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Abstract
Let M be a finite dimensional von Neumann algebra and A/ a von Neumann subalgebra
of it. For states p and o on M, let ppr and on be the corresponding states induced on N.
The Data Processing Inequality (DPI) implies that S(p|lo) > S(pa|loar) where S(p|lo) =
Tr[p(log p — log o)] is the relative entropy. Petz proved that there is equality if and only if
o = Xp(on), where Z, is the Petz recovery map. We prove a quantitative version of Petz’s
theorem. In it simplest form, our bound is

T\ 4 _
S(pllor) = Stonllon) = (5) 1802 1%p(on) = oI} -

where A, is the relative modular operator. Since ||Ay || < [|p71||, this yields a bound that
is independent of o. We also prove an analogous result with a more complicated constant in
which the roles of p and ¢ are interchanged on the right.

Quantum information theoretic inequalities are usually much harder to prove, or differ
from, their classical counterparts because classical proofs often rely on conditioning argu-
ment that do not carry over to the quantum setting. In particular, quantum conditional
expectations rarely preserve expectations — something that always happens in the classical
setting. We also prove a simple theorem characterizing states p and subalgebras N for which
conditional expectations do preserve expectation with respect to p, illuminating the quantum
obstacle to the existence of nicely behaved conditional expectations and the origins the Petz
recovery map.

1 Introduction

1.1 The Data Processing Inequality

Let M be a finite dimensional von Neumann algebra, which we may regard as a subalgebra of
M, (C), the n x n complex matrices. The Hilbert-Schmidt inner product (-, -) ys on M, (C) is given



in terms of the trace by (X,Y)ng = Tr[X*Y]. Let 1 denote the identity.

A state on M is a linear functional ¢ on M such that ¢(A*A) > 0 for A € M and such
that (1) = 1. A state ¢ is faithful in case p(A*A) > 0 whenever A # 0, and is tracial in case
©(AB) = ¢(BA) for all A,B € M. Every state on M is of the form X — Tr[pX], where p is
a density matriz in M; i.e., a non-negative element p of M such that Tr[p] = 1. This state is
faithful if and only if p is invertible. It will be convenient to write p(X) = Tr[pX] to denote the
state corresponding to a density matrix p. Given a faithful state p, the corresponding Gelfand-
Naimark-Segal (GNS) inner product is given by (X,Y)ans, = p(X*Y).

In this finite dimensional setting, there is always a faithful tracial state 7 on M, namely the
one whose density matrix is n='1. The symbol 7 is reserved throughout for this tracial state.

Let N be a von Neumann subalgebra of M. Let & be any norm-contractive projection from
M onto N. (Norm contractive means that [|&(X)| < || X]| for all X € M. Throughout the
paper, || - || without any subscript denotes the operator norm.) By a theorem of Tomiyama [38],
& preserves positivity, &(1) = 1, and

E(AXB) = A6(X)B  forall A, BEN, XeM. (1.1)

Moreover, as Tomiyama noted, it follows from (1.1) and the positivity preserving property of &
that
E(X)E(X) < &X'X) for all X € M, (1.2)

In fact, more is true. As is well known, every norm contractive projection is completely positive.

A conditional expectation from M onto N, in the sense of Umegaki [42, 43, 44], is a unital
projection from M onto N that is order preserving and such that (1.1) and (1.2) are satisfied.
Since every conditional expectation & is a unital completely positive map, its adjoint with respect
to the Hilbert-Schmidt inner product, &7, is a completely positive trace preserving (CPTP) map,
also known as a quantum operation. (Throughout this paper, a dagger t always denotes the adjoint
with respect to the Hilbert-Schmidt inner product.)

Let &, denote the orthogonal projection from M onto N with respect to the GNS inner product
determined by 7. It is easy to see, using the tracial nature of 7, that &, is in fact a conditional
expectation, and since & = &, &, is a quantum operation.

1.1 Definition. For any state p on M, py denotes the state on N given by pr := &, (p) where,
as always &, denotes the tracial conditional expectation onto N.

The restriction of a state p on M to N is of course a state on N, and as such, it is represented
by a unique density matrix belonging to A, which is precisely py.

1.2 Example. Let H = H; ® Hs be the tensor product of two finite dimensional Hilbert spaces.
Let M = B(H) be the algebra of all linear transformations on H, and let N be the subalgebra
13, ® B(H2) consisting of all operators in M of the form 14, ® A, A € B(H3). Then for the
normalized trace 7, & (X) = dj "1y, ® Tr; X for all X € M where d; is the dimension of H; and
where Tr; denotes the partial trace over H;.



Given two states p and o on M, the Umegaki relative entropy of p with respect to o is defined
[45] by
S(pllo) := Trlp(log p — log )] (13)

Lindblad’s inequality [20] states that with &, being the tracial conditional expectation onto N,

S(pllo) = S(&(p)l|67(0)) - (1.4)

Lindblad showed that the monotonicity (1.4) is equivalent to the joint convexity of the relative
entropy (p,o) — S(p|lo), and this in turn is an immediate consequence of Lieb’s Concavity
Theorem [17]. In the case that M = B(H; @ Hz) and N = {14, ® A, A € B(H2)}, (1.4) was
proved by Lieb and Ruskai [19], who showed it to be equivalent to the Strong Subadditivity (SSA)
of the von Neumann entropy.

