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Figure 1: Different parallel computing implementation for machine learn-

ing serving on CPU.

Figure 2: Configurations that can indirectly change the parallelism for

machine learning serving on GPU.
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1 INTRODUCTION

1.1 Motivation

Recent years have witnessed the success of machine learning in a
variety of applications in areas of vision [17, 20, 35], speech [19, 24],
and natural language [9]. Such success has prompted the develop-
ment of Machine-Learning-as-a-Service (MLaaS) [49] that provides
model training and model inference supports in the cloud. In the
model training phase, ML models are crafted and trained using
large amounts of data in an iterative manner. Then, the trained
models are deployed in serving mode to provide various inference
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Figure 3: Tensorflow serving performance under different parallelism

configurations for Inception V3 model running on CPU. Appropriate paral-

lelism improves system performance yet excessive parallelism decreases it

because of interference. This observation is consistent with previous study

[69]. Experimental setup is detailed in Section 6.1.

services, such as image classification [28], language processing and
translation [39], photo search [50] and captioning [67], and drug
discovery [48]. In this paper, we focus on providing low latency
model inference (a.k.a machine learning serving). Compared with
model training that targets at maximizing throughput (i.e., an offline
process tries to iterate over all training samples as fast as possi-
ble, which may take hours or even days), one main requirement
of machine learning serving is to achieve consistently low latency
to attract and retain users (i.e., serves user requests in real-time).
However, different from traditional serving applications, machine
learning models with good performance for many challenging tasks
are often containing billions of neural connections, and may take
seconds or even minutes (due to both processing time and queu-
ing waiting time) to fulfill users’ requests [76] when executed in a
sequential manner, resulting in unacceptably long latency or even
making these applications non-shippable (due to latency SLO vi-
olation). However, typical SLOs of MLaaS in production system
require 500-800ms [23, 69, 70, 74].

To satisfy the needs of MLaaS for meeting the low latency Ser-
vice Level Objective (SLO), a natural and promising approach is to
parallelize computation [17, 20]. Parallelization is especially useful
for machine learning, because most underlying operations in these
models are vector-matrix multiplications or matrix-matrix multipli-
cations [13]. Running modern machine learning systems on CPU
based infrastructure, parallelization usually have two levels [76].
At the request level, requests can be executed in parallel, which
is noted as request parallelism. Each request is usually composed
of many operations, so at the operation level, computation can
be further parallelized as inter-op parallelism (multiple operations
running simultaneously) and intra-op parallelism (each operation
utilizes multiple threads). Fig. 1 illustrates these three parallel im-
plementations. Hardware accelerator based infrastructure has its
own parallelization configuration. We use GPU as an example in
this paper, where the internal parallelism such as thread blocks
and scheduling partitions are controlled by the hardware sched-
ulers and are difficult to control directly through software-based
approaches [64]. However, there are several user defined param-
eters that can indirectly impact the parallelization performed by
GPU hardware scheduler. As shown in Fig. 2, the user defined

Figure 4: Latency under the arrival rate of 14 requests per second on

CPU with different parallel configurations (intra-op parallelism is set to 10)

using Inception V3 deployed in Tensorflow Serving. The lighter the color,

the lower the latency. The left plot shows a global performance view of

configurations and the right plot is the zoomed in view of the performance in

a small region of configurations. The coarse-grained plot shows the latency

is quite versatile globally while the zoomed-in fine-grained plot shows the

latency is smooth locally (i.e., the neighboring points in the heatmap).

Figure 5: Latency under the arrival rate of 61 requests per second on GPU

with different parallel configurations (batch size is set to 50) using Inception

V3 model deployed in Tensorflow Serving. The lighter the color, the lower

the latency. Left plot shows a global performance view of configurations and

the right plot is the zoomed in view of the performance in a small region of

configurations.

Batch Size and Batch Timeout (i.e., maximum wait time allowed to
form the target batch size) together determines the input dimen-
sions, which impacts hardware scheduling decisions such as how
the scheduler allocates and dispatches thread blocks and also how
warp scheduler schedules warps into scheduling partitions. The
Parallel Batch Threads can also impact the parallelism decisions
of the GPU hardware scheduler. In machine learning serving sys-
tems, each parallel implementation and each related configuration
becomes a control knob. Parallelism configuration has significant
impact on system performance. As indicated in Fig. 3, a well-tuned
parallelism configuration can boost system performance up to 10
times compared to sequential execution (e.g., running Inception V3
on CPU infrastructure).

Machine learning serving is usually interactive and latency sensi-
tive [23, 69] compared with model training or HPC workload which
is usually throughput-oriented (i.e., SLO-agnostic). Compared with
traditional web service, ML-serving usually involves hundreds to
thousands of operations with complex correlation among them [5],
which makes it challenging to model in a white-box manner. This
makes machine learning serving an unique workload that is chal-
lenging to breakdown and do fine-tuning at operation level. How to
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Figure 6: Difference in performance v.s. difference in configuration. The

difference in configurations is calculated by their Euclidean distance.

optimally control these knobs depends on the performance require-
ment, workload characteristic, and available computing resources,
which becomes an important yet challenging problem.

Parallelism configuration tuning has recently garnered much at-
tention [7, 30]. However, existing methods require domain specific
information and techniques to tune the parallelism configuration
(see the detailed discussion in Section 2), which may not be appli-
cable to many machine learning applications. Recently, Feng et al.

proposed SERF in [69, 70] to achieve optimal parallelism configu-
ration for machine learning serving using an analytical queuing
model, which is applicable for exponential arrival process and ho-
mogeneous request size in certain image classification applications.
For many other applications (such as video, speech, and natural lan-
guage processing), the arrival process may not be exponential, and
request sizes may be heterogeneous. In addition, SERF supports
only request level parallelism and CPU-based hardware. There-
fore, there is a pressing need to develop a novel approach that can
support two levels of parallelisms and hardware accelerators like
GPU to effectively and efficiently tune parallelism configuration
for machine learning applications with diverse arrival processes
and heterogeneous request sizes.

1.2 Challenges

It is challenging to tune parallelism configuration in modern ma-
chine learning serving systems. For CPU-based infrastructure, the
configuration space is relatively large due to the two-level paral-
lelism. Fig. 4 illustrates request latency under only two parallelism
configurations with fixed intra-op parallelism. Even for two paral-
lelisms on a machine with only 10 cores, there are many parallelism
configurations. The similar observation holds for GPU-based infras-
tructure, see Fig 5. For GPU, the search space is even larger due to
the wider range of configuration parameters (e.g., Batch Timeout
alone can have hundreds to thousands possible choices). In addition,
due to the indirect impact of configuration parameters in the GPU
case, it is very difficult to model or predict the behaviors. Worse still,
the optimal parallelism configuration is also very sensitive to the
load. In Fig. 4, even with a slight change in load, the latency distri-
bution (note the latency here is composed of both service time and
queuing waiting time) under different parallelism configurations
becomes quite different, which significantly increases the search
space and prohibits exhaustive search. Moreover, it is worth noting
that the high computation and memory needs of machine learning

models can result in complex interference behavior among parallel
computation [69, 70], which is less a problem in model training that
focuses on the overall throughput rather than the processing speed
of individual request. Such non-linear performance behavior of
different configurations brings significant challenges for profiling
and analytical modeling [36, 71].

In addition, modern machine learning models usually contain
thousands to tens of thousands of operations with complex depen-
dencies, which may result in the state-of-the-art modeling tech-
niques [69, 70] ineffective. Moreover, the workload and system en-
vironment in many machine learning applications are often highly
dynamic [16, 73], which requires the scheduling policy with an
agile adaptive ability, in order to meet the sensitive latency SLO
[23, 42]. In this case, traditional learning-based methods [36], re-
quiring a large training set and a long convergence time, can hardly
be applicable to machine learning model serving. Therefore, swift
deployment is required for most online serving systems, which can
learn the dynamics of the workload and system environment and
optimize the model performance in an online manner.

1.3 Summary of Main Contributions

In this paper, we propose a swift machine learning serving sched-
uling framework to solve the above challenges. The proposed frame-
work is driven by a lightweight region-based reinforcement learning
(RRL) approach that can efficiently identify the optimal configu-
ration under different workloads. Like previous studies [32, 45],
we formulate our problem as Markov Decision Process. The key
insight is that the system performances under different similar con-
figurations in a region can be accurately estimated by using the
system performance under one of these configurations, due to their
similarity (see Fig. 6). This key finding motivates us to develop RRL
that can speedup the learning process by orders of magnitude faster
than state-of-the-art deep reinforcement learning methods with
very limited training data. We theoretically show that this speedup
increases with the size of the region, which, however, would result
in a performance gap between the RRL and the optimal solution
due to the estimation error. Thanks to the unique structure of our
problem (see Fig. 6), we are able to choose a suitable size of the
region such that the learning speed can be significantly improved
with near optimal performance.

