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ABSTRACT

AIDS is a syndrome caused by the HIV. During the progression of AIDS, a patient’s immune
system is weakened, which increases the patient’s susceptibility to infections and diseases.
Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly
and can become resistant to treatment. In addition, the virus can also become resistant to
other treatments not currently being used through mutations, which is known in the clinical
research community as cross-resistance. Since a single HIV strain can be resistant to
multiple drugs, this problem is naturally represented as a multilabel classification problem.
Given this multilabel relationship, traditional single-label classification methods often fail to
effectively identify the drug resistances that may develop after a particular virus mutation.
In this work, we propose a novel multilabel Robust Sample Specific Distance (RSSD) method
to identify multiclass HIV drug resistance. Our method is novel in that it can illustrate the
relative strength of the drug resistance of a reverse transcriptase (RT) sequence against a
given drug nucleoside analog and learn the distance metrics for all the drug resistances. To
learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the
summations of a number of ‘1-norm distances, which is difficult to solve in general. To solve
this optimization problem, we derive an efficient, nongreedy iterative algorithm with rig-
orously proved convergence. Our new method has been verified on a public HIV type 1 drug
resistance data set with over 600 RT sequences and five nucleoside analogs. We compared
our method against several state-of-the-art multilabel classification methods, and the ex-
perimental results have demonstrated the effectiveness of our proposed method.

Keywords: drug resistance, HIV type 1, multilabel classification.

1. INTRODUCTION

According to estimations by the World Health Organization, around 35 million people are suffering

from the HIV. HIV is a serious virus that attacks cells in the human immune system. During the later

stages of the virus it can critically weaken the immune system and increase the patient’s susceptibility to

serious infection and disease. Fortunately, with the advent of antiretroviral therapies, we have been able to
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stem the progression of HIV and extend the life span of individuals affected by the virus. Unfortunately, the

high mutation rates of HIV type 1 (HIV-1) can produce viral strains that adapt very quickly to new drugs

(Smyth et al., 2012). The mutation of HIV-1 during antiretroviral treatments can lead to a phenomenon called

‘‘cross-resistance’’ (Heider et al., 2013; Riemenschneider et al., 2016). Cross-resistance of HIV-1 occurs

when the virus develops resistance against the drugs, which are currently being used in addition to other drugs

that have not yet been used in the treatment of a particular patient. This can make treatment of HIV-1

significantly more difficult, because a collection of drugs may not be effective after the initial treatment

regimen due to the cross-resistance phenomenon observed in HIV-1. To address this problem, it is important

that we develop automatic methods that can associate genetic strains of HIV to their corresponding drug

resistances. The success of this research has the potential to reduce health care costs and increase the quality

of life of those suffering from HIV and AIDS.

Recently, experimental testing of viral resistance in patients has been widely used in research, as well as in

clinical settings to gain insight into the ways in which the drug resistance evolves. For example, large-scale

pharmacogenomic screens have been conducted to explore the relationships between drug resistances and

genomic sequences (Rhee et al., 2003). Besides, many clinical trials have been performed to discover mutation

rates of the genetic subtypes of HIV-1 and how they develop resistances against various drug treatments

(Pennings, 2012). In addition to these experimental phenotypic studies, computational approaches that use

various machine learning methods offer the possibility to predict drug resistance in HIV-1 using short

sequence information of the viral genotype, such as the genetic sequence of the viral reverse transcriptase

(RT). For example, Rhee et al. (2006) used five different machine learning methods, including decision trees,

artificial neural networks, support-vector machines, least-square regression, and least-angle regression, to

investigate drug resistance in HIV-1 based on the RT sequences. Besides, genotype and phenotype features of

HIV-1 extracted from RT sequences have been studied to predict drug resistance (Hepler et al., 2014).

In addition, a Bayesian algorithm (Gönen and Margolin, 2014) that combines kernel-based nonlinear

dimensionality reduction and binary classification has been proposed to predict drug susceptibility of HIV

within a multitask learning (MTL) framework. A critical drawback of these existing studies lies in the fact

that they routinely consider HIV-1 drug resistance prediction as a single-label classification problem. This

approach has been recognized to be inappropriate since HIV strains can develop resistances against

multiple drugs at once due to their high mutation rate (Heider et al., 2013; Riemenschneider et al., 2016).

To tackle this difficulty, following Heider et al., 2013 in this article, we solve the problem of HIV-1 drug

resistance prediction as a multilabel classification problem.

Multilabel classification is an emerging research topic in machine learning driven by the advances of

modern technologies in recent years (Wang et al., 2009, 2010a–c, 2015). As a generalization of traditional

single-label classification that requires every data sample to belong to one and only one class, multilabel

classification relaxes this restriction and allows one data sample to belong to multiple different classes at

the same time. As a result, the classes in single-label classification problems are mutually exclusive, while

those in multilabel classification problems are interdependent on one another. Although the labeling re-

laxation in multilabel classification problems have brought a number of successes in a variety of real-world

applications (Wang et al., 2009, 2010c, 2015), it also causes labeling ambiguity that inevitably complicates

the problem (Wang et al., 2010a,b).