Using the fact that Stinesping’s Dilation Theorem [34] relates general CPTP maps to tracial
expectation, Lindblad [21] was able to prove, using (1.4) that for any CPTP map &,

S(plle) = S(Z ()| 2 (9)) . (1.5)

This is known as the Data Processing Inequality (DPI). Because of the simple relation between
(1.4) and (1.5) the problem of determining the cases of equality in the Data Processing Inequality
largely comes down the problem of determining the cases of equality in (1.4), which was solved by
Petz [28, 29]. His necessary and sufficient condition for equality in (1.4) is closely connected with
the problem of quantum coarse graining, and in particular a quantum coarse graining operation
introduced by Acardi and Cecchini [2], whose dual is now now known as the Petz recovery channel,
the CPTP map Z#, given by

Ry(v) = (o Pvon )2 (1.6)

It is obvious that Z,(px) = p, so that Z, “recovers” p from py. Petz proved [28, 29] that there
is equality in (1.4) if and only if

Ry(on) =0 (1.7)
and that this is true if and only if

Ro(pn) = p - (1.8)

There has been much recent work on stability for for the DPI: Suppose that p and o are such
that there is approximate equality in (1.4). To what extent do p and o provide approximate
solutions to Petz’s equation (1.7) and (1.8)7 The papers : [14, 18, 33, 35, 36, 48] all address this
question.

1.2 Main results

In this paper we further develop an approach that we introduced in [9] for proving stability for
analogs of the DPI for Rényi relative entropies. The Rényi relative entropies include the Umegaki
relative entropy (1.3) as a limiting case, but taking advantage of the special structure on the
Umegaki relative entropy, we are able to sharpen the stability bounds obtained in [9] for this case.



Our results in this direction are given in Theorem 1.5 and Corollary 1.7. These results are proved
in Section 2.

Many classical information theoretic inequalities have simple proofs that rely on the use of con-
ditional probabilities and conditional expectations, as we recall in the next subsection. An obstacle
to proving quantum analogs of such inequalities is that in the presence of non-commutativity, there
simply is no fully satisfactory analog of conditioning. For example, in the classical case, taking
any conditional expectation of any random variable on any probability space preserves the ex-
pectation — the original random variable and its conditional expectation have the same expected
value. A theorem of Takesaki [37] says that in the quantum setting, this is unfortunately only
rarely the case. Takesaki’s Theorem motivated Accardi and Cechini [2] to develop their expecta-
tion preserving quantum coarse graining operation, whose dual turns out to be the Petz recovery
map. For these reasons, it is of interest to understand the nature of the obstacle blocking the
general existence of expectation preserving conditional expectation. However, Takesaki’s paper
will only be accessible to readers who are well-versed in the rather subtle Tomita-Takesaki Theory.
In section 3 we give a simple proof, valid at least in our finite dimensional setting, of a result that
characterizes when expectation preserving conditional expectations will exist, and sheds new light,
at least in this setting, on why they often fail to exist. The full statement is given in Theorem 3.1.
Before giving precise statements we briefly review that corresponding classical problem.

1.3 The classical DPI

The classical analog of the DPI is relatively simple: Let 2 be a finite set. Let F be a non-trivial
partition of Q. Let M denote the functions on €2, and let A denote the functions on  that are
constant on each set of the partition . Then M and N are commutative von Neumann algebras,
and N is a subalgebra of M. Let X be a function on € such that X (w) = X («’) if and only if w
and w’ belong to the same set in F. Then X generates F in the sense that the sets constituting
F are precisely the non-empty sets of the form {w : X(w) = z}.

Let p and o be two strictly positive probability densities on the set (2. Let 7 denote the uniform
probability density on €; i.e., 7(w) = |Q|7! for all w, where |Q| is the cardinality of Q. As above,
let & denote the orthogonal projection of M onto N, which is nothing other than the conditional
expectation with respect the random variable X and the probability measure 7. As above, let
pn = &,p and o = &-0. Then py is a “coarse grained” version of p, obtained by averaging p on
the sets of the partition F, making it constant on these.

Let f(w|z) be the conditional density under p for w given that X (w) = z, and likewise let
g(w|z) be the conditional density under o for w given that X (w) = z. That is
p(w)

f(wlév)sz(x) and g(wlx)sz(l,)

, (1.9)

which, for each x in the range of X, are both probability densities on the set {w : X(w) = z}.
Then

pw) = pa(X (W) f(wX(w)) and  o(w) = on(X(w))g(w|X(w)) , (1.10)



and hence
S(pllo) = Zﬂp (log p(w) — log o(w))
= iﬂ )([log par(w) — log onr(w)] + [log f (w|X (w)) — log g(w|X (w))])
= iJ;(pNHUN) + ) on(X (@) @] X (@) log f(w] X (w)) —log g(w| X ()] (1.11)

weN

For each x in the range of X, it follows from Jensen’s inequality that

> fwlz) [log f(wlz) — log g(w|x)] >0, (1.12)
{w: X(w)=a}

and there is equality if and only if f(w|z) = g(w|z) everywhere on {w : X(w) = z}. It follows
that S(p||o) > S(pn||on) with equality if and only if for each x in the range of X, f(w|z) = g(w|z)
everywhere on {w : X(w) = z}.

