
Vol.:(0123456789)1 3

Computational Mechanics (2019) 64:879–894
https://doi.org/10.1007/s00466-019-01685-4

ORIGINAL PAPER

Acceleration strategies for explicit finite element analysis of metal
powder‑based additive manufacturing processes using graphical
processing units

Mojtaba Mozaffar1 · Ebot Ndip‑Agbor1 · Stephen Lin1 · Gregory J. Wagner1 · Kornel Ehmann1 · Jian Cao1

Received: 23 October 2018 / Accepted: 10 February 2019 / Published online: 1 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Metal powder-based Additive Manufacturing (AM) processes are increasingly used in industry and science due to their
unique capability of building complex geometries. However, the immense computational cost associated with AM predic-
tive models hinders the further industrial adoption of these technologies for time-sensitive applications, process design with
uncertainties or real-time process control. In this work, a novel approach to accelerate the explicit finite element analysis of
the transient heat transfer of AM processes is proposed using Graphical Processing Units. The challenges associated with
this approach are enumerated and multiple strategies to overcome each challenge are discussed. The performance of the
proposed algorithms is evaluated on multiple test cases. Speed-ups of about 100 ×–150 × compared to an optimized single
CPU core implementation for the best strategy were achieved.

Keywords  Additive manufacturing · Directed energy deposition · GPU acceleration · Finite element methods · High
performance computing

1  Introduction

Metal powder-based additive manufacturing (AM) processes
are increasingly used in a variety of industries due to their
advantages in geometric complexity and flexibility of their
products and consequently, the associated manufacturing
time and cost. Nowadays, applications of metal powder-
based AM processes go beyond just producing prototypes,
but also for manufacturing functional products with com-
plex geometries [1], varying alloy composition [2, 3], and
locally-controlled microstructures [4, 5]. Directed Energy
Deposition (DED) is a class of AM processes that uses
focused heat sources, usually an electron or laser beam, to
melt the powders and simultaneously delivers the powder
to the focal point of the heat source as the powder delivery
nozzle follows the toolpath derived from CAD geometries

[6, 7]. Selective Laser Melting (SLM) is another category of
AM processes in which a thin layer of powder is delivered to
the base plate using a powder delivery system and then the
laser is used to melt and fuse the powder [8]. Schematics of
these two AM processes, DED and SLM, are demonstrated
in Fig. 1.

The uncertainty in predicting the final properties of the
products is one of the most critical challenges of AM tech-
nologies. Many computational methods have been proposed
to address this issue using macro-scale [9, 10], meso-scale
[11, 12] or multi-scale modeling [13, 14]. However, a com-
mon problem with the existing predictive methods for AM
is their enormous computational cost that might take weeks
or months of compute time [15], which makes these compu-
tational models orders of magnitude slower than the experi-
ment itself and impossible to use in any time-sensitive appli-
cation such as real-time control or optimization procedures.
Therefore, investigating methods to accelerate AM predic-
tive models is vital for overcoming existing barriers and to
achieve wider application of AM technologies in industry.

Mojtaba Mozaffar and Ebot Ndip-Agbor have contributed equally
to this work.

 *	 Jian Cao
	 jcao@northwestern.edu

1	 Department of Mechanical Engineering, Northwestern
University, Evanston, IL 60208, USA

880	 Computational Mechanics (2019) 64:879–894

1 3

1.1 � A review on GPU‑accelerated finite element
analysis

One approach to overcome the computational burdens asso-
ciated with the modeling methods is by accelerating AM
simulations using parallelization practices on computer clus-
ters or more recently Graphical Processing Units (GPUs).
GPUs are traditionally designed to handle computer graph-
ics and their hardware is designed to perform optimally for
that task. With the emergence of the General-Purpose GPU
(GPGPU) concept, the applications of GPUs have been
extended to many science fields and revolutionized com-
putations in finance, bioinformatics, machine learning and
computer vision [16].

Finite Element Method (FEM) is an effective tool for
simulating the process physics in wide variety of applica-
tions including AM [14, 17]. FEM calculations consist of
two major tasks: (1) creating a large system of equations
based on physics-based partial differential equations on a
discretized domain; and (2) solving the system of equa-
tions. GPUs can be used to accelerate the process of solving
finite element analysis (FEA) systems of equations. Efficient
GPU-accelerated libraries, such as THRUST [18], exist that
handle the iterative procedure of solving matrix-based equa-
tions. Solving sparse systems of equations on GPUs has been
extensively investigated [19] and well-developed libraries
are publicly available such as cuSPARSE [20]. Recently,
commercial FEM software packages, such as ABAQUS,
COMSOL, etc., use this technique to boost the performance
for their analyses. A benchmark of the acceleration per-
formance of different matrix solvers for the simulation of
polymer actuator’s electromechanical response is developed
in [21]. An implicit simulation of an automobile battery’s
thermal runaway is accelerated using Thrust and Paralution
[22] libraries as equation solvers with speed-ups of up to
50 in [23].

An alternative approach is to perform both tasks (i.e.,
creating the FEM systems of equation and solving them)
on the GPU. A fundamental investigation of this method
is presented in [24] for an FEM simulation which solves
steady-state heat equations. Different work distributions and
memory arrangements for the implementation are consid-
ered resulting in speed-up of up to 30 × depending on the
element order and simulation size (i.e., number of elements
in the simulation). A high-level domain-specific language
was developed for the implementation of FEM simulations
on both CPUs and GPUs in [25, 26]. Using the developed
platform, called the Unified Form Language (UFL), they
investigated the memory storage and access patterns that led
to optimal performances in CPU and GPU implementations.
Furthermore, they introduced the Local Matrix Approach
(LMA) as an alternative assembly algorithm to eliminate
the necessity for operations known as atomic operations. In
[27–29], the matrix generation method is divided into three
consecutive tasks of: (1) numerical integration, (2) assem-
bly in the coordinate (COO) format, and (3) conversion into
Compressed Row Storage (CRS) [30] format. The authors
used GPU computing for simulating 9-pole microwave elec-
tromagnetic responses by distributing the GPU work based
on each FEM integration point. Using a sparse solver with
the Conjugate Gradient Method (CGM) and precondition-
ers, the authors achieved a 81 × speed-up of the simulation.
Global memory accesses and calculations are interleaved
to achieve 100 billion floating-point operations per second
in [31, 32]. A mapping between elements and integration
points was proposed to eliminate the reduction operations.
In Ref. [33], the authors discussed the existing works and
potentials of GPU computing for the structural analysis com-
ponents including model conversion, meshing, solving the
system of equations, and visualizing the results.

Fig. 1   Schematic of two AM processes; a DED process with coaxial nozzle to deliver powder to the focal point of a laser and b SLM process
that uses a roller to spread a thin layer of powder before melting the layer [53, 54]

881Computational Mechanics (2019) 64:879–894	

1 3

1.2 � Scope of this paper

Despite existing profound researches on acceleration of FEA
solvers, the methodologies discussed above do not provide
a solution for the implementation of an explicit FEA on
a problem with advanced evolving boundary conditions,
which is needed for simulating a metal powder-based AM
process. An explicit FEA solver does not require iterative
solutions of large matrices and thus requires less computa-
tion than an implicit solver for a single time step, resulting in
better solution efficiency for small time-step sizes. In many
cases, a high resolution time-step is vital for metal-based
AM considering that melting and solidification happen very
fast due to the highly localized laser heating. This paper
proposes a novel way of accelerating explicit FEA on GPUs
and demonstrates that well-crafted executive strategies, data
structures, and algorithms can achieve remarkable speed-ups
for explicit FEA. Due to the importance of the thermal his-
tory of metal powder-based AM processes in the formation
of microstructures, residual stress, and distortions [34–36]
of the additive manufactured products, this study focuses
on establishing an accelerated transient heat transfer FEA.

