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ABSTRACT

Traditional neuroimaging analysis, such as clustering the data
collected for the Alzheimer’s disease (AD), usually relies on
the data from one single imaging modality. However, recent
technology and equipment advancements provide with us op-
portunities to better analyze diseases, where we could collect
and employ the data from different image and genetic modal-
ities that may potentially enhance the predictive performance.
To perform better clustering in AD analysis, in this paper we
conduct a new study to make use of the data from different
modalities/views. To achieve this goal, we propose a simple
yet efficient method based on Non-negative Matrix Factoriza-
tion (NMF) which can not only achieve better prediction per-
formance but also deal with some data missing in some views.
Experimental results on the ADNI dataset demonstrate the ef-
fectiveness of our proposed method.

Index Terms— Multi-View Clustering, Non-negative
Matrix Factorization, Incomplete Views, Alzheimer’s Dis-
ease (AD)

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by progressive impairment of memory and oth-
er cognitive functions. Thus, in AD studies there can be three
diagnostic groups based on its progress: AD, mild cognitive
impairment (MCI), and health control (HC). As a result, early
detection and diagnosis of AD have been routinely modeled
as a supervised classification problem. Supervised classifi-
cation models require data labels, i.e., the diagnostic group

T Correspondence to Hua Wang (huawangcs @ gmail.com). This research
was partially supported by NSF-IIS 1423591 and NSF-IIS 1652943; NIH
RO1 EB022574, R0O1 LMO011360, RO1 AG19771, U19 AG024904, and P30
AG10133.

fData used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.usc.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not par-
ticipate in analysis or writing of this report. A complete listing of ADNI in-
vestigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how
to apply/ADNI Acknowledgement List.pdf.

978-1-5386-3636-7/18/$31.00 ©2018 IEEE

information of the participants. Statistically speaking, the
more labeled data one can have, the better a supervised learn-
ing model can be trained. However, because data labeling is
costly, developing unsupervised learning models that do not
rely on data labels has attracted more and more attentions [1].

On the other hand, with recent developments on technolo-
gies, advances in acquiring genome-wide array data and mul-
timodal brain imaging data have made it possible and practi-
cal to study the influence of genetic variation on brain struc-
tures and functions. Research in this promising field, known
as imaging genetics, plays an important role in simulating bi-
ology mechanism of the brain to better understand complex
neurobiological systems, from genetic determinants to the in-
terplay of brain structure, function, behavior and cognition.
Study and analysis of such multimodal data may possibly
deepen our mechanistic understanding of diseases, facilitate
early diagnosis, thus improving the treatment of brain dis-
orders. For example, regional imaging biomarkers obtained
from magnetic resonance imaging (MRI), such as the voxel-
based morphometry (VBM) [2] features, can characterize the
structural variations and those obtained from fluorodeoxyglu-
cose positron emission tomography (FDG-PET) can charac-
terize molecular variations on brains. In addition, genome-
wide association studies (GWAS) have been increasingly per-
formed to correlate high-throughput single nucleotide poly-
morphism (SNP) data to large-scale image data. Recent stud-
ies [3, 4] examined these associations at the whole genome
and entire brain level, which have shown that the variation-
s on genotypic biomarkers as SNPs are strongly associated
with the variations on phenotypic measures. Therefore it is
beneficial to take advantage of the multimodal phenotypic and
genotypic biomarkers when we study the AD patterns.

To address the above two challenges, in this paper we
propose a simple, yet computationally efficient, unsupervised
clustering method to detect AD patterns, i.e., the diagnostic
group memberships of the participants. Our new method is
built under the framework of nonnegative matrix factoriza-
tion (NMF) [5]. Due to its connection to K -means clustering
[6], NMF has been broadly used to solve a variety of cluster-
ing problems [5, 7, 8]. In the proposed new method, when
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performing clustering, we learn the centroids, i.e., the repre-
sentative data points, for each individual data modality sep-
arately, and fix the cluster memberships of the data points
across different modalities by learning a unified clustering
indication collectively. As a result, the representations of a
same data point in multiple modalities compensate each oth-
er and improved clustering results have been achieved. We
performed extensive experiments on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort and the promising re-
sults validated our proposed new method.