In the context of predicting drug resistance developed by HIV-1, some HIV strains can develop the

capability to resist multiple drugs, including those currently being used and those that have not yet been

applied in a clinical setting. As a result, it is often unclear how to utilize a data sample that belongs to

multiple classes to train a classifier for a given class (Wang et al., 2010a,b). A simple strategy to solve this

problem is to use such data samples as the training data for all the classes to which they belong (Wang

et al., 2009, 2010a), which is equivalent to assume that every data sample contributes equally to all their

belonging classes when we train multilabel classification model (Wang et al., 2010b). However, this is not

always the case in many real-world multilabel classification problems, which is particularly true in the

problem of predicting drug resistance for HIV-1 because different mutations have different impact on

resistance. Therefore, to create an effective multilabel classifier to predict HIV-1 resistances, it is critical to

clarify the labeling ambiguity on data samples that belong to multiple classes and learn an appropriate

scaling factor when we train the classifiers for different classes (Wang et al., 2010b).

In this study, we propose a novel Robust Sample Specific Distance (RSSD) for multilabel data to predict

HIV-1 drug resistance, which, as illustrated in Figure 1, is able to explicitly rank the relevance of a training

sample with respect to a specific class and characterize the second-order data-dependent statistics of all the
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classes by class-wise distance metrics. In this study, we note that the proposed RSSD in this article is an

application of the instance specific distance (ISD; Wang et al., 2011a–c, 2012, 2016) in single-instance

(multilabel) classifications to solve the problem of predicting HIV-1 drug resistance, which was originally

proposed in our previous works to solve multi-instance learning problems. We refer the interested readers to

Wang et al. (2011a–c, 2012, 2016) for the definition of single-instance learning problems and that of multi-

instance learning problems. To learn the sample relevances and the class-specific distance metrics, we

formulate a learning objective that simultaneously maximizes and minimizes the summations of the ‘1-norm

distances. To solve the optimization problem of our objective, using the same method in our recent works

(Han et al., 2018; Liu et al., 2018), we derive an efficient iterative algorithm with theoretically guaranteed

convergence, which, different from our previous works (Wang et al., 2012, 2014), is a nongreedy algorithm

such that it has a better chance to find the optima of the proposed objective. We have applied our new method

to predict the HIV-1 drug resistance on a public benchmark data set, and the experimental results have shown

that our new RSSD method outperforms other state-of-the-art competing methods.

2. LEARNING RSSDS FOR MULTILABEL CLASSIFICATION

2.1. Notations and problem formalization

Throughout this article, we write matrices as bold uppercase letters and vectors as bold lowercase letters.

The ‘1-norm of a vector v is defined as vk k1 =
P

i jvij, and the ‘2-norm of v is defined as vk k2 =
ffiffiffiffiffiffiffiffiffiffiffiffiP

i v2
i

p
.

Given a matrix M = mij

� �
, we denote its Frobenius norm as Mk kF , and we define its ‘1-norm as

Mk k1 =
P

i

P
j mij

�� ��. The trace of M = mij

� �
is defined as tr(M) =

P
i mii.

In a multilabel classification problem, we are given a data set with n samples (n RT sequences)

fxi‚ yign
i = 1 and K classes (resistances to K target nucleoside analogs), where xi 2 <d and yi 2 f0‚ 1gK

, such

that yi(k) = 1 if xi belongs to the k-th class and yi(k) = 0 otherwise. Our goal is to learn from the training data

fxi‚ yign
i = 1 a classifier that is able to predict which nucleoside analogs (drug variants) a HIV-1 RT sequence

is resistant to.

2.2. The class-to-sample distance

To learn the distance from a class to a data sample, we first represent each class as a bag consisting of all

samples that belong to this class, that is, Ck = fxiji 2 pkg, where pk is the set of indices of all training

samples that belong to the k-th class.

FIG. 1. The illustration of the proposed RSSD method. The small squares in the same color represent the data

samples (RT sequences) that belong to one same class (e.g., resistance to a specific nucleoside analog). Two HIV RT

sequences are listed in the right panel, which correspond to the data samples shown by the small squares connected by

the dash lines. The top sequence in the right column only resists against drug 1, while the bottom sequence resists

against both drug 1 and drug K, that is, it is a multilabel data sample. Ideally, the learned SCs for each data sample

should be different with respect to different classes. For example, the bottom RT sequence is associated with si1 for

class 1 and siK for class K, which could be different depending on how the resistances evolved. RSSD, Robust Sample

Specific Distance; RT, reverse transcriptase.
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We first define the elementary distance from a data sample xi in the k-th class bag Ck to another data

sample xi0 as the squared Euclidean distance between the two involved vectors in the d-dimensional

Euclidean space:

dk(xi‚ xi0 ) = xi - xi0k k2
2‚ 8 i 2 pk‚ 8 k 1 � k � K: (1)

We then compute the class-to-sample (C2S) distance from Ck to xi0 by summing all the elementary

distances from the samples that belong to the k-th class to the data sample xi0 :

D(Ck‚ xi0) =
X
xi2Ck

dk(xi‚ xi0) =
X
xi2Ck

xi - xi0k k2
2: (2)

2.3. Parameterized C2S distance

Because the C2S distance in Equation (2) does not take into account the resistance strength against a

certain nucleoside analog, we further develop it by weighting the samples in a class bag by their relevance

to this class.

Due to the ambiguous associations between the samples and the labels under the multilabel classification

setting (Wang et al., 2010a,b), some samples in a class may characterize that particular class more strongly

than the others from the statistical point of view. For example, Riemenschneider et al. (2016), where some

viral RT sequences may develop a stronger drug resistance, while other viral RT sequences may be less

resistant to a drug but may still be considered to be resistant. To develop an effective predictive model for

HIV-1 drug resistance development, we need to capture these resistance differences. To be more specific,

we should assign less weight to less resistant RT sequences when we determine whether or not to apply the

‘‘resistant’’ label to a query viral RT sequence.