A summary of the finite element formulations for the
transient heat transfer and the GPU execution model is pre-
sented in Sects. 2 and 3 respectively. Alternative strategies
for matrix assembly and heat flux calculations are proposed
in Sect. 4 along with optimization methods to maximize
GPU memory bandwidth and occupancy. The performance
of the acceleration strategies on multiple test cases, the rea-
sons behind the performance of each alternative and the
accuracy of the calculations is verified and discussed in
Sect. 5 followed by conclusions in Sect. 6.

2 � Finite element formulation for transient
heat transfer

This section introduces a summary of the underlying FEA
formulation for thermal analysis of AM in order to estab-
lish the equations that will be used in the rest of the work.
Here, only the key formulations are highlighted while
the detailed mathematical steps can be found in [37–39].
First, the weak form of the transient heat equation will be
derived from the governing equations and the boundary
conditions. This weak form will then be discretized using
the Galerkin method for each element. Then the Gauss
quadrature and explicit time integration schemes will be

used to solve the global system of equations assembled
from the local system of each element.

The governing equation for the transient heat transfer
that is to be solved can be written as [37]:

where � is the material density, cp is the specific heat capac-
ity, T is temperature, t is time, k is the material conductiv-
ity, and s is the heat generation rate per unit volume. The
following boundary conditions are considered in this work:

where qs is the external heat flux, h is the convection coef-
ficient, Tamb is the ambient temperature, � is the surface emis-
sivity constant, � is the Stefan-Boltzmann constant, and Γ1 ,
Γ2 , Γ3 and Γ4 are sets of surfaces on which each of these
boundary conditions are applied on. Note that the surface
sets Γ2 , Γ3 and Γ4 are not exclusive which means multiple
boundary conditions can be assigned to a surface.

By multiplying Eq. (1) by a differentiable weight func-
tion �(x) with �(x) = 0 on Γ1 and using integration by
parts, the weak form of the transient heat transfer equation
is obtained as follows:

where T = T1(x, y, z) on Γ1.
The weight function and temperature field are discre-

tized using standard finite element shape functions and their
derivatives, which result in:

where [Ne] is the matrix of shape functions, [Be] is its deriva-
tive for each element,[Le] is the gather matrix, {T} is the
vector of temperatures at the nodes, and {�} is the vector of
weight function values. The discretized form of Eq. (6) can
be written as [37]:

(1)�cp
�T

�t
− ∇ ⋅ (k ⋅ ∇T) − s = 0

(2)(1) Dirichlet T = T1(x, y, z) on Γ1

(3)(2) Neumann q = −qs on Γ2

(4)(3) Convection q = −h
(
T − Tamb

)
on Γ3

(5)(4) Radiation q = −��
(
T4 − T4

amb

)
on Γ4

(6)

∫
Ω
�cp

�T

�t
�dV + ∫

Ω
(∇�) ⋅ (k∇T)dV − ∫

Ω
s�dV + ∫

Γ2

(
qs ⋅ n

)
�dA

+ ∫
Γ3

h
(
T − Tamb

)
�dA + ∫

Γ4

��
(
T4 − T4

amb

)
�dA = 0

∀�(x)with�(x) = 0onΓ1

(7)Te =
[
Ne

][
Le
]
{T}, �e =

[
Ne

][
Le
]
{�}

(8)∇Te =
[
Be
][
Le
]
{T}, ∇�e =

[
Be
][
Le
]
{�}

882	 Computational Mechanics (2019) 64:879–894

1 3

where nel is the number of elements in the domain, super-
script ‘ e ’ indicates that the parameter is associated with ele-
ment e , ◦ is the element-wise power operation, [M] is the
capacitance matrix, [K] is the conduction matrix,

{
RG

}
 is the

internal heat vector,
{
RF

}
 is the external flux vector,

{
RC

}

is the convection vector, and
{
RR

}
 is the radiation vector.

This equation shows that FEA matrices and vectors can be
calculated separately for each element and then assembled
into global variables for solving the weak form equation.

The Gauss quadrature method [40] is used to simplify the
numerical evaluation of integrals in Eq. (9). To do so, ele-
ments need to be transformed into an isoparametric coordi-
nate system, then the integrals can be calculated by summing
up each integrand over the integration points. By applying
this transformation, the elemental matrices and vectors
defined in Eq. (9) can be reformulated as:

(9)

⎛
⎜⎜⎜⎜⎝

nel�
e=1

[Le]T ∫�e

�
�ece

p

�
Ne

�T�
Ne

��
dV[Le]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
M

e

⎞
⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[M]

�{T}

�t

+

⎛
⎜⎜⎜⎜⎜⎝

nel�
e=1

[Le]T ∫�e

�
ke
�
Be
�T�

Be
��
dV[Le]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Ke]

⎞
⎟⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[K]

{T} −

nel�
e=1

[Le]T ∫�e

�
se
�
Ne

�T�
dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
{Re

G
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
{RG}

+

nel�
e=1

[Le]T ∫
Γe
2

�
qe
s

�
Ne

�T�
dA

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
R
e

F

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
{RF}

+

nel�
e=1

[Le]T ∫
Γe
3

�
he
�
Ne

�T��
Ne

��
Le
�
{T} −

�
Te
amb

���
dA

⏟⏞⏞⏟⏞⏞⏟
R
e

C

⏟⏞⏞⏟⏞⏞⏟
{RC}

+

nel�
e=1

[Le]T ∫
Γe
4

�
��

�
Ne

�T���
Ne

��
Le
�
{T}

�◦4
−
�
Te
amb

�◦4
��

dA

⏟⏞⏞⏟⏞⏞⏟
R
e

R

⏟⏞⏞⏟⏞⏞⏟
{RR}

= 0

(10)
[
M

e
]
=

nG∑
m=1

(
�cp

[
Ne
m

]T[
Ne
m

]
�m

||Jm||
)

where nG = 8 and nF = 4 are the number of Gauss quadrature
integration points for 8-node hexahedron elements used in

(11)
[
K

e
]
=

nG∑
m=1

(
k
[
Be
m

]T[
Be
m

]
�m

||Jm||
)

(12)
{
R
e

G

}
=

nG∑
m=1

(
s
[
Ne
m

]T
�m

||Jm||
)

(13)
{
R
e

F

}
=

nF∑
n=1

(
qs
[
Ne
n

]T
�n

||Jn||
)

(14)
{
R
e

C

}
=

nF∑
n=1

(
h
[
Ne
n

]T([
Ne
m

]{
Tn
}
−
{
Tamb

})
�n

||Jn||
)

(15)

{
R
e

R

}
=

nF∑
n=1

(
��

[
Ne
n

]T({[
Ne
m

]{
Tn
}}◦4

−
{
Tamb

}◦4
)
�n

||Jn||
)

883Computational Mechanics (2019) 64:879–894	

1 3

this work, �m = �n = 1 are the weights of integration points, [
Ne
m

]
 and

[
Be
m

]
 are the shape function and its derivative for

8-node elements in the isoparametric coordinate system, and
||Jm|| is the determinant of the Jacobian matrix for the trans-
formation from the Cartesian to the isoparametric coordinate
system for 8-node hexahedral elements.