In this case, X is called a sufficient statistic for the pair {p,o}: Suppose we are given an
independent identically distributed sequence of points {w;}, drawn according to one of the two
probability densities p or o, and we want to determine which it is. Because of (1.10) and f = g, the
entire difference between p(w) and o(w), lies in the difference between par(X(w)) and on (X (w)).
Therefore, it suffices to observe the sequence {X(w;)} in order to determine which of p or ¢ is
governing the sequence of samples.

We can define a classical recovery map as follows: For any probability density v € N, regarded
as a probability density on the range of X, define %,y to be the probability density in M given
by

Fpy(w) = V(X (W) f(w][X(w)) -

Therefore, we can express the condition for equality in the classical DPI as #Z,0n = o, and
evidently this is true if and only if Z,pn = p. This is the classical analog of Petz’s result.
Moreover, in this notation, we have that

> on(X (@) f (@] X (@) log f(w]X (W) —log g(w]X (W)] = S(pl|%up) |

so that (1.11) becomes
S(plle) = Spxllon) = S(pllZap) - (1.13)

Then by the classical Pinsker inequality,

S(plle) = Slpxllon) = (Z|P - op/v(w)|> ' (1.14)

we

It remains an open problem to prove quantum analogs of (1.13) or (1.14), even with worse
constants on the right. In the case of (1.13), some modification such as worse constants is certainly



required; the exact quantum analog is violated in some numerical examples; see [13]. Here we prove
a quantum analog of (1.14) with a worse constant, and with the power raised from 2 to 4 on the
right. The line of argument has to be entirely different from the one we have just employed
in the classical case because there is no effective quantum replacement for “conditioning on the
observable X”.

It is therefore useful to find a way of describing the classical recovery map that does not refer
explicitly to conditioning on the random variable X. Define &, to be the orthogonal projection
of M onto N in L?*(c). Then for any random variable Y (i.e., any function on ), &,Y is the
conditional expectation of Y given A. The operation Y +— &,Y yields a “coarse grained version”
of Y that is constant on the sets in F: With X and g as in (1.9),

EYW = Y gWIX@Y(W).

w': X(w)=X(w)}

It is clear from this formula that &, preserves positivity, and preserves expectations with respect
to o, That is,
o(Y)=0(8,Y) . (1.15)

Now let &1 be the dual operation taking states on N (probability densities on the range of X) to
states on M (probability densities on €2). It is easily seen that this is nothing other than Z,. That
is, the classical recovery map %, is nothing other than the dual of the conditional expectation
&,, which is nothing other than the orthogonal projection of M onto N in L?*(s). This analytic
specification of #,, making no explicit mention of conditioning on X, provides a starting point
for the construction of a quantum recovery map.

1.4 Quantum conditional expectations and quantum coarse graining

The discussion of the classical DPI brings us to the question as to whether for any faithful state p
on M there exists a conditional expectation & from M onto N that preserves expectations with
respect to p, i.e. such that

p(X) = p(£(X)) forall X € M . (1.16)

The property (1.16) says that “the expectation of a conditional expectation of an observable equals
the expectation of the observable”. If such a conditional expectation exists, then it is unique: Any
such conditional expectation must be the orthogonal projection of M on N with respect to the
GNS inner product for the state p. To see this, note that for all X € M and all A € N, using

(1'1)7
(A, X)ans,y = p(A"X) = plE(AX)) = p(A"E(X)) = (A, E(Xans,y - (1.17)

Suppose that & is a conditional expectation satisfying (1.16). Then since & is a unital com-
pletely positive map, & is a CPTP map; i.e., a quantum channel. For any state v on N, and any
A € M, we then have



Then when (1.16) is satisfied, taking v = pyr, we have

ETpn(A) = pn(E(A)) = p(4) ,

and this means that &7 is a quantum channel that “recovers” p from pyr.

As we have already noted, &, is a conditional expectation with the property (1.16). However,
for non-tracial states p, a conditional expectation satisfying (1.16) need not exist.

A theorem of Takesaki [37] says, in our finite dimensional context, that for a faithful state p,
there exists a conditional expectation & from M onto A if and only if pAp~ € N for all A € N,
and in general this is not the case. We give a short proof of this and somewhat more in Section 3:
In Theorem 3.1, we prove that &,, the orthogonal projection from M onto N in the GNS inner
product with respect to p, is real (that is, it preserves self-adjointness) if and only if pAp~! € N
for all A € N. Since every order preserving linear transformation is real, this precludes the
general existence of conditional expectations satisfying (1.16) whenever A is not invariant under
X +— pXp~!, thus implying Takesaki’s Theorem (in this finite dimensional setting).

