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Abstract

Principal Component Analysis (PCA) is one of the most

broadly used methods to analyze high-dimensional data.

However, most existing studies on PCA aim to minimize the

reconstruction error measured by the Euclidean distance, al-

though in some fields, such as text analysis in information re-

trieval, analysis using the angle distance is known to be more

effective. In this paper, we propose a novel PCA formulation

by adding a constraint on the factors to unify the Euclidean

distance and the angle distance. Because the objective and

constraints are nonconvex, the optimization problem is diffi-

cult to solve in general. To tackle the optimization problem,

we propose an alternating linearized minimization method

with guaranteed convergence and provable convergence rate.

Experiments on synthetic data and real-world data sets have

validated the effectiveness of our new method and demon-

strated its advantages over state-of-art competing methods.

1 Introduction

In many real-world applications such as text categoriza-
tion and face recognition, the dimensionality of the in-
put data is usually very high. Because dealing with
high-dimensional data is computationally expensive and
noise or outliers in the data can increase dramati-
cally as the dimension increases, dimension reduction
plays a critical role when one analyzes high-dimensional
data [4,17,20]. Among many dimension reduction meth-
ods, Principal Component Analysis (PCA) is one of the
most broadly used one due to its simplicity and effec-
tiveness.

PCA is a statistical procedure that uses an orthog-
onal transformation to convert a set of correlated vari-
ables into a set of linearly uncorrelated principal di-
rections. Usually the number of principal directions is
less than or equal to the number of original variables.
This transformation is defined in such a way that the
first principal direction has the largest possible variance
(that is, accounts for as much of the variability in the
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data as possible), and each succeeding direction has the
highest variance under the constraint that it is orthog-
onal to the preceding directions. The resulting vectors
are an uncorrelated orthogonal basis set.

When data points lie in a low-dimensional mani-
fold and the manifold is linear or nearly-linear, the low-
dimensional structure of data can be effectively cap-
tured by a linear subspace spanned by the principal
PCA directions. More specifically, let X = (x1, . . . , xn)
be n data points in m-dimensional space while U =
(u1, . . . , ur) contains the principal directions and V =
(v1, . . . , vk) contains the principal components (pro-
jected data along the principal directions). There exist
two broadly used formulations for PCA:

• Covariance-based approach computes the covari-
ance matrix C =

∑
i(xi − x̄)(xi − x̄) = XXT . By

assuming that the data are centered, i.e., x̄ = 0,
we can drop the factor 1

n−1 that does not affect U .
The principal directions are obtained by:

(1.1) max
UTU=I

trace(UTXXTU),

• Low-rank approximation-based approach solves the
following optimization problem:
(1.2)

min
UTU=I

J = ‖X − UV ‖2F =
∑
i,j

[Xij − (UV )ij ]
2,

where we approximate X by UV .

Taking the derivative w.r.t.V and setting it to zero, we
have V = XTU , by which Eq. (1.2) reduces to Eq. (1.1).
Therefore, the solutions to these two approaches are
identical. In our paper, we will focus on the second
formulation.

2 Motivation

In Eq. (1.2), the objective function measures the differ-
ence between the original data X and its approximation
of UV in the projected space, which is measured by the
squared Euclidean distances and uses each feature with
equal importance. However, in the real-world applica-
tions, there exist data sets which are preprocessed to be
normalized and different features may have varied signif-
icances. Thus distance-based measurement method may
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yield poor results. On the other side, similarity-based
measurement methods, such as the cosine similarity de-
rived from the angle distance, have been proved to be
more effective in some applications, such as information
retrieval [18], signal processing [8], metric learning [15],
etc.. Thus, deriving new methods that can directly mea-
sure the angle distance from PCA is of vital importance
to solve real-world problems. However, this problem has
not been well studied in literature yet.

Motivated by the above observations and a previ-
ous work [19], in this paper we propose a spherical PCA
model that can unify the Euclidean distance and the an-
gle distance. By noticing that larger angle in the sphere
in Fig. 1 also has larger Euclidean distance, we can add
the normalization constraint to the component matrix,
where the norm of each column in V is restricted to be
1 to guarantee the spherical distribution of components
in the projected space:
(2.3)

min
U∈Rm×r,V ∈Rr×n

J = ‖X − UV ‖2F =
∑
i,j

[Xij − (UV )ij ]
2,

s.t. U ∈ U, V ∈ V.

where we define:
(2.4)
U := {U : UTU = I},V := {V : ‖V (:, j)‖ = 1 ∀j ∈ [0, n]}.