[
Ne
n

]
 and ||Jn|| are the

isoparametric shape functions and the determinant of the
Jacobian matrix for 4-node quadrilateral surfaces.

After calculating each of the local matrices and vectors
for each element (e.g.,

[
M

e
]
 ), the contribution of each con-

nected node to the global matrices (e.g., [M] in Eq. 9), i.e.,
FEM assembly, should be performed. While traditionally
assembly is done using gather matrices (Eqs. 7–8), it is
more memory efficient to store the global IDs and coordi-
nates of all connected nodes in an object-oriented manner
and use them to write the contributions to the associated
memory address in the global matrices. Furthermore, the
multiplication of the conduction matrix [K] with the nodal
temperature {T} can be moved ahead of the assembly of
the global conduction matrix. Using this approach, one can
calculate the local conduction flux as {Ce} =

[
K

e
]
{Te} and

then assemble it into the global conduction flux vector, {C} .
This significantly reduces memory consumption as it avoids
storing the nn × nn global conduction matrix and, instead,
stores the conduction flux vector of length of nn , where nn is
the number of nodes in the simulation.

A forward Euler time integration scheme is used to
approximate the temperature derivative as presented
hereunder:

(16)

[M]

(
1

Δt

({
Tn+1

}
− {Tn}

))
=
{
RG

}
−
{
RF

}
−
{
RC

}
−
{
RR

}
− {C}{

Tn+1
}
= {Tn} + Δt[M]−1

[{
RG

}
−
{
RF

}
−
{
RC

}
−
{
RR

}
− {C}

]

where Δt is the time step and
{
Tn+1

}
 and {Tn} are nodal tem-

peratures at time steps n + 1 and n , respectively. The summa-
tion of

{
RF

}
 ,
{
RC

}
 , and

{
RR

}
 is referred to as the external

flux while [K]{Tn} as the conduction flux. Furthermore, {
RG

}
 = 0 for AM processes since elements do not generate

internal heat.
A common approach to solve Eq. (16) more efficiently

is to convert [M] into a diagonal matrix. This can be done
by considering the summation of each row as the diagonal
value [41]. This operation, also called mass lumping, not
only will eliminate the need to calculate the inverse of a
large matrix, but also makes the calculations for the tem-
perature of each node independent from other nodes. The
explicit thermal analysis of metal powder-based AM with a
forward Euler integration time scheme is considered as an
acceptable numerical approach since it has been shown to
provide many useful physics-informed features for comput-
ing microstructural evolution and mechanical properties of
AM-built parts [14, 39, 42, 43].

3 � Massively Parallel computing with CUDA:
execution and memory model

While CPUs consist of a few processing cores that have been
optimized for sequential and complex processing, GPUs con-
sist of thousands of smaller cores designed for highly parallel
tasks. CUDA is an API (Application Programming Interface)
provided by NVIDIA (inventor of the GPU) that enables
developers to manage devices and memory allocations on both
CPUs and GPUs to efficiently solve complex problems. CUDA
can be used through compiler directives, CUDA-enabled

Fig. 2   CUDA hierarchical
memory model; device (GPU)
can communicate with host
(CPU) through global, constant,
and texture memories, acces-
sible to all threads. Registers
and shared memory are low
latency memories exclusively
visible to a thread and a block
respectively

884	 Computational Mechanics (2019) 64:879–894

1 3

libraries, and multiple programming languages such as For-
tran, Python, C, C++. The present work is developed with the
CUDA C/C++ compiler, which is included in the NVIDIA
CUDA Development Kit 9.

GPUs are mainly made from multiple Streaming Multi-
processors (SMs) with the key components of computing
cores, logical and memory operational units, scheduler,
and on-chip memories. Each SM can execute hundreds of
threads at the same time based on the resources available to
them. Kernels are launched in a user-defined grid of thread
blocks, where each block contains up to 1024 threads in
recent GPUs. Once a kernel is launched, its thread blocks
will be scheduled to run on different SMs and will remain on
the SM scheduler until its execution completes. SMs execute
thread blocks in groups of 32 threads called warps. Ideally,
all the threads in a warp concurrently execute memory and
logical operations, which would lead to the most efficient
utilization of GPU resources [44].

GPUs use a programmable hierarchical memory struc-
ture that allows developers to optimize the performance of

memory operations using multiple types of memories with
different capacity, latency, and bandwidth. As shown in
Fig. 2, the main memory types in order of decreasing band-
width are: registers, shared memory, texture memory, local
memory, constant memory, and global memory.

Global memory is connected to the CPU memory via
PCI Express ports. On the latest GPUs the size of global
memory can go up to 24 GB with a memory bandwidth of
900 GB/s [45] which speeds up data transfer operations.
Each SM has on-chip shared memory with the capacity
of 64 KB on recent NVIDIA GPUs, which allows even
faster access than global memory. Each thread that runs
on a CUDA core has limited dedicated memory called
registers with low latency and high bandwidth. Constant
memory is statically defined and resides outside of any
kernel. This memory has a dedicated cache per SM and is
visible to all the threads. Local memory is physically the
same memory as global memory with high latency and is
specifically designed for storing variables in threads that
cannot fit into registers.

4 � Acceleration strategies

As seen in Sect. 0, the FEA formulation for the thermal
analysis of AM processes discretizes the domain into a large
number of elements and performs very similar calculations
on them, which makes this operation well-matched with the
massively parallel architecture of GPUs. However, some
operations for this formulation are not inherently parallel
and different calculations need to be done on subsets of
elements, nodes, and surfaces, especially considering the
dynamic nature of this simulation including birth and death
of entities and its advanced boundary conditions, which
impose serious disadvantages for GPU computing. In the
following sections, first the computational framework for
the thermal analysis of AM processes is introduced and
then the challenges associated with the GPU acceleration
of the AM processes are discussed; finally, acceleration
strategies for work distribution, memory management, and
optimized data-structures are presented to avoid or mitigate
the existing challenges.

4.1 � FEA computational framework

The overall routine for the thermal analysis of AM processes
is demonstrated in Fig. 3, including preprocessing, domain
initialization, solver, and outputting steps. The analysis starts
with preprocessing the mesh and toolpath files to determine
the birth time for each element in the mesh file. Domain ini-
tialization creates element, node and surfaces and fills them
with information necessary for the simulation. This step is

Fig. 3   Computational FEA framework for the thermal analysis of the
AM process; the routine includes preprocessing, domain initializa-
tion, the solver, and the outputting steps with the solver step as the
most computationally expensive one

885Computational Mechanics (2019) 64:879–894	

1 3

also responsible for assigning the aforementioned boundary
conditions to different sections of the mesh and calculat-
ing the critical explicit time step to ensure the stability of
the simulation. Explicit time stepping is performed during
the solver step. In this step, each element is numerically
integrated and their contributions are assembled into global
matrixes and vectors. In the next time step temperatures
for all the nodes are calculated as formulated in Eq. (16).
Finally, it is necessary to frequently save the results of the
simulation into files on the disk.

