Gp forms a
tree.

Definition 3. Given a tree partition P = {N1,Na, -+ , N},
the sets N; are called the regions of P. An edge e = (w, 2)
with both endpoints inside N is said to be within N;. If e
is not within N for any i, then we say e forms a bridge®.

Tree partitions of a power network G are generally not
unique. For instance, one can always collapse G into a single
region with the partition Py = {N'}, which is a trivial tree
partition of G. This yields a different tree partition for the
graph shown in Fig. 2. Nevertheless, if we require the tree
partition to be as “fine” as possible, such a partition is unique.

More concretely, given a graph G, we define a partial order
> over the set of all tree partitions of G (which is nonempty
as it always contains the trivial partition Py) as follows: For
two tree partitions P! = {N} N3, --- N} } and P? =
{NE N3, N2}, we say P! is finer than P2, denoted
as Pl = P2, if for any ¢ = 1,2,..., k;, there exists some
j(@) € {1,2,...,k2} such that N} C N7, That is, P!
is finer than P? if each region in P! is contained in some
region in P2 (see Fig. 3). It is routine to check that = defines
a partial order over all possible tree partitions of G.

Definition 4. A tree partition P of G is said to be irreducible
if P is maximal with respect to the partial order >.

In other words, an irreducible tree partition P of G is a
partition that cannot be reduced to a finer tree partition.

Proposition 5. For any graph G, there exists a unique
irreducible tree partition.

See our online report for a proof [30].

2We remark that our definition of bridges agrees with the classical
definition of bridges in graph theory (i.e., the removal of any such edge
disconnects the original graph) in the sense that if the tree partition P is
irreducible (see Definition 4 later) any bridge defined in our sense is a bridge
in the classical sense, and vice versa.
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Fig. 3.  An illustration of the partial order > over tree partitions. The

partition P = { N}, NZ, N3, N} } is finer than P2 = {N7, N2}

We remark that our proof of Proposition 5 not only shows
that the irreducible tree partition of G is unique, but also
implies that the problem of computing this unique irreducible
tree partition reduces to finding all bridges of G. As a result,
we can adapt Tarjan’s bridge-finding algorithm [31] to devise
an algorithm that computes the irreducible tree partition of
G in O(n + m) time. This is summarized in Algorithm 1.
Interested readers are referred to the proof of Proposition 5
in [30] for more details on the algorithm.

Algorithm 1 Irreducible Tree Partition Finding Algorithm

1: Execute Tarjan’s bridge-finding algorithm [31] on G =
(N, ) to compute the set of bridges &y.

2: Remove edges in &, from &£ to form the partitioned graph
(N, E\E).

3: Breadth-first search on the partitioned graph (N, E\&)
to compute its set of connected components P :=
{C1,Cs,...,Ck}. Return P.

To summarize, we have shown that each graph G has a
unique irreducible tree partition, which can be computed in
linear time. Thus, to simplify the terminology, whenever we
say the tree partition of G in the sequel, we always refer to
its irreducible partition.

IV. SUMMARY OF RESULTS

In this section we state our main result, which analytically
characterizes line failure localization. It summarizes the
technical results in the two sections that follow.

Our main result applies in contexts where the system is
operating under normal conditions, i.e., when the following
two assumptions are satisfied: (a) the injection is island-free
(see Definition 10 for a formal definition); and (b) the grid
is participating with respect to its power balance rule (see
Definition 11 for a formal definition). Moreover, to address
certain pathological cases, we add a perturbation drawn
from certain probability measure p to the line susceptances
and assume p is absolutely continuous with respect to the
Lebesgue measure £,, on R™ (see Section VI).

Theorem 6. For a power network operating under normal
conditions, K.z # 0 almost surely in p if and only if:
1) e, é are within a common tree partition region and e, é
belong to the same cell; or
2) e is a bridge.
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Fig. 4. Non-zero entries of the K.s matrix (as represented by the dark
blocks) for a graph with tree partition {N7, N2, -, N3} and bridge set
&p. The small blocks represent cells inside the regions.

This result highlights that, for a practical system, the tree
partition encodes rich information on how the failure of a
line propagates through the network. We emphasize that: (i)
the condition that 4 is absolutely continuous with respect to
L, is satisfied by almost all practical probability models for
such perturbations (see Section V); and (ii) the conditions
that the injection is island-free and the grid is participating
are satisfied in typical operating scenarios (see Section VI).
Therefore, the conditions posed in Theorem 6 are satisfied
in practical settings.