Suppose the component is spherically distributed, then
the Euclidean distance between vi and vj is:
(2.5)
||vi − vj ||22 = ||vi||2 + ||vj ||2 − 2〈vi, vj〉

= ||vi||2 + ||vj ||2 − 2
〈vi, vj〉
||vi||||vj ||

= 2− 2 cos(θ), θ ∈ [0, π].

which is equivalent to angle distance such that a bigger
angle θ will result in a larger Euclidean distance, and
vice versa.

Remark 1. In traditional PCA, without the normaliza-
tion constraint on each column of V , the optimized so-
lution to Eq. (1.2) can barely satisfy the spherical dis-
tribution. Since r is usually less than m, PCA will lose
some component more or less, thus xi 6= Uvi and usu-
ally ‖xi‖ 6= ‖Uvi‖ (they may be equal, but it barely hap-
pens) . We have ||Xi||2 = 1 for normalized data and if
||vi||2 = 1 then ||Uvi||2 = tr(vTi U

TUvi) = tr(vTi vi) =
||vi||2 = 1, which leads a contradiction. Thus we have
to additionally enforce the constraint on V to guarantee
our motivation.

3 Formulation and Algorithm

3.1 Objective Function with Proximal Term
We first denote:

(3.6) h(U, V ) = ‖X − UV ‖2F , s.t. U ∈ U, V ∈ V.

θ1

θ2

d1

d2

Figure 1: Larger angles (θ2 > θ1) in the sphere will
have larger Euclidean distance, and vice versa, which
unifies the cosine similarity and Euclidean distance
simultaneously.

By noting the nonconvexity of Eq. (2.3), where no closed
solution exists, we propose an alternating minimization
method to get the optimized solution as:

(3.7)
Uk+1 = ‖X − UV k‖2F , U ∈ U,
vk+1 = ‖x− Uk+1v‖F2 , V ∈ V.

where v denotes the column of V and V in Eq. (2.3) can
be decoupled into column-wise for optimization.

Note that because of the constraints U ∈ U, V ∈ V,
the problem (3.6) is known as the nonconvex matrix
factorization problems, which was previously studied
in [12,25]. In this work we will focus on develop an effi-
cient algorithm with provable convergence to solve (3.6).
Note that the proximal algorithm recently has been suc-
cessfully applied to a wide variety of situations: convex
optimization, nonmonotone operators [6, 10] with var-
ious applications to nonconvex programming. It was
first introduced by Rockafellar [16] as an approximation
regularization method in convex optimization and in the
study of variational inequalities associated to maximal
monotone operators.

Considering the fact that the objective function in
Eq. (2.3) is nonconvex w.r.t.U and V , and the constraint
on U and V are also nonconvex, we add the proximal
term, which leads to the following alternating linearized
minimization solutions:
(3.8)

Uk+1 = arg min
UTU=I

〈U − Uk,∇h(Uk)〉+
µ

2
||U − Uk||2F ,

vk+1 = arg min
‖v‖=1

〈v − vk,∇h(vk)〉+
λ

2
||v − vk||2.

Remark 2. We add the proximal term to ensure that
the updated solution will not go apart too far away
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from the previous step to avoid drastic changes. One
can see that when the proximal term regularization
parameters µ, λ are sufficiently large, they will dominate
the objective function. Moreover, we can exploit the
linearized minimization that minimizes the objective
with Taylor expansion by making use of first order
(linear) information.

3.2 Proposed Algorithm Given the alternating
minimization objective in Eq. (3.8), now we turn to de-
rive the detailed updating algorithm with closed-form
solutions in every step.

First, we derive the solution for U . Before the
derivation, we prove the following useful lemma that
is similar to [23, Theorem 1] and [22, Theorem 1]:

Lemma 1. maxXTX=I tr(X
TB) is given by X = UV T ,

where [U,Σ, V ] = svd(B).

