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ABSTRACT

Many existing studies on complex brain disorders, such as
Alzheimer’s Disease, usually employed regression analysis
to associate the neuroimaging measures to cognitive status.
However, whether these measures in multiple modalities have
the predictive power to infer the trajectory of cognitive perfor-
mance over time still remain under-explored. In this paper, we
propose a high-order multi-modal multi-mask feature learn-
ing model to uncover temporal relationship between the lon-
gitudinal neuroimaging measures and progressive cognitive
output scores. The regularizations through sparsity-induced
norms implemented in the proposed learning model enable
the selection of only a small number of imaging features over
time and capture modality structures for multi-modal imaging
markers. The promising experimental results in extensive em-
pirical studies performed on the ADNI cohort have validated
the effectiveness of the proposed method.

Index Terms— Alzheimer’s Disease, Feature Learning,
Multi-Modal, Longitudinal Regression

1. INTRODUCTION

Neuroimaging measures have been widely studied to predict
cognitive outcomes [1, 2, 3, 4, 5]. However, whether these
measures have further predictive power to infer a trajectory
of cognitive performance over time still remains an under-
explored, yet important, topic in Alzheimer’s Disease (AD)
research. A simple strategy typically used in longitudinal
studies (e.g., [6]) is to analyze a single summarized value
such as average change, rate of change, or slope. This ap-
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proach may be inadequate to distinguish the complete dy-
namics of cognitive trajectories and thus become unable to
identify the underlying neurodegenerative mechanisms [7, 8].
However, directly associating the temporal imaging features
to longitudinal cognitive outcome scores is very challenging
for the following reasons. Different to traditional regression
models, the input data and the response cognitive scores are
high-order tensors. Both the input neuroimaging measures
(samples x features X time) and output cognitive scores
(samples x scores x time) are three-dimensional tensors,
which inevitably complicates the learning problems.

Our previous work [7] has made an attempt to tackle the
above challenges, which, however, performed studies on on-
ly one single modality of neuroimaging measures. Recen-
t studies [4] have explored multi-modal neuroimaging mea-
sures, such as the biomarkers extracted from magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
or cerebrospinal fluid (CS) data, and reported improved per-
formance in association studies to predict cognitive outcomes.
Thus, it is of apparent necessity to perform longitudinal as-
sociation studies using multiple modalities of neuroimaging
measures. With this recognition, in this paper we propose
a novel high-order multi-modal multi-task feature learning
model to identify longitudinal neuroimaging markers that can
accurately predict cognitive scores over all the time pointsp.

2. THE METHOD

For AD progression prediction using longitudinal phenotyp-
ic biomarkers, the input imaging features are a set of ma-
trices: X = {X1, X, -, X7} € R>*"*T corresponding
to the measurements at 7' consecutive time points. X; €
Raxn (1 <t < T) is the concatenation of different type-
s of phenotype measurements of the entire cohort at certain
time point ¢, such as voxel-based morphometry (VBM), mod-
ified voxel-based morphometry (mVBM) and FreeSurfer (F-
S): Xy = [Xy1; Xio; - -+ ; Xy ] where K represents the num-
ber of neuroimaging feature modalities. Obviously, the input
neuroimaging data X’ is a tensor with d imaging measures,
n subject samples, and 7" time points. Similarly, the cogni-



tive outcomes are a set of matrices: Y = {Y7,Ys,---,Yr} €
R™*exT for certain type of cognitive outcomes, such as the
Rey’s Auditory Verbal Learning Test (RAVLT) scores at the
same 7' consecutive time points as input. Again, ) is a tensor
with n subject samples, ¢ cognitive scores, and 7' time points.

Traditional multivariate regression models minimize the
following objective:
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where w; indicates the j-th row of coefficient matrix W at

time point t and W = {Wy,..., Wz} € R¥**T 5 a tensor
of regression weights. The objective Jy in Eq. (1) does not
take into account the temporal correlations over time, because
the optimization problem can be decoupled for each individu-
al time point separately. To uncover the temporal relationship,
we introduce the sparse regularization as follows [7, 8]:
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where W) = unfold, (W) = [Wy,..., Wr] denotes the
unfolding operation of the tensor VV along its first mode.

In addition, to integrate the neuroimaging measures in d-
ifferent modalities, we further impose into our objective the
regularization using a group ¢;-norm introduced in [5, 9, 10]
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G represents the number of modalities, and g; represents the
number of imaging measures in g-th modality:
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Finally, to capture the correlations among different learn-
ing tasks at different time points [7, 8], we impose low-rank
regularization to discover the the common subspace shared by
predictive tasks as follows:
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where W2 = unfold, (W) = [W{,...,WZ] denotes the

unfolding operation of the tensor W along its second mode
and ||-|| denotes the trace norm of a matrix. Given a matrix
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M e R™ ™ and its singular values ¢; (1 < ¢ < min(n,m)),
the trace norm of M is defined as ||M|[,= S (™)
Tr(MMT)z.

The objective in Eq. 4 is our proposed high-order multi-
modal multi-task longitudinal feature learning model, which
is advantageous in that it is able to integrate multi-modal
neuroimaging measures and capture the correlations between
cognitive outcomes over time. Its solution algorithm is pro-
vided in Algorithm. 1. Due to space limit, the derivation
of this algorithm and the proof of its convergence will be
supplied in the extended journal version of this paper.

g; —

Algorithm 1: The solution algorithm to the proposed
objective J3 in Eq.(4).

Data: X = [X1, X2, -+, Xp] € RX"XT,

y: [Y17)/27"'7YT} GRTLXCXT.
Result: W = [Wy, Wa, - - -, Wr] € R¥XeXT
initialization: W, € R**°(1 < t < T') using the linear
regression results at each individual time point.
while not converge do
1. Calculate the diagonal matrix D1, where the ¢-th
diagonal element is D1 (i,1) = L

R —
2y w3

2. Calculate the diagonal matrix D5, where the g-th
diagonal block is 57— I,, where I, is an identity

2”“’9”2
matrix with size of g;;

3. Calculate D5 = %(W(I)W“)T)—% and

By = HWEWET) L,

3.Update W;(1 < ¢t < T') by solving the Styler equation
of

(Xe X+ Dy +72D2+73ﬁ3)Wt+73Wtﬁ3 = X,Y;.

end

3. EXPERIMENTS AND RESULTS

We evaluate the proposed method by applying it to the
Alzheimers Disease Neuroimaging Initiative (ADNI) cohort.
Our goal is to test whether MRI, PET, or other biological
markers can be combined to predict the progression of mild
cognitive impairment (MCI) and early AD over a certain peri-
od. We downloaded the 1.5T MRI scans and the demographic
information for the 821 ADNI-1 participants. We performed
VBM on the MRI data by following [6] and extracted mean
modulated gray matter measures for 90 target regions of
interest. These measures were adjusted for the baseline intra-
cranial volume using regression weights derived from the
healthy control (HC) participants at the baseline. We also
downloaded the longitudinal scores of the participants in t-
wo independent cognitive assessments including Fluency test
(FLU) and RAVLT. The time points examined in this study
for both image markers and cognitive assessments includes
baseline (BL), Month 6 (M6), Month 12 (M12), Month 24
(M24) and Month 36 (M36). All the participants with com-
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Fig. 1. Visualization of the learned weights that associate VBM imaging markers and RAVLT cognitive outcomes.

plete information of BL/M6/M12/M24/M36 MRI measure-
ments and cognitive measures were selected in our studies,
which leads to a total of 147 subjects, including 32 AD, 63
MCI, and 52 HC participants. We examined 3 RAVLT scores
RAVLT_TOTAL, RAVLT_TOT6 and RAVLT_RECOG, and 2
Fluency scores FLU_ANIM and FLU_VEG.

We first evaluate the proposed method by applying it to
the ADNI cohort for predicting the two types of cognitive
scores using VMB, mVBM and FS markers, tracked over
five time points. We compare the proposed the method a-
gainst three baseline regression methods, including ridge re-
gression (RR), Lasso regression, support vector regression
(SVR). We also compare our new method against one very
recent competing method in [11] and we denote it as TSA.
RR is a regularized version of of linear regression to avoid
over-fitting. Lasso regression performs both variable selec-
tion and regularization. SVR is the regression version of sup-
port vector machine, which has demonstrated state-of-the-art
regression performance. Because RR, Lasso and SVR are de-
signed natively to deal with static data, these methods are test-
ed for every cognitive measures at every time point separately.
Thus they can not make use of the temporal correlations over
time and cross-task interrelations. TSA [11] uses longitudinal
model to study the projection from temporal neuroimaging
measures to the temporal cognitive scores, in which Schatten
p-norm is employed to analyze the task associations. Our new
method aims to leverage the temporal consistency and the cor-
relations across different cognitive outcomes over time.

To measure prediction performance, we use standard 5-
fold cross-validation method by computing the root mean
square error (RMSE) between the predicted values and
ground-truth values of the cognitive scores on the testing
data only. In the standard 5-fold cross-validation, the data is
equally and randomly divide into 5 groups. In every trail, one
group is as testing data and the other four groups are used as
training data. This process repeats five times in turn so that
all the data can be treated as testing data by one time and the
average RMSE values are reported in Table. 1.

From Table. 1, we can see that the proposed method is
consistently better than RR, Lasso, since theoretically the they
are the degenerated versions of our new method. In addition,
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Method RAVLT | | FLU |
RR 281260 | 17.7056
Lasso 29.0075 | 20.2097
SVR 10.9045 | 7.1885
TSA 11.1747 | 7.3471
Our method | 7.1305 | 6.9172

Table 1. Performance comparison for memory score predic-
tion measured by RMSE (| means that smaller is better).

because the first three methods in Table. 1 do not utilize the
correlations along any mode of the tensors, they do not perfor-
m as good as our new method. Although the TSA [11] takes
the advantage of temporal consistency and the relationship a-
mong tasks, it can only deal with single-modal data, while the
data structures across multiple modalities of the tensor data
are not explored.

Now we examine the imaging markers identified by
the proposed method which take into account the longitu-
dinal variations encoded by the cognitive scores recorded
at five consecutive time points. Shown in Fig. 1 are the
learned weights that associate VBM neuroimaging measures
and RAVLT cognitive outcomes (magnitudes of the average
weights for three RAVLT scores over five time points). The
top 10 selected imaging markers in Fig. 1 are visualized on
the brain volume map in Fig. 2. Due to space limit, the
learned weights between other combinations of the input data
modalities against the two types of cognitive outcomes, such
as VBM v.s. FLU and FS v.s. RAVLT, cannot be shown in this
paper. These results will be provide in the extended journal
version of this paper, from which the following observations
can be seen as well. In Fig. 1 we can observe clear patterns
that span across all five studied time points, which prove that
the markers discovered by our new method are longitudinally
stable and thereby could serve as screening targets over the
progress of AD.

4. CONCLUSION

In this paper, we proposed a novel high-order multi-modal
multi-task feature learning model to associate the longitudi-
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Fig. 2. Visualization of the top 10 VBM imaging markers
mapped onto the brain volumes with the learned weights.

nal imaging markers to the cognitive outcomes over time.
Our tensor regression model can uncover the interrelation-
ships over different time points and utilize the temporal con-
sistencies to enhance the learning model. Besides, through
trace norm regularizations the correlations across cognitive
outcomes can be captured. In addition, the group ¢;-norm
is imposed to integrate imaging markers in multiple different
modalities. The validation using ADNI imaging and cognitive
data have demonstrated the effectiveness of our new method.

5. REFERENCES

[1] Hua Wang, Feiping Nie, Heng Huang, Shannon Risach-
er, Chris Ding, Andrew J Saykin, and Li Shen, “Sparse
multi-task regression and feature selection to identify
brain imaging predictors for memory performance,” in
ICCV, 2011.

[2] Hua Wang, Feiping Nie, Heng Huang, Shannon Risach-
er, Andrew J Saykin, Li Shen, et al., “Identifying
ad-sensitive and cognition-relevant imaging biomarker-
s via joint classification and regression,” in Interna-
tional Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI). Springer,
2011, pp. 115-123.

548

(3]

[4]

(5]

[6]

[9]

[10]

(11]

Hua Wang, Feiping Nie, Heng Huang, Sungeun Kim,
Kwangsik Nho, Shannon L Risacher, Andrew J Saykin,
Li Shen, and Alzheimer’s Disease Neuroimaging Initia-
tive, “Identifying quantitative trait loci via group-sparse
multitask regression and feature selection: an imaging
genetics study of the adni cohort,” Bioinformatics, vol.
28, no. 2, pp. 229-237, 2011.

Hua Wang, Feiping Nie, Heng Huang, Shannon L
Risacher, Andrew J Saykin, and Li Shen, “Identifying
disease sensitive and quantitative trait-relevant biomark-
ers from multidimensional heterogeneous imaging ge-
netics data via sparse multimodal multitask learning,”
Bioinformatics, vol. 28, no. 12, pp. i127-i136, 2012.

Hua Wang, Feiping Nie, Heng Huang, Shannon L
Risacher, Andrew J Saykin, Li Shen, and Alzheimer’s
Disease Neuroimaging Initiative, “Identifying disease
sensitive and quantitative trait-relevant biomarkers from
multidimensional heterogeneous imaging genetics data
via sparse multimodal multitask learning,” Bioinformat-
ics, vol. 28, no. 12, pp. i1127-i1136, 2012.

Shannon L Risacher, Li Shen, John D West, Sungeun
Kim, Brenna C McDonald, Laurel A Beckett, Danielle J
Harvey, Clifford R Jack, Michael W Weiner, Andrew J
Saykin, et al., “Longitudinal mri atrophy biomarkers:
relationship to conversion in the adni cohort,” Neurobi-
ology of aging, vol. 31, no. &, pp. 1401-1418, 2010.

Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan,
Sungeun Kim, Shannon Risacher, Andrew Saykin, and
Li Shen, “High-order multi-task feature learning to i-
dentify longitudinal phenotypic markers for alzheimer’s
disease progression prediction,” in NIPS, 2012.

Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan,
Sungeun Kim, Kwangsik Nho, Shannon L Risacher, An-
drew J Saykin, Li Shen, and Alzheimer’s Disease Neu-
roimaging Initiative, “From phenotype to genotype: an
association study of longitudinal phenotypic markers to
alzheimer’s disease relevant snps,” Bioinformatics, vol.
28, no. 18, pp. 1619-i625, 2012.

Hua Wang, Feiping Nie, Heng Huang, and Chris Ding,
“Heterogeneous visual features fusion via sparse multi-
modal machine,” in CVPR, 2013.

Hua Wang, Feiping Nie, and Heng Huang, “Multi-view
clustering and feature learning via structured sparsity,”
in ICML, 2013.

Xiaogian Wang, Jingwen Yan, Xiaohui Yao, Sungeun
Kim, Kwangsik Nho, Shannon L Risacher, Andrew J
Saykin, Li Shen, Heng Huang, et al., “Longitudi-
nal genotype-phenotype association study via temporal
structure auto-learning predictive model,” in RECOMB,
2017.