Although there is a potential in accelerating the preproc-
essing and domain initialization steps, these steps run only
once for each simulation and their execution time is rela-
tively negligible compared to the time needed for the calcu-
lation of the solver steps which repeat for all time steps of
the simulation. Therefore, in this work the preprocessing and
domain initialization steps are executed on a CPU and the
focus of the GPU acceleration is put on the solver step and
its efficient interaction with the outputting step.

4.2 � Assembly strategy to avoid race condition

An important step in calculating capacitance, conductivity,
and flux matrices is assembly, where the contribution of all
elements connected to a node are calculated and summed
up to the node’s global variable. However, considering that
these elemental calculations are done concurrently, it is
possible that multiple elements at the same time access the
global variable of a shared node between them and cause a
race condition. Race conditions occur when more than one
thread attempts to write to a memory location at the same
time. In this event, the output is undetermined. Three assem-
bly strategies are considered as alternatives to overcome this
hurdle. While there are similarities between the methods
investigated in this work with concepts proposed by Cecka
et al. [24] and Markall et al. [25], this investigation is unique

because of the factors such as the dynamic birth and death of
elements and surfaces in the FEA analysis of AM processes,
which are not considered in the existing works. As will be
demonstrated below these factors significantly affect the
outcome of the simulations. Furthermore, recent advances
in both hardware and software capabilities of GPU comput-
ing encourage a re-evaluation of the assumptions made in
previous studies.

As the first strategy—Node-element structure—the
data structure shown in Fig. 4 is considered in this work
by assigning a separate memory location for each element
connected to a node. Using this data structure, each element
will write its contribution to a unique memory and avoid the
race condition. To use this structure efficiently, the column
index of the contribution of different elements to their shared
node need to be pre-assigned in the domain initialization
step. For example, column index of the contributions of the
elements E3, E6 and E8 to node 5 is 0, 1 and 2 respectively
in Fig. 4b. The column indexes, which need to be unique
for elemental contributions to shared nodes, are calculated
using Algorithm 1 and stored in global memory. Note that a
separate kernel is used for calculating the summation of the
already calculated contributions in the node-element data
structure for each node.

As can be seen from Fig. 4b, the node-element structure
contains unused spaces, which may cause inefficient use of
global memory especially if the mesh structure contains
nodes that are connected to a large number of elements. This
problem associated with unequal connected elements can be
solved by packing the subarrays for each global node into
rows, or bins, of another array using a bin packing algorithm
[46], or a more efficient packing algorithm such as the Larg-
est-Processing-Time (LPT) [47]. However, since the current
work is focused on the acceleration of the process, this inef-
ficiency in global memory storage is not investigated.

Fig. 4   Assembly strategies for
global capacitance; a direct
assembly to global capacitance
may cause a race condition,
while b the node-element data
structure considers separate
placeholders for contribution of
each element to a node solves
this issue

886	 Computational Mechanics (2019) 64:879–894

1 3

instead of in parallel, which adversely affects computational
performance.

Explicit FEA for DED processes inherently cause many
conditional statements. One major source of the conditional
statements is the fact that elements and surfaces might get
born or die as the time of the simulation goes on due to
the nature of the process that deposits new elements while
building the part. To mitigate this issue, both elements and
surfaces are sorted based on their birth time in the domain
initialization step. By adjusting kernel execution bounda-
ries one can control the range of birth time associated with
elements and surfaces that are accessible by each kernel.
Considering that the elements stay activated after their
birth time, the kernel execution boundaries are dynamically
updated in each time step to only perform the kernels on the
active elements. The kernel boundary update is implemented
using a binary search to efficiently locate the last active ele-
ment for any time step.

Surfaces can die after their birth time in the FEA for
DED processes because an active surface for flux calcula-
tions should be on the exterior of the build and the exterior
changes dynamically in the building process. Therefore, the
dynamic kernel boundary update method only limits the
range of active surfaces, but it is not enough to exclusively
select active surfaces. Two strategies are considered to be
combined with the dynamic boundary update for surface
flux calculations. The first strategy is to minimize the branch
divergence by executing the flux calculations on all the sur-
faces in the execution boundary and canceling the effect
of inactive surfaces on

{
RF

}
 ,
{
RC

}
 and

{
RR

}
 in Eq. (16)

using a switch. The switch is an integer variable which has
a value of 1 for active surfaces and 0 for inactive ones. Using
a switch limits warp branching to only a single operation.
The second strategy is to prevent the GPU from performing
the calculations for inactive surfaces by using a conditional
statement at the beginning of the kernel. This strategy would

Algorithm 1: Arrange column indexes for node-element data structure

1. Initialize to a zero matrix, where and are the number of elements
and nodes in an element, respectively, and is the matrix containing unique column
indexes for elemental contributions to shared nodes

2. Initialize to a zero matrix, where is the number of global nodes
3. Loop over all the elements

a. nodes get nodes in the element
b. Loop over the nodes

i. get the global index of the node
ii.

iii. Increment by one to generate a unique ID next time that an element
accesses this node

c. End loop over the nodes
4. End loop over the elements

For the second assembly strategy—Coloring—the global
matrix calculations are divided into smaller subtasks, where
each subtask is responsible for the calculations of a prede-
fined group of elements. By choosing the predefined groups
in a way that no two elements in the same group have any
shared nodes and performing the calculations for each group
sequentially, one ensures that contributions of the elements
to any node are written to their allocated memories at dif-
ferent times and, therefore, avoid the race condition. This
strategy is known as coloring the mesh as one can arrange
the groups by assigning different color codes to the elements
in a way that no two adjacent elements have the same color.
A disadvantage of this approach is that arranging the colors
adds a significant overhead to the domain initialization step
of the analysis.

The third approach—Atomic—is to use Atomic opera-
tions to perform the assembly. Atomic operations are spe-
cial types of read-modify-write actions that allow memory
addresses to be accessed by only one thread at a time [45].
In the literature, the other alternatives provide better accel-
eration than Atomic operations because of the steep perfor-
mance cost associated with them. However, recent advances
in GPUs with Compute Capability of 3 × or higher improved
the performance of Atomic operations. Thus, it is impor-
tant to reinvestigate the use of Atomic operations for the
assembly.

4.3 � Mitigating warp divergence

Another issue that might severely affect the performance of
explicit FEA for DED processes is warp divergence. Unlike
CPUs that use complex branch prediction, GPUs have a sim-
pler flow control mechanism that tries to execute the exact
same instructions for all threads in a warp simultaneously.
Executing instructions such as an if-else condition causes
the if block and the else block to be performed in sequence

887Computational Mechanics (2019) 64:879–894	

1 3

result in fewer computations while inducing a severe branch
divergence to warps.

