
A Feedback-Based Regularized Primal-Dual Gradient Method
for Time-Varying Nonconvex Optimization

Yujie Tang, Emiliano Dall’Anese, Andrey Bernstein, and Steven H. Low

Abstract— This paper considers time-varying nonconvex op-
timization problems, utilized to model optimal operational
trajectories of systems governed by possibly nonlinear physical
or logical models. Algorithms for tracking a Karush-Kuhn-
Tucker point are synthesized, based on a regularized primal-
dual gradient method. In particular, the paper proposes a
feedback-based primal-dual gradient algorithm, where analyt-
ical models for system state or constraints are replaced with
actual measurements. When cost and constraint functions are
twice continuously differentiable, conditions for the proposed
algorithms to have bounded tracking error are derived, and a
discussion of their practical implications is provided. Illustrative
numerical simulations are presented for an application in power
systems.

I. INTRODUCTION

This paper considers a time-varying [1], [2], [3] nonconvex
optimization problem of the form

min
x∈X (t)

c(x; t)

s.t. f(x; t) ≤ 0
(1)

where t ∈ [0, T ] for some T , is a temporal index; the
functions c(·; t) : Rn → R and f(·; t) : Rn → Rm are
possibly nonconvex; and the set X (t) ⊂ Rn is convex and
compact for all t. The optimization problem (1) can be asso-
ciated with systems governed by possibly nonlinear physical
or logical models. The functions c and f are time-varying,
and they capture performance objectives and constraints that
evolve over time. Accordingly, denoting by x?(t) an optimal
solution of (1) at time t, the optimization model (1) leads
to a continuous-time optimal trajectory. Suppose further that
(some entries of) the vector-valued function f(x; t) can be
expressed as f(x; t) = h(y(x; t); t), where

y(x; t) : Rn × [0, T ]→ Rk (2)

is a function modeling observable states or outputs of the
underlying physical or logical systems, and h(·; t) : Rk →
Rm is a given function modeling constraints imposed on
the physical quantities y(x; t) (application-specific examples
will be provided later in the paper). Given (2) and the time-
varying optimization model (1), the problem addressed in this
paper pertains to the development of algorithms that enable
tracking of the optimal trajectory (x?(t))t∈[0,T ].
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For a system where the functional evaluation of the
map (2) does not depend on time-varying exogenous inputs
that need to be exchanged via a communication network,
problem (1) might be solved in a centralized setting based
on continuous-time platforms; see e.g., [4], [5], [6], [7]
for convex counterparts of (2) and [1] for time-varying
nonconvex settings. However, this paper focuses on discrete-
time updates that allow one to account for (i) computational
delays in the algorithmic updates, (ii) delays due to collection
and communication of measurements and problem inputs,
and (iii) the case where the update of x(t) leads to control
actions that are to be implemented on digital control units.
To this end, consider the following sampled version of (1):

min
x∈Xt

ct(x)

s.t. ft(x) ≤ 0
(3)

where t ∈ T now denotes a discrete time index, and we
assume that T = {0, . . . , T} for some T ∈ N. Accordingly,
the sampled optimal trajectory is denoted as (x∗t )t∈T .