There is another inner product on M that is naturally induced by a faithful state p, namely
the Kubo-Martin-Schwinger (KMS) inner product. It is defined by

(X,Y)kms, = Te[p 2 X7 p Y] = Te[(p/* X pV/*) (oMY p!/h)] (1.18)
Evidently, for any X € M and Y € N, by the Cauchy-Schwarz inequality,
(X, Y ) ks of* = [Tr[p' 2 X p!2Y] 2 < Te[X7p! 2 X p 2 T [Y*p! 2y /2] (1.19)
If U is any unitary in A/, the commutant of A/,
Te[Y*p'2Y p!?] = Te[U*(Y*p'?Y p' ) U] = Te[Y*(U*pU)?Y (U*pU) 7] .

Then since py can be written as an average of U*pU as U ranges over the unitaries in N, [39],
it follows from the Lieb Concavity Theorem that Tr[Y*p/2Y p/?] < Tr[Y*p}\;QYp%Z]. Combining
this with (1.19),

(XY ) ksl < A X knasplIY ([ 15 0 (1.20)

Hence Y — (X,Y) ks, is a bounded linear functional on (N, (-, ) kars . ), and then there is
a uniquely determined «7,(X) € N such that for all Y € NV,

(X, Y>KMS,,0 = <%(X>7Y>KMS7PN : (1.21)
Evidently, X +— @7,(X) is linear.

1.3 Definition. Let p be a faithful state on M. The Accardi-Cecchini coarse graining operator
a7, from M to N is defined by (1.21).

The map &7, was introduced by Accardi and Cecchini [2], building on previous work by Accardi
[1]. It is a “coarse graining” operation in that to each observable X in the larger algebra M, it



associates an observable 7,(X), in the smaller algebra N/, and measurement of o7,(X) will yield
coarser information than a measurement of X itself. The same, of course, is true for conditional
expectations,.

Since 1 € N by definition, for all X € M, (1, X)kms, = (1, %,(X))kms,p, and for all X € M,
(1, X) ks, = Tr[ot/?10Y2X] = p(X). Therefore

o4, (X)) = p(X) . (1.22)

Thus, unlike conditional expectations in general, the Accardi-Cecchini coarse-graining operator
always preserves expectations with respect to p.

In the matricial setting, it is a particularly simple matter to derive an explicit expression for
,. By definition, for all X € M and all Y € NV,

Trlpi*Y oy (X)) = Te[p2Y p2X] | (1.23)

Make the change of variables Z = p/lprjl\;Q. Since ,0%2 is invertible, as Y ranges over N, Z ranges

over N/. Hence
Tr[Za,(X)] = Tel(p" o5 2520V X] = Te(Z (o3 202X p 203 )] . (1.24)
Since the above holds for all Z € N, it follows that
Ap(X) = pi P& (0P X p ) ppt " (1.25)

It is evident from this formula that <7, is a completely positive unital map from M to N, and
therefore it is actually a contraction from M to N. By Tomiyama’s Theorem, it cannot in general
be a projection of M onto N. That is, if X € NV, it is not necessarily the case that «7,(X) = X.

1.4 Definition. The Petz recovery map %, is the Hilbert-Schmidt adjoint of <7, [29]. That is,
K, = ,prT, or equivalently, for all density matrices v € N/

Triyep(X)] = Tr[Z,(7)X] .

As the dual of a unital completely positive map, %, is a CPTP map. Moreover, it follows
immediately from the definition and (1.25) that for all density matrices v € N,

Ry(v) = (o Pvon )2 (1.26)

It is evident from this formula not only that %, is a CPTP map, but that Z,(pn) = p; i.e., %,
recovers p from py. Now suppose that o is another density matrix in M and that

Rp(on) =0 . (1.27)

Then by (1.27) and then the DPIL, S(p|lo) = S(Z,(pn)||Z,(0n)) < S(p|lo). Hence when
R,(0on) = 0, there is equality in (1.4). The deeper result of Petz [28, 29] is that there is equality
in (1.4) only in this case.



As noted above, &7, is not a projection onto A'. The fixed point set
C={XeN: #,(X)=X} (1.28)

turns out to be a von Neumann subalgebra of N, and is structure, already investigated in [2],
plays an important role in classifying the set of states o such that %Z,(on) = o; see [24]. This
classification gives a complete understanding of the cases of equality, and the remaining open
problems concern stability.