2. CLUSTERING AND NMF

Our goal is to cluster the multi-view data into three clusters:
AD, MCI and HC. K-means is one of the most popular meth-
ods for clustering, and it has been proved that under some
circumstance, NMF is equivalent to K-means [6]. Due to the
mathematical elegance, NMF has been broadly used for clus-
tering. The error function of traditional NMF [5] is:

min J = |X - FG||%, st. F,G>0, (1)
where X € RV*4 is the input data and || X||% = > X7 s
a Frobenius form of a matrix. In this paper and our study, it
could be any arbitrary view of data, such as SNP data, VBM
data, FDG-PET data, efc., with N instances and d features.
The solution to J in Eq. 1 is given by the updating F' and G
as following [5]:

(XGT),
(FGGT)y,’

(FTX)k;

Fy «— F A 2ky
k k (FTFG)y;

ij — ij 2)
The resulted F' gives the centroids of the three clusters in-
cluding AD, MCI and HC, and the resulted GG indicates the

clustering membership of input data.

3. OUR NEW METHOD

In this section, we will first formalize the problem. Then the
background knowledge on weighted nonnegative matrix fac-
torization will be introduced to motivate our new method.

3.1. Instance Weight Matrix

We first summarize the notations used in this paper in Table 1.
Suppose we are given a dataset of N instances with n,, views
{X', X2, .., X"} where X' € RV*% denotes the data
from i-th view. We define an indicator matrix M € R"»*N,
where M; ; = 1 if j-th instance appears in i-th view, other-
wise M; ; = 0. It can be verified that when all elements in
M is 1, the clustering problem becomes a traditional com-
plete multi-view clustering problem. Traditional multi-view
clustering [9] defines the objective function to sum up the
loss over different views, inspired by giving different weight-
s to different views, we introduce a diagonal weight matrix

Table 1. Notation Summary

Notation Description
N total number of data instances
Ty total number of views
x® data matrix from i-th view
d; feature dimension in the ¢-th view
M indicator matrix
w® weight matrix for the ¢-th view
Uw clustering matrix for the i-th view
v feature matrix from i-th view
U consensus clustering matrix
% trade-off parameter for the i-th view

W@ € RN*N for each view i by

if My =1,

) 1
W= 3)
7 { L= My otherwise

N

W gives lower weights to the missing instances than the
presented instances in the ¢-th view. For different views with
different incomplete rates, the weights for missing instances
are also different.

3.2. Objective Function

Given the representations of the input data in n, differen-
t modalities {X(l),X(Z), ...,X("v)}, for each modality of
X () we can factorize it as X ~ U® « V() Thus, a simple
objective function to combine multiple incomplete views can
be formulated as following:

min J = ij W (xO - vOvO) Iz, @
i=1

The objective function is to minimize the sum of the loss
over different views, where X (1) e RN*di ig the input data,
U@ e RNXK contains the centroids of the K = 3 clusters,
one for each column, V() € RE*% indicates the clustering
membership of the input data for a specific modality/view. It
is worthy to notice that when n, = 1, the multimodal data
clustering problem is reduced to traditional single view clus-
tering in Eq. (1); when W) is an identity matrix, the objec-
tive function solves the complete multi-view clustering.
Because the objective in Eq. (4) can be decoupled into n,,
optimization subproblems, the clustering results from multi-
ple views may not be consistent. Thus, we further develop the
objective in Eq. (4) to enforce the constraint that the clustering
indications in different views should be close to a consensus
clustering result, which leads to the following objective:

min J = (||W“>(X<i) 7 ONOMNTES
= 5)

+a[ WO — U3
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3.3. Algorithm

To solve the above optimization problem, we derive an itera-
tive update algorithm as summarized in Algorithm 1, whose
correctness and convergence can be rigorously proved. Due to
space limit, we provide the detailed analysis on the algorithm
and its convergence proof in the extended journal version of
this paper.