A batch solution of (3) would involve an iterative al-
gorithm where iterations are sequentially performed until
convergence [8] within each time interval [t, t+1]. However,
a batch solution might not be appropriate in a time-varying
setting, since underlying communication and computational
complexity requirements may prevent the algorithm from
converging within a time interval [t, t+ 1]; this is especially
the case when the sampling time is chosen small enough
to fully model fast-varying costs and constraints and closely
approximate the continuous-time optimal trajectory. In lieu
of a batch solution, this paper leverages online (i.e., run-
ning) primal-dual gradient methods to track the sequence of
optimal points (x∗t )t∈T [2]. Going beyond this setting, and
aligned with the works on time-varying optimization [9],
[10] and subsequently [11], [12], [13], this paper further
considers a feedback-based online implementation of primal-
dual-type gradient methods where the functional evaluation
of y(x; t) and h(y(x; t); t) is replaced with measurements
(collected at each time t ∈ T ) in the implementation of the
dual gradient steps. This modification leads to a closed-loop
online optimization procedure [9], [10], [11], [12], [13], [14],
[15], [16], [17] that allows one to: (i) bypass the need for an
explicit functional form of y(x; t), which may be difficult
to obtain accurately in many physical systems; (ii) cope
with model mismatches in the formulation of the problem
constraints; and, (iii) in some applications, avoid pervasive
measurements of inputs w(t) that would need to be collected
when y(x; t) and/or h(y(x; t); t) depend on w(t).
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The proposed technical approach leverages a regularized
primal-dual method, where the regularization comes in the
form of a strongly concave term in the dual variables [18];
see also [19] and [20]. The strongly concave regularization
term plays a critical role in establishing Q-linear convergence
of the proposed algorithm; however, as an artifact of this
regularization, the iterates of the algorithm are driven to an
approximate Karush-Kuhn-Tucker (KKT) point [21]. When
y(x; t) and h(y(x; t); t) are replaced with measurements, and
assuming the functions are twice continuously differentiable,
we provide analytical results in terms of tracking a KKT
point of the nonconvex problem (3).

It is worth pointing out that the development of feedback-
based online optimization methods has been, so far, driven by
power systems application; see, for example, [9], [10], [11],
[12], [13], [14], [15], [16], [17], [22], [23] and pertinent
references therein. However, the framework is generally
applicable to a number of settings where the objective is
to drive the operation of physical and logical systems as
well as networked systems to optimal operating points in real
time [24]. From a theoretical standpoint, the present paper
provides a first extension of the frameworks of [9], [13],
[16] from time-varying convex to time-varying nonconvex
settings; it offers contributions over e.g., [11], [12], [17] by
providing analytical results in terms of tracking of a time-
varying KKT point; and it expands some analysis of [20]
to the cases of time-varying nonconvex problems as well
as feedback-based implementations. A number of works in
the domain of batch optimization have utilized regularized
primal-dual methods for nonconvex problems; see, e.g., [25],
[26], [27] and references therein, with [25], [26] primarily
focusing on linearly-constrained problems. The present paper
departs from [25], [26], [27] by focusing on feedback-based
online methods; extending some of the techniques leveraged
in [25], [26], [27] to online settings is a subject of an ongoing
investigation.

II. REGULARIZED PRIMAL-DUAL GRADIENT METHOD

A. Notation

For x ∈ Rn, we denote the 2-norm of x by ‖x‖ :=
√
xTx.

For a matrix A, its operator norm is denoted by ‖A‖ :=
supx:‖x‖=1 ‖Ax‖. The identity matrix is denoted by I .

For a convex set C ⊆ Rn, its normal cone at x ∈ C,
defined by {y ∈ Rn : yT (z − x) ≤ 0, ∀z ∈ C}, is denoted
by NC(x). The projection operator onto C is denote by PC .

For a continuously differentiable function f : Rn → Rm,
its Jacobian matrix evaluated at x is denoted by Jf (x), and
f(x) ≤ 0 means each of the m components of f(x) is less
than or equal to zero. For a function L(x, λ) that is twice
continuously differentiable in x, we denote its Hessian with
respect to x by ∇2

xxL(x, λ).

B. Time-Varying Optimization

Consider the time-varying optimization problem (3) and
assume that the functions ct : Rn → R and ft : Rn → Rm
are twice continuously differentiable. For the set Xt ⊂ Rn,

we assume it is compact and convex and the projection onto
it can be efficiently computed for each t.

We assume that the time-varying optimization problem (3)
is feasible for any t ∈ T , and consequently there exists
a sampled trajectory (x∗t )t∈T of (local) optimal solutions1.
Suppose that the following constraint qualification condition
holds: There is no λ ∈ Rm+ , λ 6= 0 such that

λT ft(x
∗
t ) = 0 and − Jft(x∗t )Tλ ∈ NXt

(x∗t ).