Here we prove a stability bound for Petz’s theorem on the cases of equality in (1.4). Our result
involves the relative modular operator A,, on M defined by

A, (X)=0Xp! (1.29)

for all X € M. This is the matricial version of an operator introduced in a more general von
Neumann algebra context by Araki [3]. Our main result is:

1.5 Theorem. Let p and o be two states on M Let &, be the tracial conditional expectation onto
a von Neumann subalgebra N, and let pyr = &.p and on = &r0. Then, with || - |2 denoting the
Hilbert-Schmidt norm,

m\4 _ _
S(ollo) = Soallon) = () 1802 lo3 ot 202 = 02113 (1.30)

The quantity on the right hand side may be estimated in terms of the Petz recovery map. In
Section 2 we prove:

1.6 Lemma. Let p, 0 and oy be specified as in Theorem 1.5. Then, with || - ||, denoting the trace

norm,

_ 1
I(on) 2 (on) 12012 = 02|z > 112, (0w) = ol -
As an immediate Corollary of Theorem 1.5 and Lemma 1.6, we obtain

1.7 Corollary. Let p and o be two states on M. Let & be the tracial conditional expectation
onto a von Neumann subalgebra N, and let pyy = &-p and on = &ro. Then, with || - |1 denoting
the trace norm,

S(pllo) ~ Stonllon) 2 (5) 180,21, on) — o} (1.31)

Note how the right hand side of (1.31) differs from the right hand side of (1.14): Apart from
the constant and the power 4 in place of 2, the most striking difference is that the roles of p and
o are reversed. The expected result, with a worse constant, is obtained in Corollary 1.8.

Recall that the modular operator is the right multiplication by p~! and left multiplication by
~1|, since ||o|| < 1. While ||p~!|| might be considerably larger than ||A, ||, a

bound in terms of ||p~!|| has the merit that it is independent of o

7, 50 1A, < lIp

S(pllo) ~ S(oxllon) > (5) o™ I 1yfon) — ol (1.32)
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Corollary 1.7 yields a result of Petz: With M, N, p and o as above, S(p|lo) = S(pnx||lon) if
and only if o satisfies the Petz equation

o=%,(0n) . (1.33)

Theorem 1.5 gives what appears to be a stronger condition on relating p, o, pyr and o, namely
that
~1/2 —1/2
o0 = o M2 (1.34)

While validity of (1.34) immediately implies that o satisfies the Petz equation (1.33), the converse
is also true: By what we have noted above, when (1.33) is satisfied, S(p||o) = S(pn|lon), and
then by Theorem 1.5, (1.34) is satisfied.

This may be made quantitative as follows: Letting L 4 denote the operator of left multiplication
by A,

)

LpL (o) o ?p'? = a'%) = (012 = oy Pa' %)

and hence
1/2 _~1/2 1/2 ~1/2
||p1/2 _ p'/\; O'N/ 0‘1/2”2 < ||ij1\/(2||||Lg;/1/2||||0'/\% pN/ p1/2 — 0‘1/2”2 . (135)
Since ||ijl\%2|| = |loa]|*/? and ||Lo;/1/2|| = |lox'I'/?, we may combine (1.35) with (1.30) to obtain
m\ 4 _ o —11— -
S(plle) = Stonllon) = (5) 18asI 2 lon 2 Ior 12 ox on o 2 = p 2118, (1:36)

which is the analog of (1.30) with a somewhat worse constant on the right, but the roles of p and
o interchanged there. Applying Lemma 1.6 once more, we obtain

1.8 Corollary. Let p and o be two states on M. Let & be the tracial conditional expectation
onto a von Neumann subalgebra N, and let pyr = &rp and on = &.0. Then

™\ 4 _ _ i
S(plle) = S(pwllon) = (g) 126,12 loarll 2 lon 172120 (onr) = plIT - (1.37)

As above, bounding the norms of states by 1, we get a constant that depends only on the
smallest eigenvalues of p and oy

S(pllo) ~ Stonllon) > (5) o™ Iloi 121 on) = (1.38)

We noted above that o solves the Petz equation if and only if (1.34) is satisfied, and then since
(1.34) is symmetric in p and o, 0 = Z,0, if and only if p = Z,pxr, and hence

S(pllo) = S(pnllon) <= S(allp) = S(onllon) - (1.39)

In physical applications, instead of the trace distance, one often considers an alternative mea-
sure of the closeness between two quantum states, the fidelity [40] , which for two states p and o
on B(H) is defined as

F(p.o) = [lvVpvolli. (1.40)
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By the Cauchy-Schwarz inequality, 0 < F(p,0) < 1, and F(p,0) = 1 if and only if p = o,
and F(p,o) = 0 if and only is the support of p is orthogonal to the support of o. So in other
words, the fidelity is zero when states are perfectly distinguishable, and one when they cannot be
distinguished. Moreover, there is a relation between the trace distance ||p — o||; and fidelity

1 VF(p.0) < gl —olh < VI~ Fipo) (1.41)

From here and the Corollary 1.7 we obtain the quantitative version of the Petz’s Theorem involving
the fidelity between states

S(olo) = S(onllon) = (5) 180,17 (1 /e %(omf . (1.42)

Recent results reported in [14, 18, 46, 48] provide stability results for the DPI, but the lower
bounds provided there involve quantities that are not so directly related to o — %,(onr) or to
p—Z,(pn)); e.g., “rotated” and “twirled” Petz recovery maps. For another fidelity type bound
not explicitly involving the recover map, see [8, Theorem 2.2]. The appeal of the bounds proved
in this paper is that they are expressed in terms of physically relevant distances between o and
R,(0nr), or between p and Z,(py)).