Because we assume that counter-resistance against a target nucleoside analog does not exist, we define sik

‡ 0 as a non-negative constant that assesses relative importance of xi with respect to the k-th class, by which

we can further develop the C2S distance as follows:

D(Ck‚ xi0) =
X
xi2Ck

s2
ik xi - xi0k k2

2: (3)

Because sik reflects the relative importance of a sample xi when we train a classifier for the k-th class, we

call it the significance coefficient (SC) of xi with respect to the k-th class. Obviously, the SCs quantitatively

assess the resistances developed by the training of viral RT sequences against the target nucleoside analogs

during the learning process.

2.4. Parameterized C2S distance refined by class specific distance metrics

The RSSD defined in Equation (3) is simply a weighted Euclidean distance that does not take into

account the information conveyed by the input data other than the first-order statistics. Similar to many

other statistical models in machine learning, using the Mahalanobis distances with appropriate distance

metrics is recommended to capture the second-order statistics of the input data. Instead of learning one

single global distance metric for all the classes as in many existing statistical studies, we propose to learn K

different class-specific distance metrics fMk � 0gK
k = 1 2 <d · d, one for each class. Thus we further develop

the parameterized C2S distance as:

D(Ck‚ xi0 ) =
X
xi2Ck

s2
ik xi - xi0ð ÞT Mk xi - x0i

� �
: (4)

Because the class-specific distance metric Mk is a positive definite matrix, that is, M � 0, we can

reasonably write it as Mk = WkWT
k , where Wk 2 <d · r is an orthonormal matrix such that WT

k Wk = I. Thus

we can rewrite Equation (4) as follows:

D(Ck‚ xi0) =
P

xi2Ck

s2
ik xi - xi0ð ÞT WkWT

k xi - xi0ð Þ =
P

xi2Ck

WT
k xi - xi0ð Þsik

�� ��2

2
: (5)

A critical problem of D(Ck‚ xi0 ) defined in Equation (5) lies in that it computes the summation of a

number of squared ‘2-norm distances. These squared terms are notoriously known to be sensitive to both
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outlying samples and features (Ding et al., 2006; Wang et al., 2014; Liu et al., 2019a,b; Yang et al., 2019).

Due to the cross-resistance phenomenon (Heider et al., 2013), this problem is particularly significant for

identifying HIV-1 drug resistance. To promote the robustness of D(Ck‚ xi0) against outliers, following many

previous works (Ke and Kanade, 2005; Ding et al., 2006; Kwak, 2008; Wright et al., 2009; Wang et al.,

2013b, 2014; Liu et al., 2019a,b; Yang et al., 2019), we define it using the ‘1-norm distance as follows:

D(Ck‚ xi0 ) =
X
xi2Ck

WT
k xi - xi0ð Þsik

�� ��
1
‚ (6)

which we call the proposed RSSD.

To use RSSD defined in Equation (6), we need to learn two sets of parameters sik and Wk for every class,

where we use the learned Wk to compute the metric matrix as Mk = WkWT
k . Following the most broadly

used machine learning strategy to maximize data discriminativity for classification, such as Fisher’s linear

discriminant (Fukunaga, 2013), for a given class Ck we simultaneously maximize the overall RSSDs from

every class bag to all its nonbelonging samples and minimize the overall RSSDs from every class bag to all

the samples belonging to that class:

max
Wk‚ sik

P
xi0 =2Ck

P
xi2Ck

WT
k xi - xi0ð Þsik

�� ��
1P

xi0 2Ck

P
xi2Ck

WT
k xi - xi0ð Þsik

�� ��
1

‚ s:t: WT
k Wk = I‚ sik � 0: (7)

Learning the RSSDs by solving Equation (7) and classifying query viral RT sequences using the adaptive

decision boundary method (Wang et al., 2009, 2013a), our proposed RSSD method can be used for

multilabel classification.

3. AN EFFICIENT SOLUTION ALGORITHM

Our new objective in Equation (7) maximizes the ratio of the summations of a number of ‘1-norm

distances, which is obviously not smooth thereby making it difficult to solve in general. To solve this

challenging optimization problem, we first turn to solve the following generalized objective:

vopt = argmax
v2O

h(v)

m(v)
‚ 8v 2 X

C2 � m(v) � C1 > 0‚

C4 � h(v) � C3 > 0:

	
(8)

where U is the feasible domain. Next, we propose a simple, yet efficient, iterative framework in

Algorithm 1 to solve the objective in Equation (8). The convergence of Algorithm 1 is rigorously guar-

anteed by Theorem 1.

Algorithm 1: Algorithm to solve Equation (8).

1. Randomly initialize v0 ˛U and set t = 1.

while not converge do

2. Calculate kt = h(vt - 1)
m(vt - 1)

.

3. Find a vt ˛U satisfying h(vt) - ktm(vt) > h(vt–1) - ktm(vt-1) = 0.

º 4. t = t + 1.

Output: v.

Theorem 1. In Algorithm 1, for each iteration we have h(vt)
m(vt)
� h(vt - 1)

m(vt - 1)
and 8d, there must exist a t̂ such that

8t > t̂ h(vt)
m(vt)

- h(vt - 1)
m(vt - 1)

< d.