Proof. On one hand, we have:

(3.9) trace(XTB) = trace(XTUΣV T ) = trace(PΣ).

where P = V TXTU is an orthonormal matrix since
PPT = V TXTUUTXV = I. Thus every element
including the diagonal of P is less than or equal to 1.
Thus we have:

(3.10) trace(PΣ) ≤ trace(Σ).

On the other hand, when X = UV T , we have
trace(XTB) = trace(V UTUΣV T ) = Σ. Thus X =
UV T is the optimal solution that maximizes the ob-
jective. �

Accordingly, we have:
(3.11)

Uk+1 = arg min
UTU=I

〈U − Uk,∇h(Uk)〉+
µ

2
||U − Uk||2F

= arg max
UTU=I

trace(UTM) = Y ZT .

where M = 2(X−UkVk)V Tk +µUk and Y,Z is obtained
from [Y,Σ, Z] = svd(M).

Second, we optimize vk+1 given that UTk+1Uk+1 = I:

(3.12)

vk+1 = arg min
‖v‖=1

〈v − vk,∇h(vk)〉+
λ

2
||v − vk||2F

= arg max
‖v‖=1

〈v, q〉

=
q

‖q‖2
,

where q = 2UTk+1x+ (λ− 2)vk.

Algorithm 1 Alternating Linearized Minimization for
Problem Eq. (3.6)

Input: data X ∈ Rm×n, rank of factors r, regular-
ization parameters λ, µ, number of iterations K
Initialization: U0 ∈ Rm×r, V0 ∈ Rr×n
while k ≤ K do

optimize Uk+1 as Eq. (3.11)
optimize each vk+1 as Eq. (3.12)

end while
Output: UK and VK

4 Convergence Analysis

In the following case, we let U and V be as defined in
Eq. (2.4), and show the convergence of our proposed
algorithm in the last section.

To begin with, we first show that h(U, V ) has
Lipschitz continuous gradient at U ∈ U, V ∈ V,
which will be very useful for the following convergence
analysis.

Proposition 1. h(U, V ) has Lipschitz continuous gra-
dient at U ∈ U, V ∈ V, where U and V are defined in
Eq. (2.4). That is, there exists a constant Lc such that
(4.13)
‖∇h(U, V )−∇h(U ′, V ′)‖F ≤ Lc‖(U, V )− (U ′, V ′)‖F

for all U,U ′ ∈ U and V, V ′ ∈ V. Here Lc > 0 is referred
to as the Lipschitz constant.

Proof. Proof of Proposition 1 is equivalent to show
‖∇2h(U, V )‖2 ≤ Lc for all U ∈ U, V ∈ V. Stan-
dard computations give the Hessian quadrature form

[∇2h(U, V )](∆,∆) for any ∆ =

[
∆U

∆T
V

]
∈ R(n+m)×r

(where ∆U ∈ Rm×r and ∆V ∈ Rr×n) as

[∇2h(U, V )](∆,∆)

= ‖∆UV + U∆V ‖2F + 2 〈UV −X,∆U∆V 〉 ,
(4.14)

which gives:
(4.15)
‖∇2h(U, V )‖2 = max

‖∆‖F=1

∣∣[∇2h(U, V )](∆,∆)
∣∣

≤ max
‖∆‖F=1

‖∆UV + U∆V ‖2F + 2 |〈UV −X,∆U∆V 〉|

≤ 2(‖U‖2F + ‖V ‖2F + ‖U‖F ‖V ‖F + ‖X‖F ) := Lc,

where the inequality follows from |〈A,B〉| ≤ ‖A‖F ‖B‖F
and ‖CD‖F ≤ ‖C‖F ‖D‖F . Due to the constraints on U
and V , we have ‖U‖2F = tr(UTU) = tr(I) = r, ‖V ‖2F =∑n
j=1 ‖v‖2 = n. �

To analyse the convergence, we rewrite Eq. (3.6) as

(4.16) min
U,V

f(U, V ) = h(U, V ) + δU(U) + δV(V ),
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where δU(U) =

{
0, U ∈ U
∞, U /∈ U is the indicator function

of the set U and therefore nonsmooth, so is δV(V ).
The following result establishes that the subse-

quence convergence property of the proposed algorithm,
i.e., the sequence generated by Algorithm 1 is bounded
and any of its limit point is a critical point of Eq. (4.16).

