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ABSTRACT

Many existing studies on complex brain disorders, such as

Alzheimer’s Disease, usually employed regression analysis

to associate the neuroimaging measures to cognitive status.

However, whether these measures in multiple modalities have

the predictive power to infer the trajectory of cognitive perfor-

mance over time still remain under-explored. In this paper, we

propose a high-order multi-modal multi-mask feature learn-

ing model to uncover temporal relationship between the lon-

gitudinal neuroimaging measures and progressive cognitive

output scores. The regularizations through sparsity-induced

norms implemented in the proposed learning model enable

the selection of only a small number of imaging features over

time and capture modality structures for multi-modal imaging

markers. The promising experimental results in extensive em-

pirical studies performed on the ADNI cohort have validated

the effectiveness of the proposed method.

Index Terms— Alzheimer’s Disease, Feature Learning,

Multi-Modal, Longitudinal Regression

1. INTRODUCTION

Neuroimaging measures have been widely studied to predict

cognitive outcomes [1, 2, 3, 4, 5]. However, whether these

measures have further predictive power to infer a trajectory

of cognitive performance over time still remains an under-

explored, yet important, topic in Alzheimer’s Disease (AD)

research. A simple strategy typically used in longitudinal

studies (e.g., [6]) is to analyze a single summarized value
such as average change, rate of change, or slope. This ap-
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proach may be inadequate to distinguish the complete dy-

namics of cognitive trajectories and thus become unable to

identify the underlying neurodegenerative mechanisms [7, 8].

However, directly associating the temporal imaging features

to longitudinal cognitive outcome scores is very challenging

for the following reasons. Different to traditional regression

models, the input data and the response cognitive scores are

high-order tensors. Both the input neuroimaging measures

(samples × features × time) and output cognitive scores
(samples × scores × time) are three-dimensional tensors,
which inevitably complicates the learning problems.

Our previous work [7] has made an attempt to tackle the

above challenges, which, however, performed studies on on-

ly one single modality of neuroimaging measures. Recen-

t studies [4] have explored multi-modal neuroimaging mea-

sures, such as the biomarkers extracted from magnetic reso-

nance imaging (MRI), positron emission tomography (PET),

or cerebrospinal fluid (CS) data, and reported improved per-

formance in association studies to predict cognitive outcomes.

Thus, it is of apparent necessity to perform longitudinal as-

sociation studies using multiple modalities of neuroimaging

measures. With this recognition, in this paper we propose

a novel high-order multi-modal multi-task feature learning

model to identify longitudinal neuroimaging markers that can

accurately predict cognitive scores over all the time pointsp.

2. THE METHOD

For AD progression prediction using longitudinal phenotyp-

ic biomarkers, the input imaging features are a set of ma-

trices: X = {X1, X2, · · · , XT } ∈ R
d×n×T corresponding

to the measurements at T consecutive time points. Xt ∈
R

d×n (1 ≤ t ≤ T ) is the concatenation of different type-
s of phenotype measurements of the entire cohort at certain

time point t, such as voxel-based morphometry (VBM), mod-
ified voxel-based morphometry (mVBM) and FreeSurfer (F-

S): Xt = [Xt1;Xt2; · · · ;XtK ] where K represents the num-

ber of neuroimaging feature modalities. Obviously, the input

neuroimaging data X is a tensor with d imaging measures,
n subject samples, and T time points. Similarly, the cogni-
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tive outcomes are a set of matrices: Y = {Y1, Y2, · · · , YT } ∈
R

n×c×T for certain type of cognitive outcomes, such as the

Rey’s Auditory Verbal Learning Test (RAVLT) scores at the

same T consecutive time points as input. Again, Y is a tensor
with n subject samples, c cognitive scores, and T time points.

Traditional multivariate regression models minimize the

following objective:

min
W

J0 = ||W ⊗ X − Y||+γ1||W||22

=
T∑

t=1

||WT
t Xt − Yt||2F+γ1

T∑
t=1

d∑
j=i

||wj
t ||22,

(1)

where wj
t indicates the j-th row of coefficient matrix Wt at

time point t andW = {W1, . . . ,WT } ∈ Rd×c×T is a tensor

of regression weights. The objective J0 in Eq. (1) does not
take into account the temporal correlations over time, because

the optimization problem can be decoupled for each individu-

al time point separately. To uncover the temporal relationship,

we introduce the sparse regularization as follows [7, 8]:

min
W

J1 = ||W ⊗ X − Y||+γ1
d∑

i=1

√√√√ T∑
t=1

||wi
t||22

=

T∑
t=1

||WT
t Xt − Yt||2F+γ1||W (1)||2,1,

(2)

where W (1) = unfold1 (W) = [W1, . . . ,WT ] denotes the
unfolding operation of the tensorW along its first mode.

In addition, to integrate the neuroimaging measures in d-

ifferent modalities, we further impose into our objective the

regularization using a group �1-norm introduced in [5, 9, 10]
as ||W (1)||G1

=
∑G

g=1

∑gi
i=1||wi

g||2=
∑G

g=1||wg||2, where
G represents the number of modalities, and gi represents the
number of imaging measures in g-th modality:

min
W

J2 =
T∑

t=1

||WT
t Xt − Yt||2F

+ γ1||W (1)||2,1+γ2||W (1)||G1

(3)

Finally, to capture the correlations among different learn-

ing tasks at different time points [7, 8], we impose low-rank

regularization to discover the the common subspace shared by

predictive tasks as follows:

min
W

J3 =

T∑
t=1

||WT
t Xt − Yt||2F+γ1||W (1)||2,1

+ γ2||W (1)||G1
+γ3(||W (1)||∗+||W (2)||∗)

(4)

where W (2) = unfold2 (W) =
[
WT

1 , . . . ,WT
T

]
denotes the

unfolding operation of the tensor W along its second mode

and ||·||∗ denotes the trace norm of a matrix. Given a matrix

M ∈ Rn×m and its singular values σi (1 ≤ i ≤ min(n,m)),
the trace norm of M is defined as ||M ||∗=

∑min(n,m)
i=1 σi =

Tr(MMT )
1
2 .

The objective in Eq. 4 is our proposed high-order multi-

modal multi-task longitudinal feature learning model, which

is advantageous in that it is able to integrate multi-modal

neuroimaging measures and capture the correlations between

cognitive outcomes over time. Its solution algorithm is pro-

vided in Algorithm. 1. Due to space limit, the derivation

of this algorithm and the proof of its convergence will be

supplied in the extended journal version of this paper.

Algorithm 1: The solution algorithm to the proposed

objective J3 in Eq.(4).

Data: X = [X1, X2, · · · , XT ] ∈ Rd×n×T ,
Y = [Y1, Y2, · · · , YT ] ∈ Rn×c×T .

Result: W = [W1,W2, · · · ,WT ] ∈ Rd×c×T
initialization: Wt ∈ Rd×c(1 ≤ t ≤ T ) using the linear
regression results at each individual time point.

while not converge do
1. Calculate the diagonal matrixD1, where the i-th
diagonal element isD1(i, i) =

1

2
√∑T

t=1||w
j
t ||22

;

2. Calculate the diagonal matrixD2, where the g-th
diagonal block is 1

2||wg ||2 Ig , where Ig is an identity
matrix with size of gi;

3. Calculate D̂3 =
1
2
(W (1)W (1)T )−

1
2 and

D̃3 =
1
2
(W (2)W (2)T )−

1
2 ;

3.UpdateWt(1 ≤ t ≤ T ) by solving the Styler equation
of

(XtX
T
t +γ1D1+γ2D2+γ3D̂3)Wt+γ3WtD̃3 = XtYt.

end

3. EXPERIMENTS AND RESULTS

We evaluate the proposed method by applying it to the

Alzheimers Disease Neuroimaging Initiative (ADNI) cohort.

Our goal is to test whether MRI, PET, or other biological

markers can be combined to predict the progression of mild

cognitive impairment (MCI) and early AD over a certain peri-

od. We downloaded the 1.5T MRI scans and the demographic

information for the 821 ADNI-1 participants. We performed

VBM on the MRI data by following [6] and extracted mean

modulated gray matter measures for 90 target regions of

interest. These measures were adjusted for the baseline intra-

cranial volume using regression weights derived from the

healthy control (HC) participants at the baseline. We also

downloaded the longitudinal scores of the participants in t-

wo independent cognitive assessments including Fluency test

(FLU) and RAVLT. The time points examined in this study

for both image markers and cognitive assessments includes

baseline (BL), Month 6 (M6), Month 12 (M12), Month 24

(M24) and Month 36 (M36). All the participants with com-

546



BL

M6

M12

M24

M36

LA
m

yg
da

la
R

A
m

yg
da

la
LA

ng
ul

ar
R

A
ng

ul
ar

LC
al

ca
rin

e
R

C
al

ca
rin

e
LC

au
da

te
R

C
au

da
te

LA
nt

C
in

gu
la

te
R

A
nt

C
in

gu
la

te
LM

id
C

in
gu

la
te

R
M

id
C

in
gu

la
te

LP
os

tC
in

gu
la

te
R

P
os

tC
in

gu
la

te
LC

un
eu

s
R

C
un

eu
s

LI
nf

F
ro

nt
al

_O
pe

r
R

In
fF

ro
nt

al
_O

pe
r

LI
nf

O
rb

F
ro

nt
al

R
In

fO
rb

F
ro

nt
al

LI
nf

F
ro

nt
al

_T
ria

ng
R

In
fF

ro
nt

al
_T

ria
ng

LM
ed

O
rb

F
ro

nt
al

R
M

ed
O

rb
F

ro
nt

al
LM

id
F

ro
nt

al
R

M
id

F
ro

nt
al

LM
id

O
rb

F
ro

nt
al

R
M

id
O

rb
F

ro
nt

al
LS

up
F

ro
nt

al
R

S
up

F
ro

nt
al

LM
ed

S
up

F
ro

nt
al

R
M

ed
S

up
F

ro
nt

al
LS

up
O

rb
F

ro
nt

al
R

S
up

O
rb

F
ro

nt
al

LF
us

ifo
rm

R
F

us
ifo

rm
LH

es
ch

l
R

H
es

ch
l

LH
ip

po
ca

m
pu

s
R

H
ip

po
ca

m
pu

s
LI

ns
ul

a
R

In
su

la
LL

in
gu

al
R

Li
ng

ua
l

LI
nf

O
cc

ip
ita

l
R

In
fO

cc
ip

ita
l

LM
id

O
cc

ip
ita

l
R

M
id

O
cc

ip
ita

l
LS

up
O

cc
ip

ita
l

R
S

up
O

cc
ip

ita
l

LO
lfa

ct
or

y
R

O
lfa

ct
or

y
LP

al
lid

um
R

P
al

lid
um

LP
ar

ah
ip

p
R

P
ar

ah
ip

p
LP

ar
ac

en
tr

al
R

P
ar

ac
en

tr
al

LI
nf

P
ar

ie
ta

l
R

In
fP

ar
ie

ta
l

LS
up

P
ar

ie
ta

l
R

S
up

P
ar

ie
ta

l
LP

os
tc

en
tr

al
R

P
os

tc
en

tr
al

LP
re

ce
nt

ra
l

R
P

re
ce

nt
ra

l
LP

re
cu

ne
us

R
P

re
cu

ne
us

LP
ut

am
en

R
P

ut
am

en
LR

ec
tu

s
R

R
ec

tu
s

LR
ol

an
di

c_
O

pe
r

R
R

ol
an

di
c_

O
pe

r
LS

up
pM

ot
or

A
re

a
R

S
up

pM
ot

or
A

re
a

LS
up

ra
m

ar
g

R
S

up
ra

m
ar

g
LI

nf
T

em
po

ra
l

R
In

fT
em

po
ra

l
LM

id
T

em
po

ra
l

R
M

id
T

em
po

ra
l

LM
id

T
em

pP
ol

e
R

M
id

T
em

pP
ol

e
LS

up
T

em
pP

ol
e

R
S

up
T

em
pP

ol
e

LS
up

T
em

po
ra

l
R

S
up

T
em

po
ra

l
LT

ha
la

m
us

R
T

ha
la

m
us

0.02

0.04

0.06

Fig. 1. Visualization of the learned weights that associate VBM imaging markers and RAVLT cognitive outcomes.

plete information of BL/M6/M12/M24/M36 MRI measure-

ments and cognitive measures were selected in our studies,

which leads to a total of 147 subjects, including 32 AD, 63

MCI, and 52 HC participants. We examined 3 RAVLT scores

RAVLT TOTAL, RAVLT TOT6 and RAVLT RECOG, and 2

Fluency scores FLU ANIM and FLU VEG.

We first evaluate the proposed method by applying it to

the ADNI cohort for predicting the two types of cognitive

scores using VMB, mVBM and FS markers, tracked over

five time points. We compare the proposed the method a-

gainst three baseline regression methods, including ridge re-

gression (RR), Lasso regression, support vector regression

(SVR). We also compare our new method against one very

recent competing method in [11] and we denote it as TSA.

RR is a regularized version of of linear regression to avoid

over-fitting. Lasso regression performs both variable selec-

tion and regularization. SVR is the regression version of sup-

port vector machine, which has demonstrated state-of-the-art

regression performance. Because RR, Lasso and SVR are de-

signed natively to deal with static data, these methods are test-

ed for every cognitive measures at every time point separately.

Thus they can not make use of the temporal correlations over

time and cross-task interrelations. TSA [11] uses longitudinal

model to study the projection from temporal neuroimaging

measures to the temporal cognitive scores, in which Schatten

p-norm is employed to analyze the task associations. Our new
method aims to leverage the temporal consistency and the cor-

relations across different cognitive outcomes over time.

To measure prediction performance, we use standard 5-

fold cross-validation method by computing the root mean

square error (RMSE) between the predicted values and

ground-truth values of the cognitive scores on the testing

data only. In the standard 5-fold cross-validation, the data is

equally and randomly divide into 5 groups. In every trail, one

group is as testing data and the other four groups are used as

training data. This process repeats five times in turn so that

all the data can be treated as testing data by one time and the

average RMSE values are reported in Table. 1.

From Table. 1, we can see that the proposed method is

consistently better than RR, Lasso, since theoretically the they

are the degenerated versions of our new method. In addition,

Method RAVLT ↓ FLU ↓
RR 28.1260 17.7056

Lasso 29.0075 20.2097

SVR 10.9045 7.1885

TSA 11.1747 7.3471

Our method 7.1305 6.9172

Table 1. Performance comparison for memory score predic-
tion measured by RMSE (↓ means that smaller is better).

because the first three methods in Table. 1 do not utilize the

correlations along any mode of the tensors, they do not perfor-

m as good as our new method. Although the TSA [11] takes

the advantage of temporal consistency and the relationship a-

mong tasks, it can only deal with single-modal data, while the

data structures across multiple modalities of the tensor data

are not explored.

Now we examine the imaging markers identified by

the proposed method which take into account the longitu-

dinal variations encoded by the cognitive scores recorded

at five consecutive time points. Shown in Fig. 1 are the

learned weights that associate VBM neuroimaging measures

and RAVLT cognitive outcomes (magnitudes of the average

weights for three RAVLT scores over five time points). The

top 10 selected imaging markers in Fig. 1 are visualized on

the brain volume map in Fig. 2. Due to space limit, the

learned weights between other combinations of the input data

modalities against the two types of cognitive outcomes, such

as VBM v.s. FLU and FS v.s. RAVLT, cannot be shown in this
paper. These results will be provide in the extended journal

version of this paper, from which the following observations

can be seen as well. In Fig. 1 we can observe clear patterns

that span across all five studied time points, which prove that

the markers discovered by our new method are longitudinally

stable and thereby could serve as screening targets over the

progress of AD.

4. CONCLUSION

In this paper, we proposed a novel high-order multi-modal

multi-task feature learning model to associate the longitudi-
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Fig. 2. Visualization of the top 10 VBM imaging markers

mapped onto the brain volumes with the learned weights.

nal imaging markers to the cognitive outcomes over time.

Our tensor regression model can uncover the interrelation-

ships over different time points and utilize the temporal con-

sistencies to enhance the learning model. Besides, through

trace norm regularizations the correlations across cognitive

outcomes can be captured. In addition, the group �1-norm
is imposed to integrate imaging markers in multiple different

modalities. The validation using ADNI imaging and cognitive

data have demonstrated the effectiveness of our new method.
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