Note that for element-based calculations, it is assumed
that the time and location of the elements to be generated
are predefined by the toolpath and the elements do not die
after their birth considering the nature of AM processes. If
this assumption does not hold true (for instance due to mesh
adaptivity with dynamic birth and death of elements during

the simulation), the balance between branch divergence and
redundant calculation penalties determines the optimal per-
formance of element-based calculations similar to surface
flux calculations.

Another source of warp divergence is related to different
boundary conditions associated with different subsets of the
domain. While the Dirichlet boundary condition is usually
applied after calculation of temperatures as shown in Fig. 3,

Fig. 5   Global memory access
pattern; a an uncoalesced access
pattern is caused when threads
access memories of nodal data
for different elements, and b
a coalesced memory access
pattern achieved by rearrang-
ing data based on their kernel
access

Fig. 6   Visualization of asynchronous kernel execution using NVIDIA visual profiler; rows represent different CUDA streams and each color rep-
resents a kernel execution (Color figure online)

888	 Computational Mechanics (2019) 64:879–894

1 3

surface flux boundary conditions (i.e., external laser flux,
convection and radiation) can be applied on different sets
of surfaces. Considering that the majority of the flux opera-
tions, such as Jacobian and shape function calculations, are
similar for the three types, fluxes are calculated in active
surfaces for all three types of boundary conditions and the
effect of each boundary condition is controlled by using
precomputed switches to avoid warp divergence.

4.4 � Further optimization considerations

Further optimizations applied to this work will be discussed
in this section. Most of the device data reside in the global
memory and an efficient access to this memory is essential
for achieving high bandwidth in data transactions and proper
kernel performance. In the CUDA execution model, memory
operations are issued per warp. The most efficient access
pattern to the global memory of GPUs is aligned coalesced
access. In this access pattern, 32 threads in a warp access a
contiguous section of memory starting from an even mul-
tiple of the cache size [44]. In this case, a single memory
load/write operation is needed for all the threads in a warp
leading to a 100% bus utilization. Using uncoalesced or non-
aligned data structures would cause the same memory load/
write to be done in multiple separate operations.

The data associated with different nodes of an element
are normally stored next to each other as demonstrated in
Fig. 5a. While executing kernels on elements, the GPU warp
scheduler will try to execute a single task, for example, cal-
culating the capacitance matrix, for hundreds of elements
at the same time. Therefore, all threads in a warp will run
memory access for the same index node of all the elements

together. This access pattern will cause a significant effi-
ciency penalty due to uncoalesced access.

To maximize the efficiency of global memory reads and
writes, data is rearranged in the domain initialization step to
access elemental matrices and vectors in a coalesced manner
as depicted in Fig. 5b. A similar rearrangement is applied
for all element, node, and surface global variables such as
the nodal coordinates, the connectivity matrices, the element
capacitance and conductivity matrices, and nodal tempera-
tures to ensure efficient global memory transactions. When
using the coloring assembly strategy this rearrangement
should be done for each color separately.

GPU memory hierarchy architecture allows programmers
to use memory types that are most suitable for a given task
based on memory latency, bandwidth and capacity in dif-
ferent sections of the code. The GPU constant memory and
shared memory are used in the present work to decrease the
number of registers used in each kernel and avoid spilling

Fig. 7   Geometries and meshes
of the test samples where blue
meshes represent the substrate
and red meshes represent the
build for a DED cubic, b DED
cruciform, c DED thin-wall, and
d SLM powder-bed geometries

Table 1   Summary of simulation parameters for the test samples

Cubic Cruciform Thin-wall Powder-bed

Number of ele-
ments

84,346 205,618 193,944 384,000

Number of nodes 93,748 232,447 210,000 400,221
Minimum time

step
9.78e−4 s 1.96e−3 s 1.69e−2 s 1.38e−3 s

Build time 1195 s 3007 s 2741 s 42 s
Material SS316L SS316L Ti-6Al-4 V SS316L
Laser power 1050 W 1050 W 1500 W 120 W
Hatch Spacing 1.1 mm 1.1 mm 1.9 mm 0.5 mm

889Computational Mechanics (2019) 64:879–894	

1 3

registers into local memory, which has a high latency. Con-
stant memory is used for accessing material properties such
as density, solidus and liquidus temperatures, specific heat,
etc. Since all the threads will load these variables together,
the constant memory will broadcast the corresponding val-
ues to all the threads at the same time and cause a desirable
access pattern. Shared memory is used for calculating the
shape function and the Jacobian of each element. This is
because these variables are called many times inside the
kernels. Having them in the lowest latency memories is
essential since keeping them in registers would use too many
registers in each block and limit the number of warps that
can be executed in each block.

Another major acceleration consideration implemented in
this work is to asynchronously launch kernels using CUDA
streams to overlap calculations done on the CPU and GPU,

overlap data transfer and kernel execution, and concurrently
execute GPU kernels. As mentioned before, kernel execution
boundaries need to be calculated before execution of each
kernel on the CPU. By overlapping these calculations with
previous kernel executions both the CPU and GPU can work
at the same time to completely hide the time needed for CPU
calculation. Overlapping data transfer with kernel execution
decreases the time needed for saving the simulation outputs
by concurrently copying data from GPU global memory to
CPU accessible memory (RAM) while continuing the calcu-
lation of the next time step. Finally, concurrent execution of
GPU kernels increases the device occupancy by increasing
the number of warps scheduled to be run. The asynchro-
nous execution of kernels on different CUDA streams and
the overlap between data transfer and device calculations is

Fig. 8   Visualization of the test
simulation outputs for a DED
cubic, b DED cruciform, c DED
thin-wall, and d SLM powder-
bed builds

Cubic Cruciform Thin_Wall Powder_Bed
0

20

40

60

80

100

120

140

Node-Element Structure Coloring Atomic

Sp
ee

d-
up

Fig. 9   Acceleration results of the assembly strategies for test samples

Fig. 10   Correlation between the number of nodes and the achieved
speed-up in test samples

890	 Computational Mechanics (2019) 64:879–894

1 3

demonstrated in Fig. 6, which is the output of the NVIDIA
Visual Profiler tool.

As shown in Fig. 6, the data transfer between the GPU
and CPU memories is performed concurrently with the ini-
tialization of the FEA matrices, which means that this data
transfer does not add significant overhead to the simulation
time and can be performed as frequently as desired. This
technique allows for the transfer of the calculations that are
inherently conditional such as computing the cooling rate to
the CPU side and achieve further acceleration by avoiding
costly conditional computations on the GPU.

5 � Acceleration results and verification

To test the acceleration strategies discussed previously,
four samples of AM processes are investigated. The sam-
ples include three DED builds of cubic, cruciform, and thin-
walled geometries, and a powder-bed SLM build. The mesh
and geometry of the samples are demonstrated in Fig. 7,
where the blue meshes represent the substrate while the
red meshes represent the build. The difference between the
simulation setup of the SLM process and DED processes is
that for SLM, an entire layer of elements is born at the same
time, while for DED, the elements are born gradually fol-
lowing the laser focal point.

The simulation parameters of the samples considered
for the verification of the proposed algorithms include the
number of elements in the range of around 80,000–400,000
elements, the build time in the range of 42–3,007 s, and the
stainless steel 316L and Titanium alloy Ti–6Al–4V materi-
als as listed in Table 1.