Theorem 1. (Subsequence convergence) Let
{Wk}k≥0 = {(Uk, Vk)}k≥0 be the sequence generated by
Algorithm 1 with constant step size λ, µ > Lc. Then the
sequence {Wk}k≥0 is bounded and obeys the following
properties:

(P1) sufficient decrease:

f(Wk−1)− f(Wk)(4.17)

≥min(λ, µ)− Lc
2

‖Wk −Wk−1‖2F ,

which implies that

(4.18) lim
k→∞

‖W k−1 −W k‖F = 0.

(P2) the sequence {f(Wk)}k≥0 is convergent.

(P3) for any convergent subsequence {Wk′}, its limit
point W ? is a critical point of f and

(4.19) lim
k′→∞

f(Wk′) = lim
k→∞

f(Wk) = f(W ?).

Before proving Theorem 1, we give out some necessary
definition.

Definition 1. [3] Let f : Rd → (−∞,∞] be a proper
and lower semi-continuous function, whose domain is
defined as

dom f := {u ∈ Rn : f(u) <∞} .

The (Fréchet) subdifferential ∂f of f at u is defined
by

∂f(u) =

{
z : lim

v→u
inf

f(v)− f(u)− 〈z, v − u〉
‖u− v‖

≥ 0

}
for any u ∈ domh and ∂f(u) = ∅ if u /∈ dom f .

We say u is a limiting critical point, or simply a
critical point of f if

0 ∈ ∂f.

We now turn to prove Theorem 1.

Proof. [Proof of Theorem 1] (P1): First note that for all
k, according to our alternating minimization method,
we always have δU(Uk) = δV(Vk) = 0 and thus f(Wk) =
h(Wk).

Since h(U, V ) has Lipschitz continuous gradient at
U ∈ U, V ∈ V with Lipschitz gradient Lc and λ > Lc
as proved in Proposition 1, we define hLc(U,U

′, V ) as
proximal regularization of h(U, V ) linearized at U ′, V :

h(U ′, V ) + 〈∇Uh(U ′, V ), U − U ′〉+
Lc
2
‖U − U ′‖2F ,

By the definition of Lipschitz continuous gradient and
Taylor expansion, we have

(4.20) h(U, V ) ≤ hLc(U,U ′, V ).

Also by the definition of proximal map, we get:

Uk = arg min
U

δU(U) +
µ

2
‖U − Uk−1‖2F

+ 〈∇Uh(Uk−1, Vk−1), U − Uk−1〉.
(4.21)

Hence we take Uk = U , which implies that

(4.22)
δU(Uk) +

µ

2
‖Uk − Uk−1‖2F

+ 〈∇Uh(Uk−1, Vk−1), Uk − Uk−1〉 ≤ δU(Uk−1).

Combining Eq. (4.20) to Eq. (4.22), we have:
(4.23)
h(Uk, Vk−1) + δU(Uk)

≤ h(Uk−1, Vk−1) + 〈∇Uh(Uk−1, Vk−1), Uk − Uk−1〉

+
Lc
2
‖Uk − Uk−1‖2F + δU(Uk)

≤ h(Uk−1, Vk−1) +
Lc
2
‖Uk − Uk−1‖2F

+ δU(Uk−1)− µ

2
‖Uk − Uk−1‖2F

= h(Uk−1, Vk−1) + δU(Uk−1)− µ− Lc
2
‖Uk − Uk−1‖2F .

Similarly, we have

(4.24)
h(Uk, Vk)− h(Uk, Vk−1) + δV(Vk)− δV(Vk−1)

≤ −λ− Lc
2
‖Vk − Vk−1‖2F ,

which together with the above equation gives Eq.
(4.17). Now repeating Eq. (4.17) for all k will give

(4.25) (min(λ, µ)− Lc)
∞∑
k=1

‖Wk −Wk−1‖2F ≤ f(W0),

which gives Eq. (4.18).
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Remark 3. In our proposed algorithm, since in every
update, our solution is closed while satisfying the con-
straints, thus in fact δU and δV are 0, and ∞ is never
achieved.

(P2) It follows from Eq. (16) that {f(Wk)}k≥0 is a
decreasing sequence. Due to the fact that f is lower
bounded as f(Wk) ≥ 0 for all k, we conclude that
{f(Wk)}k≥0 is convergent.