Fig. 4 shows how the tree partition is linked to the sparsity
of the K.; matrix through Theorem 6. It suggests that,
compared to a full mesh transmission network consisting of
single region/cell, it can be beneficial to temporarily switch
off certain lines so that more regions/cells are created and
the impact of a line failure is localized within the cell in
which the failure occurs. We study this network planning
and design opportunity in Section VIIL.

In the next two sections we prove Theorem 6. We first
characterize the power redistribution after the tripping of a
non-bridge line in Section V, and then consider the failure
of bridge lines in Section VI.

V. NON-BRIDGE FAILURES ARE LOCALIZABLE

In this section, we characterize the power flow redistribu-
tion under the DC model when a non-bridge line is tripped
and show that such failures are localized by the tree partition
regions. More specifically, we study how the tripping of a
line e € £ impacts the branch flow on a different edge
é € £. Recall, we mentioned in Section II that when e is
not a bridge, the power flow change on é due to tripping e
is given by

APé =K, eé X Pe-

The impact of the line failure of e can thus be characterized
by the distribution factor K.;.

A. Impact across Regions

To start with, we consider the case where é does belong to
the same region as e, that is, € either belongs to a different
region or ¢ is a bridge. This case was studied in [22] where
the following result was shown.

Proposition 7. Consider a power network G with tree
partition {N1,Na, -+ ,Ni}. Let e,é € & be two different
edges such that e is not a bridge. Then,

Kee=0

ow [ ]

Ci
ez ®

(@) (b)

Fig. 5. (a) A butterfly network. (b) The block decomposition of the butterfly
network into cells C1 and Ca.

)

P 1)

Ca
je

————————

for any é that is not in the same the region containing e.

This result implies that, when a non-bridge line e fails, any
line € not in the same tree partition region as e will not be
affected, regardless of whether € is a bridge. In other words,
non-bridge failures cannot propagate through the boundaries
formed by the tree partition regions of G.

B. Impact within Regions

It is reasonable, based on physical intuition, to expect that
the converse to the above result is also true. That is, if e, é
belong to a common region (and thus e is not a bridge),
we would expect K.z # 0. This, however, is not always the
case for two reasons: (a) some vertices within a tree partition
region may “block” spanning forests from e to é; (b) the
graph G may be too symmetric. We elaborate on these two
scenarios separately in the following two subsections.

1) Block Decomposition: To illustrate the issue described
above, we use the following example to demonstrate that
certain vertices within a tree partition region may ‘“block”
spanning forests from e to é.

Example 1. Consider a butterfly network shown in Fig. 5(a)
and pick e = (i, j) and é = (w, z) from the butterfly wings. It
is not hard to see that any tree containing i, w simultaneously
must contain the body vertex c, and so is any tree containing
J, 2. As a result, we see T ({i,w},{j, z}) is empty. Similarly
we also know T ({i,z},{j,w}) is empty. By Theorem 1, we
then have K.; =0

The issue with Example 1 is that the butterfly graph is not
2-connected. In other words, it is possible that the removal of
a single vertex (in this case the body vertex c) can disconnect
the original graph. We refer to such a vertex as a cut vertex
following graph-theoretic convention. From Example 1, we
see that cut vertices may “block™ spanning forests between
edges in a tree partition region. That is, two disjoint trees
cannot pass through a common cut vertex.

Fortunately, we can precisely capture such an effect by
decomposing each tree partition region further through the
classical block decomposition [32]. Recall that the block
decomposition of a graph is a partition of its edges such that
each partitioned component is 2-connected. See Fig. 5(b)
for an illustration. We refer to such components as cells
to reflect the fact that they are smaller parts within a tree
partition region. Note that two different cells within a tree
partition region may share a common vertex as the block
decomposition is over graph edges. The block decomposition
of a graph always exists and can be found in linear time [33].

Lemma 8. Consider a power network G and let e, € be two
distinct edges within the same tree partition region but across
different cells. Then K.z = 0.
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Proof. Let e = (4,7) be within the cell C. and é = (w, z)
be within the cell Cg. It is a classical result that any path
originating from a vertex within C, to a vertex within C; must
pass through a common cut vertex in C, [32]. As a result,
it is impossible to find two disjoint trees in G containing
i,w and j, z respectively. Thus T ({i,w},{j, z}) is empty.
Similarly 7 ({3, 2}, {j, w}) is also empty. By Theorem 1,
we then know K.z = 0. O

2) Symmetry: Next, we demonstrate that graph symmetry?
may also block the propagation of failures. Again, we
illustrate the issue with a simple example.

