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Abstract
Metal powder-based Additive Manufacturing (AM) processes are increasingly used in industry and science due to their 
unique capability of building complex geometries. However, the immense computational cost associated with AM predic-
tive models hinders the further industrial adoption of these technologies for time-sensitive applications, process design with 
uncertainties or real-time process control. In this work, a novel approach to accelerate the explicit finite element analysis of 
the transient heat transfer of AM processes is proposed using Graphical Processing Units. The challenges associated with 
this approach are enumerated and multiple strategies to overcome each challenge are discussed. The performance of the 
proposed algorithms is evaluated on multiple test cases. Speed-ups of about 100 ×–150 × compared to an optimized single 
CPU core implementation for the best strategy were achieved.

Keywords  Additive manufacturing · Directed energy deposition · GPU acceleration · Finite element methods · High 
performance computing

1  Introduction

Metal powder-based additive manufacturing (AM) processes 
are increasingly used in a variety of industries due to their 
advantages in geometric complexity and flexibility of their 
products and consequently, the associated manufacturing 
time and cost. Nowadays, applications of metal powder-
based AM processes go beyond just producing prototypes, 
but also for manufacturing functional products with com-
plex geometries [1], varying alloy composition [2, 3], and 
locally-controlled microstructures [4, 5]. Directed Energy 
Deposition (DED) is a class of AM processes that uses 
focused heat sources, usually an electron or laser beam, to 
melt the powders and simultaneously delivers the powder 
to the focal point of the heat source as the powder delivery 
nozzle follows the toolpath derived from CAD geometries 

[6, 7]. Selective Laser Melting (SLM) is another category of 
AM processes in which a thin layer of powder is delivered to 
the base plate using a powder delivery system and then the 
laser is used to melt and fuse the powder [8]. Schematics of 
these two AM processes, DED and SLM, are demonstrated 
in Fig. 1.

The uncertainty in predicting the final properties of the 
products is one of the most critical challenges of AM tech-
nologies. Many computational methods have been proposed 
to address this issue using macro-scale [9, 10], meso-scale 
[11, 12] or multi-scale modeling [13, 14]. However, a com-
mon problem with the existing predictive methods for AM 
is their enormous computational cost that might take weeks 
or months of compute time [15], which makes these compu-
tational models orders of magnitude slower than the experi-
ment itself and impossible to use in any time-sensitive appli-
cation such as real-time control or optimization procedures. 
Therefore, investigating methods to accelerate AM predic-
tive models is vital for overcoming existing barriers and to 
achieve wider application of AM technologies in industry.
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1.1 � A review on GPU‑accelerated finite element 
analysis

One approach to overcome the computational burdens asso-
ciated with the modeling methods is by accelerating AM 
simulations using parallelization practices on computer clus-
ters or more recently Graphical Processing Units (GPUs). 
GPUs are traditionally designed to handle computer graph-
ics and their hardware is designed to perform optimally for 
that task. With the emergence of the General-Purpose GPU 
(GPGPU) concept, the applications of GPUs have been 
extended to many science fields and revolutionized com-
putations in finance, bioinformatics, machine learning and 
computer vision [16].

Finite Element Method (FEM) is an effective tool for 
simulating the process physics in wide variety of applica-
tions including AM [14, 17]. FEM calculations consist of 
two major tasks: (1) creating a large system of equations 
based on physics-based partial differential equations on a 
discretized domain; and (2) solving the system of equa-
tions. GPUs can be used to accelerate the process of solving 
finite element analysis (FEA) systems of equations. Efficient 
GPU-accelerated libraries, such as THRUST [18], exist that 
handle the iterative procedure of solving matrix-based equa-
tions. Solving sparse systems of equations on GPUs has been 
extensively investigated [19] and well-developed libraries 
are publicly available such as cuSPARSE [20]. Recently, 
commercial FEM software packages, such as ABAQUS, 
COMSOL, etc., use this technique to boost the performance 
for their analyses. A benchmark of the acceleration per-
formance of different matrix solvers for the simulation of 
polymer actuator’s electromechanical response is developed 
in [21]. An implicit simulation of an automobile battery’s 
thermal runaway is accelerated using Thrust and Paralution 
[22] libraries as equation solvers with speed-ups of up to 
50 in [23].

An alternative approach is to perform both tasks (i.e., 
creating the FEM systems of equation and solving them) 
on the GPU. A fundamental investigation of this method 
is presented in [24] for an FEM simulation which solves 
steady-state heat equations. Different work distributions and 
memory arrangements for the implementation are consid-
ered resulting in speed-up of up to 30 × depending on the 
element order and simulation size (i.e., number of elements 
in the simulation). A high-level domain-specific language 
was developed for the implementation of FEM simulations 
on both CPUs and GPUs in [25, 26]. Using the developed 
platform, called the Unified Form Language (UFL), they 
investigated the memory storage and access patterns that led 
to optimal performances in CPU and GPU implementations. 
Furthermore, they introduced the Local Matrix Approach 
(LMA) as an alternative assembly algorithm to eliminate 
the necessity for operations known as atomic operations. In 
[27–29], the matrix generation method is divided into three 
consecutive tasks of: (1) numerical integration, (2) assem-
bly in the coordinate (COO) format, and (3) conversion into 
Compressed Row Storage (CRS) [30] format. The authors 
used GPU computing for simulating 9-pole microwave elec-
tromagnetic responses by distributing the GPU work based 
on each FEM integration point. Using a sparse solver with 
the Conjugate Gradient Method (CGM) and precondition-
ers, the authors achieved a 81 × speed-up of the simulation. 
Global memory accesses and calculations are interleaved 
to achieve 100 billion floating-point operations per second 
in [31, 32]. A mapping between elements and integration 
points was proposed to eliminate the reduction operations. 
In Ref. [33], the authors discussed the existing works and 
potentials of GPU computing for the structural analysis com-
ponents including model conversion, meshing, solving the 
system of equations, and visualizing the results.