(P3) Since Uk′ ∈ U, Vk′ ∈ V for all k′ and both of
the sets U and V are closed, we have U? ∈ U, V ? ∈ V.
Since h is continuous, we have

lim
k′→∞

f(Wk′) = lim
k′→∞

h(Uk′ , Vk′) + δU(Uk′) + δV(Vk′)

= f(W ?),

which together with the fact that {f(Wk)}k≥0 is con-
vergent gives Eq. (4.18).

To show W ? is a critical point, we first consider Eq.
(4.21) and the optimality condition yields:

(4.26) ∇Uh(Uk−1, Vk−1)+µ(Uk−Uk−1)+∂δU(Uk) = 0.

Similarly, we have

(4.27) ∇V h(Uk, Vk−1) + λ(Vk − Vk−1) + ∂δV(Vk) = 0.

Now, define

∇Uh(Uk, Vk) + ∂δU(Uk)︸ ︷︷ ︸
Ak

,

∇V h(Uk, Vk) + ∂δV(Vk)︸ ︷︷ ︸
Bk

.

Thus, we have

(4.28) Ak ∈ ∂Uf(Uk, Vk), Bk ∈ ∂V f(Uk, Vk).

It follows from the above that

(4.29)

lim
k→∞

‖Ak‖F

≤ lim
k→∞

‖∇Uh(Uk, Vk)−∇Uh(Uk−1, Vk−1)‖F

+ µ‖Uk − Uk−1‖F
≤ lim
k→∞

(Lc + µ)‖Wk −Wk−1‖ = 0.

Similarly, we have:

(4.30) lim
k→∞

‖Bk‖F ≤ lim
k→∞

(Lc + λ)‖Wk −Wk−1‖ = 0.

Then we have:

(4.31) dist(0, ∂f(Wk)) ≤ (2Lc + µ+ λ)‖Wk −Wk−1‖.

Owing to the closedness properties of ∂f(Wk′), we
finally obtain 0 ∈ ∂f(W ?). Thus, W ? is a critical point
of f . �

Theorem 2. (Sequence convergence) The se-
quence {Wk}k≥0 generated by Algorithm 1 with
a constant step size λ, µ > Lc is global-sequence
convergence.

Before proving Theorem 2, we give out another
important definition.

Definition 2. (Kurdyka-Lojasiewicz (KL) property)
[5] We say a proper semi-continuous function
h(u) satisfies Kurdyka-Lojasiewicz (KL) property,
if u is a critical point of h(u), then there exist
δ > 0, θ ∈ [0, 1), C1 > 0, s.t.

|h(u)− h(u)|θ ≤ C1 dist(0, ∂h(u)), ∀ u ∈ B(u, δ).

We mention that the above KL property(also known
as KL inequality) states the regularity of h(u) around
its critical point u and the KL inequality trivially
holds at non-critical point. There are a very large
set of functions satisfying the KL inequality including
any semi-algebraic functions [3]. Clearly, the objective
function f is semi-algebraic as both h, δU and δV are
semi-algebraic.

Lemma 2. (Uniform KL property) There exist
δ0 > 0, θKL ∈ [0, 1), CKL > 0 such that for all W s.t.
dist((W ),C(W0)) ≤ δ0:∣∣f(W )− f

∣∣θKL ≤ CKL dist(0, ∂f(W ))(4.32)

with f denoting the limiting function value defined in P
(2) of Theorem 1.

Proof. First we recognize the union
⋃
iB(W ?

i , δi) forms
an open cover of C(W0) with W ?

i representing all points
in C(W0) and δi to be chosen so that the the following
KL property of f at W ?

i ∈ C(W0) holds:∣∣f(W )− f
∣∣θi ≤ Ci dist(0, ∂f(W )) ∀ (W ) ∈ B(W ?

i , δi)

where we have used all f(W ?
i ) = f by assertion (P3)

of Theorem 1. Then due to the compactness of the
set C(W0), it has a finite subcover

⋃p
i=1B(W ?

ki
, δki) for

some positive integer p. Now combining all, we have for
all W ∈

⋃p
i=1B(W ?

ki
, δki),∣∣f(W )− f
∣∣θKL ≤ CKL dist(0, ∂f(W ))(4.33)

with θKL = maxpi=1{θki} and CKL = maxpi=1{Cki}.
Finally, since

⋃p
i=1B(W ?

ki
, δki) is an open cover of

C(W0), there exists a sufficiently small number δ0 so
that

{(W ) : dist(W,C(W0)) ≤ δ0} ⊂
p⋃
i=1

B(W ?
i , δki).