Example 2. Consider the complete graph on n vertices
and pick e = (i,j) and é = (w,z) such that e and é
do not share any common endpoints: i #* j #* w #* z.
Assume the line susceptances are all 1. By symmetry, it is
easy to see that there is a bijective correspondence between

T {i,w}, {4,2}) and T ({i, 2}, {j,w}), and thus

oo o x®-

EcT ({i,w},{j,2}) EcT({i,z},{jw})

x(E) =0.

By Theorem 1, we then have K.; = 0.

A complete graph is 2-connected and thus forms a cell.
Example 2 shows that even if the two edges e, é are within
the same cell, when the graph G is rich in symmetries, it
is still possible that a failure of e does not impact é. Nev-
ertheless, this issue is not critical as such symmetry almost
never happens in practical systems because of heterogeneity
in line susceptances. In fact, even if the system is originally
symmetric, an infinitesimal change on the line susceptances
is enough to break the symmetry, as we now show.

More formally, we adopt a form of perturbation analysis
on the line susceptances. That is, instead of requiring the
line susceptance to be fixed values B., we add a random
perturbation w = (we : e € &) drawn from a probability
measure . Such perturbations can come from manufacturing
error or measurement noise. The perturbed system* shares
the same topology (and thus tree partition) as the original
system, yet admits perturbed susceptances B + w. The
randomness of w implies the factor K.; is now a random
variable. Let £,, be the Lebesgue measure on R"™. Recall
w is absolutely continuous with respect to L, if for any
measurable set S such that £,,(S) = 0, we have u(S) = 0.

Proposition 9. Consider a power network G under pertur-
bation 1 and let e, é be two distinct edges within the same
cell. If u is absolutely continuous with respect to L,,,

,U(Keé 7&0) =1

See our online report for a proof [30].

Note that, by Radon-Nikodym theorem [34], the probabil-
ity measure p is absolutely continuous with respect to L, if
and only if it affords a probability density function. In other
words, there are no requirements on either the power or the
correlation of the perturbation for Proposition 9 to apply. The
only necessary condition is that the measure p cannot contain

3By symmetry, we refer to graph automorphisms. The exact meaning of
symmetry, however, is not important for our purpose.

4We assume the perturbation ensures Be + we > 0 for any e € £ so
that the new susceptance is physically meaningful.

Dirac masses. As a result, we see that for almost all prac-
tical probability models of such perturbation (e.g., truncated
Gaussian noise with arbitrary covariance, bounded uniform
distribution, truncated Laplace distribution), K. # 0 for e, é
within the same cell almost surely, no matter how small the
perturbation is.

VI. BRIDGE FAILURES PROPAGATE

The remaining case necessary to prove Theorem 6 is a
characterization of the power flow redistribution when a
bridge is tripped. Here, we show that such failures generally
propagate through the entire network.

Recall that, when e is not a bridge, the branch flow change
on é due to tripping e is given by

APé = Keé X Pe- (2)

When e is a bridge, tripping e disconnects the power grid
into two components, and the power in each connected
component may not be balanced. Such power imbalance can
be resolved by a power balance rule B (see [5], [27]-[29]
for examples of such rules), which together with the DC
model uniquely determines the new branch flows (and thus
the branch flow change AP;). We extend the definition of
K through (2) to the case where e is a bridge and call it
the extended line outage distribution factor. Besides being
related to the B and C matrices, this extended K.; factor
also depends on the power injection p and the power balance
rule B.

Power networks without microgrids typically operate in
“island-free mode” as islanding (i.e., isolating a part of
the grid power flow from the rest of the network) poses a
safety hazard to utility maintainence and repair personnel
and potentially leads to damage of the infrastructure [35].
Formally we define the concept of island-free as follows.

Definition 10. For a power network G, an injection p is said
to be island-free if under the injection p, the branch flow P
in G satisfies P, # 0 for any bridge e.

Intuitively, island-free means that no part of the grid
balances its own power.