2 Stability for the Data Processing Inequality

We begin this section by recalling Petz’s proof of the monotonicity of the quasi relative entropies
S} for operator convex f. Throughout this section, N is a von Neumann subalgebra of the finite
dimensional von Neumann algebra M, and p and o are two density matrices in M. & is the tracial
conditional expectation onto N, and py = &.p and on = &,0. Finally H denotes (M, (-, Y us),
where (-, -)gs is the Hilbert-Schmidt inner product.

Define the operator U mapping H to H by

UX) = &(X)pp*p? . (2.1)
Note that for all X e N, U(X) = Xp/_vl/Qpl/Q. The adjoint operator on H is given by
U(Y) = &Y p/?)pi"? (2.2)
forall Y ¢ H = M.
For X e M, U'U(X) = éi(prl/Qéi(X)prl/zp) = &.(X). Hence U*U = &, the orthogonal
projection in H onto N. That is, U, restricted to N, is an isometric embedding of NV into H = M,

but it is not the trivial isometric embedding by inclusion. Also, we see that on N the map U is

isometric.
Now observe that for all X € N, AYZ(U(X)) = 01/2Xp/:/1/2, and hence for all X € N,

(ALUX), AZUX) = Te((pw) VX 0 X (p)1?)

= Tr((pn) X on X (o))
= (A2 (X), AY? (X)) .

ONSPN ON PN
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That is, on N,
U Dyl = Do - (2.3)

By the operator Jensen inequality, as operators on (N, (-, ) us),
U F(Bo)U = £ (U A,,0) (2.4
Combining (2.3) and (2.4), and using the fact that U(px)Y/? = p'/2,

Silonllon) = ((pa)"2, F( Doy pn) (oa)'?)
< (U(pan)"?, F(Dep)U(pa)'?)
<P1/27 f(AU,p)p1/2> = Sf(pHU) .

This proves, following Petz, his monotonicity theorem for the quasi relative entropy Sy for the
operator convex function.

Now consider the family of quasi relative entropies defined by functions f;(x) = (t+z)~!. Our
immediate goal is to prove the inequality

0(pllo) = (77 (E+ Do) '0M2) = (037, (4 Do) oN) = Sy (ollow) - (2.5)

2.1 Lemma. Let U be a partial isometry embedding a Hilbert space K into a Hilbert space H. Let
B be an invertible positive operator on K, A be an invertible positive operator on H, and suppose
that U*AU = B. Then for allv € IC,

(v, U*A™Uv) = (v, B"") + (w, Aw) , (2.6)
where
w:=UB"—A"Uv . (2.7)
Proof. We compute, using U*U = 1.,
(w, Aw) = (UB'v— A"'Uv, AUB v — Uv))

(v, BT'U*AUB ') — 2(v, B"') + (v, U* A" Uv)
= —(v,B"W) + (v, U*A"'Uv)

O

Proof of Theorem 1.5. We apply Lemma 2.1 with A := (t + A,,), B = (t + A, ) and v =
(par)/?, and with U defined as above. The lemma’s condition, U*AU = B, follows from (2.3) and
the fact that U*U = 1. Therefore, applying Lemma 2.1 with U(py)/? = p'/2,

Swy(pllo) = S (owllon) = (P2t + Dsy) 02 — (X, (E+ Dgypn) L 0X)

- <wt7 (t + Aa,p)wt> Z t||th27 (28>



13

where, recalling that U(pa)Y/? = p'/2,
wy = U(t 4 Doypn) " (oa)? = (t+ Ay ,) V2 (2.9)

Using the integral representation of the square root function,

X2 = l/Ootl/? (1 — L) dt,
T Jo t t+X

and U(pn)'/? = p'/? once more, we conclude that

1 o
U(AUN,pN)l/Q(PN)l/Q - (Aa,p)l/zpl/Q = —;/ t1/2wtdt .
0

On the other hand,

U<A¢w,pjv)1/2(ﬂ/\/)1/2 - (Aa,p)lﬂpl/z = U(UN)1/2 — g'/?

—1/2 1/2

= (on)"?(pn)2p o'/

Therefore, combining the last two equalities and taking the Hilbert space norm associated with
H, for any T" > 0,
/ t1/ 2, dt
0 2

1 g 1/2 1 > 1/2
T Jo TJT

We estimate these two terms separately. For the first term, by the Cauchy-Schwarz inequality,

T 2 T
( / t1/2||wt||2dt) < 7 [ i
0 0

<7 / " (St (llo) — Sy (pwllow)) d
= T(S(pllo) - S(pnllow)) - (2.11)

1

(ox) 2 (on) 22 = 2] = =

(2.10)

2

For the second term in (2.10), note that for any positive operator X

an(l 1 < 112 1 1 - X 1,
t t+X t 4| X H2(||X || + )

/Ootl/z Lo Yar<x) /OO L )< A
T t t+X) T rx) 131+ 1) S

The spectra of op and pyr lie in the convex hulls of the spectra of o and p respectively. It follows
that ||Agy ol < 1A, Therefore, recalling the definition of w; in (2.9), we obtain

> 4|2, |
1/2 a,p
‘/T it T2

and hence

<
2

(2.12)
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Combining (2.10), (2.11) and (2.12) we obtain

41Aq,

_ 1
1) (pa) 2072 = 02 ls < V(S (pllo) = S(pwllow))? + =~ =75

Optimizing in T,

_ 4
1(ox) 2 (ox) 12912 = ' 2l2 < —[|Ag, (S (pller) = S(plow)) '

Rearranging terms

T\ 4 _ _
S(plle) = Stonllon) = (5) 180,12 lon) (o) 20 2 =0 23 . (213)
O
We now prove the lemma leading from (1.30) to (1.31).