Therefore, eq. (4.33) holds whenever dist(W,C(W0)) ≤
δ0. �
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We now turn to prove Theorem 2.

Proof. [Proof of Theorem 2] According to Definition 2,
there exists a sufficiently large k0 satisfying:

[f(Wk)− f(W ?)]θ ≤ C2 dist(0, ∂f(Wk)), ∀k ≥ k0.

(4.34)

In the subsequent analysis, we restrict to k ≥ k0.
Construct a concave function x1−θ for some θ ∈ [0, 1)
with domain x > 0. Obviously, by the concavity, we
have

x1−θ
2 − x1−θ

1 ≥ (1− θ)x−θ2 (x2 − x1), ∀x1 > 0, x2 > 0

. Replacing x1 by f(Wk+1)−f(W ?) and x2 by f(Wk)−
f(W ?) and using the sufficient decrease property, we
have

[f(Wk)− f(W ?)]1−θ − [f(Wk+1)− f(W ?)]1−θ

≥ (1− θ) f(Wk)− f(Wk+1)

[f(Wk)− f(W ?)]θ

≥ λ(1− θ)
2C2

‖Wk −Wk+1‖2F
dist(0, ∂f(Wk))

,

≥ λ(1− θ)
2C2C3

‖Wk −Wk+1‖2F
‖Wk −Wk−1‖F

= κ(
‖Wk −Wk+1‖2F
‖Wk −Wk−1‖F

+ ‖Wk −Wk−1‖F )

− κ‖Wk −Wk−1‖F
≥ κ (2‖Wk −Wk+1‖F − ‖Wk −Wk−1‖F ) .

And accordingly, we have:
(4.35)
2‖Wk −Wk+1‖F − ‖Wk −Wk−1‖F
≤ β

(
[f(Wk)− f(W ?)]1−θ − [f(Wk+1)− f(W ?)]1−θ

)
,

with C3 := 2Lc + µ+ λ, κ := λ(1−θ)
2C2C3

, β :=
(
λ(1−θ)
2C2C3

)−1

.

Summing the above inequalities up from some k̃ >
k0 to infinity yields

(4.36)

∞∑
k=k̃

‖Wk −Wk+1‖F

≤ ‖Wk̃ −Wk̃−1‖F + β[f(Wk̃)− f(W ?)]1−θ

implying
∞∑
k=k̃

‖Wk −Wk+1‖F <∞.

Following some standard arguments one can see that

lim sup
t→∞,t1,t2≥t

‖Wt1 −Wt2‖F = 0,

which implies that the sequence {Wk} is Cauchy, and
hence convergent. Hence, the limit point set C(W0) is
singleton W ?. �

Theorem 3. (Convergence Rate) The conver-
gence rate is at least sub-linear.

Towards that end, we first know from the above ar-
gument that {Wk} converges to some point W ?, i.e.,
limk→∞W k = W ?. Then using Equation (4.36) and
the triangle inequality, we obtain

(4.37)
‖Wk̃ −W

?‖F ≤
∞∑
k=k̃

‖Wk −Wk+1‖F

≤ ‖Wk̃ −Wk̃−1‖F + β[f(Wk̃)− f(W ?)]1−θ,

which indicates the convergence rate of Wk̃ →W ? is at
least as fast as the rate that ‖Wk̃−Wk̃−1‖F +β[f(Wk̃)−
f(W ?)]1−θ converges to 0. In particular, the second
term β[f(Wk̃)− f(W ?)]1−θ can be controlled:

(4.38)

β[f(Wk̃)− f(W ?)]θ ≤ βC2 dist(0, ∂f(Wk̃))

≤ βC2(2B0 + λ+ ‖X‖F )︸ ︷︷ ︸
:=α

‖Wk̃ −Wk̃−1‖F .

Plugging (4.38) back to (4.37), we then have

∞∑
k=k̃

‖Wk−Wk+1‖F ≤ ‖Wk̃−Wk̃−1‖F+α‖Wk̃−Wk̃−1‖
1−θ
θ

F .