To determine the effect of assembly strategy on accel-
eration, the three GPU assembly approaches described in
Sect. 4.2 are used to simulate each sample and are compared
with an optimized single CPU core implementation of the
same calculations. The optimized CPU implementation con-
siders elements as non-deformable and material properties as
fixed values. Using these simplifying assumptions, the CPU
implementation calculates element and surface Jacobians as
well as the element local conduction matrices only once and
uses the stored values at each time-step. This implementa-
tion is used to enable simulation of the samples in a feasible
time frame since the version without simplification is an
order of magnitude more computationally expensive. How-
ever, all GPU implementations perform these calculations
at each time-step which makes them suitable for simulation
with deformable elements and temperature-dependent mate-
rial properties. To have a fair comparison, all calculations
in the GPU and CPU implementations are performed based
on the explicit FEA formulation presented in 0 using single
precision 32-bit floating-point numbers.

The node-element data structure GPU implementation
output for the temperature field of the samples during the
build is visualized in Fig. 8, in which the range of color
bars is set from 300 K to the liquidus temperature of the
material; therefore, the red color region represents the melt
pool.

The results of the simulation speed-up of the GPU ena-
bled implementations for the assembly strategies compared
to the optimized single CPU case are provided in Fig. 9.
The results are produced using the NVIDIA GeForce GTX
TITAN Black graphics card, which has 2880 CUDA cores,
bus support of PCI Express 3.0, 6 GB of global memory,
and compute capability of 3.5. The CPU used for this work
is an Intel(R) Xeon(R) CPU E5-2687 W with a clock speed
of 3.10 GHz.

The major time-consuming operations in this process are
calculating the capacitance, conduction flux, and external
fluxes with 45.8, 32.8, and 20.1% of the total simulation
time, respectively, determined as the average of all test sam-
ples. Other operations such as initializations, forward time
integration and Dirichlet boundary assignment take on the
average less than 2% of the total time.

Although many factors can affect the speed-up of a simu-
lation such as the frequency of output, the distribution of
boundary conditions between surfaces, and the birth strategy
of the build, these results indicate a correlation between the
size of the simulations, which can be represented by the
number of elements or nodes, and the speed-up, which is
demonstrated in Fig. 10. This is because the more elements
and nodes the model has, the more parallel works exist for
the GPU and the overall simulation becomes more suitable
for the massively parallel architecture of the GPU.

The thin wall and cruciform builds have a similar num-
ber of nodes, but there is a significant difference between
their speed-ups. As can be seen in Fig. 7, a larger portion of
the total nodes of the geometry is associated with the build
in the thin-wall simulation with respect to the cruciform

0
20
40
60
80

100
120
140
160

Cubic Cruciform Thin_Wall Powder_Bed

Sp
ee

d-
up

Least Warp Divergence Least Kernel Computation

Fig. 11   Acceleration results of the flux calculation strategy for test
samples

891Computational Mechanics (2019) 64:879–894	

1 3

simulation. Considering that the simulation works on active
elements and nodes during each time step, the effective size
of the simulation for the thin-wall is significantly smaller
than for the cruciform build at the beginning time steps,
which is one reason for the better performance of the cru-
ciform build.

The assembly strategy using coloring leads to the worst
performance between the investigated approaches. This poor
performance is because the size of the problem executed on
the GPU at each time is dramatically decreased (the decrease
is more severe in case of highly unstructured meshes) as
it divides the problem domain into multiple smaller sub-
domains. Furthermore, the explicit flow control require-
ments to ensure each sub-domain is executed in sequence
significantly restricts the amount of parallelization that the
GPU can apply to solve the problem. Therefore, the occu-
pancy of the GPU decreases. This is the main bottleneck of
this strategy. This bottleneck can be qualitatively seen from
the average occupancy of 53.4% of the device for the test
samples, while it is over 80% for other strategies. Moreover,
operations such as dynamic assignment of boundaries which
needs to be repeated for each subdomain and the overhead of
initial arrangement of element colors harm the performance
of this scheme.

The strategy using the node-element data structure out-
performs the coloring approach. However, this strategy has
two major computational bottlenecks. First, the size of the
matrices for storing capacitance, conduction and external

fluxes in global memory is several times larger than the
reduced matrices and therefore this strategy leads to far
higher requests for global memory access as compared to
methods that directly work on reduced matrices. This bot-
tleneck is verified by the NVIDIA profiling tool which indi-
cates that ‘load’ and ‘save’ instructions for global memory
are the leading bottleneck of this process. Second, this strat-
egy requires separate kernels for reduction operations which
slow down the computations in each time step and account
for 11% of the execution time on average for the presented
test samples.

The strategy using Atomic operations consistently pro-
vides the best performance for all the samples. The bottle-
neck of this strategy is the arithmetic operations which are
implicitly halted to control race conditions. However, a race
condition does not happen in the assembly procedure for all
the nodes since the physical execution of warps can happen

Fig. 12   Computing time and
memory consumption of test
samples with coarse, medium,
and fine meshes with respect
to the number of nodes on the
log–log scale

Fig. 13   Validation of the
accuracy of the GPU calcula-
tions; a a demonstration of the
test geometry and a screenshot
of its thermal profile during the
build, where the yellow cross
represents the probe point, and
b the comparison between the
GPU and CPU outputs for the
thermal hisotry at the probe
point

Table 2   Accuracy of the GPU strategies with respect to the CPU cal-
culations for the NU-shape build

Strategy Node-
element
structure
and least
divergence

Atomic and
least diver-
gence

Coloring
and least
divergence

Atomic and
least com-
putation

Mean abso-
lute error

8.538e−6 7.088e−6 9.360e−6 7.096e−6

892	 Computational Mechanics (2019) 64:879–894

1 3

at separate times. Using the Atomic operations allows the
GPU to halt only the memory operations with race condi-
tions and avoid costly explicit synchronization. This capabil-
ity is particularly improved in recent GPUs with Compute
Capability of 3 × or higher [48]. The Atomic strategy not
only has lower execution time with respect to the other strat-
egies, it also requires the least amount of preprocessing and
global memory storage.

The results of the flux calculation strategies are provided
in Fig. 11 using the Atomic assembly strategy. The results
show that for the DED test samples using the least kernel
computation strategy would lead to a significant increase in
the performance with respect to the least warp divergence
strategy, while the two strategies perform almost identi-
cally for the SLM test sample. This dissimilarity can be
explained based on the different element generation modes
in DED and SLM simulations. In DED processes, the ele-
ments are generated gradually by following the laser focal
point, while in SLM the whole layer of elements is generated
simultaneously. The gradual generation of elements in the
DED processes results in a far greater number of external
surfaces in the simulations as compared to SLM processes.
This result indicates that in the case of powder-bed simula-
tions the cost associated with warp divergence and redundant
kernel computations is balanced. However, in the case of
DED processes which have more dynamic surfaces the cost
of excessive redundant calculations exceeds the warp diver-
gence penalty. Therefore, considering the large number of
surface births and deaths in DED processes, it is beneficial
to use conditional statements to avoid redundant calculations
for inactive surfaces.