2.2 Lemma. For any operators X and Y with Tr[X*X] = Tr[Y*Y] = 1. Then
[ X*X —Y*Y|; <2[X =Y . (2.14)

Proof. Recall that for any operator A, ||A||; = sup{|Tr[ZA] : ||Z|| < 1} where || - || denotes the
operator norm. For any contraction Z, using cyclicity of the trace we have

ITe[Z(X*X —Y*Y)]| < |Tr[Z(X* =YX +2ZY*(X —Y)]|
< T[(X* =YX Z| + |Te[ZY*(X = Y)]
< (Te(X* = Y*) (X = Y))Y¥(Te[X* 2 ZX])'/?
+ (Te(X* = Y*) (X = Y))YA(Te[y* 2 ZY])"/?
< 20X =Y.

Applying this with X = (ox)2(par)"V/2p"/? and Y = 0/, we get

. 1
[(on) 2 (on) 22 = 2|2 2 S| Zp(on) — -

3 Conditional expectations and the Petz Recovery Map

Recall from the introduction that classically, for any integrable random variable X on any prob-
ability space, if &(X) is its conditional expectation with respect to any other random variable,
then both X and &(X) have the same expected value. Conditional expectations in the quantum
setting need not have this property; in fact, they usually do not, as is shown by a theorem of
Takesaki [37]. Also as explained in the introduction, taking a classical conditional expectation
is essentially a “coarse graining” operation. Coarse graining is important in quantum statistical



15

mechanics, and one wants observables and their coarse grained versions to have the same expected
values; see Accardi and Cechinni [2], who took Takesaki’s Theorem as their starting point in the
work leading to their coarse graining operator, which, as we have explained, has the Petz recovery
map as its dual.

In short, the quantum obstacle to the existence of expectation preserving conditional expec-
tations is the raison d’ete for the Petz recovery map. Takesaki’s deep paper makes use of the
subtle Tomita-Takesaki Theory which limits its accessibility. It is therefore desirable to give an
elementary elucidation of this quantum obstacle in our present finite dimensional setting. Wolf
[47] gives a clear account of a number of aspects of quantum conditional expectations in the finite
dimensional setting. He takes advantage of the fact that any finite dimensional von Neumann al-
gebra is isometrically isomorphic to the direct sum of a finite number of complete matrix algebras.
He then proves what may be viewed as a finite dimensional version of Tomiyama’s Theorem [3§]
characterizing conditional expectations as norm one projections. He does not discuss Takesaki’s
Theorem, and we are unaware of any elementary exposition of it. Perhaps it would be possible to
give an elementary proof of it by using the structure theory for finite dimensional von Neumann
algebras, as in [47]. Here we take an approach that is elementary and yields a result that is
not implied by Takesaki’s Theorem, and uses methods that are not strictly limited to the finite
dimensional case.

Our starting point is a fact explained in the Introduction: If p is a faithful state on M, and
N is a von Neumann subalgebra of M, then there exists a conditional expectation & from M to
N such that for all X € M, p(X) = p(&(X)) if and only if the orthogonal projection onto A in
the GNS inner product induced by p is a conditional expectation.

Thus we can rephrase our question about the obstacle to the existence of expectation preserving
conditional expectations as: For which faithful states p is the orthogonal projection onto N in
the GNS inner product induced by p, &,, is actually a conditional expectation? Conditional
expectations, as defined in the Introduction, are always real; i.e., they send Hermitan operators
to Hermitian operators. Therefore, the first part of the next theorem says that &, can be a
conditional expectation only if N is invariant under A,.

3.1 Theorem. Let M be a finite dimensional von Neumann algebra, and let N be a von Neumann
subalgebra of M. Let p be a faithful state on M, and let A, be the modular operator on M defined
by A, (X) = pXp~t. Let P, be the orthogonal projection from M onto N in the GNS inner product
induced by p. Then:

(1) P, is real; i.e., it preserves self-adjointness, if and only if N is invariant under A,,.
(2) N is invariant under A, if and only if for all A € N,

AP(A) = APN(A) ) (3.1)
in which case AL(A) = Al (A) for allt € R. Furthermore, (3.1) is valid for all A € N if and
only if @,(A) = A for all Ae N.

3.2 Remark. Part (2) of Theorem 3.1 is due to Accardi and Cecchini [2, Theorem 5.1]. In our
finite dimensional context, we give a very simple proof; most of the proof below is devoted to (1).
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Proof of Theorem 3.1. Suppose that &, is real. Then for all X € Null(Z,), 0 = (Z,(X))" =
Z,(X*), so that Null(Z,) is a self adjoint subspace of M. Let m denote the dimension of
Null(#2,). Then, applying the Gram-Schmidt Algorithm, one can produce an orthonormal basis
{H,y,...,Hy} of Null(#2,) consisting of self-adjoint elements of M.