Proof. In Algorithm 1, from step 3 we have h(vt) - ktm(vt) > 0. Because 8v 2 X m(v) > 0, we can get
h(vt)
m(vt)

> kt = h(vt - 1)
m(vt - 1)

, which completes the proof of the first statement of Theorem 1.

Suppose that for the k-th iteration, there exists a ct such that h(vt) - ktm(vt) = ct > 0. We have:

h(vt)

m(vt)
=

h(vt - 1)

m(vt - 1)
+

ct

m(vt)
‚ (9)
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by which we can derive:

h(vt)

m(vt)
=

h(v0)

m(v0)
+
Xt

i = 1

ci

m(vi)
: (10)

From Equation (10), we can derive:

h(v0)

m(v0)
+

1

C2

Xt

i = 1

ci � h(vt)

m(vt)
� h(v0)

m(v0)
+

1

C1

Xt

i = 1

ci: (11)

Suppose that there exist a positive constant C such that limt!1
Pt

i = 1 ci = C. If this is not true, we have

limt!1
Pt

i = 1 ci =1, by which, together with Equation (11), we can derive limt!1
Pt

i = 1
h(vt)
m(vt)

=1. This,

however, contradicts the fact that h(vt)
m(vt)

is bounded as defined in Equation (8), which means that the

following holds:

lim
t!1

Xt

i = 1

ci = C: (12)

Thus, we have:

lim
t!1

ct = 0‚ (13)

which means that:

lim
t!1

ct

m(vt)
= 0‚ (14)

which indicates that: 8d > 0, there must exist a t̂ such that:

8t > t̂
ct

m(vt)
< d‚ (15)

by which and Equation (9), we have:

8t > t̂
h(vt)

m(vt)
-

h(vt - 1)

m(vt - 1)
< d‚ (16)

which indicates that Algorithm 1 converges to a local optimum and completes the proof of the second

statement of Theorem 1. -

3.1. Fixing sik to solve Wk

According to step 3 in Algorithm 1, we can easily write the corresponding inequality of our objective in

Equation (7) as:

F(Wk) = H(Wk) - ktM(Wk) � 0‚ (17)

where kt is computed by

kt =

P
x0i =2Ck

P
xi2Ck

(Wt - 1
k )

T
xi - xi0ð Þsik

��� ���
1P

x0i2Ck

P
xi2Ck

(Wt - 1
k )

T
xi - xi0ð Þsik

��� ���
1

‚ (18)

and

H(Wk) =
X

x0i =2Ck

X
xi2Ck

WT
k xi - xi0ð Þsik

�� ��
1
‚ (19)

M(Wk) =
X

x0i2Ck

X
xi2Ck

WT
k xi - xi0ð Þsik

�� ��
1
: (20)

In Equation (18), Wt - 1
k denotes the projection matrix in the (t - 1)-th iteration.
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Now we need to solve the problem in Equation (17), for which we first introduce the following two

lemmas:

Lemma 1. (Liu et al., 2017, theorem 1) For any vector n = n1‚ � � � ‚ nm½ �T 2 <m, we have

nk k1 = max
g2<m

sign(g)ð ÞTn, where the maximum value is attained if and only if g = a · n, where a >0 is a

scalar.

Lemma 2. ( Jenatton et al., 2010, lemma 3.1) For any vector n = n1‚ � � � ‚ nm½ �T 2 <m, we have

nk k1 = min
g2<m

+

1
2

Pm
i = 1

n2
i

gi
+ 1

2
gk k1, where the minimum value is attained if and only if gj = jnjj‚ j 2 1‚ 2‚ � � � ‚ mf g.

Motivated by Lemmas 1 and 2, we construct the following objective:

L(Wk‚ Wt - 1
k ) = K(Wk) - ktN(Wk)‚ (21)

where K(Wk) and N(Wk) are defined as:

K(Wk) =
Xr

g = 1

wT
g Bsign BT wt - 1

g


 �
‚ (22)

N(Wk) =
1

2

Xr

g = 1

wT
g Agwg + wt - 1

g


 �T

Agwt - 1
g : (23)

Here wg and wt - 1
g denote the g-th column of matrices Wk and Wt - 1

k , respectively; B and Ag for g = 1, 2,

/, r are defined as follows:

B = x1 - x‚ x2 - x‚ � � � ‚ xn - x½ �‚ (24)

Ag =
Xn

i = 1

X
xj2 N i[ xif gf g

xj - xi

� �
xj - xi

� �T

wt - 1
g


 �T

xj - xi

� �����
����
‚ (25)

and sign(x) is the sign function, which is defined as follows:

sign(x) = 1 ifx � 0

- 1 ifx < 0

	
: (26)

Then, using the definition of L(Wk‚ Wt - 1
k ) in Equation (21) and Lemmas 1 to 2, we can prove the

following theorem.

Theorem 2. For any Wk 2 <d · r, we have:

L(Wk‚ Wt - 1
k ) � F(Wk)‚ (27)

where the equality holds if and only if Wk = Wt - 1
k .