We divide the following analysis into two cases
based on the value of the KL exponent θ.

• Case I : If θ = 0, we set Q := {k ∈ N : Wk+1 6= Wk}
and take k in Q. When k is sufficiently large, then
we have:

(4.39) ‖Wk+1 −Wk‖2F := C4 > 0.

On the other hand,
(4.40)

f(Wk+1)− f(Wk) ≥ min(λ, µ)− Lc
2

‖Wk+1 −Wk‖2F

=
min(λ, µ)− Lc

2
C4.

Since f(Wk) is known to be converged to 0,
Eq. (4.40) implies that Q is finite and sequence Wk

converges in a finite number of steps.

• Case II : θ ∈ (0, 1
2 ]. This case means 1−θ

θ ≥ 1. We
define Pk̃ =

∑∞
i=k̃ ‖Wi+1 −Wi‖F ,

(4.41) Pk̃ ≤ Pk̃−1 − Pk̃ + α
[
Pk̃−1 − Pk̃

] 1−θ
θ

.
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Since Pk̃−1−Pk̃ → 0, there exists a positive integer

k1 such that Pk̃−1 − Pk̃ < 1, ∀ k̃ ≥ k1. Thus,

Pk̃ ≤ (1 + α) (Pk̃−1 − Pk̃), ∀ k̃ ≥ max{k0, k1},

which implies that

(4.42) Pk̃ ≤ ρ · Pk̃−1, ∀ k̃ ≥ max{k0, k1},

where ρ = 1+α
2+α ∈ (0, 1). This together with (4.37)

gives the linear convergence rate

(4.43) ‖Wk −W ?‖F ≤ O(ρk−k), ∀ k ≥ k.

where k = max{k0, k1}.

• Case III : θ ∈ (1/2, 1). This case means 1−θ
θ ≤ 1.

Based on the former results, we have

Pk̃ ≤ (1 + α)
[
Pk̃−1 − Pk̃

] 1−θ
θ

, ∀ k̃ ≥ max{k0, k1}.

We now run into the same situation as in [2]. Hence
following a similar argument gives

P
1−2θ
1−θ

k̃
− P

1−2θ
1−θ

k̃−1
≥ ζ, ∀ k ≥ k

for some ζ > 0. Then repeating and summing up
the above inequality from k = max{k0, k1} to any
k > k, we can conclude

Pk̃ ≤
[
P

1−2θ
1−θ

k̃−1
+ ζ(k̃ − k)

]− 1−θ
2θ−1

= O
(

(k̃ − k)−
1−θ
2θ−1

)
.

Finally, the following sublinear convergence holds
(4.44)

‖Wk −W ?‖F ≤ O
(

(k − k)−
1−θ
2θ−1

)
, ∀ k > k.

We end this proof by commenting that both linear
and sublinear convergence rate are closely related to the
KL exponent θ at the critical point W ?.

5 Experiments

In this section, we are going to apply our proposed
spherical PCA to both synthetic data and real-world
data sets to test the performance of our proposed
method. The experiment on synthetic data will be
performed first, followed by experiments on real-world
data sets.

5.1 Synthetic Data Experiment We first generate
200 data, half of which is distributed within the region
between X = Z and Z axis (denoted as blue dots in
the top part of Fig. 2), while another group is generated

within the region between Y = Z and Z axis (denoted as
the red dots). These two clusters of data are generated
through different angles. Thus when we do clustering, it
should be the angle distance rather than the Euclidean
distance to determine the clustering result. For our
method, we learn a projection matrix U ∈ R3×2 and plot
the component matrix V ∈ R2×200 as the bottom part
illustrates. We see that, the Euclidean distance-based
method (such as K-means) will yield poor clustering
result (middle part), while spherical PCA will obtain
good clustering result.

Also, we show the convergence of {Wk}k≥0 =
{(Uk, Vk)}k≥0 generated by our method. As Fig. 3
shows, after short iterations, the generated sequences
will be stable, which is in accordance with the conver-
gence proof. It also illustrates the objective with up-
date. We see that it converges fast with a sublinear
rate, which validates our convergence rate analysis.