To analyze the effect of the number of degrees of freedom
on the computing time and memory consumption for the
discussed strategies, the cubic sample geometry (Fig. 7a)
is tested with three meshes: a coarse (about 60 K nodes), a
medium (about 400 K nodes), and a fine mesh (about 3.3 M
nodes). The results of this analysis are demonstrated in
Fig. 12 on the log–log scale. As it can be seen from Fig. 12
left, the computing time of the four discussed strategies
behaves consistently across different numbers of nodes in
the numerical model. In terms of memory consumption
(Fig. 12 right), Atomic operation consistently leads to the
best memory consumption while the node-element structure
needs the most memory. Note that due to the GPU memory
overhead we observe smaller difference in memory con-
sumption of the strategies for the coarsest mesh. Since the
flux calculation strategy between least calculation and least
divergence does not affect memory consumption, it is not
plotted in Fig. 12 right.

The accuracy of the results is validated by comparing the
temperature outputs for the GPU implementations and the
CPU one. This validation is demonstrated on a NU-shape
build with nearly 200,000 nodes and 150 s of the build time

as depicted in Fig. 13a), where the yellow cross represents
the probe point. A comparative figure for the output temper-
ature of the probe point calculated on the CPU and the GPU
implementation with Atomic operation and the least kernel
computation strategies is shown as Fig. 13b), which verifies
the accuracy of the GPU calculations. The mean absolute
error of different strategies is summarized in Table 2 for
the NU-shaped sample, which indicates the correctness of
the calculations presented in this work considering that the
operations are done on 32 bits floating point numbers with
6 significant decimal digits.

6 � Conclusions and Future works

In conclusion, this paper presents methodologies for accel-
erating the FEA calculations for explicit thermal analysis of
metal powder-based AM processes. Three different strate-
gies to avoid race conditions are investigated, namely node-
element structure, coloring and atomic. Despite promising
results in the literature for assembly using the node-element
structure and coloring techniques, our results indicate that
atomic operations can lead to the best speed-ups for FEM
simulation of AM processes. Considering that AM simula-
tions often start with a fraction of active elements, the col-
oring strategy does not provide a competitive performance
because of its sensitivity on the simulation size. The node-
element strategy multiplies the required global memory
accesses, which makes memory operations the bottleneck
of the process especially for non-uniform mesh structures.
Considering that the race condition does not happen for all
the elements, using the atomic operations modern GPUs are
capable of efficiently halting memory accesses that cause
race conditions without explicit costly synchronization.
The investigation of two flux calculation strategies (i.e.,
least warp divergence and least kernel computation) indi-
cates that the cost of excessive computations surpasses the
penalty of warp divergence for the FEM simulation of AM
processes, especially for DED processes where elements
are dynamically born at each time step of the simulation.
Furthermore, memory hierarchy and host-device concur-
rency are used to optimize the use of GPU resources. The
implementations are tested on multiple builds which lead
to speed-ups of about 100–150 × with respect to an opti-
mized single CPU core implementation for the strategy of
assembling by using Atomic operations and flux calculations
using the least kernel computation approach along with the
proposed optimization.

In the future, more attempts will be dedicated to adding
multi-physics formulations into the GPU accelerated FEM
model. An important coupled physics with the thermal anal-
ysis of the AM process is the thermoelastic behavior of the
material that generates deformations and residual stresses.

893Computational Mechanics (2019) 64:879–894	

1 3

Additionally, the scalability of the developed FEM pack-
age on multi-GPU clusters is another interesting subject that
needs further investigation as it is noted in [49–52]. Consid-
ering that GPU clusters are becoming increasingly popular,
the scalability performance of the model is critical to prob-
lems that require large memory or computational power.

Acknowledgements  The authors acknowledge the support by the
National Institute of Standards and Technology (NIST)—Center
for Hierarchical Materials Design (CHiMaD) under Grant No.
70NANB14H012, and the National Science Foundation (NSF)—
Cyber-Physical Systems (CPS) under Grant No. CPS/CMMI-1646592.
Stephen Lin is supported by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1324585.

References

	 1.	 Yang L, Harrysson O, West H, Cormier D (2012) Compressive
properties of Ti–6Al–4V auxetic mesh structures made by electron
beam melting. Acta Mater 60(8):3370–3379

	 2.	 Guo C, Ge W, Lin F (2015) Dual-material electron beam selective
melting: hardware development and validation studies. Engineer-
ing 1(1):124–130

	 3.	 Wenjun G, Chao G, Feng L (2015) Microstructures of components
synthesized via electron beam selective melting using blended
pre-alloyed powders of Ti6Al4V and Ti45Al7Nb. Rare Metal
Mater Eng 44(11):2623–2627

	 4.	 Tan X, Kok Y, Tan YJ, Descoins M, Mangelinck D, Tor SB,
Leong KF, Chua CK (2015) Graded microstructure and mechani-
cal properties of additive manufactured Ti–6Al–4V via electron
beam melting. Acta Mater 97:1–16

	 5.	 Dehoff R, Kirka M, Sames W, Bilheux H, Tremsin A, Lowe L,
Babu S (2015) Site specific control of crystallographic grain ori-
entation through electron beam additive manufacturing. Mater Sci
Technol 31(8):931–938

	 6.	 Gibson I, Rosen DW, Stucker B (2010) Sheet lamination pro-
cesses. In: Additive manufacturing technologies. Springer, pp
223–252

	 7.	 Gu D, Meiners W, Wissenbach K, Poprawe R (2012) Laser addi-
tive manufacturing of metallic components: materials, processes
and mechanisms. Int Mater Rev 57(3):133–164

	 8.	 King W, Anderson A, Ferencz R, Hodge N, Kamath C, Khairal-
lah S, Rubenchik A (2015) Laser powder bed fusion additive
manufacturing of metals; physics, computational, and materials
challenges. Appl Phys Rev 2(4):041304

	 9.	 Parry L, Ashcroft I, Wildman RD (2016) Understanding the
effect of laser scan strategy on residual stress in selective laser
melting through thermo-mechanical simulation. Addit Manuf
12:1–15

	10.	 Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of
metallic powder bed additive manufacturing processes with the
finite element method: a critical review. Proc Inst Mech Eng Part
B: J Eng Manuf 231(1):96–117

	11.	 Khairallah SA, Anderson AT, Rubenchik A, King WE (2016)
Laser powder-bed fusion additive manufacturing: physics of com-
plex melt flow and formation mechanisms of pores, spatter, and
denudation zones. Acta Mater 108:36–45

	12.	 Rai A, Markl M, Körner C (2016) A coupled cellular automaton-
lattice Boltzmann model for grain structure simulation during
additive manufacturing. Comput Mater Sci 124:37–48

	13.	 Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu
H, Ndip-Agbor E (2018) Data-driven multi-scale multi-physics
models to derive process–structure–property relationships for
additive manufacturing. Comput Mech 61:1–21

	14.	 Wolff SJ, Lin S, Faierson EJ, Liu WK, Wagner GJ, Cao J (2017)
A framework to link localized cooling and properties of directed
energy deposition (DED)-processed Ti–6Al–4V. Acta Mater
132:106–117

	15.	 Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronk-
horst CA, Carlson NN, Newman CK, Haut T, Bakosi J (2017)
Modeling of additive manufacturing processes for metals: chal-
lenges and opportunities. Curr Opin Solid State Materials Sci
21(LA-UR-16-24513)