Proof. First, according to Lemma 1 we can compute:

H(Wk)

=
Xn

i = 1

WT
k xi - xð Þ

�� ��
1

=
Xn

i = 1

Xr

g = 1

wT
g xi - xð Þ

��� ���
1

�
Xr

g = 1

Xn

i = 1

sign (wk - 1
g )

T
(xi - x)

h i
wT

g xi - xð Þ
h i

=
Xr

g = 1

wT
g Bsign BT wk - 1

g


 �
= K(Wk):

(28)
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Then, according to Lemma 2 we have:

Xn

i = 1

X
xj2 N i[ xif gf g

1

2

nT xj - xi

� �
xj - xi

� �T
n

nT xj - xi

� � +
1

2
nT xj - xi

� ��� ��
1

( )
�

Xn

i = 1

X
xj2 N i[ xif gf g

1

2

nT xj - xi

� �
xj - xi

� �T
n

gT xj - xi

� � +
1

2
gT xj - xi

� ��� ��
1

( )
‚

(29)

which indicates that:

M(Wk)

=
Xn

i = 1

X
xj2 N i[ xif gf g

WT
k xj - xi

� ��� ��
1

=
Xr

g = 1

Xn

i = 1

X
xj2 N i[ xif gf g

1

2

wT
g xj - xi

� �
xj - xi

� �T
wg

wT
g xj - xi

� � +
1

2
wT

g xj - xi

� ���� ���
1

( )

�
Xr

g = 1

Xn

i = 1

X
xj2 N i[ xif gf g

1

2

wT
g xj - xi

� �
xj - xi

� �T
wg

wk - 1
g


 �T

xj - xi

� � +
1

2
wk - 1

g


 �T

xj - xi

� �����
����

1

8><
>:

9>=
>;

=
1

2

Xr

g = 1

wT
g Agwg + wk - 1

g


 �T

Agwk - 1
g

= N(Wk):

(30)

Combining Equations (28) and (30), we can derive:

L(Wk‚ Wt - 1
k ) = K(Wk) - kkN(Wk) � H(Wk) - kkM(Wk) = F(Wk): (31)

According to Lemmas 1 and 2, it is easy to verify that equality holds in Equations (28) and (30) if and

only if Wk = Wt - 1
k . Thus, equality holds in Equation (31) if and only if Wk = Wt - 1

k . This completes the

proof of Theorem 2. -
Now we continue to solve our objective. Let Wk = Wt - 1

k , by substituting it into the objective, we have

L(Wk‚ Wk - 1
k ) = F(Wt - 1

k ) = 0. In the k-th iteration in solving the objective in Equation (7), W?
k satisfies

L(W?
k‚ Wt - 1

k ) � L(Wt - 1
k ‚ Wt - 1

k ) = 0. Then, we have

F(W?
k) � L(W?

k‚ Wt - 1
k ) � L(Wt - 1

k ‚ Wt - 1
k ) = F(Wt - 1

k ) = 0: (32)

Lemma 1 and Equation (32) indicate that the solution of the objective function in Equation (17) can be

transformed to solve the objective function L(Wk‚ Wt - 1
k ) � 0, which can be easily solved by the projected

subgradient method with Armijo line search (Sun and Yuan, 2006). Note that, for any matrix Wk the

operator P(Wk) = Wk WT
k Wk

� � - 1
2 can project it onto an orthogonal cone. This guarantees the orthogonality

constraint of the projection matrix, that is, Wt
k

� �T
Wt

k

� �
= I. Algorithm 2 summarizes the algorithm to solve

the objective in Equation (17).

Algorithm 2: Algorithm to maximize F Wkð Þ.

Input: Wt - 1
k and Armijo parameter 0 < b < 1.

1. Calculate kk by Equation (18).

2. Calculate the subgradient Gk - 1 = @L(Wt - 1
k ‚ Wt - 1

k ) = B sign BT Wt - 1
k

� �
- kk A1w1‚ A2w2‚ � � � ‚ Arwr½ �.

3. Set t = 1.

while not F(Wt
k) > F(Wt - 1

k ) = 0 do

4. Calculate Wt
k = P(Wt - 1

k + bmGt - 1).

5. Calculate F(Wt
k) by Equation (17).

º 6. t = t + 1.

Output: Wk
k.
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Finally, based on Algorithm 2, we can derive a simple yet efficient iterative algorithm as summarized in

Algorithm 3 to solve our objective in Equation (7) when sik is fixed. In addition, Theorem 3 indicates that

our proposed Algorithm 3 monotonically increases the objective function value in each iteration. Theorem

4 indicates that the objective function is upper bounded, which, together with Theorem 3, indicates that

Algorithm 3 converges to a local optimum.

Algorithm 3: Algorithm for nongreedy ratio maximization of the ‘1-norm distances.

1. Randomly initialize W0
k satisfying W0

k

� �T
W0

k = I and set t = 1.

while not converge do

2. Calculate kt by Equation (18).

3. Find a Wt
k satisfying F(Wt

k) > F(Wt - 1
k ) = 0 by Algorithm 2.

º 4. t = t + 1.

Output: W.

Theorem 3. If Wt
k is the solution of the objective function in Equation (17) and satisfies Wt

k

� �T
Wt

k

� �
= I,

then we have J (Wt
k) � J (Wt - 1

k ).

Proof. Since Wk
k is the solution of the objective function in Equation (17), we have

F(Wt
k) =

Xn

i = 1

Wt
k

� �T
xi - xð Þ

��� ���
1

- kk
Xn

i = 1

X
xj2 N i[ xif gf g

Wt
k

� �T
xj - xi)
� ���� ���

1
� 0‚ (33)

from which we can easily derive:

J (Wt
k) =

Pn
i = 1

Wt
k

� �T
xi - xð Þ

��� ���
1Pn

i = 1

P
xj2 N i[ xif gf g

Wt
k

� �T
xj - xi)
� ���� ���

1

� kk: (34)

Now by substituting Equation (18) into Equation (34), we have

J (Wt
k) =

Pn
i = 1

Wt
k

� �T
xi - xð Þ

��� ���
1Pn

i = 1

P
xj2 N i[ xif gf g

Wt
k

� �T
xj - xi)
� ���� ���

1

�

Pn
i = 1

(Wt - 1
k )

T
xi - xð Þ

��� ���
1Pn

i = 1

P
xj2 N i[ xif gf g

(Wt - 1
k )

T
xj - xi)
� ���� ���

1

(35)

= J (Wt - 1
k )‚ (36)

which completes the proof of Theorem 3. -

Theorem 4. The objective in Equation (7) is upper bounded.

Proof. First, using Cauchy–Schwarz inequality we have the following for the numerator of our objective

in Equation (7):

IDENTIFY HIV-1 DRUG RESISTANCE THROUGH MULTILABEL RSSD 9
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Xn

i = 1

WT
k xi - xð Þ

�� ��
1

=
Xn

i = 1

Xr

j = 1

wT
j xi - xð Þ

��� ���
1

�
Xn

i = 1

Xr

j = 1

wT
j

��� ���
2

xi - xð Þk k2

=
Xn

i = 1

r xi - xð Þk k2:

(37)

Obviously, given an input data set,
Pn

i = 1 r xi - xð Þk k2 is a constant, which indicates that the numerator of

our objective in Equation (7) is upper bounded for a given data set.

Second, it can be verified that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1 v2
i

p
�
Pn

i = 1 jvij, that is, 8v 2 Rn vk k2 � vk k1, by which we can

derive the following for the denominator of our objective in Equation (7):

Xn

i = 1

X
xj2 N i[ xif gf g

WT
k xj - xi

� ��� ��
1

�
Xn

i = 1

X
xj2 N i[ xif gf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WT

k xj - xi

� ��� ��2

2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

X
xj2 N i[ xif gf g

WT
k xj - xi

� ��� ��2

2

vuut
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr WT

k SLWk

� �q

�
ffiffiffiffiffiffiffiffiffiffiffiffiXr

i = 1

ki

s
‚

(38)

where ki(i = 1, ., r), ordered by k1 £ / £ kr, are the eigenvalues of SL. The last inequality in Equation

(38) is obtained by the Ky Fan’s inequality (Fan, 1950), which states that tr WT
k SLWk

� �
�
Pr

i = 1 ki. Again,

given an input data set, SL is a constant matrix thereby
Pr

i = 1 ki is a constant. Thus the denominator of our

objective in Equation (7) is lower bounded.

The two bounds in Equations (37) and (38) together indicate that our objective in Equation (7) is upper

bounded. -

3.2. Fixing Wk to solve sik

When Wk is fixed, we define a scalar dii0k = WT
k xi - xi0ð Þ

�� ��
1
. Then we write Equation (7) as:

max

P
x0i =2Ck

P
xi2Ck

sikdii0kP
x0i2Ck

P
xi2Ck

sikdii0k
‚ s:t: sik � 0: (39)

Defining that dw
ik =

P
i02pk

dii0k and db
ik =

P
i0 =2pk

dii0k, we can further rewrite the objective as:

max

P
xi =2Ck

sikdw
ikP

xi2Ck

sikdb
ik

‚ s:t: sik � 0: (40)

Again, to solve Equation (40), to step 3 in Algorithm 1, we solve the following optimization problem:

max
X
xi2Ck

sikdw
ik - k

X
xi2Ck

sikdb
ik‚ s:t: sik � 0‚ (41)

where k is computed as Equation (18) in the t-th iteration.
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Define that dik = dw
ik - kdb

ik, we can rewrite the optimization problem in Equation (41) as:

max
X
xi2Ck

sikdik‚ s:t: sik � 0‚ (42)

The problem in Equation (42) can be decoupled to solve the following subproblems separately for each

xi 2 Ck:

max sikdik‚ s:t: sik � 0‚ (43)

which is a convex linear programming problem (Wright and Nocedal, 1999) and can be solved efficiently

by many off-the-shelf solution algorithms (Wright and Nocedal, 1999). By inserting the solution to

Equation (43) after step 3 of Algorithm 3, we can finally solve our objective in Equation (7), which is

equivalent to performing alternative optimization. Therefore, the algorithm is guaranteed to converge to a

local optimum.

4. EXPERIMENTAL RESULTS

We evaluate the proposed RSSD method using a publicly available HIV drug resistance database (Rhee

et al., 2006), which contains HIV-1 RT sequences with associated resistance factors measured by IC50

ratios. We analyze the drug resistance of these RT sequences against five nucleoside analogs: Lamivudine

(3TC), Abacavir (ABC), Zidovudine (AZT), Stavudine (d4T), and Didanosine (ddI). Following Heider et al.

(2010), although the Tenofovir nucleoside analog is included in this database, it is not used in our study,

because the number of the RT sequences resistant to this nucleoside analog is very small. As a result, we

end up with 623 RT sequences for our experiments.

Drug resistance of a particular HIV strain is measured by the IC50 ratio, which is defined as the

concentration of a specific drug inhibiting 50% of viral replication compared with cell culture experiments

without the drug:

IC50(drug concentration for resistant strain)

IC50(drug concentration for wild type)
: (44)

We label the viral RT sequences as ‘‘resistant’’ using the same drug-specific IC50 ratio cutoff thresholds

as in Heider et al. (2013), which are set to 3.0 for 3TC and AZT, 2.0 for ABC, and 1.5 for ddI and d4T. We

use hydrophobicity characteristics (Kyte and Doolittle, 1982) to represent the RT sequences, which have

demonstrated good prediction performance in many protein classification studies (Heider et al., 2010). For

each RT sequence, we extract a hydrophobicity vector, which is obtained from the amino acid sequence and

smoothed within a window. The length of the original hydrophobicity vectors may be different due to the

different lengths of the RT sequences. In this study, following Heider et al. (2013) we set a fixed window

size of 11 and interpolated all hydrophobicity vectors to length 230 using the spline interpolation method

(Kyte and Doolittle, 1982).

4.1. Convergence of the proposed algorithm

In Section 3, we have theoretically proved the convergence of the derived solution algorithm. Now we

study the convergence of our new algorithm from the empirical perspective. We apply our new method on

the HIV-1 drug resistance data set and plot the objective value after each iteration in Figure 2. This plot

clearly shows that our solution algorithm converges very fast and confirms the correctness of our new

method.

4.2. Parameter selection of the proposed method

Predicting drug resistance for HIV-1 RT sequences is a multilabel classification problem. Therefore, we

evaluate the proposed method by two broadly used multilabel performance metrics (Lewis et al., 2004):

Hamming loss and average precision. The Hamming loss is computed over all instances over all classes.

The average precision is calculated for both the micro and macro averages. In multilabel classification, the
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macro average is computed as the average of the precision values over all the classes; thus, it attributes

equal weights to every individual class. In contrast, the micro average is obtained from the summation of

contingency matrices for all binary classifiers, thus it gives equal weight to all classifiers and emphasizes

the accuracy of categories with more positive samples.

The proposed RSSD has only one parameter: the dimensionality r of Wk. Ideally, each class can have its

own fine tuned parameter. To reduce the experimental effort, we fix the parameter r across all classes in our

studies. We first evaluate the impacts of the parameter in a standard fivefold cross-validation experiment,

where we select r in the range from 10 to 100. The classification performance measured by the three

aforementioned multilabel performance metrics, when we vary r, is reported in Figure 3. The results in

these experiments show that the classification performance of the proposed method is reasonably stable

when we vary r in a considerably large selection range. This illustrates that tuning parameters in our

proposed method is not a difficult task, which adds to the practical value of our method to solve real-world

problems. Based on these observations, we fix r = 50 in all our future experiments for simplicity.

4.3. Comparative studies

We use a standard fivefold cross-validation to evaluate the predictive capability of the proposed RSSD

method. We implement two versions of our proposed method, one version that defines D(Ck‚ xi0) using

the ‘1-norm distances as in Equation (6; denoted as ‘‘Ours-‘1’’) and another that defines D(Ck‚ xi0) using

the squared ‘2-norm distances as in Equation (5; denoted as ‘‘Ours-‘2
2’’). We compare our new method to

the baseline classifier using random guess and two broadly evaluated multilabel classification methods in

literature: the Green’s Function method (Wang et al., 2009) and the Sylvester equation (SMSE) method

(Chen et al., 2008).

We also compare the proposed method against two multilabel classification methods designed to study

drug resistance in HIV-1: the classifier chain (CC) method and its ensemble version (Read et al., 2011;

Heider et al., 2013; denoted as the ensemble of classifier chain [ECC] method). Finally, we also compare our

method to two recent multi-instance classification methods: the MTL method (Yuan et al., 2016) designed to

study general drug resistance study and the deep multi-instance multilabel (MIML) method (Feng and Zhou,

2017) designed to study general multi-instance data. The Green’s Function method and the SMSE methods

are implemented following their original articles in Wang et al. (2009) and Chen et al. (2008), respectively,

where the parameters are set to the suggested values. The CC method is implemented with logistic re-

gression, where the chaining order for the CC method is 3TC / ABC / AZT / d4T / ddI as suggested

in Heider et al. (2013). Following Heider et al. (2013) and Riemenschneider et al. (2016), we implement the

ECC method using both random forests and logistic regression as base classifiers, which are denoted as

‘‘ECC-RF’’ and ‘‘ECC-LR,’’ respectively. The MTL method and the deep MIML method are implemented

using the code published by the respective authors. The overall resistance prediction performances of the

compared methods are reported in Table 1.

The comparison results in Table 1 show that the ‘1-norm version of the proposed method consistently

outperforms all competing methods in terms of all the three performance metrics, sometime very
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FIG. 2. The convergence of our solution algorithm.
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significantly. The squared ‘2-norm version of our new method is, as expected, not as effective as its

counterpart using the ‘1-norm distance, but it still provides adequate performance compared to the other

methods in Table 1.

4.4. A case study

We explore the learned distances by our method between RT sequence pairs and compared them with the

Euclidean distances for the same RT sequence pairs. The distance between two RT sequences by our

method is defined as the sum of the two learned RSSDs: for the k-th class, the pairwise distance between

sequence xi and xi0 is the sum of D(Ck‚ xi) and D(Ck‚ xi0 ). Because we learn a distance metric and SCs for

each class, this distance is class dependent. Under this definition, the distances given by our method

between sample pairs that belong to the same class are expected to be small and those between sample pairs

not belonging to the same class are expected to be large. Using the learned class specific metrics and SCs,

we compute the pairwise distances between the RT sequences for every class (nucleoside analog), which

are plotted in Figure 4. The Euclidean distances are also plotted for comparison.

To demonstrate the effectiveness of the proposed method, we study the distances between two example

RT sequences, which are listed at the top of Figure 4. These two RT sequences are known to be resistant to

all five nucleoside analogs. As a result, the pairwise distance between these two RT sequences is expected

to be small. However, as can be seen in top left panel of Figure 4, the Euclidean distance between these two

FIG. 3. Multilabel classification performance of the proposed method on the HIV-1 drug resistance data with respect

to r (the dimensionality of Wk).
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RT sequences is ranked at the 1855-th smallest distance among all pairwise Euclidean distances, which is

not in accordance with the clinical evidences. In contrast, we can see that the pairwise distances between

these RT sequences computed by our learned RSSDs for the five classes are small, which are at the 138-th

smallest distance for 3TC, the 525-th smallest distance for ABC, the 574-th smallest distance for AZT, the

406-th smallest distance for d4T, and 678-th smallest distance for ddI, respectively. This observation

clearly demonstrates that the learned distances by our new methods can better capture the relationships

between data samples in terms of class membership.

Table 1. Performance of the Compared Methods by Standard Fivefold Cross Validations

Compared methods Hamming loss (Y) Micro Precision ([) Macro Precision ([)

Random guess 0.632 – 0.160 0.276 – 0.061 0.171 – 0.051

Green’s 0.450 – 0.040 0.319 – 0.046 0.241 – 0.033

SMSE 0.385 – 0.020 0.402 – 0.032 0.241 – 0.020

CC 0.302 – 0.028 0.467 – 0.046 0.434 – 0.037

ECC-LR 0.313 – 0.014 0.481 – 0.011 0.442 – 0.012

ECC-RF 0.301 – 0.005 0.476 – 0.020 0.461 – 0.021

MTL 0.382 – 0.010 0.475 – 0.021 0.461 – 0.010

Deep MIML 0.315 – 0.010 0.478 – 0.042 0.474 – 0.022

Ours-‘2
2 0.322 – 0.015 0.505 – 0.040 0.492 – 0.050

Ours-‘1 0.282 6 0.007 0.518 6 0.012 0.527 6 0.013

Where ‘‘Y’’ means that smaller is better, and ‘‘[’’ means that bigger is better.

CC, classifier chain; ECC, ensemble of classifier chain; MIML, multi-instance multilabel; MTL, multitask learning; SMSE,

Sylvester equation.

FIG. 4. Exploration of the learned sample-to-sample distance between RT sequence pairs for each class. Top panel:

The two RT sequences (with known drug resistance) we are comparing; Top Left Heatmap: the Euclidean distances

between RT sequence pairs. Remaining Heatmaps: the learned sample-to-sample distances between RT sequence pairs

for each of the five classes. We can see that the sample-to-sample distance between the two RT sequences in the top

panel for 3CT nucleoside analog is ranked as the 138-th smallest pairwise distance among all 1722 RT sequence pairs.

Compared to the Euclidean distance, which is ranked as 1855-th smallest distance, the pairwise distance computed by

the projection and significance coefficients learned for this class is more clinically meaningful. 3TC, Lamivudine; ABC,

Abacavir; AZT, Zidovudine; d4T, Stavudine; ddI, Didanosine; SSD, sample specific distance.
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4.5. The discriminative capability of the learned RSSDs

From the subspace learning perspective, the ISD in Equation (6) can be written as

D(Ck‚ xi0 ) =
X
xi2Ck

WT
k xi - xi0ð Þsik

�� ��
1
‚ (45)

which is the learned C2S distance in the projected lower r-dimensional subspace, where the projection is

implemented by Wk for a given class. Now we study the geometric distributions of the data samples in the

subspaces through the learned projections. The results are reported in Figure 5. In this study, the data points

a b

d e

c

FIG. 5. Projected data samples through the learned projection matrix Wk. The RT sequences belonging to a target

class are close in the respective learned subspaces. The regions containing positive data are enlarged for better view. (a)

3TC, (b) ABC, (c) AZT, (d) d4T, (e) ddI.

FIG. 6. True labels of top 10 data with smallest RSSDs for each of the five classes. (a) 3TC, (b) ABC, (c) AZT, (d)

d4T, (e) ddI.
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in the r-dimensional projected subspaces are mapped into the 3-dimensional space through principal

component analysis ( Jolliffe, 1986) for the visualization purpose.

From Figure 5 we can see that the proposed method works very well in terms of maximizing data

separability. In each of the five projected subspaces, data samples belonging to any one of target classes are

close to one another, while those not belonging to the same class are far away from each other. This

observation concretely suggests that the learned projected matrices Wk, thereby the learned distance

metrics Mk, are able to capture the intrinsic data representations for each class and distinguish between

useful and useless features.

To further evaluate the discriminative ability of the proposed method, we plot the top 10 shortest RSSDs

among test data for every class in Figure 6. From the results we can see that, shown by red crosses in each

figure, most data samples with the smallest RSSDs indeed belong to the target class. This observation once

again suggests that the proposed RSSDs with optimized distance metrics and instance-specific SCs are

good criteria for drug resistance prediction.

5. CONCLUSIONS

In this study, we proposed a novel RSSD method for multilabel classification. To learn the parameters of

the proposed RSSDs, we formulated a learning objective that maximizes the ratio of the summations of a

number of ‘1-norm distances, which is difficult to solve in general. To solve this problem we derived a new

efficient iterative algorithm with rigorously proved convergence. The promising experimental results have

demonstrated the effectiveness of our new method for identifying HIV-1 drug resistances.
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