Algorithm 1: Incomplete Multi-view Algorithm
Data: Multi-view data: { X, X X ()}
Indicator Matrix M, {aq, aa, ..., o, },Number
of Clusters K.

Result: Clustering matrices: {UM, U@, .. Um) ],
Feature matrices: {V1), V& V(™)1 and
consensus clustering matrix U*.

1. Fill the missing instances in each incomplete view

with average feature values.

2. For each view of X, do normalization by feature.

3. Initialize U and V® as in [6].

4. For each view i, W = W@ (),

repeat

5. Fixing U and V() update U* as
~ .\ 1 ~ . )
(Z?:H aiwm) (ZLH aiW(’)U(Z)).
6. For each view i, update U(?) as
(@) () __ (WOXOVOT 1o, WO,
Ujk < Uj,k (W(i)U(nvmvu)T+aiWu>Um’;M
() ) _UOTWOXD),,
Vj,k « ij UOTWOHUOV@),
until Converges
7. Get the Clustering result from U*.

and

4. EXPERIMENTS

In this section, we perform the experiments on the ADNI co-
hort to demonstrate the effectiveness of our new method.

4.1. AD Dataset

Data used in the preparation of this paper were obtained from
the ADNI database'. Our goal to use the ADNI data set is
to test whether serial MRI, FDG-PET, FreeSurfer and SNP
markers can be combined to predict the progress stages of
AD. Following the prior imaging genetics study [3], 733 non-
Hispanic Caucasian participants were included in this study.
In this study, we have include 204 HC, 354 MCI and 175 AD
participants. Every participant is described by the above four
modalities of imaging and genetic data, some of which have
incomplete descriptions. The features in every modality of
the involved subject samples are summarized in Table 2.

'http://adni.loni.usc.edu/

Table 2. Multimodal feature in multiview learning

View ID (feature set ID) Modality  No. of features
VBM MRI 86
FreeSurfer MRI 56
FDG-PET FDG-PET 26
SNPs Genetics 1224

Table 3. Clustering performance in AD Dataset

Method Accuracy(%) NMI(%)
ConvexSub 39.24+0.1 33.24+0.3
ConcatNMF  34.1 +£0.2 27.0+0.1

PVC 42.3+0.1 30.6 £0.3
MultiNMF 452+ 0.1 38.7+0.1
Ours 48.9 + 0.2 39.5+0.2

4.2. Baseline Algorithms

To demonstrate how the clustering performance can be im-
proved by the proposed approach, we compared it against the
following algorithms:

ConvexSub: A subspace-based multi-view clustering method
is proposed by [10]. In our comparison experiments, we set 3
to be 1 for all different views.

Feature Concatenation (ConcatNMF): A simple and direc-
t way is to concatenate all the features from different views,
and run classical NMF on the concatenated representation.
PVC: [11] proposes the partial multi-view clustering (PVC)
method, which deals with incomplete views. The idea in PVC
is the instances correspond to the same example in different
views should be close to each other. We set the parameter A
to be 0.01 in the experiments.

MultiNMF: by introducing a consensus clustering matrix and
optimizing each matrices, MultiNMF [12] could not only give
the clustering for each view but also give the optimized con-
sensus clustering matrix.

The clustering accuracy (AC) and the normalized mutual in-
formation (NMI) are used to measure the clustering perfor-
mance for each method and comparison [13].

4.3. Result

Table 3 shows the clustering performance (including accuracy
and NMI) of different algorithms on the AD datasets. In or-
der to randomize the experiments, 20 test runs with different
random initializations were conducted and the average perfor-
mance are reported. Obviously, we new method outperforms
its competing counterparts with a clear margin.

We further study the results of different rates of data in-
completeness. For this stage, first we only selects the com-
plete data with all four views, and we have 345 subject sam-
ples (83 HC, 174 MCI and 88 AD). Then we artificially re-
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Fig. 1. Clustering Accuracies with different incompleteness
rates varies from 0.1 to 0.5, it is obvious that our proposed
method has an advantage over other methods

move some views from some data with various rates (from 0
to 0.5 with 0.1 as interval).