We prototype the proposed framework on top of the popular Ten-
sorflow Serving [44] machine learning serving system and support
both CPU and GPU based hardware infrastructure. We release the
source code for public access.1 We conduct extensive experimental
evaluations on both CPU and GPU clusters and the results show
that by continuously learning the new traffic patterns and updating
the scheduling policies, RRL can quickly adapt to the ever-changing
dynamics of workloads and system environments. Compared to the
state-of-the-art reinforcement learning methods, RRL can reduce
the average latency up to 79.0% on CPU-based infrastructure and up
to 69.3% on GPU-based infrastructure compared to state-of-the-art
approaches DeepRM[38] and CAPES[37]. In the SLO-aware sce-
nario, RRL can offer SLO guarantee even under strict targets and
provide up to 49.9% SLO violation reduction compared to CAPES
and up to 43.4% compared to DeepRM. In addition, the proposed

1https://github.com/SC-RRL/RRL
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framework does not have assumptions on workload or underlying
systems and thus can be used for most modern machine learning
systems and applications.

2 BACKGROUND AND RELATEDWORK

2.1 Machine Learning Serving

Machine learning has recently shown a great success on important
yet challenging artificial intelligence applications, such as vision,
speech, and natural language. How to efficiently deploy trained
machine learning models in serving (or sometimes called inference
or model serving) mode to provide low latency services has drawn
great attention in both academia and industry [18, 69, 70, 75]. Major
public cloud service providers like Google, Amazon, and Microsoft
all provide MLaaS to facilitate users to publish their models and
provide online services. Several machine learning serving systems
have been open-sourced recently [10, 18, 44], among which the
most widely used one is Tensorflow Serving [44]. In this paper, we
use Tensorflow Serving as a case study system to implement and
evaluate the proposed framework.

Hardware acceleration [14, 46] has been used to accelerate the
computation in machine learning serving by using customized hard-
ware such as GPUs, FPGAs, and ASICs. Software techniques such
as model compression and simplification [27] have also successfully
improved the latency of machine learning serving through reducing
computation time and storage space by trading off some accuracy.
In addition, recent work using compiler techniques [3] and accel-
eration library [1] have also shown good results in accelerating
machine learning serving. All the above techniques are comple-
mentary to our scheduling framework and can be combined with
our work to achieve better results as all of them use parallelization
techniques and have tuning parameters for optimal performance.
In addition, the proposed framework does not rely on any specific
models or underlying systems or hardware.

Another promising technique for reducing the latency of ma-
chine learning serving is parallelism as most operations in machine
learning models are vector-matrix multiplications or matrix-matrix
multiplications [13] that can be efficiently parallelized. Request par-
allelism, inter-op parallelism, and intra-op parallelism are the typical
ways to parallel computation on CPU in today’s machine learning
serving systems. On GPU, computation is parallelized through SMs
and scheduling partitions, though difficult to control through soft-
ware mechanisms, it can be indirectly adjusted through batching
parameters such as batch size, batch threads, and batch timeout. To
achieve efficient parallelism, it is critical to understand the behav-
ior of different configurations. As discussed in the introduction,
existing methods [7, 15, 30, 69, 70] either require domain specific
information and techniques to tune the parallelism configuration or
are applicable for special arrival process with homogeneous request
size in certain applications. To achieve a more general solution, we
aim to design a scheduling framework that can work with general
user traffic patterns and system environments on both CPUs and
GPUs based infrastructure.

2.2 Interactive Serving

Machine learning serving is not the first application utilizing paral-
lelism to reduce latency. Actually, parallelism has been widely used

in many online services for the similar purpose. Here we focus on
interactive serving systems that utilize parallelism to accelerate
processing or share resources among users’ requests. There is a line
of work in the literature studying adaptive resource allocation for
requests sharing the same server systems [25, 47]. However, they
consider only request level parallelism. Raman et al. develop an
API and runtime system for parallelism orchestration [47], but they
assume requests do not interfere with each other, which does not
hold for computation-intensive machine learning serving. Haque et
al. observe large variability on interactive services and propose in-
cremental parallelization approach to achieve optimal latency [25],
which is not suitable for machine learning serving workload due
to the large number of operations and complex dependencies. An-
other line of work [7, 15, 30] relies on domain knowledge of specific
applications and/or the special architecture of specific systems to
guide the optimization of parallel configurations. Dazhao et al. de-
sign an adaptive scheduling for Spark Streaming [15]. Jeon et al.

propose an analytical algorithm to compute the optimal parallelism
based on their characterization results of web search queries [30].
Alipourfard et al. build performance models using Bayesian Opti-
mization for cloud configuration with the focus of recurring big
data analytics [7]. None of these work investigates the unique char-
acteristics of machine learning workloads and tailor the parallelism
scheduling methodology accordingly.

2.3 Parameter Tuning using Reinforcement

Learning

Reinforcement learning [22, 56, 59, 68] was first proposed in 1940s
and has been widely used in different applications. Here we focus
on the application of system parameter tuning using reinforce-
ment learning. Mao et al. propose reinforcement learning based
resource management method for multi-resource cluster schedul-
ing problem [38]. Li et al. develop a reinforcement learning based
parameter tuning system for storage systems [37]. Both work use
traditional point-based reinforcement learning and suffer from slow
convergence and adaptivity. Mirhoseini et al. propose to optimize
Tensorflow operation placement between CPU and GPU using long
short-term memory (LSTM), which is applicable for only CPU-GPU
co-design architecture [41]. In this paper, we develop a new region-
based reinforcement learning based on the unique characteristics
of machine learning serving performance behavior to significantly
improve the convergence speed and the agility in dynamic environ-
ment.

2.4 Workload Scheduling

Many works have studied the job scheduling problem in HPC clus-
ter. Baskaran et al. [12] proposed a model based parameter tuning
method for applications across GPUs. Isaila et al. [29] proposed
a heuristic algorithm to schedule I/O parallel jobs in a decentral-
ized manner for filesystems. Krishnamoorthy et al. [34] proposed
a framework that can automatically optimize application memory
placement in parallel systems by block-sparse arrays. In the record-
breaking HPC cluster built by Sakagami et al. [53], the parallelism
is manually tuned. For ML-serving, different serving models, work-
loads, and system environments can lead to very different perfor-
mance characteristics. Thus the approaches of modeling, heuristic
and white-box tuning are infeasible for machine learning serving.
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3 RRL-BASED SCHEDULING FRAMEWORK

In this section, we present the RRL-based scheduling framework for
machine learning serving. The RRL-based scheduling framework
is designed to dynamically adjust the parallelism configuration of
machine learning serving systems based on dynamic system load,
in order to optimize system performance (e.g., response latency or
resource consumption). As illustrated in Fig. 4, system performance
varies under different parallelism configurations even for the same
load, and the relationship among the system performance, paral-
lelism configurations, and system load is challenging to capture in
a closed form. To tackle this challenge, the proposed framework
leverages a learning approach to find the optimal parallelism con-
figuration. Specifically, the proposed framework consists of three
main components: 1) profiler, 2) scheduler, and 3) region-based
reinforcement learning, as illustrated in Fig. 7. The profiler collects
various system characteristics, such as the current user traffic load
and the corresponding system performance (e.g., average latency or
resource consumption) under this load and the present parallelism
configuration. The scheduler then adjusts the parallelism configu-
ration for the measured load level based on the current scheduling
policy. At the same time, the region-based reinforcement learning
dynamically updates the scheduling policy based on the measured
system load and corresponding performance, in order to adapt to
the system dynamics.

1) Profiler. The profiler measures the system load (i.e., request
arrival rate) and the latency (also known as response time) of each
request. Latency is used to measure the system performance. Mean-
while, the profiler also collects hardware-related information (such
as CPU core number, CPU utilization, available GPUs, GPU utiliza-
tion, and network statistics). All these information can be used to
optimize the system performance for a specific scheduling objective.

2) Scheduler. The scheduler adjusts the parallelism configuration
based on the current system load, scheduling policies, and hardware
information such as the availability of resource.

3) Region-based reinforcement learning. As the core of the pro-
posed framework, the region-based reinforcement learning compo-
nent aims to find the optimal scheduling policy and quickly adjust
the scheduling policy to adapt to the system dynamics. Specifically,
the reward function in Fig. 7 first calculates the value of the system
objective function using the system performance measured by the
profiler, and then the learning component learns the scheduling
policy based on this observed reward. One key challenge is that the
learning process would be significantly long if the scheduling policy
is incrementally improved in a point-by-point learning manner. To
address this challenge, the proposed region-based reinforcement
learning can speedup this learning process by leveraging the key
feature of the system as illustrated in Fig. 6. It is observed that
the system performances under different similar configurations are
similar. Based on this feature, the system performance under one
configuration can be used to estimate the system performances
under other similar configurations, which would significantly re-
duce the number of samples needed to learn the optimal scheduling
policy. For example, if we choose the radius of the configuration
region equal to 2, then we can use a single observation to update all
configurations in this region and obtain a roughly 10 times faster

Figure 7: Overview of RRL-based scheduling framework.

convergence with limited performance loss due to the estimation
error. The detailed design is presented in Section 4.

4 REGION-BASED REINFORCEMENT

LEARNING

In this section, we propose a region-based reinforcement learning
(RRL) approach, in order to speedup the learning process of the
scheduling policy. Specifically, we first formulate the machine learn-
ing serving scheduling as a Markov Decision Process (MDP), and
then theoretically show that the RRL approach can achieve a near
optimal solution with fast convergence speed.