The map X — X p'/? is unitary from (M, (-, -Yans,) to (M, (-, -)us). Therefore for all A € N,
and each j = 1,...,m, (Ap'/? H;p/?)ys = 0. Then since the map X + X* is an (antilinear)
isometry on (M, (-, ) us,),

0 = ((H;p"?)" (Ap"?)*, ) s = Tu[H;pA"] = Te[H;A,(A")p] = (Hj, Ap(A"), hans,p -

Therefore, A,(A*) is orthogonal to Null(%2,) in (M, (-, -)ans,), and hence A,(A*) € M. Since A
is arbitrary in AV, it follows that A is invariant under A,,.

For the converse, suppose that A is invariant under A,. Then A is invariant under A3 for all
s € R, and in particular, A is invariant under AY2. Consequently, p/2N = Ap!/2 as subspaces
of M; let K denote this subspace, which is evidently self-adjoint. Let K+ demote its Hilbert-
Schmidt orthogonal complement in M. Let H = H* € M. Then there is a unique A € N such
that Hp'/? — Ap'/? € K*. Thus,

Hp1/2 _ (H,Ol/2 . API/Z) +A)01/2 (32)

1/2 1/2

is the orthogonal decomposition of Hp'/* with respect to K. Again since X — Xp
from (M, (-, )ans,p) to (M, (-, Yus), P,(H) = A. We must show that A = A*.
Since X +— X* is an isometry for the Hilbert-Schmidt inner product, and since K and K+ are

is unitary

self adjoint,
p1/2H — (p1/2H . ,01/2./4*) + p1/2A* (33)

is the orthogonal decomposition of p'/? H with respect to K. In particular, (p'/2H — p*/2A*) € K*.
Hence for any Z € N,

0= <Zp1/2, (pl/QH . pl/QA*»HS _ TI[Z*(pl/QH . pl/QA*)pl/Q] _ <:01/2Za Hp1/2 _ A*p1/2>HS ’
and hence Hp'/? — A*p'/2 € K+. Now apply A;l/Q to both sides of (3.3) to obtain

le/Q — (le/Q _ A*pl/Q) +A*p1/2 )

172 and must coincide

By what we have just shown, this is the orthogonal decomposition of Hp
with (3.2). Hence A* = A. This proves (1).

To prove (2), note first of all that when (3.1) is valid for all A € N, then A, preserves N since
the right side evidently belongs to N.

Now suppose the A, preserves N. Let A, B € N. Then A*A,,.(A,(B)) € N, and then by the

definition of &, and cyclicity of the trace,

Trlp(A*pp™ Bppar )] = Trlpw (A" parp™ Bpppr )] = Tr[A*pap™ Bp] = Tr[par(p™ BpA™)] .
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In the same way, using the fact that (p~'BpA) € N and cyclicity of the trace,
Trlpw(p~ BpA*)] = Tr[BpA*] = Tr[pA*B] .

Altogether, (A, A, (ATH(B)))ans, = (A, B)ans,y- Since A, (A7H(B)) € N, and A is arbitrary
in N, A,y (A7 (B)) = B, and hence AJ'(B) = A !(B). Then AJ"(B) = AJ"(B) for all n € N,

and then it follows that Al(B) = Al (B) for all t € R.
Finally, we show that (3.1) is valid for all A € AV, then «7,(A) = A for all A € N:

E-(p P Ap'?) = E(AY* (A)p) = AYE(A)E(p) = p\ P Apy” .

Therefore,

Ap(A) = p 28 (p P Ap o P = A

On the other hand, when A = &7,(A) for all A € N, 7, is a norm one projection onto N, and
by Tomiyama’s Theorem [38], it is a conditional expectation, and it satisfies p(.27,(X)) = p(X) for
all X € M. Therefore, it must coincide with &,, the orthogonal projection form M onto N in
the GNS inner product induced by p. Hence &, is a conditional expectation. By what we proved
carlier, this means that N is invariant under A,, and then that (3.1) is valid for all Ae N. O

3.3 Theorem. Let &, denote the orthogonal projection of M onto N in the GNS inner product
induced by p. Then

(1) P, is a conditional expectation if and only if N is invariant under A,,.

(2) &, is a conditional expectation if and only if &, is real.

Proof. Theorem 3.1 says that when A, does not leave A invariant, &2, is not even real, and hence
is not a conditional expectation. On the other hand, when A, leaves A invariant, by part (2) of
Theorem 3.1, <7, is a norm-one projection onto /. By Tomiyama’s Theorem, <7, is a conditional
expectation that preserves expectation with respect to p. By remarks made in the introduction,
this means that </, = &2,, and hence that 2, is a conditional expectation. This proves (1).

It is evident that if &2, is a conditional expectation, this &, is real. On the other hand, if &,
is real, then by Theorem 3.1, N is invariant under A,, and now (2) follows from (1). O
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