Then by [28, Theorem 2A.9], there exists a Lagrange mul-
tiplier λ∗t and we have the KKT conditions

(x∗t , λ
∗
t ) ∈ Xt × Rm+ , (4a)

∇ct(x∗t ) + Jft(x
∗
t )
Tλ∗t ∈ −NXt

(x∗t ), (4b)

ft(x
∗
t ) ≤ 0, λ∗t

T ft(x
∗
t ) = 0. (4c)

We denote z∗t := (x∗t , λ
∗
t ) and define the Lagrangian as

Lt(x, λ) := ct(x) + λT ft(x).
Many practical problems with time-varying systems or

environments can be modeled by this formulation. In order
to achieve optimal operation, we need to update and solve
(3) repeatedly. As mentioned before, a batch solution might
not be appropriate in a time-varying setting, and we consider
online algorithms that seek suboptimal solutions.

C. Tracking Algorithm
In order to design an efficient algorithm that provides sub-

optimal solution to (3), let’s suppose that we have obtained
a suboptimal solution for time t − 1 denoted by x̂t−1, and
consider the following approximation of (3) at time t:

min
x∈Xt

∇ct(x̂t−1)T (x− x̂t−1) +
ν

2
‖x− x̂t−1‖2

s.t. ft(x̂t−1) + Jft(x̂t−1)(x− x̂t−1) ≤ 0
(5)

where ν is a positive constant. Here the objective function is
replaced by a quadratic approximation, and the nonconvex
constraint is replaced by its linearization around x̂t−1. For
computational simplicity, the quadratic approximation uses a
scalar matrix νI as an approximation of ∇2

xxLt; we discuss
a possible generalization in Section V.

It is known [8] that a primal-dual pair is an optimal
solution pair to (5) if and only if it is a solution to the
following saddle point problem

max
λ∈Rm

+

min
x∈Xt

∇ct(x̂t−1)T (x− x̂t−1) +
ν

2
‖x− x̂t−1‖2

+ λT (ft(x̂t−1) + Jft(x̂t−1)(x− x̂t−1))

We then add a regularization term of the Lagrange multiplier
λ so that the objective function of the saddle point problem
becomes strongly concave in λ:

max
λ∈Rm

+

min
x∈Xt

∇ct(x̂t−1)T (x− x̂t−1) +
ν

2
‖x− x̂t−1‖2

+ λT (ft(x̂t−1) + Jft(x̂t−1)(x− x̂t−1))

− ε

2
‖λ‖2

(6)
1There can be multiple trajectories of local optimal solutions. In the

following we only consider one of the optimal trajectories that is chosen
arbitrarily.
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where ε > 0 is a constant serving as the regularization
parameter. Finally, we apply a single iteration of the primal-
dual gradient method [29] to the regularized saddle-point
problem (6), which results in the following update rule:

x̂t = PXt

(
x̂t−1 − τν−1

(
∇ct(x̂t−1) + Jft(x̂t−1)T λ̂t−1

))
,

(7a)

λ̂t = PRm
+

(
(1− τ)λ̂t−1 + τε−1ft(x̂t−1)

)
, (7b)

where τ ∈ (0, 1] is a constant representing the step size.
Note that besides the step size τ , we also scale the primal
and dual gradients by ν−1 and ε−1 respectively, which can
be interpreted as incorporating approximate second-order
information. (x̂t, λ̂t) will then be employed as the suboptimal
primal-dual pair to (3); we also denote ẑt := (x̂t, λ̂t). The
method presented in (7) for solving the time-varying opti-
mization problem (3) will be called the regularized primal-
dual gradient method. It is expected that, as long as the
optimal pair z∗t = (x∗t , λ

∗
t ) does not change too drastically

with time and the problem (3) is sufficiently “regular”, if
we start from some ẑ0 that is sufficiently close to z∗0 , then
the suboptimal pair ẑt should remain close to z∗t for all
t ≥ 1. Section III will present theoretical results that make
this intuition precise.

D. Feedback-based Algorithm

Let us consider a special case of the problem (3). Suppose
we have a physical system whose input-output behavior is
given by the time-varying map

yt : Rn → Rk, t ∈ T (8)

which is twice continuously differentiable for each t; in other
words, at time t, if we set the input of the system to be
x ∈ Rn, then the output of the system will be yt(x) ∈ Rk.
As before, we assume that the feasible set of input variables
is a compact and convex set Xt, and the output variables
need to be constrained for operational purposes by

ht(yt(x)) ≤ 0, t ∈ T (9)

for some twice continuously differentiable ht : Rk → Rm
for each t. The operational cost of the system at time t is
given by ct(x), as before. It can be seen that this setting can
be fit into the framework of time-varying optimization (3),
whereby the function ft has the form ft = ht ◦ yt. Further,
in this setting, we assume that

(i) The function ht is known and is affine in y, namely

ht(y) = Hty + βt (10)

for some Ht ∈ Rm×k and βt ∈ Rm.
(ii) The Jacobian matrix Jyt(x) is known; Jyt(x) repre-

sents the sensitivity of the output of the physical system
to changes in the input variable x.

(iii) The explicit functional form yt(x) is either unknown,
or hard to evaluate.

To alleviate difficulty (iii) above, a closed-loop optimization
approach is used, whereby instead of using yt(x) explicitly in

the algorithm, a measurement thereof is leveraged. Observe
that

Jft(x) = Jht
(yt(x))Jyt(x) = HtJyt(x).

Let x̃t denote the input to the system (as computed by the
algorithm below) at time t, and let y̌t be the measurement
of yt(x̃t−1). That is, y̌t is the observed output of the system
right before time t. Then, with feedback measurement, the
algorithm (7) is modified as follows:

x̃t = PXt

(
x̃t−1 − τν−1

(
∇ct(x̃t−1)

+ [HtJyt(x̃t−1)]
T
λ̃t−1

))
, (11a)

λ̃t = PRm
+

(
(1− τ)λ̃t−1 + τε−1ht(y̌t)

)
. (11b)

Remark 1: For brevity, this paper focuses on the case of
an affine map ht. In this case, the feedback appears explicitly
only in the dual update (11b). The analysis of the general
case is left for future work.

Remark 2: In this paper, we focus on the case where
the Jacobian matrix Jyt(x) is known. We note that this
assumption is less restrictive than assuming the knowledge
of the functional form of yt(x). This is particularly true in
applications wherein the input-output relationship is implicit.
For example, in the case of a power system, the input-
output relationship is described by the nonlinear power flow
equations of the form x + ωt = g(y), where ωt collects
the uncontrollable inputs to the system (i.e., uncontrollable
loads and generators), and is unknown. While the explicit
functional form of y as a function of x is not readily
available, the Jacobian matrix Jy(x) can be computed by
solving a system of linear equations I = Jg(y)Jy(x), where
Jg(y) can be computed from the system parameters and the
measurement of the output y. An illustrative numerical power
system example is given in Section IV.

III. TRACKING PERFORMANCE ANALYSIS

In this section, we study the tracking performance of
the proposed regularized primal-dual gradient method with
feedback, measured by the quantity ‖z̃t − z∗t ‖ν,ε, where the
norm ‖z‖ν,ε for z = (x, λ) ∈ Rn × Rm+ is defined as

‖z‖ν,ε :=
(
‖x‖2 + ν−1ε‖λ‖2

)1/2
.

To this end, we define the following quantities:

Lh = sup
t∈T
‖Ht‖, Ly(δ) = sup

u:‖u‖≤δ
t∈T

‖Jyt(x∗t + u)‖, (12a)

My(δ) = sup
u:‖u‖≤δ
t∈T

‖yt(x∗t + u)− yt(x∗t )− Jyt(x∗t + u)u‖
‖u‖2

,

(12b)
Mλ = sup

t∈T
‖λ∗t ‖. (12c)

Roughly speaking, Ly(δ) represents the Lipschitz constant
and My(δ) characterizes the nonlinearity of the input-output
map yt within a neighborhood of radius δ around x∗t over
all t.
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We also define

ην(δ) = sup
u:‖u‖≤δ
t∈T

∥∥I − ν−1∇2
xxLt(x

∗
t + u, λ∗t )

∥∥ (13)

and

ρν,ε(δ, τ) =

[
(1− τ + την(δ))

2
+
δLhMy(δ)√

νε
(1− τ)τ

+

(
L2
hL

2
y(δ)

νε
+
LhLy(δ)ην(δ)√

νε

)
τ2

]1/2
. (14)

We denote

σ = sup
t∈T \{0}

‖z∗t − z∗t−1‖ν,ε,

which characterizes the rate of change of the optimal primal-
dual pair z∗t = (x∗t , λ

∗
t ) over time. For the feedback mea-

surement y̌t, we assume that the measurement error is upper
bounded by ey , i.e.,

‖y̌t − yt(x̃t−1)‖ ≤ ey, ∀t ∈ T . (15)

The following theorem gives sufficient conditions that
guarantee bounded tracking error for the regularized primal-
dual gradient method with feedback (11).

Theorem 1: Suppose there exist δ > 0, τ ∈ (0, 1], ν > 0
and ε > 0 such that

ρν,ε(δ, τ) < 1 (16a)

and

σ ≤ (1− ρν,ε(δ, τ))δ −
√

2ν−1ετ(Mλ + ε−1Lhey). (16b)

If the initial point z̃0 = (x̃0, λ̃0) satisfies

‖z̃0 − z∗0‖ν,ε ≤
ρν,ε(δ, τ)σ +

√
2ν−1ετ(Mλ + ε−1Lhey)

1− ρν,ε(δ, τ)
,

then the sequence (z̃t)t∈T generated by the regularized
primal-dual gradient method with feedback (11) satisfies

‖z̃t − z∗t ‖ν,ε ≤
ρν,ε(δ, τ)σ +

√
2ν−1ετ(Mλ + ε−1Lhey)

1− ρν,ε(δ, τ)
(17)

for all t ∈ T .
A sketch of the proof will be given in Appendix I.
We now discuss some implications of Theorem 1. First, we

do not impose “global” convexity on the objective function
ct, and we also allow nonconvex input-output map yt. This is
especially useful for optimal power flow problems which are
nonconvex in general; see the numerical example in Section
IV below. On the other hand, the condition (16) implicitly re-
quires “local” convexity of the Lagrangian: Lt(·, λ∗t ) should
be strongly convex in some neighborhood of x∗t with radius
δ. This can be seen from (14) that

1− τ + την(δ) < ρν,ε(δ, τ) < 1 =⇒ ην(δ) < 1,

and by the definition (13), ∇2
xxLt(x, λ

∗
t ) should be positive

definite for all x with ‖x− x∗t ‖ ≤ δ for all t.

Next let’s look at the tracking error bound in (17), which
roughly consists of three terms:

1) The first term
ρν,ε(δ, τ)

1− ρν,ε(δ, τ)
σ

is proportional to σ, the rate of change of the optimal
primal-dual pair over time. This term seems common
for time-varying optimization algorithms [9], [12], [3].

2) The second term
√

2ν−1ετ

1− ρν,ε(δ, τ)
Mλ (18)

is proportional to Mλ, the maximum magnitude of
the optimal Lagrange multiplier λ∗t over time. This
term represents the discrepancy introduced by adding
regularization in (6); similar behavior has also been
observed in [18].

3) The third term
√

2ν−1ετε−1

1− ρν,ε(δ, τ)
Lhey (19)

accounts for the measurement error introduced by feed-
back, and is proportional to the maximum norm of Ht

and the measurement error bound ey .
In addition, the first term has a multiplicative factor
ρν,ε(δ, τ)/(1 − ρν,ε(δ, τ)), while the second and the third
terms have a multiplicative factor 1/(1 − ρν,ε(δ, τ)), which
are all monotonically increasing in ρν,ε(δ, τ). This implies
that a smaller ρν,ε(δ, τ) will lead to better tracking perfor-
mance. Here we point out two of the major factors that affect
ρν,ε(δ, τ), as can be seen from the definition (14):

1) ρν,ε(δ, τ) is monotonically increasing in ην(δ) when
ην(δ) < 1. Then, the definition (13) indicates that, in
order to achieve better tracking performance, the param-
eter ν should be properly chosen; the more accurately
it approximates the curvature of Lt, the smaller the
tracking error is.

2) ρν,ε(δ, τ) is also monotonically increasing in My(δ),
indicating that the more nonlinear the constraints are,
the more difficult it is for the algorithm (11) to track the
optimal trajectory. This is in accordance with intuition.

Finally, we briefly discuss the effect of the parameters τ
and ε. Using smaller τ and ε can help reduce (18), i.e., the
discrepancy that results from regularization. On the other
hand, a smaller ε will increase ρν,ε(δ, τ) by (14), which
may degrade the tracking performance; it may also increase
(19) and make the algorithm more sensitive to measurement
noise. The relation between the quantities ρν,ε(δ, τ) and τ ,ε
is complicated. These observations suggest that there are
complicated trade-offs in choosing τ and ε in order to achieve
good tracking performance. In practice, they can be chosen
heuristically by experiments or simulations.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example of the
proposed algorithm applied to a power system test case.
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Fig. 1. Profiles of individual loads, total load and total PV generation.

The test case is based on a single-phase version of the
IEEE 37 node test feeder with high penetration of photo-
voltaic (PV) systems. We replace the loads in the original test
case with real load data measured from feeders in Anatolia,
CA during the week of August 2012 [30]. A total of 18 PV
systems are installed at node 4, 7, 10, 13, 17, 20, 22, 23, 26,
28, 29, 30, 31, 32, 33, 34, 35 and 36. The rating of these
inverters are 100 kVA at node 10, 350 kVA at node 36, and
200 kVA for the remaining ones. The generation profiles are
simulated based on the real solar irradiance data available in
[30]. The load and generation profiles are shown in Figure
1. The decision variables are the real power injection pi and
reactive power injection qi for each inverter i = 1, . . . , 18.
The objective function in (3) is

ct(p, q) =

18∑
i=1

cp(pi − Pi,t)2 + cqq
2
i ,

where Pi,t is the maximum real power available at PV system
i at time t. The cost coefficients are cp = 3 and cq = 1. We
set

Xt =
{

(p, q) : p2i + q2i ≤ S2
i,max, 0 ≤ pi ≤ Pi,t, ∀i

}
,

where Si,max is the rated apparent power for inverter i.
The function yt is the mapping from power injections to
the voltage magnitudes at each node, and is an implicit
function derived from power flow equations2. We require the
voltage magnitudes at each node to be within [0.95, 1.05]
p.u., which constitutes the nonconvex constraints (9). The
proposed algorithm updates the setpoints of the inverters
every 0.5 s, and the parameters are τ = 0.04, ν = 2 and
ε = 3.2× 10−5. We also add noise with ey = 8× 10−3 p.u.
on the voltage magnitudes in the dual step to simulate the
measurement error.

Figure 2 shows the tracking error ‖z̃t − z∗t ‖ν,ε obtained
from the proposed algorithm (11). It can be seen that apart

2It has been empirically observed that this implicit function exists given
a “reasonable” set of injections in most situations. Recent work [31], [32]
has identified conditions under which there is a unique power flow solution
within a certain domain.
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Fig. 2. The tracking error ‖z̃t − z∗t ‖ν,ε.

from some spikes, the tracking error is bounded below 0.2
for all t. We also have the following statistics:

1

T

∑
t

‖z̃t − z∗t ‖ν,ε = 4.3× 10−2,

1

T

∑
t

‖z̃t − z∗t ‖ν,ε
‖z∗t ‖ν,ε

= 1.2× 10−2.

By comparing Figure 2 with Figure 1, we can see that
most of the spikes occur where there are spikes in the load
or generation profiles. Moreover, all the spikes are quickly
detected and suppressed by the proposed algorithm.

Fig. 3. Voltage magnitudes of Node 2, 28 and 35.

Figure 3 compares the voltage magnitude profiles at three
nodes obtained from the proposed algorithm (11) and the
optimal solutions. It can be seen that the voltage magnitudes
at node 35 are slightly above 1.05 p.u. for certain time
instants, indicating that constraints (9) are violated. The
violation is very small though, as simulation gives

1

T

∑
t

‖[ft(x̃t)]+‖ = 8.7× 10−4,

where [ft(x̃t)]+ denotes the vector formed by the positive
part of each entry of ft(x̃t). The violation is partly a con-
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sequence of introducing the regularization −ε‖λ‖2/2, which
drives the Lagrange multiplier towards zero and leads to an
underestimation of the optimal dual variable. Fortunately,
the constraint violation can possibly be upper bounded
as the tracking error ‖z̃t − z∗t ‖ν,ε can be upper bounded
theoretically. Furthermore, our ongoing work suggests that
the constraint violation can be alleviated by employing a
more complicated regularization on the Lagrange multiplier,
which will be discussed in our future work.

V. CONCLUSION

In this paper, we propose a feedback-based regularized
primal-dual gradient method for tracking a trajectory of
KKT points of a time-varying nonconvex system, where
analytical models for the system are replaced with actual
measurements. We develop analytical results that guarantee
bounded tracking error, and present detailed discussion on
their implications. We also give simulation results on a power
system test case.

Some potential generalizations are as follows:
1) In (7) the parameters ν and ε are uniform for each entry

of the primal variable and the dual variable respectively.
It is straightforward to make the generalization that we
assign different ν and ε to each entry of the primal and
dual variables.

2) In (6) we employ a simple regularization −ε‖λ‖2/2
that drives λ towards zero. We have found that by
employing a more sophisticated regularization term, the
discrepancy (18) can be reduced and better tracking
performance can be achieved.

3) The feedback formulation assumes that ht is an affine
map for all t for simplicity. We are working on the
general case where ht is a nonlinear map.

4) In this paper we assume that Jyt can be accurately and
efficiently constructed, but it is not always the case
in practice. To facilitate the computation of Jyt , we
can utilize feedback measurement data and/or employ
good approximation, which will be left for future work
where general feedback and approximate gradient are
considered.

5) In this paper we only discuss briefly on the relation
between the parameters of the proposed algorithm and
the tracking performance. A thorough analysis of how
to choose the parameters will be both theoretically
important and practically relevant.

APPENDIX I
PROOF SKETCH OF THEOREM 1

The proof is by induction. Suppose that (17) holds for
time t− 1. We can see from the conditions (16) that

‖z̃t−1 − z∗t ‖ ≤ ‖z̃t−1 − z∗t−1‖+ ‖z∗t−1 − z∗t ‖

≤ ρν,ε(δ, τ)

1− ρν,ε(δ, τ)
σ +

√
2ν−1ετ(Mλ + ε−1Lhey)

1− ρν,ε(δ, τ)
+ σ

=
σ +
√

2ν−1ετ(Mλ + ε−1Lhey)

1− ρν,ε(δ, ζ, τ)
, (20)

which can further be shown to be less than or equal to δ.
The KKT conditions (4) imply that

x∗t = PXt

(
x∗t − τν−1(∇ct(x∗t ) + [HtJyt(x

∗
t )]

Tλ∗t )
)
,

(21a)

λ∗t = PRm
+

(
λ∗t + τε−1ht(yt(x

∗
t ))
)
. (21b)

By comparing them with (11) and using the fact that PXt

and PRm
+

are non-expansive, it can be shown that

‖x̃t − x∗t ‖2 ≤

∥∥∥∥∥
[∫ 1

0

(
I − τν−1∆t(θ)

)
dθ

]
(x̃t−1 − x∗t )

− τν−1[HtJyt(x̃t−1)]T (λ̃t−1 − λ∗t )

∥∥∥∥∥
2

,

‖λ̃t − λ∗t ‖2 ≤
∥∥∥(1− τ)(λ̃t−1 − λ∗t )

+ τε−1Ht (yt(x̃t−1)− yt(x∗t ))

+ τ
(
ε−1Ht(y̌t − yt(x̃t−1))− λ∗t

) ∥∥∥2,
(22)

where

∆t(θ) = ∇2
xxLt(x

∗
t + θ(x̂t−1 − x∗t ), λ∗t ).