4.1 ML Serving Scheduling: A MDP View

The objectives of machine learning serving scheduling are 1) to
minimize response latency using a given amount of resources [31,
47] or 2) to minimize resource consumption while meeting latency
SLO. Both objectives are supported in our scheduling framework
[40, 77]. In the interest of space, we focus on the first objective of
minimizing response latency.

Let s S denote the overall load level (i.e., system state), where
S denotes the set of possible load levels. The parallelism configu-
ration (i.e., system action) c C is denoted as a tuple of request

parallelism cservice, inter-op parallelism c inter, and intra-op paral-

lelism c intra, i.e., c = cservice, c inter, c intra , where C denotes the
set of possible parallelism configurations. For machine learning
serving, latency can vary under different loads (system states) for
the same parallelism configuration [69], which is challenging to
characterize in a closed form. However, the average request latency
r s, c under the system state s and the parallelism configuration c
can be measured as reward. In this paper, we assume that the sched-
uler has no apriori knowledge of system state transitions, except
the Markov property (i.e., the state transition depends on only the
previous state)2. Under this model, the machine learning serving
scheduling is cast as aMarkov Decision Process, aiming to minimize

2Markov models are often used to model the workload dynamics, e.g., [45] verifies the
Markov property for different applications. In our application, the Markov property
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Figure 8: Point-based vs. region-based learning. The RRL approach can

more efficiently learn the latency under different configurations.

the expected cumulative discounted latency E
∑
t=0 γ

t rt st , ct ,
where γ 0, 1 is a discount factor and rt st , ct denotes the la-
tency observed at time t under system state st and parallelism
configuration ct .

At each time t , the scheduler chooses a parallelism configuration
based on a policy, defined as π : π s, c 0, 1 , where π s, c is
the probability that configuration c is used in state s . To find the
optimal policy, the Q-learning method can be applied. However,
the convergence of the Q-learning method is slow, especially when
the space of state-configuration pairs is large. One key reason for
this slow convergence is that it searches the space point by point
and incrementally improving the policy. Though many approaches
[11, 21, 63] have been proposed to improve the convergence speed,
they are still point-based learning essentially, and would not be
applicable to our problem with large state-configuration space as
shown in our experiments in Section 6.

4.2 RRL: From Point-based to Region-based

Learning

To speedup the learning process, we propose the RRL approach.
The key idea is that when observing the latency r s, c , we will esti-

mate the latency in a region with configurations close to c under this
state s , and then use the estimated latency in this region to learn the

policy, as illustrated in Fig. 8. Intuitively, this region-based learning
approach would significantly improve the learning speed if a large
region is used. However, the converged policy may deviate from the
optimal one, due to the potential estimation errors of the latency
associated with the region such that the larger the region is, the
larger the potential errors would be. Obviously, there is a trade-off
between the learning speed and the optimality of the policy, which
intimately depends on the size of the region and the latency esti-
mation scheme. When the region degenerates to a single point, the
RRL approach would degenerate to the traditional reinforcement
learning approaches. In this paper, Euclidean distance is used to
measure the distance between two configurations since both CPU
and GPU configurations are numeric, see Fig. 9. Note that other
similarity measures can also be applied in RRL.

Specifically, the RRL approach consists of two main components:
1) latency estimation based perception and 2) policy update.

4.2.1 Latency estimation based perception. Let Qt st , ct denote
the perception of the expected cumulative discounted latency under

is also satisfied. The experiments in Section 6 also corroborate the correctness of the
Markov model in our application.

Figure 9: An example of Euclidean distance between two configurations

c1 and c2, i.e.,
√

c service1 − c service2
2 + c inter1 − c inter2

2 + c intra1 − c intra2
2.

state st and configuration ct . Define the region around ct as C ct =
c c − ct δ ,∀c C , where δ 0 denotes the size of the
region. Using the observed latency rt st , ct , the latency under
other configurations in C ct can be estimated as

r̂t st , c = f c, rt st , ct ,∀c C ct , (1)

where f : C R
+

R
+ is the latency estimation function and

f ct , rt st , ct = rt st , ct . Based on (1), we update the perception
of the expected cumulative discounted latency in the region by

∀c C ct , Qt+1 st , c = 1 − αt Qt st , c + αt r̂t st , c
+γ min

c̃ C
Qt st+1, c̃ ,

(2)
where αt 0, 1 is the learning rate. As is standard, the learning
rate is assumed to satisfy

∑
t=1 αt = and

∑
t=1 α

2
t < . The

perceptions of other configurations (c � C ct ) will remain the
same, i.e., Qt+1 st , c = Qt st , c ,∀c � C ct .

4.2.2 Policy update. Based on the perceptions, we can use the
Boltzmann distribution [4] to update the policy for state st

πt st , c =
exp −βQt st ,c∑
ĉ C exp −βQt st , ĉ

,∀c C, (3)

where β 0 controls the exploration-exploitation trade-off. When
β is very small, the scheduler would explore the space randomly;
when β is large, the scheduler would tend to exploit the configura-
tion with the lowest perceived latency.

It is worth noting that the performance of the RRL approach
hinges on the accuracy of the latency estimation (1). In practice, it is
challenging to characterize f in a closed form, due to the stochastic
nature of the state and the latency. To tackle this challenge, we im-
plement this estimation function using neural network as discussed
in Section 5. The detailed description of the RRL approach is given
in Algorithm 1.

4.3 Performance Analysis of RRL

In this section, we will analyze the convergence rate and optimality
performance of the RRL approach. To facilitate the analysis, we
assume that the estimation error of the latency estimation (1) is
upper bounded by Δ 0 for all state-configuration pairs in the
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Algorithm 1 Region-based reinforcement learning

Initialization: Choose β , δ , and γ . Set t = 0 and Q0 s, c =
1• C , ∀c C, s S.
For each time slot t
1) Choose a configuration based on the current policy πt .
2) Update the perception based on (2).
3) Update the policy for the current state st based on (3).

space, i.e.,

r̂t st , c rt st , c Δ,∀c C ct , st S, (4)

where rt st , c denotes the real latency that can be observed if the
configuration c is chosen. In (4), Δ is intimately related to the size
of the region δ . In general, Δ increases with δ , and Δ becomes zero
when δ is zero.3 The main results are summarized in the following
theorem.

Theorem 4.1. The RRL approach can asymptotically converge

to a near optimal solution with probability one as t goes to infin-

ity. The performance gap is upper bounded by Δ
1 � . The asymp-

totic convergence rate is O 1• n� t
R 1 � if R 1 γ < 1•2 and

O
√
log log n� t • n� t otherwise, where n� denotes the number of

state-configuration pairs in the region with size δ and R denotes the

ratio of the minimum and maximum state-configuration selection

probabilities.

Proof. First, we introduce an auxiliary perception process Q̂t st , ct
as follows:

Q̂t+1 st , ct = 1 αt Q̂t st , ct + αt rt st , ct
+γ min

c̃ C
Qt st+1, c̃ ,

(5)

where Q̂t st , ct corresponds to the learning process using the real
latency instead of the estimation (1). Then, the performance results
of the RRL approach can be obtained by comparing Qt st , ct with

the optimal Q st , ct using Q̂t st , ct . The idea is to use triangle
inequality to decompose the comparison ofQt st , ct andQ st , ct
into two difference processes:

Qt st , ct Q st , ct Qt st , ct Q̂t st , ct
+ Q̂t st , ct Q st , ct .

(6)

Using stochastic-approximation techniques and prior convergence
results of traditional Q-learning [62], we can obtain the upper
bounds for each difference process in (6), which are summarized in
the following lemmas.

Lemma 4.2. For each time t , the di�erence process of Qt st , ct
and Q̂t st , ct satisfies Qt st , ct Q̂t st , ct

1
1 � Δ.

Proof. We show Qt st , ct Q̂t st , ct
1

1 � Δ by induction.

At t = 1, with assumption (4) for any s S and c C, we have

Q̂1 s, c Q1 s, c = α0r̂0 s, c α0r0 s, c

r̂0 s, c r0 s, c Δ = b1Δ,

where α0 1, and b1 = 1 is less than 1• 1 γ where γ 1.

3Note that Δ also highly depends on the accuracy of the estimation function. In this
paper, a neural network based estimation function is implemented, and the error bound
is shown to be small in our experiments.

Using induction, we assume that for a given t > 1,

Q̂t s, c Qt s, c btΔ

for any s S and c C holds, i.e., bt 1• 1 γ .
We aim to show that bt+1 1• 1 γ . At t + 1, we have

Q̂t+1 st , ct Qt+1 st , ct

= 1 αt Q̂t st , ct Qt st , ct + αt r̂t st , ct rt st , ct

+ γ min
c C

Q̂t st+1, c min
c C

Qt st+1, c

a
1 αt Q̂t s, c Qt s, c + αt r̂t s, c rt s, c

+ γ max
c C

Q̂t st+1, c Qt st+1, c

b
1 αt btΔ + αt Δ + γbtΔ

c
1

1

t
btΔ +

1

t
Δ + γbtΔ = bt+1Δ,

where (a) we apply triangle inequality and use the fact min Q̂t st+1, c
minQt st+1, c max Q̂t st+1, c Qt st+1, c . (b) We use the
assumption that Q̂t s, c Qt s, c btΔ for any s S and
c C. (c) After some algebra, we have the coefficient of αt equal to
Δ 1 bt 1 γ , which is positive as bt 1• 1 γ . Thus, it holds

for some αt
1
t that satisfies the conditions of the learning rate.

Therefore, we have a recurrence relation

bt+1 = 1
1

t
bt +

1

t
1 + γbt .

By some algebra, we have the following recurrence equation:

bt+1 = 1 +
γ 1

t
bt +

1

t
, b1 = 1. (7)

We can solve this recurrence equation and obtain the following
solution

bt+1 =
1

� t+�
� t+1 � �

1 γ
, (8)

where � in (8) denotes the gamma function. Note that the right
hand side of (8) is a non-decreasing function of t upper bounded
by 1

1 � , i.e.,

bt+1 =
1

� t+�
� t+1 � �

1 γ

1

1 γ
. (9)

Thus, we have

Q̂t s, c Qt s, c btΔ
1

1 γ
Δ, (10)

where 0 < γ < 1. This concludes the proof of Lemma 4.2. �

Lemma 4.3. For each time t , the di�erence process of Q̂t st , ct
and Q st , ct satisfies the following relations asymptotically with

probability one: Q̂t st , ct Q st , ct B• n� t
R 1 � ifR 1 γ <

1•2 and Q̂t st , ct Q st , ct B
√
log log n� t • n� t , otherwise,

where B > 0 is some constant.

Proof. The proof follows [57, 62] by generalizing the point-
based update to the region-based update. Specifically, n� is intro-
duced to denote the number of state-configuration pairs in the re-
gion for the region-based update, while n� = 1 for the point-based
update. The details are omitted due to the space limitation. �
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As t goes to infinity, the difference process of Q̂t st , ct and
Q st , ct converges to zero asymptotically with probability one
based on Lemma 4.3. Therefore, the performance gap is determined
by Lemma 4.2. The convergence rate can be obtained from Lemma
4.3. This concludes the proof of Theorem 4.1. �

Remarks: Theorem 4.1 confirms our intuition that the RRL ap-
proach can accelerate the convergence speed of the reinforcement
learning such that the larger n� (i.e., the larger δ ), the faster the
RRL converges. However, the fast convergence speed is at the cost

of performance loss, i.e., there would be a gap Δ
1 � between the

RRL and the optimal solution. When δ = 0, we have n� = 1 and
Δ = 0, and the results of Theorem 4.1 degenerates to the results for
the traditional point-based reinforcement learning [62]. Thanks to
the unique structure of our problem (see Fig. 6), we are able to choose

a suitable size of the region such that the convergence speed can be

significantly improved with near optimal performance (see Section

6). Note that the proof of Lemma 4.3 generalizes the proof of [62]
by not only using the region-based update but also relaxing the
learning rate conditions in [62] by following [57], in order to avoid
sub-optimal solutions in the original proof of [62].

5 IMPLEMENTATION

In this section, we discuss how we implement the proposed ap-
proach in machine learning serving systems, focusing on the design
of neural network based estimation function and the Tensorflow
Serving integration of the proposed framework.

5.1 Neural Network based Estimation Function

As discussed in Section 4, it is challenging to characterize the esti-
mation function in a closed form. Neural network based approaches
have shown great potentials in many applications [54, 55]. In this
paper, we propose a neural network based estimation function. One
key challenge is how to find a suitable neural network structure
for the estimation function (1) to support swift machine learn-
ing serving scheduling. If a simple network structure is used, it
may not effectively capture the structure of the underlying state-
configuration space, which may lead to high estimation error; if a
complicated network structure is used, it may take a long training
time, which is not suitable for online serving systems.

To strike a balance between complexity and efficiency, we use an
evolutionary algorithm NEAT [58] to guide the design of network
structure. The network we designed has two hidden layers (one
with 256 neurons and the other with 64 neurons) using ReLu[43]
as activation function and one output layer with linear activation,
after experimenting different network structures. In this paper, the
network parameters are optimized using Follow-the-regularized-
Leader (FTRL)[6] optimizer instead of the Adam method or other
popular optimizers [33, 72]. This is because the number of train-
ing samples in our problem is far less than the number of state-
configuration pairs in the space when doing online tuning, and
thus FTRL performs very well here. Moreover, FTRL is insensitive
to model parameters. Our experiments in Tensorflow Serving show
that FTRL performs well even where there is limited training data.
(see Section 6).

5.2 Tensor� ow Serving Integration

We integrate the proposed scheduling framework into Tensorflow
Serving [44], a popular production-ready machine learning serving
system. While we do a case study with Tensorflow serving, nothing
prevents the proposed work being integrated with other machine
learning serving systems as we do not use anything Tensorflow
specific features. In the interest of space, we only briefly highlight
our main implementation design.
Pro� ler: Though TensorBoard [2] offers sophisticated visualization
and logging capabilities for training machine learning models using
Tensorflow, it provides no support for Tensorflow Serving. There-
fore, we implement a lightweight profiler that can continuously
monitor the workload and track request latency by instrumenting
the DirectSession and gRPCmodules and implementing the dispatch
queue as discussed next. In this way, the overall execution time is
split into waiting time, service time, and network delay. For GPU
monitoring, we also use NVIDIA System Management Interface
(NVIDIA-SMI) running as daemon to profile real-time GPU perfor-
mance information such as utilization. We collect request arrival
rate, real-time request latency and system resource utilization from
Tensorflow Serving. Since our framework is designed to be light-
weight and portable, we do not use hardware level integration.
Rather we rely on the metrics reported by third party software
such as Tensorflow Serving and NVIDIA-SMI. Their reported met-
rics may have error yet the nature of reinforcement learning and
the reward estimation of RRL enables our framework to be error-
tolerant, which is validated by the evaluation results in Section 6.
The metrics are reported by Profiler in real-time, so it serves as a
performance monitor for Scheduler to identify network congestion
and single-point failure in the cluster.
Scheduler: Tensorflow Serving does not support request level par-
allelism, so we implement a flexible dispatch queue that supports
plugin scheduling policies (e.g., users can specify scheduling ob-
jective such as minimizing latency, achieving SLO while minimiz-
ing resources). The dispatch queue follows the scheduling policies
from the RRL module and assigns requests to the target node with
pre-computed inter-op and intra-op parallelism. Current implemen-
tation of Tensorflow serving sets inter-op according to intra-op
parallelism. Thus we modify ModelServer to enable fine grained
control of inter-op and intra-op parallelism. The Scheduler is failure-
aware to reduce the risk of breaking SLO due to node failures.
RRL: We implement the RRL as a module that takes inputs of the
monitoring information from Profiler to compute and update sched-
uling policies and feed to the Scheduler. The RRL module allows
asynchronous neural network training to put little extra overhead
to the serving system. The neural network is trained with all previ-
ous seen samples until hitting either the training step or training
loss threshold.

6 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experimental evaluation to
verify the effectiveness and robustness of the proposed RRL-based
scheduling framework using a rich selection of state-of-the-art
machine learning applications on both CPU and GPU based infras-
tructure. We first evaluate the sensitivity of RRL in convergence
speed by adjusting the region size. Then we compare RRL with the
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Figure 10: The number of tasks and the distribution of request duration

of service workloads measured on CPU infrastructure.

latest reinforcement learning approaches in the following aspects:
(i) effectiveness in terms of minimizing latency; (ii) robustness in
dynamic workload; (iii) strict SLO guarantee; (iv) effectiveness of
meeting SLO while minimizing resource usage.

6.1 Experimental Setup

Machine Learning Serving System: We prototype RRL based
scheduling framework and integrate it in Tensorflow Serving, refer
to Section 5.2 for more details.
Service Workloads: We use three popular machine learning ap-
plications for evaluation:

Inception V3 [61]: popular deep convolutional neural network
based image classification model classifies 256x256 color images
in 1,000 categories with 48 layers and tens of millions parameters.
Serving requests are from ImageNet 22K dataset [52] with homoge-
neous sizes.

Inception ResNet V2 [60]: advanced deep convolutional neural
network based image classificationmodel with the aid of ResNet[26]
that allows network with depth of 162 layers and hundreds of
millions of parameters. Serving requests are from ImageNet 22K
dataset [52] with homogeneous sizes.

Deep Speech V2 [8]: popular deep recurrent neural network
based speech to text model with 11 layers. Serving requests samples
are from TeD talk dataset [51] and with heterogeneous sizes.

Inception, ResNet, and Deepspeech are representative models for
Convolutional Neural Networks, Residual Neural Network, and Re-
current Neural Network, covering popular ML-serving application
domains such as computer vision and natural language processing.
The number of tasks and the request duration of servive workloads
are illustrated in Fig. 10, where the request duration of Inception
and ResNet are homogeneous while Deepspeech is heterogenous.
Arrival Process: We use two non-exponential arrival processes
for evaluation:

WiKi: given there is no public available ML serving trace, we
opt for traces of user traffic visiting Wikipedia website [66] with
unpredictable load spikes.

Dynamic: a synthetic dynamic arrival process composed of
periods of Poison process with randomly changing average, which
has more pronounced changes from one period to the next.

Figure 11: Sensitivity analysis of RRL in terms of the convergence time

in iteration (left y-axis) and the prediction error (right y-axis) as a function

of region size using Inception and DeepSpeech.

Hardware:We use a cluster of 10 identical servers. Each of them
is equipped with dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz and four NVIDIA GeForce GTX 1080 Ti GPUs, 64 GB of
memory, and connected through Infiniband. One sever is acting as
client, one server is used as dispatch queue, and the rest are request
processing severs.
Baseline Approaches: Since there is no alternative intelligent
scheduling framework for a direct comparison, we opt to imple-
ment the state-of-the-art reinforcement learning approaches for
tuning parallelism configuration in our scheduling framework:
DeepRM [38] and CAPES [37], as they are the closest approaches
for online ML-serving scheduling. CAPES is a general-purpose
parameter tuning algorithm and DeepRM is a job scheduling algo-
rithm designed to work under limited resources. Both DeepRM and
CAPES are open-sourced, so we use their codes published at github
and set parameters according their papers [37, 38]. Specifically, in
the structure level, DeepRM uses one hidden layer of 20 neurons
and CAPES uses 2 hidden layers of 200 neurons. Both of them are
trained with RMSProp [65] with the learning rate of 0.001 according
to their original design. For fair comparison, we feed the profiling
metrics (e.g., latency and resource utilization) provided by Profiler
into the reward function and use both the profiling metrics and
rewards as the input parameters of DeepRM and CAPES to com-
pute the corresponding output parameters, which are interpreted
by the Scheduler afterwards. We assign a dedicated server to do
the reinforcement learning tasks so that the learning tasks are not
interfered with the inference tasks. Our evaluation results suggest
that our deployment of both DeepRM and CAPES is consistent with
their paper and could identify reasonably good configurations, see
Fig. 12.
SLO setting:As our testbed is not production level, we set relatively
loose SLOs in our evaluation, i.e., a range between 1800ms and
3200ms to emulate different latency requirements for ML serving
in production environments, which is consistent with previous
studies [69, 70, 74].

6.2 Convergence Speed Analysis of RRL

The key tuning parameter in RRL is the region size as it controls
the trade-off between convergence speed and accuracy. We per-
form sensitivity analysis of RRL to verify the theoretical results
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Figure 12: Comparisons of RRL with CAPES and DeepRM under different

arrival processes and service workloads. The first column (a)(b)(c) shows

the first scheduling objective of minimizing latency using WiKi as arrival

process for Inception and DeepSpeech; the second column (d)(e)(f) also

shows the scheduling objective of minimizing latency but under dynamic

arrival process for Inception and DeepSpeech.

in Theorem 4.1 using Inception, as illustrated in Fig. 11. The re-
sults show the convergence time measured in iteration (left y-axis)
and distance from optimal Q-learning function (right y-axis) as a
function of the region size. It is clear that convergence time drops
very quickly when the region size increases while the accuracy
moves away from optimal in a much slower speed. For example,
when the region size is one, RRL converges five times faster than
Q-learning, which verifies the potential of the region based method-
ology. When region size is zero, RRL degenerates to point-based
learning, which has the same accuracy and the longest convergence
time as Q learning. The region size can be adjusted according to
user’s performance and convergence time needs. The experimen-
tal results show that RRL converge to near optimal performance
8 times faster than state-of-the-art approaches DeepRM[38] and
CAPES[37].

6.3 E� ectiveness of Minimizing Serving

Latency

In this section, we compare the effectiveness of minimizing serving
latency between RRL and the two baseline Deep Reinforcement
Learning approaches: DeepRM[38] and CAPES[37] on both CPU
and GPU based infrastructure. It is worth noting that given our
testbed is not enterprise scale nor equipped with latest hardware,

Figure 13: Comparisons of RRL with CAPES and DeepRM under dif-

ferent arrival processes and service workloads. The first column (a)(b)(c)

shows the first scheduling objective of minimizing latency using WiKi as

arrival process for Inception on GPU; the second column (d)(e)(f) also shows

the scheduling objective of minimizing latency but under dynamic arrival

process for Inception on GPU.

the latency is relatively high due to high queuingwaiting time. How-
ever, the purpose here is to show the relative performance compar-
ison between different scheduling methods rather than achieving
record-breaking performance measure.
CPU Cluster. We show latency results of Inception and Deep-
Speech running on CPU cluster in Fig. 12(b) and Fig. 12(c), respec-
tively. Both experiments use WiKi trace to drive the arrival process,
which is demonstrated in Fig. 12(a). The WiKi workload demon-
strates random traffic pattern with a relatively steady average inter-
arrival rate over time. The results verify that RRL converges much
faster than the baseline approaches, i.e., RRL converges to a near op-
timal performance in less than 200 minutes, while DeepRM roughly
converges around 1700 minutes with variance and CAPES could
not converge even after 2000 minutes. The results also show that
RRL is able to achieve better latency performance compared to
deep reinforcement learning based approaches, thanks to the swift
learning capabilities. More specifically, the average latency of RRL
improves from CAPES by 79.0% and DeepRM by 51.7% for Deep-
Speech and improves from CAPES and DeepRM by 50.6% and 52.9%
respectively for Inception.
GPU Cluster. As explained in earlier sections, the parallelism on
GPU is controlled by the hardware scheduler and difficult to be
adjusted through software approaches. Here we control the paral-
lelism using an indirect approach by tuning the batching parameters
(parallel batch threads, batch size, and batch timeout). Similar as
CPU case, we use WiKi workload and CAPES and DeepRM as base-
lines and report the results in Fig. 13. It is clear that the variance in
latency is higher compared to the CPU results, which is caused by
the indirect control mechanism as the interaction between batching
and hardware scheduler is more complex. Despite of the challenge
of more complex interactions, RRL still converges quickly and out-
performs CAPES and DeepRM in latency. Specifically, RRL performs
30.3% better than DeepRM and 47.1% than CAPES.



Swift Machine Learning Model Serving Scheduling:

A Region Based Reinforcement Learning Approach SC ’19, November 17–22, 2019, Denver, CO, USA

6.4 Robustness under Dynamic Workload

Workload can change dynamically over time in practice, so it is
important to have swift adaptivity. In this section, we evaluate the
robustness of the proposed scheduling framework in terms of the
ability to quickly adapt to the workload change. We use a synthetic
dynamic arrival process for evaluation, as shown in Fig. 12(d), the
arrival change is more pronounced than the WiKi arrival process,
which emulates the change of user traffic patterns over time.
CPUCluster. The latency results on CPU cluster for Inception and
DeepSpeech are shown in Fig. 12(e) and Fig. 12(f), respectively. The
results suggest that RRL can adapt to the user traffic change very
quickly. Thanks to the region-based learning approach, the number
of samples that RRL needs for updating scheduling policy is far less
than point-based approaches, which leads to a much shorter adapt-
ing time compared to CAPES and DeepRM. The latency results
also show that RRL has a more stable latency performance com-
pared to deep reinforcement learning based approaches. In contrast,
DeepRM takes a much longer time to update scheduling polices and
CAPES shows significant variation due to its slow learning process.
On average, RRL reduces the latency of DeepSpeech by 69.3% and
49.2% compared to CAPES and DeepRM respectively, and 58.1% and
45.8% for Inception respectively.
GPU Cluster. We also evaluate the dynamic workload on GPU-
based infrastructure. Due to the complex interactions, a side effect
brought by indirect control, the adapt speed is slower than CPU case.
However, even in this challenging scenario, RRL still consistently
outperforms CAPES and DeepRM by 38.0% and 69.1% on average
respectively.

6.5 Meeting Strict SLO

We evaluate our approach under the scenario of meeting strict
SLO target, i.e., 95th percentile latency SLO of 550ms for CPU and
520ms for GPU. 4 Fig. 14 (note the logscale in both axes) demon-
strates that the CCDF latency comparison of RRL with CAPES and
DeepRM using CPU cluster and GPU cluster, respectively. Overall,
RRL achieves a much shorter tail latency compared to CAPES and
DeepRM. From the tail comparison, it is clear that RRL can provide
strict SLO guarantee and achieve up to 49.9% SLO violation reduc-
tion compared to CAPES and up to 43.4% compared to DeepRM,
thanks to its SLO-aware design.

6.6 Meeting SLO With Minimum Resources

Another common scheduling objective is meeting relatively loose
SLO while minimizing the resource usage (e.g., cloud environment
or shared cluster), which is also supported by our scheduling frame-
work. Fig. 15 provide a case study of this scheduling objective using
DeepSpeech, ResNet, and Inception under dynamic workload on
CPU and GPU infrastructure, respectively.
CPU Cluster. The latency of DeepSpeech over the time running
on CPU cluster using different scheduling methods is present in
Fig. 15(b), where both CAPES and DeepRM perform poorly on
achieving the SLO target. CAPES spent around 200 minutes before
finding a scheduling policy that can achieve the SLO but at the

4It is worth to emphasize again that the relative high latency is because our testbed is
not enterprise scale nor equipped with latest hardware, so both the processing time
and the queuing waiting time is relatively high.

Figure 14: Comparisons of RRL with CAPES and DeepRM under strict

SLO (95th percentile latency of 550ms for CPU and 520ms for GPU).

expense of high CPU utilization whereas DeepRM violates the
SLO whenever the workload has significant changes. RRL on the
contrast always guarantees the SLO, even during abrupt workload
changes. Another comparison is on resource utilization, which
is very important for consolidating resources and achieve cost
efficient serving. We report the CPU utilization at Fig. 15(c), where
RRL consistently consumes much less CPU resource than both
CAPES and DeepRM and provides great potential for workload
consolidation and/or cost saving, which is especially important for
serving machine learning models in cloud environment. Similar
observations holds for the ResNet results in Fig. 15(e)(f), where
all three methods achieve SLO in a short time, but RRL uses only
one fourth CPU resources compared to the deep reinforcement
learning abased methods. On average, the average CPU resources
saved by RRL for DeepSpeech is 13.4% compared to CAPES and
8.5% compared to DeepRM. For ResNet, the resource saving is even
more significant: RRL on average saved 52.9% from CAPES and
46.8% from DeepRM.
GPU Cluster.We show the GPU results in Fig. 15(h)(i), where RRL
keeps a stable latency right under SLO and only uses half GPU
resources compared with CAPES and DeepRM. On average, RRL
saved 10.6% GPU resources compared with CAPES and 12.9% GPU
resources from DeepRM. Considering the high cost of GPU, such
saving is not trivial.

6.7 Discussion

Evaluation results show that RRL outperforms the standard deep
reinforcement learning methods in both speed and accuracy, in
spite of the estimation error in RRL, when environment/workload
changes quickly. RRL uses the unique characteristics of ML-serving
to accelerate the learning process: when parallelism changes, the la-
tency is quite versatile globally while smooth locally. Othermethods
do not have such insights. When environment/workload changes,
RRLmay have already converged to a near optimal solution, whereas
other methods may be still far away. Therefore, in online systems,
RRL outperforms the standard deep reinforcement learning meth-
ods in both speed and accuracy.

7 CONCLUSION AND FUTUREWORK

In this paper, we proposed a RRL-based scheduling framework for
machine learning serving that can efficiently identify the optimal
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Figure 15: Comparisons of RRL with CAPES and DeepRM when achieving SLO while optimizing resource usage (i.e., CPU and GPU utilization) under

dynamic arrival processes and service workloads. (a)-(f) shows the scheduling objective of minimizing CPU utilization with respect to given SLOs for model

DeepSpeech and ResNet under dynamic workloads. (g)(h)(i) shows the second scheduling objective of achieving SLO while minimizing GPU usage with

Inception under dynamic arrival process. The SLOs for DeepSpeech, ResNet and Inception are 2400ms, 3200ms, and 1850ms, respectively.

configuration under dynamic workloads. A key observation is that
the system performance under similar configurations in a region
can be accurately estimated by using the system performance un-
der one of these configurations, due to their correlation, based on
which we developed the RRL approach. We theoretically showed
that the RRL approach can achieve a near optimal solution with fast
convergence speed. The proposed framework is prototyped and
evaluated on Tensorflow serving system and can be easily extended
to other machine learning serving systems. Extensive experimental
evaluation on both CPU cluster and GPU cluster show that RRL
can quickly adapt to the dynamics of workloads and system envi-
ronments. Compared to the state-of-the-art Deep Reinforcement
Learning based methods (DeepRM and CAPES), the proposed sched-
uling framework can reduce the average latency by up to 79.0% on
CPU cluster and 69.3% on GPU cluster. In the SLO-aware scenario,
RRL reduces up to 49.9% SLO violation under strict SLO require-
ment while reducing the resource usage by up to 52.9% on CPU

and 12.9% on GPU in loose SLO scenario. In addition, the proposed
solution does not have assumptions on workload or underlying
systems and thus can be used for most modern machine learning
systems and applications.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran Tensorflow Serving 1.5.0 on a cluster of 10 identical servers.
For CPU experiments, the Tensorflow Serving is compiled without
CUDA. For GPU experiments, Tensorflow Serving is compiled with
CUDA 9.0 so that it will utilize both CPU and GPU. Each of our
server is equipped with dual-sockets Intel(R) Xeon(R) CPU E5-2630
v4 @2.20GHz and four NVIDIA GeForce GTX 1080 Ti GPUs, 64
GB of memory, and connected through Infiniband. One sever is
acting as client, one server is used as dispatch queue, and the rest
are request processing severs.

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-
facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

RRL: https://github.com/SC-RRL/RRL
Tensorflow Serving:

https://github.com/tensorflow/serving/tree/r1.5↪→

DeepRM: https://github.com/hongzimao/deeprm
CAPES: https://github.com/mlogic/capes-oss

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Each of our server is equipped with
dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz and four
NVIDIA GeForce GTX 1080 Ti GPUs, 64 GB of memory, and con-
nected through Infiniband.

Operating systems and versions: Ubuntu 16.04

Applications and versions: Tensorflow Serving 1.5.0

Libraries and versions: CUDA 9.0

Key algorithms: Subspace based reinforcement learning algo-
rithm and machine learning model serving scheduling framework

Input datasets and versions: ImageNet

Paper Modifications: Tensorflow Serving: we performed instru-
mentations to Tensorflow Serving to support measuring runtime
performance data to collect necessary measurements used in our al-
gorithms. We release the code in RRL github. DeepRM: We changed
its input and output size to make it compatible with Tensorflow

Serving. CAPES: We changed the input and output size of its DQL-
Daemon to make it compatible with Tensorflow Serving.

Output from scripts that gathers execution environment informa-

tion.

+ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 16.04.5 LTS
Release: 16.04
Codename: xenial
+ uname -a
Linux node06 4.4.0-143-generic #169-Ubuntu SMP Thu Feb

7 07:56:38 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 2
Core(s) per socket: 10
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) CPU E5-2630 v4

@ 2.20GHz↪→

Stepping: 1
CPU MHz: 1200.289
CPU max MHz: 3100.0000
CPU min MHz: 1200.0000
BogoMIPS: 4401.65
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 25600K
NUMA node0 CPU(s): 0-9,20-29
NUMA node1 CPU(s): 10-19,30-39
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Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc aperfmperf
pni pclmulqdq dtes64 monitor ds_cpl vmx smx est
tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
xsave avx f16c rdrand lahf_lm abm 3dnowprefetch
epb invpcid_single intel_pt ssbd ibrs ibpb stibp
kaiser tpr_shadow vnmi flexpriority ept vpid
fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms
invpcid rtm cqm rdseed adx smap xsaveopt cqm_llc
cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm
ida arat pln pts flush_l1d

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 65858696 kB
MemFree: 17758376 kB
MemAvailable: 64448196 kB
Buffers: 220056 kB
Cached: 46276540 kB
SwapCached: 352 kB
Active: 21514572 kB
Inactive: 25021620 kB
Active(anon): 31704 kB
Inactive(anon): 28652 kB
Active(file): 21482868 kB
Inactive(file): 24992968 kB
Unevictable: 3652 kB
Mlocked: 3652 kB
SwapTotal: 66994172 kB
SwapFree: 66993468 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 43060 kB
Mapped: 37404 kB
Shmem: 18336 kB
Slab: 851984 kB
SReclaimable: 711056 kB
SUnreclaim: 140928 kB
KernelStack: 8496 kB
PageTables: 5420 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 99923520 kB
Committed_AS: 241368 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0

HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 11863352 kB
DirectMap2M: 55132160 kB
DirectMap1G: 2097152 kB
+ inxi -F -c0
System: Host: node06 Kernel: 4.4.0-143-generic

x86_64 (64 bit)↪→

Console: tty 2 Distro: Ubuntu 16.04 xenial
Machine: System: Supermicro product: SYS-1028GQ-TRT

v: 123456789↪→

Mobo: Supermicro model: X10DGQ v: 1.00
Bios: American Megatrends v: 2.0b date:

05/16/2017↪→

CPU(s): 2 Deca core Intel Xeon E5-2630 v4s

(-HT-MCP-SMP-) cache: 51200 KB↪→

clock speeds: max: 3100 MHz 1: 1228 MHz 2:

1274 MHz 3: 1228 MHz↪→

4: 1200 MHz 5: 1247 MHz 6: 1242 MHz 7: 1459

MHz 8: 1200 MHz↪→

9: 1326 MHz 10: 1285 MHz 11: 1200 MHz 12:

1200 MHz 13: 1200 MHz↪→

14: 1290 MHz 15: 1269 MHz 16: 1214 MHz 17:

1200 MHz 18: 1276 MHz↪→

19: 1200 MHz 20: 1235 MHz 21: 1316 MHz 22:

1279 MHz 23: 1221 MHz↪→

24: 1247 MHz 25: 1200 MHz 26: 1229 MHz 27:

1300 MHz 28: 1200 MHz↪→

29: 1261 MHz 30: 1203 MHz 31: 1263 MHz 32:

1200 MHz 33: 1225 MHz↪→

34: 1294 MHz 35: 1282 MHz 36: 1315 MHz 37:

1284 MHz 38: 1270 MHz↪→

39: 1263 MHz 40: 1200 MHz
Graphics: Card-1: NVIDIA Device 1b06

Card-2: NVIDIA Device 1b06
Card-3: ASPEED ASPEED Graphics Family
Card-4: NVIDIA Device 1b06
Card-5: NVIDIA Device 1b06
Display Server: N/A driver: N/A
tty size: 94x48 Advanced Data: N/A out of X

Audio: Card 4x NVIDIA Device 10ef
driver: snd_hda_intelsnd_hda_intelsnd_hda_ �

intelsnd_hda_intel↪→

Sound: Advanced Linux Sound Architecture v:

k4.4.0-143-generic↪→

Network: Card-1: Intel Ethernet Controller

10-Gigabit X540-AT2 driver: ixgbe↪→

IF: enp4s0f0 state: up speed: 1000 Mbps

duplex: full↪→

mac: ac:1f:6b:05:72:52
Card-2: Intel Ethernet Controller

10-Gigabit X540-AT2 driver: ixgbe↪→

IF: enp4s0f1 state: up speed: 10000 Mbps

duplex: full↪→

mac: ac:1f:6b:05:72:53
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Card-3: Mellanox MT27520 Family [ConnectX-3

Pro] driver: mlx4_core↪→

IF: ib0 state: up speed: N/A duplex: N/A
mac: 80:00:02:08:fe:80:00:00:00:00:00:00:2 �

4:8a:07:03:00:c3:f1:31↪→

Drives: HDD Total Size: 2920.6GB (7.9% used)
ID-1: /dev/sdb model: Micron_5100_MTFD

size: 1920.4GB↪→

ID-2: /dev/sda model: ST1000NX0313 size:

1000.2GB↪→

ID-1: / size: 6.5T used: 136G (3%) fs: nfs4

remote: stor:/schroot/↪→

ID-2: /tmp size: 1.7T used: 155G (10%) fs:

ext4 dev: /dev/dm-0↪→

ID-3: swap-1 size: 68.60GB used: 0.00GB

(0%) fs: swap dev: /dev/dm-1↪→

RAID: No RAID devices: /proc/mdstat, md_mod

kernel module present↪→

Sensors: System Temperatures: cpu: 32.0C mobo: N/A
Fan Speeds (in rpm): cpu: N/A

Info: Processes: 486 Uptime: 22 days Memory:

1593.0/64315.1MB↪→

Init: systemd Client: Shell (bash) inxi:

2.2.35↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE

MOUNTPOINT↪→

sda 8:0 0 931.5G 0 disk
sdb 8:16 0 1.8T 0 disk

sdb1 8:17 0 487M 0 part

sdb2 8:18 0 1K 0 part

sdb5 8:21 0 1.8T 0 part

gnode04--vg-root 252:0 0 1.7T 0 lvm /data

gnode04--vg-swap_1 252:1 0 63.9G 0 lvm [SWAP]
loop0 7:0 0 0 loop
loop1 7:1 0 0 loop
loop2 7:2 0 0 loop
loop3 7:3 0 0 loop
loop4 7:4 0 0 loop
loop5 7:5 0 0 loop
loop6 7:6 0 0 loop
loop7 7:7 0 0 loop
+ lsscsi -s
[4:0:0:0] disk ATA ST1000NX0313 SN02

/dev/sda 1.00TB↪→

[5:0:0:0] disk ATA Micron_5100_MTFD U027

/dev/sdb 1.92TB↪→

+ nvidia-smi
Tue Apr 9 22:11:08 2019
+--------------------------------------------------- �

--------------------------+↪→

| NVIDIA-SMI 418.39 Driver Version: 418.39

CUDA Version: 10.1 |↪→

|-------------------------------+------------------- �

---+----------------------+↪→

| GPU Name Persistence-M| Bus-Id Disp.A

| Volatile Uncorr. ECC |↪→

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage

| GPU-Util Compute M. |↪→

|===============================+=================== �

===+======================|↪→

| 0 GeForce GTX 108... Off | 00000000:02:00.0 Off

| N/A |↪→

| 18% 31C P0 60W / 250W | 0MiB / 11178MiB

| 0% Default |↪→

+-------------------------------+------------------- �

---+----------------------+↪→

| 1 GeForce GTX 108... Off | 00000000:03:00.0 Off

| N/A |↪→

| 19% 26C P0 59W / 250W | 0MiB / 11178MiB

| 0% Default |↪→

+-------------------------------+------------------- �

---+----------------------+↪→

| 2 GeForce GTX 108... Off | 00000000:82:00.0 Off

| N/A |↪→

| 17% 28C P0 58W / 250W | 0MiB / 11178MiB

| 0% Default |↪→

+-------------------------------+------------------- �

---+----------------------+↪→

| 3 GeForce GTX 108... Off | 00000000:83:00.0 Off

| N/A |↪→

| 19% 27C P0 59W / 250W | 0MiB / 11178MiB

| 0% Default |↪→

+-------------------------------+------------------- �

---+----------------------+↪→

+--------------------------------------------------- �

--------------------------+↪→

| Processes:

GPU Memory |↪→

| GPU PID Type Process name

Usage |↪→

|=================================================== �

==========================|↪→

| No running processes found

|↪→

+--------------------------------------------------- �

--------------------------+↪→

+ cat
+ lshw -short -quiet -sanitize
bash: lshw: command not found
+ lspci
00:00.0 Host bridge: Intel Corporation Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D DMI2 (rev 01)↪→
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00:01.0 PCI bridge: Intel Corporation Xeon E7 v4/Xeon
E5 v4/Xeon E3 v4/Xeon D PCI Express Root Port 1
(rev 01)

↪→

↪→

00:02.0 PCI bridge: Intel Corporation Xeon E7 v4/Xeon
E5 v4/Xeon E3 v4/Xeon D PCI Express Root Port 2
(rev 01)

↪→

↪→

00:03.0 PCI bridge: Intel Corporation Xeon E7 v4/Xeon
E5 v4/Xeon E3 v4/Xeon D PCI Express Root Port 3
(rev 01)

↪→

↪→

00:04.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 0 (rev 01)

↪→

↪→

00:04.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 1 (rev 01)

↪→

↪→

00:04.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 2 (rev 01)

↪→

↪→

00:04.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 3 (rev 01)

↪→

↪→

00:04.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 4 (rev 01)

↪→

↪→

00:04.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 5 (rev 01)

↪→

↪→

00:04.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 6 (rev 01)

↪→

↪→

00:04.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 7 (rev 01)

↪→

↪→

00:05.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D
Map/VTd_Misc/System Management (rev 01)

↪→

↪→

00:05.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO Hot Plug (rev
01)

↪→

↪→

00:05.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO RAS/Control
Status/Global Errors (rev 01)

↪→

↪→

00:05.4 PIC: Intel Corporation Xeon E7 v4/Xeon E5

v4/Xeon E3 v4/Xeon D I/O APIC (rev 01)↪→

00:11.0 Unassigned class [ff00]: Intel Corporation

C610/X99 series chipset SPSR (rev 05)↪→

00:11.4 SATA controller: Intel Corporation C610/X99
series chipset sSATA Controller [AHCI mode] (rev
05)

↪→

↪→

00:14.0 USB controller: Intel Corporation C610/X99

series chipset USB xHCI Host Controller (rev 05)↪→

00:16.0 Communication controller: Intel Corporation

C610/X99 series chipset MEI Controller #1 (rev 05)↪→

00:16.1 Communication controller: Intel Corporation

C610/X99 series chipset MEI Controller #2 (rev 05)↪→

00:1a.0 USB controller: Intel Corporation C610/X99
series chipset USB Enhanced Host Controller #2
(rev 05)

↪→

↪→

00:1c.0 PCI bridge: Intel Corporation C610/X99 series

chipset PCI Express Root Port #1 (rev d5)↪→

00:1c.4 PCI bridge: Intel Corporation C610/X99 series

chipset PCI Express Root Port #5 (rev d5)↪→

00:1d.0 USB controller: Intel Corporation C610/X99
series chipset USB Enhanced Host Controller #1
(rev 05)

↪→

↪→

00:1f.0 ISA bridge: Intel Corporation C610/X99 series

chipset LPC Controller (rev 05)↪→

00:1f.2 SATA controller: Intel Corporation C610/X99
series chipset 6-Port SATA Controller [AHCI mode]
(rev 05)

↪→

↪→

00:1f.3 SMBus: Intel Corporation C610/X99 series

chipset SMBus Controller (rev 05)↪→

02:00.0 VGA compatible controller: NVIDIA Corporation

Device 1b06 (rev a1)↪→

02:00.1 Audio device: NVIDIA Corporation Device 10ef

(rev a1)↪→

03:00.0 VGA compatible controller: NVIDIA Corporation

Device 1b06 (rev a1)↪→

03:00.1 Audio device: NVIDIA Corporation Device 10ef

(rev a1)↪→

04:00.0 Ethernet controller: Intel Corporation

Ethernet Controller 10-Gigabit X540-AT2 (rev 01)↪→

04:00.1 Ethernet controller: Intel Corporation

Ethernet Controller 10-Gigabit X540-AT2 (rev 01)↪→

05:00.0 PCI bridge: ASPEED Technology, Inc. AST1150

PCI-to-PCI Bridge (rev 03)↪→

06:00.0 VGA compatible controller: ASPEED Technology,

Inc. ASPEED Graphics Family (rev 30)↪→

7f:08.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0 (rev
01)

↪→

↪→

7f:08.2 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0 (rev
01)

↪→

↪→

7f:08.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0 (rev
01)

↪→

↪→

7f:09.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1 (rev
01)

↪→

↪→

7f:09.2 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1 (rev
01)

↪→

↪→

7f:09.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1 (rev
01)

↪→

↪→

7f:0b.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1
(rev 01)

↪→

↪→
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7f:0b.1 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1
(rev 01)

↪→

↪→

7f:0b.2 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1
(rev 01)

↪→

↪→

7f:0b.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link Debug
(rev 01)

↪→

↪→

7f:0c.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0c.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0d.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0d.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0f.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0f.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0f.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0f.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:0f.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

7f:10.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent (rev
01)

↪→

↪→

7f:10.1 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent
(rev 01)

↪→

↪→

7f:10.5 System peripheral: Intel Corporation Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox (rev 01)↪→

7f:10.6 Performance counters: Intel Corporation Xeon

E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox (rev 01)↪→

7f:10.7 System peripheral: Intel Corporation Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox (rev 01)↪→

7f:12.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0 (rev
01)

↪→

↪→

7f:12.1 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0
(rev 01)

↪→

↪→

7f:13.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS (rev 01)

↪→

↪→

7f:13.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS (rev 01)

↪→

↪→

7f:13.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

7f:13.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

7f:13.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

7f:13.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

7f:13.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Broadcast (rev 01)

↪→

↪→

7f:13.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast (rev 01)

↪→

↪→

7f:14.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Thermal Control (rev 01)

↪→

↪→

7f:14.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Thermal Control (rev 01)

↪→

↪→

7f:14.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Error (rev 01)

↪→

↪→

7f:14.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Error (rev 01)

↪→

↪→

7f:14.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→
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7f:14.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

7f:14.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

7f:14.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

7f:15.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Thermal Control (rev 01)

↪→

↪→

7f:15.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Thermal Control (rev 01)

↪→

↪→

7f:15.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Error (rev 01)

↪→

↪→

7f:15.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Error (rev 01)

↪→

↪→

7f:16.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Target
Address/Thermal/RAS (rev 01)

↪→

↪→

7f:16.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Broadcast (rev 01)

↪→

↪→

7f:16.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast (rev 01)

↪→

↪→

7f:17.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
1 - Channel 0 Thermal Control (rev 01)

↪→

↪→

7f:17.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

7f:17.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

7f:17.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

7f:17.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

7f:1e.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

7f:1e.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

7f:1e.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

7f:1e.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

7f:1e.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

7f:1f.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

7f:1f.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

80:01.0 PCI bridge: Intel Corporation Xeon E7 v4/Xeon
E5 v4/Xeon E3 v4/Xeon D PCI Express Root Port 1
(rev 01)

↪→

↪→

80:02.0 PCI bridge: Intel Corporation Xeon E7 v4/Xeon
E5 v4/Xeon E3 v4/Xeon D PCI Express Root Port 2
(rev 01)

↪→

↪→

80:03.0 PCI bridge: Intel Corporation Xeon E7 v4/Xeon
E5 v4/Xeon E3 v4/Xeon D PCI Express Root Port 3
(rev 01)

↪→

↪→

80:04.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 0 (rev 01)

↪→

↪→

80:04.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 1 (rev 01)

↪→

↪→

80:04.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 2 (rev 01)

↪→

↪→

80:04.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 3 (rev 01)

↪→

↪→

80:04.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 4 (rev 01)

↪→

↪→

80:04.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 5 (rev 01)

↪→

↪→

80:04.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 6 (rev 01)

↪→

↪→

80:04.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Crystal Beach DMA
Channel 7 (rev 01)

↪→

↪→

80:05.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D
Map/VTd_Misc/System Management (rev 01)

↪→

↪→

80:05.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO Hot Plug (rev
01)

↪→

↪→

80:05.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D IIO RAS/Control
Status/Global Errors (rev 01)

↪→

↪→

80:05.4 PIC: Intel Corporation Xeon E7 v4/Xeon E5

v4/Xeon E3 v4/Xeon D I/O APIC (rev 01)↪→

81:00.0 Network controller: Mellanox Technologies

MT27520 Family [ConnectX-3 Pro]↪→
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82:00.0 VGA compatible controller: NVIDIA Corporation

Device 1b06 (rev a1)↪→

82:00.1 Audio device: NVIDIA Corporation Device 10ef

(rev a1)↪→

83:00.0 VGA compatible controller: NVIDIA Corporation

Device 1b06 (rev a1)↪→

83:00.1 Audio device: NVIDIA Corporation Device 10ef

(rev a1)↪→

ff:08.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0 (rev
01)

↪→

↪→

ff:08.2 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0 (rev
01)

↪→

↪→

ff:08.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 0 (rev
01)

↪→

↪→

ff:09.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1 (rev
01)

↪→

↪→

ff:09.2 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1 (rev
01)

↪→

↪→

ff:09.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D QPI Link 1 (rev
01)

↪→

↪→

ff:0b.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1
(rev 01)

↪→

↪→

ff:0b.1 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1
(rev 01)

↪→

↪→

ff:0b.2 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link 0/1
(rev 01)

↪→

↪→

ff:0b.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D R3 QPI Link Debug
(rev 01)

↪→

↪→

ff:0c.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0c.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0d.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0d.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0f.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0f.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0f.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0f.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:0f.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Caching Agent (rev
01)

↪→

↪→

ff:10.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent (rev
01)

↪→

↪→

ff:10.1 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D R2PCIe Agent
(rev 01)

↪→

↪→

ff:10.5 System peripheral: Intel Corporation Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox (rev 01)↪→

ff:10.6 Performance counters: Intel Corporation Xeon

E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox (rev 01)↪→

ff:10.7 System peripheral: Intel Corporation Xeon E7

v4/Xeon E5 v4/Xeon E3 v4/Xeon D Ubox (rev 01)↪→

ff:12.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0 (rev
01)

↪→

↪→

ff:12.1 Performance counters: Intel Corporation Xeon
E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon D Home Agent 0
(rev 01)

↪→

↪→

ff:13.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS (rev 01)

↪→

↪→

ff:13.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Target Address/Thermal/RAS (rev 01)

↪→

↪→

ff:13.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→
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ff:13.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

ff:13.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

ff:13.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel Target Address Decoder (rev 01)

↪→

↪→

ff:13.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Broadcast (rev 01)

↪→

↪→

ff:13.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast (rev 01)

↪→

↪→

ff:14.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Thermal Control (rev 01)

↪→

↪→

ff:14.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Thermal Control (rev 01)

↪→

↪→

ff:14.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 0 Error (rev 01)

↪→

↪→

ff:14.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 1 Error (rev 01)

↪→

↪→

ff:14.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

ff:14.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

ff:14.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

ff:14.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 0/1
Interface (rev 01)

↪→

↪→

ff:15.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Thermal Control (rev 01)

↪→

↪→

ff:15.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Thermal Control (rev 01)

↪→

↪→

ff:15.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 2 Error (rev 01)

↪→

↪→

ff:15.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
0 - Channel 3 Error (rev 01)

↪→

↪→

ff:16.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Target
Address/Thermal/RAS (rev 01)

↪→

↪→

ff:16.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Broadcast (rev 01)

↪→

↪→

ff:16.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Global
Broadcast (rev 01)

↪→

↪→

ff:17.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Memory Controller
1 - Channel 0 Thermal Control (rev 01)

↪→

↪→

ff:17.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

ff:17.5 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

ff:17.6 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

ff:17.7 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D DDRIO Channel 2/3
Interface (rev 01)

↪→

↪→

ff:1e.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ff:1e.1 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ff:1e.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ff:1e.3 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ff:1e.4 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ff:1f.0 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ff:1f.2 System peripheral: Intel Corporation Xeon E7
v4/Xeon E5 v4/Xeon E3 v4/Xeon D Power Control Unit
(rev 01)

↪→

↪→

ARTIFACT EVALUATION

Verification and validation studies: We validated our approach
through both theoretical proofs and experimental evaluations. The
experimental evaluation includes extensive performance compar-
ison, sensitive analysis, different practical scenarios. Specifically,
we compare our approach with 2 state-of-the-art approaches in the
following aspect (i) effectiveness in terms of minimizing latency;
(ii) robustness in dynamic workload; (iii) strict SLO guarantee; (iv)
effectiveness of meeting SLO while minimizing resource usage. We
used 3 popular applications, 2 non-exponential request arrival work-
loads, and performed extensive experiments on both CPU and GPU
clusters. The experiments of baseline approaches are conducted in
the same environment.

Accuracy and precision of timings: Our performance data is col-
lected from a build-in monitor in Tensorflow Serving. We use C++
11 chrono steady_clock APIs to get time. Though the precision may
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vary on different platforms, it generally has the precision of 1 ns
on Linux.

Used manufactured solutions or spectral properties: None

Quantified the sensitivity of results to initial conditions and/or

parameters of the computational environment: Our algorithm is not
sensitive to initial conditions, but the system randomness might
slightly change the results.

Controls, statistics, or other steps taken to make the measurements

and analyses robust to variability and unknowns in the system. We
perform each experiment multiple times. For experiments with
random process (e.g., with non-exponential arrival process), we
run the experiments long enough, i.e., stop the experiment after we
observe statistical stability in results.