Fig. 1   Schematic of two AM processes; a DED process with coaxial nozzle to deliver powder to the focal point of a laser and b SLM process 
that uses a roller to spread a thin layer of powder before melting the layer [53, 54]
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1.2 � Scope of this paper

Despite existing profound researches on acceleration of FEA 
solvers, the methodologies discussed above do not provide 
a solution for the implementation of an explicit FEA on 
a problem with advanced evolving boundary conditions, 
which is needed for simulating a metal powder-based AM 
process. An explicit FEA solver does not require iterative 
solutions of large matrices and thus requires less computa-
tion than an implicit solver for a single time step, resulting in 
better solution efficiency for small time-step sizes. In many 
cases, a high resolution time-step is vital for metal-based 
AM considering that melting and solidification happen very 
fast due to the highly localized laser heating. This paper 
proposes a novel way of accelerating explicit FEA on GPUs 
and demonstrates that well-crafted executive strategies, data 
structures, and algorithms can achieve remarkable speed-ups 
for explicit FEA. Due to the importance of the thermal his-
tory of metal powder-based AM processes in the formation 
of microstructures, residual stress, and distortions [34–36] 
of the additive manufactured products, this study focuses 
on establishing an accelerated transient heat transfer FEA.

A summary of the finite element formulations for the 
transient heat transfer and the GPU execution model is pre-
sented in Sects. 2 and 3 respectively. Alternative strategies 
for matrix assembly and heat flux calculations are proposed 
in Sect. 4 along with optimization methods to maximize 
GPU memory bandwidth and occupancy. The performance 
of the acceleration strategies on multiple test cases, the rea-
sons behind the performance of each alternative and the 
accuracy of the calculations is verified and discussed in 
Sect. 5 followed by conclusions in Sect. 6.

2 � Finite element formulation for transient 
heat transfer

This section introduces a summary of the underlying FEA 
formulation for thermal analysis of AM in order to estab-
lish the equations that will be used in the rest of the work. 
Here, only the key formulations are highlighted while 
the detailed mathematical steps can be found in [37–39]. 
First, the weak form of the transient heat equation will be 
derived from the governing equations and the boundary 
conditions. This weak form will then be discretized using 
the Galerkin method for each element. Then the Gauss 
quadrature and explicit time integration schemes will be 

used to solve the global system of equations assembled 
from the local system of each element.

The governing equation for the transient heat transfer 
that is to be solved can be written as [37]:

where � is the material density, cp is the specific heat capac-
ity, T  is temperature, t is time, k is the material conductiv-
ity, and s is the heat generation rate per unit volume. The 
following boundary conditions are considered in this work:

where qs is the external heat flux, h is the convection coef-
ficient, Tamb is the ambient temperature, � is the surface emis-
sivity constant, � is the Stefan-Boltzmann constant, and Γ1 , 
Γ2 , Γ3 and Γ4 are sets of surfaces on which each of these 
boundary conditions are applied on. Note that the surface 
sets Γ2 , Γ3 and Γ4 are not exclusive which means multiple 
boundary conditions can be assigned to a surface.

By multiplying Eq. (1) by a differentiable weight func-
tion �(x) with �(x) = 0 on Γ1 and using integration by 
parts, the weak form of the transient heat transfer equation 
is obtained as follows:

where T = T1(x, y, z) on Γ1.
The weight function and temperature field are discre-

tized using standard finite element shape functions and their 
derivatives, which result in:

where [Ne] is the matrix of shape functions, [Be] is its deriva-
tive for each element,[Le] is the gather matrix, {T} is the 
vector of temperatures at the nodes, and {�} is the vector of 
weight function values. The discretized form of Eq. (6) can 
be written as [37]:

(1)�cp
�T

�t
− ∇ ⋅ (k ⋅ ∇T) − s = 0

(2)(1) Dirichlet T = T1(x, y, z) on Γ1

(3)(2) Neumann q = −qs on Γ2

(4)(3) Convection q = −h
(
T − Tamb

)
on Γ3

(5)(4) Radiation q = −��
(
T4 − T4

amb

)
on Γ4

(6)
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where nel is the number of elements in the domain, super-
script ‘ e ’ indicates that the parameter is associated with ele-
ment e , ◦ is the element-wise power operation, [M] is the 
capacitance matrix, [K] is the conduction matrix, 

{
RG

}
 is the 

internal heat vector, 
{
RF

}
 is the external flux vector, 

{
RC

}
 

is the convection vector, and 
{
RR

}
 is the radiation vector. 

This equation shows that FEA matrices and vectors can be 
calculated separately for each element and then assembled 
into global variables for solving the weak form equation.

The Gauss quadrature method [40] is used to simplify the 
numerical evaluation of integrals in Eq. (9). To do so, ele-
ments need to be transformed into an isoparametric coordi-
nate system, then the integrals can be calculated by summing 
up each integrand over the integration points. By applying 
this transformation, the elemental matrices and vectors 
defined in Eq. (9) can be reformulated as:

(9)
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this work, �m = �n = 1 are the weights of integration points, [
Ne
m

]
 and 

[
Be
m

]
 are the shape function and its derivative for 

8-node elements in the isoparametric coordinate system, and 
||Jm|| is the determinant of the Jacobian matrix for the trans-
formation from the Cartesian to the isoparametric coordinate 
system for 8-node hexahedral elements. 

[
Ne
n

]
 and ||Jn|| are the 

isoparametric shape functions and the determinant of the 
Jacobian matrix for 4-node quadrilateral surfaces.

After calculating each of the local matrices and vectors 
for each element (e.g., 

[
M

e
]
 ), the contribution of each con-

nected node to the global matrices (e.g., [M] in Eq. 9), i.e., 
FEM assembly, should be performed. While traditionally 
assembly is done using gather matrices (Eqs. 7–8), it is 
more memory efficient to store the global IDs and coordi-
nates of all connected nodes in an object-oriented manner 
and use them to write the contributions to the associated 
memory address in the global matrices. Furthermore, the 
multiplication of the conduction matrix [K] with the nodal 
temperature {T} can be moved ahead of the assembly of 
the global conduction matrix. Using this approach, one can 
calculate the local conduction flux as {Ce} =

[
K

e
]
{Te} and 

then assemble it into the global conduction flux vector, {C} . 
This significantly reduces memory consumption as it avoids 
storing the nn × nn global conduction matrix and, instead, 
stores the conduction flux vector of length of nn , where nn is 
the number of nodes in the simulation.

A forward Euler time integration scheme is used to 
approximate the temperature derivative as presented 
hereunder:

(16)
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}
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−
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}
− {C}{
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}
= {Tn} + Δt[M]−1
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}
−
{
RF

}
−
{
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}
−
{
RR

}
− {C}

]

where Δt is the time step and 
{
Tn+1

}
 and {Tn} are nodal tem-

peratures at time steps n + 1 and n , respectively. The summa-
tion of 

{
RF

}
 , 
{
RC

}
 , and 

{
RR

}
 is referred to as the external 

flux while [K]{Tn} as the conduction flux. Furthermore, {
RG

}
 = 0 for AM processes since elements do not generate 

internal heat.
A common approach to solve Eq. (16) more efficiently 

is to convert [M] into a diagonal matrix. This can be done 
by considering the summation of each row as the diagonal 
value [41]. This operation, also called mass lumping, not 
only will eliminate the need to calculate the inverse of a 
large matrix, but also makes the calculations for the tem-
perature of each node independent from other nodes. The 
explicit thermal analysis of metal powder-based AM with a 
forward Euler integration time scheme is considered as an 
acceptable numerical approach since it has been shown to 
provide many useful physics-informed features for comput-
ing microstructural evolution and mechanical properties of 
AM-built parts [14, 39, 42, 43].

3 � Massively Parallel computing with CUDA: 
execution and memory model

While CPUs consist of a few processing cores that have been 
optimized for sequential and complex processing, GPUs con-
sist of thousands of smaller cores designed for highly parallel 
tasks. CUDA is an API (Application Programming Interface) 
provided by NVIDIA (inventor of the GPU) that enables 
developers to manage devices and memory allocations on both 
CPUs and GPUs to efficiently solve complex problems. CUDA 
can be used through compiler directives, CUDA-enabled 

Fig. 2   CUDA hierarchical 
memory model; device (GPU) 
can communicate with host 
(CPU) through global, constant, 
and texture memories, acces-
sible to all threads. Registers 
and shared memory are low 
latency memories exclusively 
visible to a thread and a block 
respectively
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libraries, and multiple programming languages such as For-
tran, Python, C, C++. The present work is developed with the 
CUDA C/C++ compiler, which is included in the NVIDIA 
CUDA Development Kit 9.

GPUs are mainly made from multiple Streaming Multi-
processors (SMs) with the key components of computing 
cores, logical and memory operational units, scheduler, 
and on-chip memories. Each SM can execute hundreds of 
threads at the same time based on the resources available to 
them. Kernels are launched in a user-defined grid of thread 
blocks, where each block contains up to 1024 threads in 
recent GPUs. Once a kernel is launched, its thread blocks 
will be scheduled to run on different SMs and will remain on 
the SM scheduler until its execution completes. SMs execute 
thread blocks in groups of 32 threads called warps. Ideally, 
all the threads in a warp concurrently execute memory and 
logical operations, which would lead to the most efficient 
utilization of GPU resources [44].

GPUs use a programmable hierarchical memory struc-
ture that allows developers to optimize the performance of 

memory operations using multiple types of memories with 
different capacity, latency, and bandwidth. As shown in 
Fig. 2, the main memory types in order of decreasing band-
width are: registers, shared memory, texture memory, local 
memory, constant memory, and global memory.

Global memory is connected to the CPU memory via 
PCI Express ports. On the latest GPUs the size of global 
memory can go up to 24 GB with a memory bandwidth of 
900 GB/s [45] which speeds up data transfer operations. 
Each SM has on-chip shared memory with the capacity 
of 64 KB on recent NVIDIA GPUs, which allows even 
faster access than global memory. Each thread that runs 
on a CUDA core has limited dedicated memory called 
registers with low latency and high bandwidth. Constant 
memory is statically defined and resides outside of any 
kernel. This memory has a dedicated cache per SM and is 
visible to all the threads. Local memory is physically the 
same memory as global memory with high latency and is 
specifically designed for storing variables in threads that 
cannot fit into registers.

4 � Acceleration strategies

As seen in Sect. 0, the FEA formulation for the thermal 
analysis of AM processes discretizes the domain into a large 
number of elements and performs very similar calculations 
on them, which makes this operation well-matched with the 
massively parallel architecture of GPUs. However, some 
operations for this formulation are not inherently parallel 
and different calculations need to be done on subsets of 
elements, nodes, and surfaces, especially considering the 
dynamic nature of this simulation including birth and death 
of entities and its advanced boundary conditions, which 
impose serious disadvantages for GPU computing. In the 
following sections, first the computational framework for 
the thermal analysis of AM processes is introduced and 
then the challenges associated with the GPU acceleration 
of the AM processes are discussed; finally, acceleration 
strategies for work distribution, memory management, and 
optimized data-structures are presented to avoid or mitigate 
the existing challenges.

4.1 � FEA computational framework

The overall routine for the thermal analysis of AM processes 
is demonstrated in Fig. 3, including preprocessing, domain 
initialization, solver, and outputting steps. The analysis starts 
with preprocessing the mesh and toolpath files to determine 
the birth time for each element in the mesh file. Domain ini-
tialization creates element, node and surfaces and fills them 
with information necessary for the simulation. This step is 

Fig. 3   Computational FEA framework for the thermal analysis of the 
AM process; the routine includes preprocessing, domain initializa-
tion, the solver, and the outputting steps with the solver step as the 
most computationally expensive one
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also responsible for assigning the aforementioned boundary 
conditions to different sections of the mesh and calculat-
ing the critical explicit time step to ensure the stability of 
the simulation. Explicit time stepping is performed during 
the solver step. In this step, each element is numerically 
integrated and their contributions are assembled into global 
matrixes and vectors. In the next time step temperatures 
for all the nodes are calculated as formulated in Eq. (16). 
Finally, it is necessary to frequently save the results of the 
simulation into files on the disk.

Although there is a potential in accelerating the preproc-
essing and domain initialization steps, these steps run only 
once for each simulation and their execution time is rela-
tively negligible compared to the time needed for the calcu-
lation of the solver steps which repeat for all time steps of 
the simulation. Therefore, in this work the preprocessing and 
domain initialization steps are executed on a CPU and the 
focus of the GPU acceleration is put on the solver step and 
its efficient interaction with the outputting step.

4.2 � Assembly strategy to avoid race condition

An important step in calculating capacitance, conductivity, 
and flux matrices is assembly, where the contribution of all 
elements connected to a node are calculated and summed 
up to the node’s global variable. However, considering that 
these elemental calculations are done concurrently, it is 
possible that multiple elements at the same time access the 
global variable of a shared node between them and cause a 
race condition. Race conditions occur when more than one 
thread attempts to write to a memory location at the same 
time. In this event, the output is undetermined. Three assem-
bly strategies are considered as alternatives to overcome this 
hurdle. While there are similarities between the methods 
investigated in this work with concepts proposed by Cecka 
et al. [24] and Markall et al. [25], this investigation is unique 

because of the factors such as the dynamic birth and death of 
elements and surfaces in the FEA analysis of AM processes, 
which are not considered in the existing works. As will be 
demonstrated below these factors significantly affect the 
outcome of the simulations. Furthermore, recent advances 
in both hardware and software capabilities of GPU comput-
ing encourage a re-evaluation of the assumptions made in 
previous studies.

As the first strategy—Node-element structure—the 
data structure shown in Fig. 4 is considered in this work 
by assigning a separate memory location for each element 
connected to a node. Using this data structure, each element 
will write its contribution to a unique memory and avoid the 
race condition. To use this structure efficiently, the column 
index of the contribution of different elements to their shared 
node need to be pre-assigned in the domain initialization 
step. For example, column index of the contributions of the 
elements E3, E6 and E8 to node 5 is 0, 1 and 2 respectively 
in Fig. 4b. The column indexes, which need to be unique 
for elemental contributions to shared nodes, are calculated 
using Algorithm 1 and stored in global memory. Note that a 
separate kernel is used for calculating the summation of the 
already calculated contributions in the node-element data 
structure for each node.

As can be seen from Fig. 4b, the node-element structure 
contains unused spaces, which may cause inefficient use of 
global memory especially if the mesh structure contains 
nodes that are connected to a large number of elements. This 
problem associated with unequal connected elements can be 
solved by packing the subarrays for each global node into 
rows, or bins, of another array using a bin packing algorithm 
[46], or a more efficient packing algorithm such as the Larg-
est-Processing-Time (LPT) [47]. However, since the current 
work is focused on the acceleration of the process, this inef-
ficiency in global memory storage is not investigated.

Fig. 4   Assembly strategies for 
global capacitance; a direct 
assembly to global capacitance 
may cause a race condition, 
while b the node-element data 
structure considers separate 
placeholders for contribution of 
each element to a node solves 
this issue
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instead of in parallel, which adversely affects computational 
performance.

Explicit FEA for DED processes inherently cause many 
conditional statements. One major source of the conditional 
statements is the fact that elements and surfaces might get 
born or die as the time of the simulation goes on due to 
the nature of the process that deposits new elements while 
building the part. To mitigate this issue, both elements and 
surfaces are sorted based on their birth time in the domain 
initialization step. By adjusting kernel execution bounda-
ries one can control the range of birth time associated with 
elements and surfaces that are accessible by each kernel. 
Considering that the elements stay activated after their 
birth time, the kernel execution boundaries are dynamically 
updated in each time step to only perform the kernels on the 
active elements. The kernel boundary update is implemented 
using a binary search to efficiently locate the last active ele-
ment for any time step.

Surfaces can die after their birth time in the FEA for 
DED processes because an active surface for flux calcula-
tions should be on the exterior of the build and the exterior 
changes dynamically in the building process. Therefore, the 
dynamic kernel boundary update method only limits the 
range of active surfaces, but it is not enough to exclusively 
select active surfaces. Two strategies are considered to be 
combined with the dynamic boundary update for surface 
flux calculations. The first strategy is to minimize the branch 
divergence by executing the flux calculations on all the sur-
faces in the execution boundary and canceling the effect 
of inactive surfaces on 

{
RF

}
 , 
{
RC

}
 and 

{
RR

}
 in Eq. (16) 

using a switch. The switch is an integer variable which has 
a value of 1 for active surfaces and 0 for inactive ones. Using 
a switch limits warp branching to only a single operation. 
The second strategy is to prevent the GPU from performing 
the calculations for inactive surfaces by using a conditional 
statement at the beginning of the kernel. This strategy would 

Algorithm 1: Arrange column indexes for node-element data structure

1. Initialize to a zero matrix, where and are the number of elements 
and nodes in an element, respectively, and is the matrix containing unique column 
indexes for elemental contributions to shared nodes 

2. Initialize to a zero matrix, where  is the number of global nodes 
3. Loop over all the elements 

a. nodes  get nodes in the element 
b. Loop over the nodes 

i.  get the global index of the node 
ii.

iii. Increment  by one to generate a unique ID next time that an element 
accesses this node 

c. End loop over the nodes 
4. End loop over the elements

For the second assembly strategy—Coloring—the global 
matrix calculations are divided into smaller subtasks, where 
each subtask is responsible for the calculations of a prede-
fined group of elements. By choosing the predefined groups 
in a way that no two elements in the same group have any 
shared nodes and performing the calculations for each group 
sequentially, one ensures that contributions of the elements 
to any node are written to their allocated memories at dif-
ferent times and, therefore, avoid the race condition. This 
strategy is known as coloring the mesh as one can arrange 
the groups by assigning different color codes to the elements 
in a way that no two adjacent elements have the same color. 
A disadvantage of this approach is that arranging the colors 
adds a significant overhead to the domain initialization step 
of the analysis.

The third approach—Atomic—is to use Atomic opera-
tions to perform the assembly. Atomic operations are spe-
cial types of read-modify-write actions that allow memory 
addresses to be accessed by only one thread at a time [45]. 
In the literature, the other alternatives provide better accel-
eration than Atomic operations because of the steep perfor-
mance cost associated with them. However, recent advances 
in GPUs with Compute Capability of 3 × or higher improved 
the performance of Atomic operations. Thus, it is impor-
tant to reinvestigate the use of Atomic operations for the 
assembly.

4.3 � Mitigating warp divergence

Another issue that might severely affect the performance of 
explicit FEA for DED processes is warp divergence. Unlike 
CPUs that use complex branch prediction, GPUs have a sim-
pler flow control mechanism that tries to execute the exact 
same instructions for all threads in a warp simultaneously. 
Executing instructions such as an if-else condition causes 
the if block and the else block to be performed in sequence 
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result in fewer computations while inducing a severe branch 
divergence to warps.

Note that for element-based calculations, it is assumed 
that the time and location of the elements to be generated 
are predefined by the toolpath and the elements do not die 
after their birth considering the nature of AM processes. If 
this assumption does not hold true (for instance due to mesh 
adaptivity with dynamic birth and death of elements during 

the simulation), the balance between branch divergence and 
redundant calculation penalties determines the optimal per-
formance of element-based calculations similar to surface 
flux calculations.

Another source of warp divergence is related to different 
boundary conditions associated with different subsets of the 
domain. While the Dirichlet boundary condition is usually 
applied after calculation of temperatures as shown in Fig. 3, 

Fig. 5   Global memory access 
pattern; a an uncoalesced access 
pattern is caused when threads 
access memories of nodal data 
for different elements, and b 
a coalesced memory access 
pattern achieved by rearrang-
ing data based on their kernel 
access

Fig. 6   Visualization of asynchronous kernel execution using NVIDIA visual profiler; rows represent different CUDA streams and each color rep-
resents a kernel execution (Color figure online)
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surface flux boundary conditions (i.e., external laser flux, 
convection and radiation) can be applied on different sets 
of surfaces. Considering that the majority of the flux opera-
tions, such as Jacobian and shape function calculations, are 
similar for the three types, fluxes are calculated in active 
surfaces for all three types of boundary conditions and the 
effect of each boundary condition is controlled by using 
precomputed switches to avoid warp divergence.

4.4 � Further optimization considerations

Further optimizations applied to this work will be discussed 
in this section. Most of the device data reside in the global 
memory and an efficient access to this memory is essential 
for achieving high bandwidth in data transactions and proper 
kernel performance. In the CUDA execution model, memory 
operations are issued per warp. The most efficient access 
pattern to the global memory of GPUs is aligned coalesced 
access. In this access pattern, 32 threads in a warp access a 
contiguous section of memory starting from an even mul-
tiple of the cache size [44]. In this case, a single memory 
load/write operation is needed for all the threads in a warp 
leading to a 100% bus utilization. Using uncoalesced or non-
aligned data structures would cause the same memory load/
write to be done in multiple separate operations.

The data associated with different nodes of an element 
are normally stored next to each other as demonstrated in 
Fig. 5a. While executing kernels on elements, the GPU warp 
scheduler will try to execute a single task, for example, cal-
culating the capacitance matrix, for hundreds of elements 
at the same time. Therefore, all threads in a warp will run 
memory access for the same index node of all the elements 

together. This access pattern will cause a significant effi-
ciency penalty due to uncoalesced access.

To maximize the efficiency of global memory reads and 
writes, data is rearranged in the domain initialization step to 
access elemental matrices and vectors in a coalesced manner 
as depicted in Fig. 5b. A similar rearrangement is applied 
for all element, node, and surface global variables such as 
the nodal coordinates, the connectivity matrices, the element 
capacitance and conductivity matrices, and nodal tempera-
tures to ensure efficient global memory transactions. When 
using the coloring assembly strategy this rearrangement 
should be done for each color separately.

GPU memory hierarchy architecture allows programmers 
to use memory types that are most suitable for a given task 
based on memory latency, bandwidth and capacity in dif-
ferent sections of the code. The GPU constant memory and 
shared memory are used in the present work to decrease the 
number of registers used in each kernel and avoid spilling 

Fig. 7   Geometries and meshes 
of the test samples where blue 
meshes represent the substrate 
and red meshes represent the 
build for a DED cubic, b DED 
cruciform, c DED thin-wall, and 
d SLM powder-bed geometries

Table 1   Summary of simulation parameters for the test samples

Cubic Cruciform Thin-wall Powder-bed

Number of ele-
ments

84,346 205,618 193,944 384,000

Number of nodes 93,748 232,447 210,000 400,221
Minimum time 

step
9.78e−4 s 1.96e−3 s 1.69e−2 s 1.38e−3 s

Build time 1195 s 3007 s 2741 s 42 s
Material SS316L SS316L Ti-6Al-4 V SS316L
Laser power 1050 W 1050 W 1500 W 120 W
Hatch Spacing 1.1 mm 1.1 mm 1.9 mm 0.5 mm
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registers into local memory, which has a high latency. Con-
stant memory is used for accessing material properties such 
as density, solidus and liquidus temperatures, specific heat, 
etc. Since all the threads will load these variables together, 
the constant memory will broadcast the corresponding val-
ues to all the threads at the same time and cause a desirable 
access pattern. Shared memory is used for calculating the 
shape function and the Jacobian of each element. This is 
because these variables are called many times inside the 
kernels. Having them in the lowest latency memories is 
essential since keeping them in registers would use too many 
registers in each block and limit the number of warps that 
can be executed in each block.

Another major acceleration consideration implemented in 
this work is to asynchronously launch kernels using CUDA 
streams to overlap calculations done on the CPU and GPU, 

overlap data transfer and kernel execution, and concurrently 
execute GPU kernels. As mentioned before, kernel execution 
boundaries need to be calculated before execution of each 
kernel on the CPU. By overlapping these calculations with 
previous kernel executions both the CPU and GPU can work 
at the same time to completely hide the time needed for CPU 
calculation. Overlapping data transfer with kernel execution 
decreases the time needed for saving the simulation outputs 
by concurrently copying data from GPU global memory to 
CPU accessible memory (RAM) while continuing the calcu-
lation of the next time step. Finally, concurrent execution of 
GPU kernels increases the device occupancy by increasing 
the number of warps scheduled to be run. The asynchro-
nous execution of kernels on different CUDA streams and 
the overlap between data transfer and device calculations is 

Fig. 8   Visualization of the test 
simulation outputs for a DED 
cubic, b DED cruciform, c DED 
thin-wall, and d SLM powder-
bed builds
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Fig. 9   Acceleration results of the assembly strategies for test samples

Fig. 10   Correlation between the number of nodes and the achieved 
speed-up in test samples
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demonstrated in Fig. 6, which is the output of the NVIDIA 
Visual Profiler tool.

As shown in Fig. 6, the data transfer between the GPU 
and CPU memories is performed concurrently with the ini-
tialization of the FEA matrices, which means that this data 
transfer does not add significant overhead to the simulation 
time and can be performed as frequently as desired. This 
technique allows for the transfer of the calculations that are 
inherently conditional such as computing the cooling rate to 
the CPU side and achieve further acceleration by avoiding 
costly conditional computations on the GPU.

5 � Acceleration results and verification

To test the acceleration strategies discussed previously, 
four samples of AM processes are investigated. The sam-
ples include three DED builds of cubic, cruciform, and thin-
walled geometries, and a powder-bed SLM build. The mesh 
and geometry of the samples are demonstrated in Fig. 7, 
where the blue meshes represent the substrate while the 
red meshes represent the build. The difference between the 
simulation setup of the SLM process and DED processes is 
that for SLM, an entire layer of elements is born at the same 
time, while for DED, the elements are born gradually fol-
lowing the laser focal point.

The simulation parameters of the samples considered 
for the verification of the proposed algorithms include the 
number of elements in the range of around 80,000–400,000 
elements, the build time in the range of 42–3,007 s, and the 
stainless steel 316L and Titanium alloy Ti–6Al–4V materi-
als as listed in Table 1.