5.2 Real-world Datasets Experiment It is known
that in information retrieval, similarities or dissimi-
larities (proximities) between objects are more criti-
cal than Euclidean distance. In this subsection, we
will test our proposed method on the widely-used 20-
newsgroup dataset for clustering. We have different
newsgroups such as: comp.graphics, rec.motorcycles,
rec.sport.baseball, sci.space, talk.politics.mideast, etc..
200 documents are randomly sampled from each news-
group. The word-document matrix X is constructed
with 500 words selected according to the mutual in-
formation between words and documents. Tf.idf term
weighting is used before normalization. Clustering accu-
racy are computed using the known class labels. Results
will be compared including clustering accuracy (Acc.)
and Normalized Mutual Information (NMI) [24].

Different clustering algorithms will be compared
including:

1. R1-PCA, which proposes a rotational invariant `1-
norm PCA, where a robust covariance matrix will
soften the effects of outliers [7];

2. K-SVD, which is an iterative method that alter-
nates between sparse coding of the examples based
on the current dictionary and a process of updating
the dictionary atoms to better fit the data [1];

3. PCA, i.e.the vanilla PCA method in Eq. (1.2)
without the constraint on G, which will be Eu-
clidean distance-based by default;

4. NMF Matrix Factorization proposed by [11,13,14,
21] where U and V are obtained by Multiplicative
Updating Algorithm with nonnegative constraint
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Figure 2: Top: two groups of data generated from two angles. Middle: clustering result with distance -based
method K-means. Bottom: clustering result with our method. Blue and red represent different clusters.

Figure 3: Left: ‖Uk+1 − Uk‖F with updates. Center: ‖Vk+1 − Vk‖F with updates. Both converge to 0 after
several iterations. Right: Objective converges at sub-linear rate. All validate our analysis.

Table 1: Clustering performance of different algorithms on 20-newsgroup dataset

Methods K-means MUA PCA R1-PCA K-SVD Spherical PCA

#Groups Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

5 0.651 0.621 0.674 0.614 0.703 0.628 0.745 0.647 0.789 0.673 0.838 0.695

10 0.487 0.316 0.478 0.320 0.502 0.383 0.535 0.398 0.527 0.394 0.588 0.401

15 0.398 0.307 0.387 0.301 0.412 0.319 0.423 0.320 0.461 0.377 0.486 0.385
20 0.315 0.242 0.314 0.221 0.362 0.248 0.394 0.260 0.412 0.280 0.431 0.294

Table 2: Clustering performance of different algorithms on four UCI data sets

Methods K-means MUA PCA R1-PCA K-SVD Spherical PCA

Data (#class) Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

glass (6) 0.687 0.566 0.692 0.574 0.732 0.608 0.769 0.626 0.801 0.648 0.788 0.635
diabetes (2) 0.775 0.632 0.788 0.654 0.761 0.613 0.808 0.631 0.827 0.672 0.832 0.680

mfeat (10) 0.365 0.223 0.358 0.211 0.371 0.225 0.431 0.342 0.412 0.328 0.425 0.330

isolet (26) 0.267 0.198 0.253 0.181 0.262 0.182 0.324 0.201 0.357 0.246 0.373 0.250

5. K-means [9].

We vary the number of clusters from 5 to 10, 15 and
20. In each newsgroup, 200 documents are randomly
sampled, and we repeat for 10 times by taking the
average and report the clustering result as Table 1
demonstrates.

We see that our proposed method Spherical PCA
can always achieve both higher clustering accuracy and
normalized mutual information in text analysis.

We also compare our method with other methods
on UCI data sets including: glass, diabetes, mfeat and
isolet. Table 2 illustrates the results. We see that
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though our method doesn’t show the absolute advantage
as on text, still the result is considerably good.

All the experiments indicate that our method can
achieve good performance on both text and non-text
data sets, showing its potential for broader application.

6 Conclusion

In this paper, we study spherical PCA where the direc-
tion matrix is orthonormal and the component vectors
are assumed to lie in the unitary sphere. The benefit is
obvious that it can make the angle distance equivalent
to Euclidean distance. Due to the nonconvexity of ob-
jective function and constraints on the factors which are
difficult to tackle, we propose an alternating linearized
minimization method to derive the solution, which is
proved to be sequence convergent. Moreover, we analyze
the convergence rate which is validated by our experi-
ments. The results on real-world datasets and synthetic
data illustrate the superiority of our method.
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