By the definitions (12) and (13) and the assumption (15), we
have ∥∥∥∥∫ 1

0

(
I − τν−1∆t(θ)

)
dθ

∥∥∥∥
=

∥∥∥∥(1− τ)I + τ

∫ 1

0

(
I − ν−1∆t(θ)

)
dθ

∥∥∥∥
≤ 1− τ + την(δ),

‖HtJyt(x̃t−1)T (λ̃t−1 − λ∗t )‖ ≤ LhLy(δ)‖λ̃t−1 − λ∗t ‖,

‖Ht (yt(x̃t−1)− yt(x∗t ))‖ ≤ LhLy(δ)‖x̃t−1 − x∗t ‖,

‖ε−1Ht(y̌t − yt(x̃t−1))− λ∗t ‖ ≤ ε−1Lhey +Mλ,

and∥∥∥∥∥(1− τ)(yt(x̃t−1)− yt(x∗t ))

− Jyt(x̃t−1)

[∫ 1

0

(
I − τν−1∆t(θ)

)
dθ

]
(x̃t−1 − x∗t )

∥∥∥∥∥
=

∥∥∥∥∥(1− τ)(yt(x̃t−1)− yt(x∗t )− Jyt(x̃t−1)(x̃t−1 − x∗t ))

− τJyt(x̃t−1)

[∫ 1

0

(
I − ν−1∆t(θ)

)
dθ

]
(x̃t−1 − x∗t )

∥∥∥∥∥
≤ ((1− τ)δMy(δ) + τLy(δ)ην(δ)) ‖x̃t−1 − x∗t ‖.

By combining these bounds with (22), it can be shown that

‖z̃t − z∗t ‖2ν,ε = ‖x̃t − x∗t ‖2 + ν−1ε‖λ̃t − λ∗t ‖2

≤

[
(1− τ + την(δ))2 + τ2

L2
hL

2
y(δ)

νε

]
‖x̃t−1 − x∗t ‖2

+ ν−1ε

[
(1− τ)2 + τ2

L2
hL

2
y(δ)

νε

]
‖λ̃t−1 − λ∗t ‖2
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+ 2τν−1 [(1− τ)δLhMy(δ) + τLhLy(δ)ην(δ)]

· ‖x̃t−1 − x∗t ‖‖λ̃t−1 − λ∗t ‖
+ 2τ

√
ν−1ε

(
Mλ + ε−1Lhey

)
·
[
τLhLy(δ)√

νε
‖x̃t−1 − x∗t ‖+ (1− τ)

√
ε

ν
‖λ̃t−1 − λ∗t ‖

]
+ τ2ν−1ε(Mλ + ε−1Lhey)2. (23)

By Young’s inequality, we have

‖x̃t−1 − x∗t ‖‖λ̃t−1 − λ∗t ‖

≤ 1

2

√
ν

ε

(
‖x̃t−1 − x∗t ‖2 + ν−1ε‖λ̃t−1 − λ∗t ‖2

)
and

1√
2

[
τLhLy(δ)√

νε
‖x̃t−1 − x∗t ‖+ (1− τ)

√
ε

ν
‖λ̃t−1 − λ∗t ‖

]

≤

[
τ2L2

hL
2
y(δ)

νε
‖x̃t−1 − x∗t ‖2 +

(1− τ)2ε

ν
‖λ̂t−1 − λ∗t ‖2

] 1
2

Then by combining them with (23) and the definition of
ρν,ε(δ, τ) (14), it can be shown that

‖z̃t − z∗t ‖2ν,ε
≤ ρ2ν,ε(δ, τ)‖z̃t−1 − z∗t ‖2ν,ε + 2τ2ν−1ε(Mλ + ε−1Lhey)2

+ 2τ
√

2ν−1ε(Mλ + ε−1Lhey)ρν,ε(δ, τ)‖z̃t−1 − z∗t ‖ν,ε
or

‖z̃t − z∗t ‖ν,ε
≤ ρν,ε(δ, τ)‖z̃t−1 − z∗t ‖ν,ε +

√
2ν−1ετ(Mλ + ε−1Lhey).

Finally, by plugging in (20), it’s straightforward to check that
(17) also holds for time t, and by induction we complete the
proof.
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