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ABSTRACT

Traditional neuroimaging analysis, such as clustering the data

collected for the Alzheimer’s disease (AD), usually relies on

the data from one single imaging modality. However, recent

technology and equipment advancements provide with us op-

portunities to better analyze diseases, where we could collect

and employ the data from different image and genetic modal-

ities that may potentially enhance the predictive performance.

To perform better clustering in AD analysis, in this paper we

conduct a new study to make use of the data from different

modalities/views. To achieve this goal, we propose a simple

yet efficient method based on Non-negative Matrix Factoriza-

tion (NMF) which can not only achieve better prediction per-

formance but also deal with some data missing in some views.

Experimental results on the ADNI dataset demonstrate the ef-

fectiveness of our proposed method.

Index Terms— Multi-View Clustering, Non-negative

Matrix Factorization, Incomplete Views, Alzheimer’s Dis-

ease (AD)

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by progressive impairment of memory and oth-

er cognitive functions. Thus, in AD studies there can be three

diagnostic groups based on its progress: AD, mild cognitive

impairment (MCI), and health control (HC). As a result, early

detection and diagnosis of AD have been routinely modeled

as a supervised classification problem. Supervised classifi-

cation models require data labels, i.e., the diagnostic group
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information of the participants. Statistically speaking, the

more labeled data one can have, the better a supervised learn-

ing model can be trained. However, because data labeling is

costly, developing unsupervised learning models that do not

rely on data labels has attracted more and more attentions [1].

On the other hand, with recent developments on technolo-

gies, advances in acquiring genome-wide array data and mul-

timodal brain imaging data have made it possible and practi-

cal to study the influence of genetic variation on brain struc-

tures and functions. Research in this promising field, known

as imaging genetics, plays an important role in simulating bi-
ology mechanism of the brain to better understand complex

neurobiological systems, from genetic determinants to the in-

terplay of brain structure, function, behavior and cognition.

Study and analysis of such multimodal data may possibly

deepen our mechanistic understanding of diseases, facilitate

early diagnosis, thus improving the treatment of brain dis-

orders. For example, regional imaging biomarkers obtained

from magnetic resonance imaging (MRI), such as the voxel-

based morphometry (VBM) [2] features, can characterize the

structural variations and those obtained from fluorodeoxyglu-

cose positron emission tomography (FDG-PET) can charac-

terize molecular variations on brains. In addition, genome-

wide association studies (GWAS) have been increasingly per-

formed to correlate high-throughput single nucleotide poly-

morphism (SNP) data to large-scale image data. Recent stud-

ies [3, 4] examined these associations at the whole genome

and entire brain level, which have shown that the variation-

s on genotypic biomarkers as SNPs are strongly associated

with the variations on phenotypic measures. Therefore it is

beneficial to take advantage of the multimodal phenotypic and

genotypic biomarkers when we study the AD patterns.

To address the above two challenges, in this paper we

propose a simple, yet computationally efficient, unsupervised

clustering method to detect AD patterns, i.e., the diagnostic
group memberships of the participants. Our new method is

built under the framework of nonnegative matrix factoriza-

tion (NMF) [5]. Due to its connection toK-means clustering
[6], NMF has been broadly used to solve a variety of cluster-

ing problems [5, 7, 8]. In the proposed new method, when
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performing clustering, we learn the centroids, i.e., the repre-
sentative data points, for each individual data modality sep-

arately, and fix the cluster memberships of the data points

across different modalities by learning a unified clustering

indication collectively. As a result, the representations of a

same data point in multiple modalities compensate each oth-

er and improved clustering results have been achieved. We

performed extensive experiments on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) cohort and the promising re-

sults validated our proposed new method.

2. CLUSTERING AND NMF

Our goal is to cluster the multi-view data into three clusters:

AD, MCI and HC. K-means is one of the most popular meth-

ods for clustering, and it has been proved that under some

circumstance, NMF is equivalent to K-means [6]. Due to the

mathematical elegance, NMF has been broadly used for clus-

tering. The error function of traditional NMF [5] is:

min J = ‖X − FG‖2F , s.t. F,G ≥ 0, (1)

where X ∈ �N×d is the input data and ‖X‖2F =
∑

X2
ij is

a Frobenius form of a matrix. In this paper and our study, it

could be any arbitrary view of data, such as SNP data, VBM

data, FDG-PET data, etc., with N instances and d features.
The solution to J in Eq. 1 is given by the updating F and G
as following [5]:

Fik ←− Fik
(XGT )ik
(FGGT )ik

, Gkj ←− Gkj
(FTX)kj
(FTFG)kj

. (2)

The resulted F gives the centroids of the three clusters in-

cluding AD, MCI and HC, and the resulted G indicates the

clustering membership of input data.

3. OUR NEWMETHOD

In this section, we will first formalize the problem. Then the

background knowledge on weighted nonnegative matrix fac-

torization will be introduced to motivate our new method.

3.1. Instance Weight Matrix

We first summarize the notations used in this paper in Table 1.

Suppose we are given a dataset of N instances with nv views{
X1, X2, ..., Xnv

}
where Xi ∈ �N×di denotes the data

from i-th view. We define an indicator matrixM ∈ �nv×N ,
where Mi,j = 1 if j-th instance appears in i-th view, other-
wise Mi,j = 0. It can be verified that when all elements in
M is 1, the clustering problem becomes a traditional com-

plete multi-view clustering problem. Traditional multi-view

clustering [9] defines the objective function to sum up the

loss over different views, inspired by giving different weight-

s to different views, we introduce a diagonal weight matrix

Table 1. Notation Summary
Notation Description

N total number of data instances

nv total number of views

X(i) data matrix from i-th view
di feature dimension in the i-th view
M indicator matrix

W (i) weight matrix for the i-th view

U (i) clustering matrix for the i-th view

V (i) feature matrix from i-th view
U∗ consensus clustering matrix

αi trade-off parameter for the i-th view

W (i) ∈ �N×N for each view i by

W
(i)
j,j =

{
1 ifMij = 1,
∑N

j=1Mi,j

N otherwise
(3)

W (i) gives lower weights to the missing instances than the

presented instances in the i-th view. For different views with
different incomplete rates, the weights for missing instances

are also different.

3.2. Objective Function

Given the representations of the input data in nv differen-
t modalities

{
X(1), X(2), ..., X(nv)

}
, for each modality of

X(i) we can factorize it asX(i) ≈ U (i) ∗V (i). Thus, a simple

objective function to combine multiple incomplete views can

be formulated as following:

min J =

nv∑
i=1

‖W (i)
(
X(i) − U (i)V (i)

)
‖2F , (4)

The objective function is to minimize the sum of the loss

over different views, where X(i) ∈ �N×di is the input data,
U (i) ∈ �N×K contains the centroids of the K = 3 clusters,
one for each column, V (i) ∈ �K×di indicates the clustering
membership of the input data for a specific modality/view. It

is worthy to notice that when nv = 1, the multimodal data
clustering problem is reduced to traditional single view clus-

tering in Eq. (1); whenW (i) is an identity matrix, the objec-

tive function solves the complete multi-view clustering.

Because the objective in Eq. (4) can be decoupled into nv
optimization subproblems, the clustering results from multi-

ple views may not be consistent. Thus, we further develop the

objective in Eq. (4) to enforce the constraint that the clustering

indications in different views should be close to a consensus

clustering result, which leads to the following objective:

min J =

nv∑
i=1

(
‖W (i)(X(i) − U (i)V (i))‖2F

+αi‖W (i)(U (i) − U∗)‖2F
)
.

(5)
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3.3. Algorithm

To solve the above optimization problem, we derive an itera-

tive update algorithm as summarized in Algorithm 1, whose

correctness and convergence can be rigorously proved. Due to

space limit, we provide the detailed analysis on the algorithm

and its convergence proof in the extended journal version of

this paper.

Algorithm 1: Incomplete Multi-view Algorithm
Data: Multi-view data:

{
X(1), X(2), ..., X(nv)

}
,

Indicator MatrixM , {α1, α2, ..., αnv},Number
of ClustersK.

Result: Clustering matrices:
{
U (1), U (2), ..., U (nv)

}
,

Feature matrices:
{
V (1), V (2), ..., V (nv)

}
and

consensus clustering matrix U∗.
1. Fill the missing instances in each incomplete view

with average feature values.

2. For each view of X , do normalization by feature.

3. Initialize U (i) and V (i) as in [6].

4. For each view i, W̃ (i) =W (i)TW (i).

repeat
5. Fixing U (i) and V (i), update U∗ as(∑nv

i=1 αiW̃
(i)
)−1 (∑nv

i=1 αiW̃
(i)U (i)

)
.

6. For each view i, update U (i) as

U
(i)
j,k ← U

(i)
j,k

(W̃ (i)X(i)V (i)
T
+αiW̃

(i)U∗)j,k
(W̃ (i)U(i)V (i)V (i)T +αiW̃ (i)U(i))j,k

and

V
(i)
j,k ← V

(i)
j,k

(U(i)
T
W̃ (i)X(i))j,k

(U(i)T W̃ (i)U(i)V (i))j,k
.

until Converges
7. Get the Clustering result from U∗.

4. EXPERIMENTS

In this section, we perform the experiments on the ADNI co-

hort to demonstrate the effectiveness of our new method.

4.1. AD Dataset

Data used in the preparation of this paper were obtained from

the ADNI database1. Our goal to use the ADNI data set is

to test whether serial MRI, FDG-PET, FreeSurfer and SNP

markers can be combined to predict the progress stages of

AD. Following the prior imaging genetics study [3], 733 non-

Hispanic Caucasian participants were included in this study.

In this study, we have include 204 HC, 354 MCI and 175 AD

participants. Every participant is described by the above four

modalities of imaging and genetic data, some of which have

incomplete descriptions. The features in every modality of

the involved subject samples are summarized in Table 2.

1http://adni.loni.usc.edu/

Table 2. Multimodal feature in multiview learning
View ID (feature set ID) Modality No. of features

VBM MRI 86

FreeSurfer MRI 56

FDG-PET FDG-PET 26

SNPs Genetics 1224

Table 3. Clustering performance in AD Dataset
Method Accuracy(%) NMI(%)

ConvexSub 39.2± 0.1 33.2± 0.3
ConcatNMF 34.1± 0.2 27.0± 0.1

PVC 42.3± 0.1 30.6± 0.3
MultiNMF 45.2± 0.1 38.7± 0.1
Ours 48.9± 0.2 39.5± 0.2

4.2. Baseline Algorithms

To demonstrate how the clustering performance can be im-

proved by the proposed approach, we compared it against the

following algorithms:

ConvexSub: A subspace-based multi-view clustering method
is proposed by [10]. In our comparison experiments, we set β
to be 1 for all different views.

Feature Concatenation (ConcatNMF): A simple and direc-
t way is to concatenate all the features from different views,

and run classical NMF on the concatenated representation.

PVC: [11] proposes the partial multi-view clustering (PVC)
method, which deals with incomplete views. The idea in PVC

is the instances correspond to the same example in different

views should be close to each other. We set the parameter Λ
to be 0.01 in the experiments.

MultiNMF: by introducing a consensus clustering matrix and
optimizing each matrices, MultiNMF [12] could not only give

the clustering for each view but also give the optimized con-

sensus clustering matrix.

The clustering accuracy (AC) and the normalized mutual in-

formation (NMI) are used to measure the clustering perfor-

mance for each method and comparison [13].

4.3. Result

Table 3 shows the clustering performance (including accuracy

and NMI) of different algorithms on the AD datasets. In or-

der to randomize the experiments, 20 test runs with different

random initializations were conducted and the average perfor-

mance are reported. Obviously, we new method outperforms

its competing counterparts with a clear margin.

We further study the results of different rates of data in-

completeness. For this stage, first we only selects the com-

plete data with all four views, and we have 345 subject sam-

ples (83 HC, 174 MCI and 88 AD). Then we artificially re-
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Fig. 1. Clustering Accuracies with different incompleteness
rates varies from 0.1 to 0.5, it is obvious that our proposed

method has an advantage over other methods

move some views from some data with various rates (from 0

to 0.5 with 0.1 as interval).

5. CONCLUSION

In this paper, we introduced an efficient algorithm for in-

complete multi-view clustering based on nonnegative matrix

factorization. In order to efficiently learn the underlying

clustering structure embedded in multiple views, we require

coefficient matrices learned from factorizations of different

views to be close by introducing a consensus clustering ma-

trix. Moreover, we propose weight matrices to solve incom-

plete data problem and give the effective algorithm. We also

show that our proposed method converges fast. Experiments

on real world AD datasets demonstrate that the proposed

method could achieve good clustering accuracy with various

incompleteness rates.
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