5. CONCLUSION

In this paper, we introduced an efficient algorithm for in-
complete multi-view clustering based on nonnegative matrix
factorization. In order to efficiently learn the underlying
clustering structure embedded in multiple views, we require
coefficient matrices learned from factorizations of different
views to be close by introducing a consensus clustering ma-
trix. Moreover, we propose weight matrices to solve incom-
plete data problem and give the effective algorithm. We also
show that our proposed method converges fast. Experiments
on real world AD datasets demonstrate that the proposed
method could achieve good clustering accuracy with various
incompleteness rates.

6. REFERENCES

[1] Dragan Gamberger, Nada Lavra¢, Shantanu Srivatsa,
Rudolph E Tanzi, and P Murali Doraiswamy, “Identi-
fication of clusters of rapid and slow decliners among
subjects at risk for alzheimers disease,” Scientific Re-
ports, vol. 7,2017.

[2] Cynthia M Stonnington, Carlton Chu, Stefan Kloppel,
Clifford R Jack, John Ashburner, Richard SJ Frack-
owiak, Alzheimer Disease Neuroimaging Initiative,
et al., “Predicting clinical scores from magnetic reso-
nance scans in alzheimer’s disease,” Neuroimage, vol.
51, no. 4, pp. 1405-1413, 2010.

[3] Li Shen, Sungeun Kim, Shannon L Risacher, Kwangsik

1405

(4]

(5]

(7]

(10]

(11]

[12]

[13]

Nho, Shanker Swaminathan, John D West, Tatiana
Foroud, Nathan Pankratz, Jason H Moore, Chantel D
Sloan, et al., “Whole genome association study of brain-
wide imaging phenotypes for identifying quantitative
trait loci in mci and ad: A study of the adni cohort,”
Neuroimage, vol. 53, no. 3, pp. 1051-1063, 2010.

Hua Wang, Feiping Nie, and Heng Huang, “Multi-
view clustering and feature learning via structured spar-
sity,” in International Conference on Machine Learning,
2013, pp. 352-360.

Daniel D Lee and H Sebastian Seung, “Learning the
parts of objects by non-negative matrix factorization,”
Nature, vol. 401, no. 6755, pp. 788, 1999.

Chris Ding, Xiaofeng He, and Horst D Simon, “On
the equivalence of nonnegative matrix factorization and
spectral clustering,” in Proceedings of the 2005 SIAM
International Conference on Data Mining. SIAM, 2005,
pp. 606-610.

Hua Wang, Heng Huang, Feiping Nie, and Chris D-
ing, “Cross-language web page classification via d-
ual knowledge transfer using nonnegative matrix tri-
factorization,” in Proceedings of the 34th international
ACM SIGIR conference on Research and development
in Information Retrieval. ACM, 2011, pp. 933-942.

Hua Wang, Feiping Nie, Heng Huang, and Fillia Make-
don, “Fast nonnegative matrix tri-factorization for
large-scale data co-clustering,” in IJCAI Proceedings-
International Joint Conference on Artificial Intelligence,
2011, vol. 22, p. 1553.

Eric Bruno and Stephane Marchand-Maillet, “Multi-
view clustering: A late fusion approach using latent
models,” in Proceedings of the 32nd international ACM
SIGIR conference on Research and development in in-
formation retrieval. ACM, 2009, pp. 736-737.

Yuhong Guo, “Convex subspace representation learning
from multi-view data.,” in AAAI, 2013, vol. 1, p. 2.

S-YLYJ Zhi and Hua Zhou, ‘Partial multi-view clus-
tering,” in AAAI Conference on artificial intelligence,
2014.

Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han, “Multi-
view clustering via joint nonnegative matrix factoriza-
tion,” in Proceedings of the 2013 SIAM International
Conference on Data Mining. SIAM, 2013, pp. 252-260.

Wei Xu, Xin Liu, and Yihong Gong, “Document cluster-
ing based on non-negative matrix factorization,” in Pro-
ceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion
retrieval. ACM, 2003, pp. 267-273.