To determine the effect of assembly strategy on accel-
eration, the three GPU assembly approaches described in 
Sect. 4.2 are used to simulate each sample and are compared 
with an optimized single CPU core implementation of the 
same calculations. The optimized CPU implementation con-
siders elements as non-deformable and material properties as 
fixed values. Using these simplifying assumptions, the CPU 
implementation calculates element and surface Jacobians as 
well as the element local conduction matrices only once and 
uses the stored values at each time-step. This implementa-
tion is used to enable simulation of the samples in a feasible 
time frame since the version without simplification is an 
order of magnitude more computationally expensive. How-
ever, all GPU implementations perform these calculations 
at each time-step which makes them suitable for simulation 
with deformable elements and temperature-dependent mate-
rial properties. To have a fair comparison, all calculations 
in the GPU and CPU implementations are performed based 
on the explicit FEA formulation presented in 0 using single 
precision 32-bit floating-point numbers.

The node-element data structure GPU implementation 
output for the temperature field of the samples during the 
build is visualized in Fig. 8, in which the range of color 
bars is set from 300 K to the liquidus temperature of the 
material; therefore, the red color region represents the melt 
pool.

The results of the simulation speed-up of the GPU ena-
bled implementations for the assembly strategies compared 
to the optimized single CPU case are provided in Fig. 9. 
The results are produced using the NVIDIA GeForce GTX 
TITAN Black graphics card, which has 2880 CUDA cores, 
bus support of PCI Express 3.0, 6 GB of global memory, 
and compute capability of 3.5. The CPU used for this work 
is an Intel(R) Xeon(R) CPU E5-2687 W with a clock speed 
of 3.10 GHz.

The major time-consuming operations in this process are 
calculating the capacitance, conduction flux, and external 
fluxes with 45.8, 32.8, and 20.1% of the total simulation 
time, respectively, determined as the average of all test sam-
ples. Other operations such as initializations, forward time 
integration and Dirichlet boundary assignment take on the 
average less than 2% of the total time.

Although many factors can affect the speed-up of a simu-
lation such as the frequency of output, the distribution of 
boundary conditions between surfaces, and the birth strategy 
of the build, these results indicate a correlation between the 
size of the simulations, which can be represented by the 
number of elements or nodes, and the speed-up, which is 
demonstrated in Fig. 10. This is because the more elements 
and nodes the model has, the more parallel works exist for 
the GPU and the overall simulation becomes more suitable 
for the massively parallel architecture of the GPU.

The thin wall and cruciform builds have a similar num-
ber of nodes, but there is a significant difference between 
their speed-ups. As can be seen in Fig. 7, a larger portion of 
the total nodes of the geometry is associated with the build 
in the thin-wall simulation with respect to the cruciform 
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Fig. 11   Acceleration results of the flux calculation strategy for test 
samples



891Computational Mechanics (2019) 64:879–894	

1 3

simulation. Considering that the simulation works on active 
elements and nodes during each time step, the effective size 
of the simulation for the thin-wall is significantly smaller 
than for the cruciform build at the beginning time steps, 
which is one reason for the better performance of the cru-
ciform build.

The assembly strategy using coloring leads to the worst 
performance between the investigated approaches. This poor 
performance is because the size of the problem executed on 
the GPU at each time is dramatically decreased (the decrease 
is more severe in case of highly unstructured meshes) as 
it divides the problem domain into multiple smaller sub-
domains. Furthermore, the explicit flow control require-
ments to ensure each sub-domain is executed in sequence 
significantly restricts the amount of parallelization that the 
GPU can apply to solve the problem. Therefore, the occu-
pancy of the GPU decreases. This is the main bottleneck of 
this strategy. This bottleneck can be qualitatively seen from 
the average occupancy of 53.4% of the device for the test 
samples, while it is over 80% for other strategies. Moreover, 
operations such as dynamic assignment of boundaries which 
needs to be repeated for each subdomain and the overhead of 
initial arrangement of element colors harm the performance 
of this scheme.

The strategy using the node-element data structure out-
performs the coloring approach. However, this strategy has 
two major computational bottlenecks. First, the size of the 
matrices for storing capacitance, conduction and external 

fluxes in global memory is several times larger than the 
reduced matrices and therefore this strategy leads to far 
higher requests for global memory access as compared to 
methods that directly work on reduced matrices. This bot-
tleneck is verified by the NVIDIA profiling tool which indi-
cates that ‘load’ and ‘save’ instructions for global memory 
are the leading bottleneck of this process. Second, this strat-
egy requires separate kernels for reduction operations which 
slow down the computations in each time step and account 
for 11% of the execution time on average for the presented 
test samples.

The strategy using Atomic operations consistently pro-
vides the best performance for all the samples. The bottle-
neck of this strategy is the arithmetic operations which are 
implicitly halted to control race conditions. However, a race 
condition does not happen in the assembly procedure for all 
the nodes since the physical execution of warps can happen 

Fig. 12   Computing time and 
memory consumption of test 
samples with coarse, medium, 
and fine meshes with respect 
to the number of nodes on the 
log–log scale

Fig. 13   Validation of the 
accuracy of the GPU calcula-
tions; a a demonstration of the 
test geometry and a screenshot 
of its thermal profile during the 
build, where the yellow cross 
represents the probe point, and 
b the comparison between the 
GPU and CPU outputs for the 
thermal hisotry at the probe 
point

Table 2   Accuracy of the GPU strategies with respect to the CPU cal-
culations for the NU-shape build

Strategy Node-
element 
structure 
and least 
divergence

Atomic and 
least diver-
gence

Coloring 
and least 
divergence

Atomic and 
least com-
putation

Mean abso-
lute error

8.538e−6 7.088e−6 9.360e−6 7.096e−6
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at separate times. Using the Atomic operations allows the 
GPU to halt only the memory operations with race condi-
tions and avoid costly explicit synchronization. This capabil-
ity is particularly improved in recent GPUs with Compute 
Capability of 3 × or higher [48]. The Atomic strategy not 
only has lower execution time with respect to the other strat-
egies, it also requires the least amount of preprocessing and 
global memory storage.