	16.	 NVIDIA (2016) NVIDIA GPU accelerated applications catalog
	17.	 Tajdari M, Tai BL (2016) Modeling of brittle and ductile materi-

als drilling using smoothed-particle hydrodynamics. In: ASME
2016 11th international manufacturing science and engineering
conference, 2016. American Society of Mechanical Engineers

	18.	 Bell N, Hoberock J (2011) Thrust: a productivity-oriented library
for CUDA. In: GPU computing gems Jade edition. Elsevier, pp
359–371

	19.	 Bolz J, Farmer I, Grinspun E, Schröoder P (2003) Sparse matrix
solvers on the GPU: conjugate gradients and multigrid. In: ACM
transactions on graphics (TOG). ACM

	20.	 Nvidia C (2014) Cusparse library. NVIDIA Corporation, Santa
Clara

	21.	 Price AD (2013) Multi-GPU Computing with Abaqus: bench-
marking and scaling for multiphysics applications in mechatronics

	22.	 Lukarski D (2015) Paralution-library for iterative sparse methods
	23.	 Pichler F, Haase G (2019) Finite element method completely

implemented for graphic processor units using parallel algorithm
libraries. Int J High Perf Comput Appl 33(1):53–66

	24.	 Cecka C, Lew AJ, Darve E (2011) Assembly of finite ele-
ment methods on graphics processors. Int J Numer Meth Eng
85(5):640–669

	25.	 Markall G, Slemmer A, Ham D, Kelly P, Cantwell C, Sherwin
S (2013) Finite element assembly strategies on multi-core and
many-core architectures. Int J Numer Meth Fluids 71(1):80–97

	26.	 Markall GR, Ham DA, Kelly PH (2010) Towards generating opti-
mised finite element solvers for GPUs from high-level specifica-
tions. Proc Comput Sci 1(1):1815–1823

	27.	 Dziekonski A, Lamecki A, Mrozowski M (2011) A memory effi-
cient and fast sparse matrix vector product on a GPU. Prog Elec-
tromagn Res 116:49–63

	28.	 Dziekonski A, Lamecki A, Mrozowski M (2016) GPU-accelerated
finite element method. In: 2016 IEEE MTT-S international confer-
ence on numerical electromagnetic and multiphysics modeling
and optimization (NEMO). IEEE

	29.	 Dziekonski A, Sypek P, Lamecki A, Mrozowski M (2012) Finite
element matrix generation on a GPU. Prog Electromagn Res
128:249–265

	30.	 Saad Y (2003) Iterative methods for sparse linear systems, vol 82.
SIAM

	31.	 Knepley MG, Rupp K, Terrel AR (2016) Finite element inte-
gration with quadrature on the GPU. arXiv preprint arXiv​
:1607.04245​

	32.	 Knepley MG, Terrel AR (2013) Finite element integration on
GPUs. ACM Trans Math Softw (TOMS) 39(2):10

	33.	 Georgescu S, Chow P, Okuda H (2013) GPU acceleration for
FEM-based structural analysis. Arch Comput Methods Eng
20(2):111–121

	34.	 Van Belle L, Vansteenkiste G, Boyer JC (2012) Comparisons of
numerical modelling of the selective laser melting. In: Key engi-
neering materials. Trans Tech Publ

894	 Computational Mechanics (2019) 64:879–894

1 3

	35.	 Zaeh MF, Branner G (2010) Investigations on residual stresses
and deformations in selective laser melting. Prod Eng Res Dev
4(1):35–45

	36.	 Wang Z, Beese AM (2017) Effect of chemistry on martensitic
phase transformation kinetics and resulting properties of addi-
tively manufactured stainless steel. Acta Mater 131:410–422

	37.	 Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear
finite elements for continua and structures. Wiley, Hoboken

	38.	 Fish J, Belytschko T (2007) A first course in finite elements.
Wiley, Hoboken

	39.	 Smith J, Xiong W, Cao J, Liu WK (2016) Thermodynamically
consistent microstructure prediction of additively manufactured
materials. Comput Mech 57(3):359–370

	40.	 Golub GH, Welsch JH (1969) Calculation of Gauss quadrature
rules. Math Comput 23(106):221–230

	41.	 Zhu J (2013) The finite element method: its basis and fundamen-
tals. Elsevier, Amsterdam

	42.	 Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S,
Wu H, Ndip-Agbor EJCM (2018) Data-driven multi-scale multi-
physics models to derive process–structure–property relationships
for additive manufacturing. Comput Mech 61(5):521–541

	43.	 Mozaffar M, Paul A, Al-Bahrani R, Wolff S, Choudhary A,
Agrawal A, Ehmann K, Cao JJMI (2018) Data-driven prediction
of the high-dimensional thermal history in directed energy deposi-
tion processes via recurrent neural networks. Manuf Lett 18:35–39

	44.	 Cheng J, Grossman M, McKercher T (2014) Professional Cuda C
programming. Wiley, Hoboken

	45.	 NVIDIA (2008) NVIDIA CUDA C programming guide, pp.
1–261

	46.	 Lee C-C, Lee D-T (1985) A simple on-line bin-packing algorithm.
J ACM (JACM) 32(3):562–572

	47.	 Graham RL (1969) Bounds on multiprocessing timing anomalies.
SIAM J Appl Math 17(2):416–429

	48.	 NVIDIA (2018) Features and technical specifications. https​://docs.
nvidi​a.com/cuda/cuda-c-progr​ammin​g-guide​/index​.html#compu​
te-capab​iliti​es

	49.	 Meng H-T, Nie B-L, Wong S, Macon C, Jin J-MJIA, Magazine P
(2014) GPU accelerated finite-element computation for electro-
magnetic analysis. IEEE Antennas Propag Mag 56(2):39–62

	50.	 Wang H, Zeng Y, Li E, Huang G, Gao G, Li GJCMIAM (2016)
“Seen Is Solution” a CAD/CAE integrated parallel reanalysis
design system. Comput Methods Appl Mech Eng 299:187–214

	51.	 Zhang R, Wen L, Naboulsi S, Eason T, Vasudevan VK, Qian
DJCM (2016) Accelerated multiscale space–time finite element
simulation and application to high cycle fatigue life prediction.
Comput Mech 58(2):329–349

	52.	 Yamaguchi T, Fujita K, Ichimura T, Hori T, Hori M, Wijerathne
LJPCS (2017) Fast finite element analysis method using multi-
ple gpus for crustal deformation and its application to stochastic
inversion analysis with geometry uncertainty. Proc Comput Sci
108:765–775

	53.	 Bennett JL, Wolff SJ, Hyatt G, Ehmann K, Cao J (2017) Thermal
effect on clad dimension for laser deposited Inconel 718. J Manuf
Process 28:550–557

	54.	 Commons W (2015) File: selective laser melting system sche-
matic.jpg—Wikimedia Commons{,} the free media repository.
https​://commo​ns.wikim​edia.org/w/index​.php?title​=File:Selec​
tive_laser​_melti​ng_syste​m_schem​atic.jpg&oldid​=15408​8078.
Accessed 15 Oct 2018

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations

