
Manufacturing Letters 17 (2018) 1–5
Contents lists available at ScienceDirect

Manufacturing Letters

journal homepage: www.elsevier .com/locate /mfglet
Letters
Towards smart manufacturing process selection in Cyber-Physical
Systems
https://doi.org/10.1016/j.mfglet.2018.03.002
2213-8463/� 2018 Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).

⇑ Corresponding author.
E-mail address: ebot@u.northwestern.edu (E. Ndip-Agbor).
Ebot Ndip-Agbor ⇑, Jian Cao, Kornel Ehmann
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 December 2016
Accepted 12 March 2018
Available online 13 March 2018
Cyber-Physical Systems (CPS) are becoming increasingly important in manufacturing due to the digitiza-
tion of the industry driven by advances in technology and connectivity. However, the variation of process
selection criteria, both geometric and non-geometric, across the main groups of manufacturing processes,
i.e., additive, subtractive, and deformation, makes it difficult to implement smart manufacturing process
sequence selection which is an essential step toward achieving an autonomous CPS. This paper presents a
conceptual solution to process selection called Constraint Satisfaction Problem for Manufacturing
(CSP4M) which leverages current engineering design methods and architectures.

� 2018 Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).
1. Introduction

Digitization has been the primary driving force behind the rise
of manufacturing efficiency and quality in recent years. The major
catalysts behind this phenomenon are: rise in computational capa-
bilities (power, data, and connectivity); improvements in analytics;
improvements in human-machine interaction, and the bridging of
the gap between design and finished products brought about by
flexible manufacturing processes [1]. Cyber-Physical Systems
(CPS), smart interconnected systems with physical and computa-
tional capabilities, are the quintessence of this digitization [2].
CPS have state-of-the-art machines and sensors capable of produc-
ing huge volumes of data; therefore, data analytics can be used in
tandem with the interconnectivity of the machines to create intel-
ligent, autonomous, and robust systems [3–5].

An integral part of CPS for manufacturing will involve the auto-
matic allocation of system resources based on input information.
Inputs include part geometry information (geometric features
and part dimensions) and constraints (quality, mechanical, and
economical). So far, research efforts in defining such an allocator
have targeted the primary areas of manufacturing, i.e., subtractive
and additive. For subtractive manufacturing, process selection can
be done via geometric analysis of features and then matching these
features with the appropriate machining processes [6–8]. For addi-
tive manufacturing, process selection can be done based on mate-
rial choice, part size, and build quality [9–12]. This variation in the
criteria for process selection across the main groups of manufac-
turing processes (see Table 1) makes it difficult to create and inte-
grate a generic allocator into a dynamic and autonomous CPS.

The contribution of this work is the description of a conceptual
framework for finding the correct manufacturing process sequence
based on Constraint Satisfaction Problem (CSP) [13]. Specifically,
this work attempts to cast the problem of manufacturing process
sequence selection in CPS into a constraint logic problem in which
finite domain search can be used to find the sequence of processes
that best satisfies the goals prescribed by the constraints. From this
perspective, the goal of the search is to find the sequence of pro-
cesses which manufacture the desired part with constraints on
the cost and quality (from the user) and on the capability of the
CPS itself. Since there is only a finite number of processes and com-
bination of process in the CPS, constraint logic programming is an
ideal tool to perform process sequence selection.

The implementation of a smart process selector must be cen-
tered on the interaction between a user and the CPS. To this end,
a Constraints Satisfaction Problem for Manufacturing (CSP4M) for-
mulation is proposed. It is used to: transform partial information
(geometric input) into a solution space of possible available man-
ufacturing process combinations, apply constraints (user specifica-
tions) to reduce the generated solution space via local deductions,
and search the reduced solution space for the optimal process
sequence(s) using conventional information (Fig. 1). Specifically,
Fig. 1 starts with the user providing a CAD geometry along with
allowable ranges for the quality, mechanical properties, and cost
of the desired manufactured part. Next, this information is passed
to the CPS which performs feature recognitions on the geometry
and generates a list of candidate manufacturing processes needed
to manufacture the part. Finally, expert knowledge from the best
practice of the processes and the user defined constraint ranges
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Table 1
Process selection criteria for 3 classes of manufacturing processes.

Class Criteria Processes Selection

Traditional Machining Geometric features and part quality Milling, Drilling, Turning, etc.
Additive Manufacturing Material choice, part size, and build quality Direct Metal Deposition, Powder Bed Fusion, Material Extrusion, etc.
Deformation Manufacturing Formability and geometric accuracy Incremental forming, Deep drawing, Bending, forging, etc.
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are used to reduce the candidate processes to a final list which
meet both the user and CPS requirements.
2. Constraint Satisfaction Problem for Manufacturing (CSP4M)

Constraint Satisfaction Problems rely on logical programming
using constraints over a finite domain [14]. In this programming
paradigm, an initial problem, consisting of a set of conditions
(propagators), and a solution space are first defined. These propa-
gators are then used to sequentially apply constraints to the solu-
tion space by making local deductions. Finally, an exhaustive
search is done on the reduced solution space to find a case that sat-
isfies the given conditions.

Finite domain search is a plausible solution to process selection
in CPS because:

a. All manufacturing processes in the system are known
(domain is finite);

b. General information about how classes of manufacturing
processes interact is also known, e.g., additive processes
are usually followed by subtractive processes, deformation
processes can be preceded and/or followed by subtractive
processes, etc.;

c. Propagators are well defined, i.e., the part geometry (fea-
tures and dimensions) and user specification (material, built
quality, cost, etc.);
Fig. 1. Constraint Satisfaction Proble
d. Expert knowledge about the system can be added in terms of
how each process affects the cost, quality, and mechanical
properties of manufactured parts. This includes information
like the physical location of machines, size and dimensional
limitations of machines, process sequence prediction from
big data analytics, costs per machine run, etc.

The implementation of manufacturing process selection in CPS
as a CSP4M is shown in Fig. 1. First, partial information in the
form of a solution space over the possible sequences of process
classes can be generated using the input geometry information.
Then, this solution space, which contains all the permutations
for available process sequences, can be constrained using the user
specifications (material, built quality, cost, volume, etc.), and
finally a search can be done using expert knowledge about the
system capabilities to produce a list of candidate process
sequences for the user.
2.1. Partial information

Before constraint satisfaction can be performed, an initial prob-
lem and search space have to be defined. The initial problem is
defined by user specified geometric information, in the form of
CAD, and a complete list of all the manufacturing processes avail-
able in the CPS grouped by hierarchies (additive, subtractive, defor-
mation, etc.). Very sophisticated geometry analysis methods
m for Manufacturing (CSP4M).



Fig. 2. Process sequence search space generation in CSP4M.

Table 2
Performance metrics for manufacturing processes.

Class Performance Metrics

Quality Surface roughness, dimension tolerance, surface finish
roughness, etc.

Mechanical Material strength, porosity defects and voids residual stresses,
etc.

Economic Production rate, lead times, material utilization percentage,
tooling cost, etc.
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already exist for selecting subtractive manufacturing processes,
and these methods are capable of performing feature recognition
[6–8], toolpath generation based on the recognized features
[15,16], dimensional analysis, tolerance analysis [17], etc. Similar
analysis methods also exist for selecting additive [9–12] and defor-
mation processes [18,19]. The list of possible sequences of manu-
facturing process classes can be generated based on the available
process in the CPS as shown in Fig. 2 for a stainless steel flange.

In the example shown in Fig. 2, the initial geometry analysis
reveals the presence of a combination of extrusion and cut fea-
tures. The process sequence search space is then generated by
choosing a raw material (powder, block, or sheet for steel), and
then identifying the physical processes needed to manufacture
the geometry using the chosen raw material. After this high level
process sequence has been identified, processes under the identi-
fied categories are selected from those available in the CPS. Specific
manufacturing procedures can then be generated using conven-
tional methods.
2.2. Constraint propagation

Given the search space of all the individual process sequences
that fall into each of the aforementioned process groups, the user
specifications (quality, mechanical, or economic) can then be used
as propagators to constrain the search space by making local
deductions. For this to be achievable, the effects of each processes
has to be quantified relative to all the other processes in the CPS
using process selection metrics [20] like the ones shown in Table 2.

After the performance of all of the processes have been quanti-
fied on a relative scale for all the measurable metrics, the user can
then specify a range with the ideal performance for their applica-
tion (max) and the lowest acceptable performance (min) for each
one of the metrics. Using the user-specified metrics, the search
space of possible process sequences can then be reduced by remov-
ing process sequences that result in performance outside the user-
specified range. In this sense, the user specifications serve as prop-
agators which constrain a range in the solution space by making
local deductions which is a classical constraint logic programming
problem [13].

Such a constraint propagation system can be implemented for
manufacturing processes by leveraging similar artificial intelli-
gence inspired methods that already exist for parametric and
knowledge-based frameworks in engineering design. These include
architectures for formulating geometric and topological design
[21] and knowledge based engineering systems with declarative
style programming languages [22].

2.3. Search using expert knowledge

The final stage of process selection is to search the space of all
the process sequences that fall within the ranges of the user-
specified performance metrics for the optimal solution for the
CPS (Fig. 3).

At this stage, expert knowledge about the CPS, i.e., system
specific information obtained from big data analytics, cost analysis,
and system constraints which reside in the cloud [23], can be used
to make the final shortlist of candidate process sequences. In a CPS,
data for analytics can be obtained by using data acquisition tools in



Fig. 3. Optimal Process sequence search using CPS specific knowledge.
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the manufacturing processes or directly from other CPS systems
[3]. Data about material properties like porosity, cooling rate,
residual stress, etc. which are very difficult to measure directly
can be obtained using numerical simulation techniques [10]. Mod-
els capable of detecting patterns in process selection for similar
geometries, which are essential for the final search for the optimal
process sequence, can be defined using this data [24]. Economic
information about the CPS, i.e., the cost per machine run (including
depreciation) and the speed of the process sequence, can also be
used to pick the optimal process sequence. A detailed study on
doubling the manufacturing speed for a group of additive, subtrac-
tive, and deformation processes revealed that constraints like
machine stiffness, actuator acceleration, heat transfer, and delivery
of fluids need to be considered [25]. Lastly, constraints on the CPS
itself like the physical location of the machines, weight and size
limitation for each manufacturing process, machine capability,
etc., have to also be used to search for the optimal process order.
As shown in Fig. 3, this expert search [26–28] can be used to obtain
a list of candidate process sequences that best satisfy the user
specifications and also meet the physical and economic require-
ments of the CPS.

2.4. Implementation

The CSP4M can be implemented on the cloud or the CPS-side,
and an interface can be provided for clients to input CAD models
and other constraints to kick-start the process selection process.
The logic programming in the CSP4M can be implemented using
the core.logic library of the Clojure programming language [29].
In addition to supporting logic programming, Clojure’s core.logic
also supports the implementation of constraints on finite domains
of numbers which makes it a good candidate for this
implementation.

3. Conclusion

With trends in CPS like Industry 4.0, there has been an increas-
ing need to define a methodology for smart manufacturing process
selection for manufacturing systems. This paper presents a very
practical concept for performing this task based on constraint sat-
isfaction at the user level and the knowledge about the system
itself. By addressing this monumental problem, it provides a guide-
line for the implementers in the manufacturing industry to follow
in the quest to build smart, autonomous, ubiquitous, and cloud-
based systems for value-added manufacturing.
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