For a grid G operating with the balance rule 3, when a net
power imbalance of level M is detected, the rule B selects a
set of participating buses from G and adjust their injections
properly to cancel M. The rules studied in the literature [5],
[6], [27]-[29] are typically linear in the sense that, for any
participating bus j, the injection adjustment dp; dictated by
the rule B is linear in M.

Denote the set of participating buses of B as ANz and let
ny = |Ng|. The rule B can then be interpreted as a linear
transformation from R to R™ given by

B(M) = (a; M : j € Ng),

where «; are positive constants that sum to 1. For instance,
if the imbalance is uniformly absorbed by the generators
as in [5], [6], we have N to be the set of generators
and a; = 1 /G, where G is the number of generators.
As another example, if the imbalance is regulated through
Automatic Generation Control, then we have Az to be set of
controllable generators and «; are the normalized generator
participation factors.
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Definition 11. For a power grid G with tree partition P =
{N1,Na, -, Ny} operating under power balance rule B,
a region N; with block decomposition {C},Ci,--- ,Ci '} is
said to be a participating region if N ﬂCji- contains a non-
cut-vertex for j = 1,2,...,m;. The grid G is said to be a
participating grid if N; is participating for i = 1,2, ..., k.

A power grid is usually participating. For instance, if 5
allocates the power imbalance uniformly to the generators
as in [5], [6], as long as each cell in the network contains a
generator that is not at the “gate” (i.e., it is not a cut vertex’),
the grid is participating. If in addition load-side participation
is exploited and B also allocates the power imbalance to
controllable loads, then the power grid is participating if the
controllable loads are ubiquitously deployed to all buses.

Given the above, we now state our main result.

Proposition 12. Consider a participating power network
G with island-free injection p and under line susceptance
perturbation | that is absolutely continuous with respect to
L. If e is a bridge of G, then for any é # e, we have

W(Kee #0) = 1.

See our online report for a proof [30].

The proof of Proposition 12 provides interesting insights.
In particular, both the participating grid and island-free
injection conditions are in fact necessary. For instance, if
the supply and demand is balanced within a region (which
violates the island-free condition), then when the bridge
connecting this region to other parts of the grid is tripped,
the power is still balanced and thus the power flow within
the region stays unchanged. This is precisely the case when
a microgrid is connected to the power network: by discon-
necting the microgrid from the main grid (which effectively
trips a bridge in the original system), branch flows within
both the microgrid and the main grid are not impacted.

Note that the result in Proposition 12 can be easily
extended to more general settings. It is straightforward to
extend our proof to cover the case where neither condition
is posed. We prefer not to present this generalization here
because it would unnecessarily complicate the proof of the
result without providing new insights.

VII. LOCALIZING CASCADING FAILURES

Our findings highlight a new approach for improving the
robustness of the network. More specifically, Theorem 6
and the discussion in Section V suggest that it is possible
to localize failure propagation by femporarily switching off
certain transmission lines based on the specific injection.
This creates more, smaller areas where failure cascades can
be contained. We remark that the lines that are switched off
are still part of the system. In cases where the newly created
bridges are tripped, some of these lines should be switched
on so the system are still connected. The examples presented
below are preliminary and we are still investigating how to
optimally tradeoff the increased robustness from localized
failures and the yet also increased vulnerability from having
more bridges.

It is reasonable to expect that such an action may increase
the stress on the remaining lines and, in this way, worsen the

SA cut vertex is always at the “gate” of a cell as all paths from outside
towards vertices in the cell must pass through a cut vertex [32].
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Fig. 6. (a) A double-ring network. G is the generator bus and L is the

load bus. Arrows represent the original power flow. (b) The new network
after removing an edge. Arrows represent the new power flow.

network congestion. In fact, one may expect that improved
system robustness obtained by switching off lines always
comes at the price of increased congestion levels. In this
section, we argue that this is not necessarily the case, and
show that if the lines to switch off are selected properly,
it is possible to improve the system robustness and reduce
the congestion simultaneously. We corroborate this claim by
considering first a small stylized example and then an IEEE
test system.

A. Double-Ring Network

Consider the double-ring network in Fig. 6(a), which
contains exactly one generator and one load bus. The original
power flow on this network is also shown in Fig. 6(a).
Suppose we switch off the upper tie-line. The new network
and the redistributed power flow are shown in Fig. 6(b). In
this example, by switching off one transmission line, the
circulating flows inside the hexgons are removed and the
overall network congestion is decreased. In fact, it is easy
to show that the topology in Fig. 6(b) minimizes the sum of
(absolute) branch flows over all possible topologies.