The results of the flux calculation strategies are provided 
in Fig. 11 using the Atomic assembly strategy. The results 
show that for the DED test samples using the least kernel 
computation strategy would lead to a significant increase in 
the performance with respect to the least warp divergence 
strategy, while the two strategies perform almost identi-
cally for the SLM test sample. This dissimilarity can be 
explained based on the different element generation modes 
in DED and SLM simulations. In DED processes, the ele-
ments are generated gradually by following the laser focal 
point, while in SLM the whole layer of elements is generated 
simultaneously. The gradual generation of elements in the 
DED processes results in a far greater number of external 
surfaces in the simulations as compared to SLM processes. 
This result indicates that in the case of powder-bed simula-
tions the cost associated with warp divergence and redundant 
kernel computations is balanced. However, in the case of 
DED processes which have more dynamic surfaces the cost 
of excessive redundant calculations exceeds the warp diver-
gence penalty. Therefore, considering the large number of 
surface births and deaths in DED processes, it is beneficial 
to use conditional statements to avoid redundant calculations 
for inactive surfaces.

To analyze the effect of the number of degrees of freedom 
on the computing time and memory consumption for the 
discussed strategies, the cubic sample geometry (Fig. 7a) 
is tested with three meshes: a coarse (about 60 K nodes), a 
medium (about 400 K nodes), and a fine mesh (about 3.3 M 
nodes). The results of this analysis are demonstrated in 
Fig. 12 on the log–log scale. As it can be seen from Fig. 12 
left, the computing time of the four discussed strategies 
behaves consistently across different numbers of nodes in 
the numerical model. In terms of memory consumption 
(Fig. 12 right), Atomic operation consistently leads to the 
best memory consumption while the node-element structure 
needs the most memory. Note that due to the GPU memory 
overhead we observe smaller difference in memory con-
sumption of the strategies for the coarsest mesh. Since the 
flux calculation strategy between least calculation and least 
divergence does not affect memory consumption, it is not 
plotted in Fig. 12 right.

The accuracy of the results is validated by comparing the 
temperature outputs for the GPU implementations and the 
CPU one. This validation is demonstrated on a NU-shape 
build with nearly 200,000 nodes and 150 s of the build time 

as depicted in Fig. 13a), where the yellow cross represents 
the probe point. A comparative figure for the output temper-
ature of the probe point calculated on the CPU and the GPU 
implementation with Atomic operation and the least kernel 
computation strategies is shown as Fig. 13b), which verifies 
the accuracy of the GPU calculations. The mean absolute 
error of different strategies is summarized in Table 2 for 
the NU-shaped sample, which indicates the correctness of 
the calculations presented in this work considering that the 
operations are done on 32 bits floating point numbers with 
6 significant decimal digits.

6 � Conclusions and Future works

In conclusion, this paper presents methodologies for accel-
erating the FEA calculations for explicit thermal analysis of 
metal powder-based AM processes. Three different strate-
gies to avoid race conditions are investigated, namely node-
element structure, coloring and atomic. Despite promising 
results in the literature for assembly using the node-element 
structure and coloring techniques, our results indicate that 
atomic operations can lead to the best speed-ups for FEM 
simulation of AM processes. Considering that AM simula-
tions often start with a fraction of active elements, the col-
oring strategy does not provide a competitive performance 
because of its sensitivity on the simulation size. The node-
element strategy multiplies the required global memory 
accesses, which makes memory operations the bottleneck 
of the process especially for non-uniform mesh structures. 
Considering that the race condition does not happen for all 
the elements, using the atomic operations modern GPUs are 
capable of efficiently halting memory accesses that cause 
race conditions without explicit costly synchronization. 
The investigation of two flux calculation strategies (i.e., 
least warp divergence and least kernel computation) indi-
cates that the cost of excessive computations surpasses the 
penalty of warp divergence for the FEM simulation of AM 
processes, especially for DED processes where elements 
are dynamically born at each time step of the simulation. 
Furthermore, memory hierarchy and host-device concur-
rency are used to optimize the use of GPU resources. The 
implementations are tested on multiple builds which lead 
to speed-ups of about 100–150 × with respect to an opti-
mized single CPU core implementation for the strategy of 
assembling by using Atomic operations and flux calculations 
using the least kernel computation approach along with the 
proposed optimization.

In the future, more attempts will be dedicated to adding 
multi-physics formulations into the GPU accelerated FEM 
model. An important coupled physics with the thermal anal-
ysis of the AM process is the thermoelastic behavior of the 
material that generates deformations and residual stresses. 
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Additionally, the scalability of the developed FEM pack-
age on multi-GPU clusters is another interesting subject that 
needs further investigation as it is noted in [49–52]. Consid-
ering that GPU clusters are becoming increasingly popular, 
the scalability performance of the model is critical to prob-
lems that require large memory or computational power.
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