B. IEEE test system

In the simple example above, removing a line provides
improvements in both robustness and congestion. Now, we
move to the case of a more realistic network, the IEEE 118-
bus test system. In this case, we also see that line removals
can improve robustness without more than minor increase in
congestion.

In our experiments, the system parameters are taken from
the Matpower Simulation Package [36] and we plot the
influence graphs among the transmission lines to demonstrate
how a line failure propagates in this network®. More specif-
ically, in the influence graph we plot, two edges e and é are
connected if the impact of tripping e on é is not negligible
(we use |K.s| > 0.005 as a threshold). In Fig. 7(a), we plot
the influence graph of the original network. It can be seen
that this influence graph is very dense and connects many
edges that are topologically far away, showing the non-local
propagation of line failures within this network.

Next, we switch off three edges (indicated as ey, e2 and
es in Fig. 7(b)) to obtain a new topology that has a bridge
and whose tree partition now consists of two regions of com-
parable size. The new influence graph is shown in Fig. 7(b).
One can see that, compared to the original influence graph
in Fig. 7(a), the new influence graph is much less dense
and, in particular, there are no edges connecting transmission
lines that belong to different tree partition regions. We also

The original IEEE 118-bus network has some trivial “dangling” bridges
that we remove (collapsing their injections to the nearest bus) to obtain a
more transparent influence graph.
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(b) The influence graph after switching off e, ez and e3. The black dashed line indicates the failure propagation boundary defined

by the tree partition. The vertices c; and cg are cut vertices.

Fig. 7.
lines and grey edges represent connections in the influence graph.

note that the network in Fig. 7(b) contains two cut vertices
(indicated by c; and ¢ in the figure, with co being created
when we switch off the lines). It can be checked that line
failures are “blocked” by these cut vertices, which verifies
our results in Section V.

It is also of interest to see how the network congestion
is impacted by switching off these lines. To do so, we
collect statistics on the difference between the branch flows
in Fig. 7(b) and those in 7(a). In Fig. 8(a), we plot the
histogram of such branch flow differences normalized by

Influence graphs on the IEEE 118-bus network before and after switching off lines ej, ez and e3. Blue edges represent physical transmission

the original branch flow in Fig. 7(a). It shows that roughly
half (the exact percentage is 47.41%) of the transmission
lines have higher congestion yet the majority of these branch
flow increases are negligible. To more clearly see how much
the congestion becomes worse on these lines, we plot the
cumulative distribution function of the normalized positive
branch flow changes, which is shown in Fig. 8(b). One can
see from the figure that 90% of the the branch flows increase
by no more than 10%.

6838



]
3
10 p—
03 2 T
o ‘208 )
& *; 0 8’ y
g 02 Q04
g £o04
> 0.4
= 0.1 E=
0.2
I S - B S :
—40% —20% 0 +20%  +40% S 0 10% 20% 30% 40% 50%
Normalized Branch Flow Change Normalized Branch Flow Change
(a) (b)

Fig. 8. (a) Histogram of the normalized branch flow changes. (b)
Cumulative distribution function of the positive normalized branch flow
changes. Note that the curve intercepts the y-axis since 52.59% of the
branch flows decrease.

VIII. CONCLUSION

In this work, we provide an analytical characterization of
line failure localizability in power systems. We demonstrate
that the transmission network graph encodes rich information
on the regions that a line failure can impact and that such
regions can be computed in linear time. Further, using a
case study on the IEEE 118-bus test network, we show
that switching off certain transmission lines can improve
the grid robustness against line failures without significantly
increasing line congestion.

This work can be extended in several directions. First, we
provide an analytical characterization of power flow redis-
tribution when a line fails, and our results are generalizable
to bus failures. It is of interest to understand how these two
types of failures interact. Second, we demonstrate in our case
studies that by switching off certain transmission lines, grid
robustness can potentially be improved. It would be useful
if the selection of such lines can be optimized for a certain
objective function, such as the sparsity of the influence graph
or the total load loss when some critical lines are tripped.
Third, to fully capture the cascading failure dynamics, both
the power flow redistribution and the line capacities are
relevant. It is important to investigate how line capacities
can be incorporated to our framework.
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