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Abstract

Let M be a finite dimensional von Neumann algebra and N a von Neumann subalgebra

of it. For states ρ and σ on M, let ρN and σN be the corresponding states induced on N .

The Data Processing Inequality (DPI) implies that S(ρ||σ) ≥ S(ρN ||σN ) where S(ρ||σ) :=

Tr[ρ(log ρ − log σ)] is the relative entropy. Petz proved that there is equality if and only if

σ = Rρ(σN ), where Rρ is the Petz recovery map. We prove a quantitative version of Petz’s

theorem. In it simplest form, our bound is

S(ρ||σ)− S(ρN ||σN ) ≥
(π

8

)4
‖∆σ,ρ‖−2‖Rρ(σN )− σ‖41 .

where ∆σ,ρ is the relative modular operator. Since ‖∆σ,ρ‖ ≤ ‖ρ−1‖, this yields a bound that

is independent of σ. We also prove an analogous result with a more complicated constant in

which the roles of ρ and σ are interchanged on the right.

Quantum information theoretic inequalities are usually much harder to prove, or differ

from, their classical counterparts because classical proofs often rely on conditioning argu-

ment that do not carry over to the quantum setting. In particular, quantum conditional

expectations rarely preserve expectations – something that always happens in the classical

setting. We also prove a simple theorem characterizing states ρ and subalgebras N for which

conditional expectations do preserve expectation with respect to ρ, illuminating the quantum

obstacle to the existence of nicely behaved conditional expectations and the origins the Petz

recovery map.

1 Introduction

1.1 The Data Processing Inequality

Let M be a finite dimensional von Neumann algebra, which we may regard as a subalgebra of

Mn(C), the n×n complex matrices. The Hilbert-Schmidt inner product 〈·, ·〉HS on Mn(C) is given
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in terms of the trace by 〈X, Y 〉HS = Tr[X∗Y ]. Let 1 denote the identity.

A state on M is a linear functional ϕ on M such that ϕ(A∗A) ≥ 0 for A ∈ M and such

that ϕ(1) = 1. A state ϕ is faithful in case ϕ(A∗A) > 0 whenever A 6= 0, and is tracial in case

ϕ(AB) = ϕ(BA) for all A,B ∈ M. Every state on M is of the form X 7→ Tr[ρX], where ρ is

a density matrix in M; i.e., a non-negative element ρ of M such that Tr[ρ] = 1. This state is

faithful if and only if ρ is invertible. It will be convenient to write ρ(X) = Tr[ρX] to denote the

state corresponding to a density matrix ρ. Given a faithful state ρ, the corresponding Gelfand-

Naimark-Segal (GNS) inner product is given by 〈X, Y 〉GNS,ρ := ρ(X∗Y ).

In this finite dimensional setting, there is always a faithful tracial state τ on M, namely the

one whose density matrix is n−11. The symbol τ is reserved throughout for this tracial state.

Let N be a von Neumann subalgebra of M. Let E be any norm-contractive projection from

M onto N . (Norm contractive means that ‖E (X)‖ ≤ ‖X‖ for all X ∈ M. Throughout the

paper, ‖ · ‖ without any subscript denotes the operator norm.) By a theorem of Tomiyama [38],

E preserves positivity, E (1) = 1, and

E (AXB) = AE (X)B for all A,B ∈ N , X ∈M . (1.1)

Moreover, as Tomiyama noted, it follows from (1.1) and the positivity preserving property of E

that

E (X)∗E (X) ≤ E (X∗X) for all X ∈M , (1.2)

In fact, more is true. As is well known, every norm contractive projection is completely positive.

A conditional expectation from M onto N , in the sense of Umegaki [42, 43, 44], is a unital

projection from M onto N that is order preserving and such that (1.1) and (1.2) are satisfied.

Since every conditional expectation E is a unital completely positive map, its adjoint with respect

to the Hilbert-Schmidt inner product, E †, is a completely positive trace preserving (CPTP) map,

also known as a quantum operation. (Throughout this paper, a dagger † always denotes the adjoint

with respect to the Hilbert-Schmidt inner product.)

Let Eτ denote the orthogonal projection fromM ontoN with respect to the GNS inner product

determined by τ . It is easy to see, using the tracial nature of τ , that Eτ is in fact a conditional

expectation, and since Eτ = E †τ , Eτ is a quantum operation.

1.1 Definition. For any state ρ on M, ρN denotes the state on N given by ρN := Eτ (ρ) where,

as always Eτ denotes the tracial conditional expectation onto N .

The restriction of a state ρ onM to N is of course a state on N , and as such, it is represented

by a unique density matrix belonging to N , which is precisely ρN .

1.2 Example. Let H = H1 ⊗H2 be the tensor product of two finite dimensional Hilbert spaces.

Let M = B(H) be the algebra of all linear transformations on H, and let N be the subalgebra

1H1 ⊗ B(H2) consisting of all operators in M of the form 1H1 ⊗ A, A ∈ B(H2). Then for the

normalized trace τ , Eτ (X) = d−1
1 1H1 ⊗ Tr1X for all X ∈ M where d1 is the dimension of H1 and

where Tr1 denotes the partial trace over H1.
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Given two states ρ and σ onM, the Umegaki relative entropy of ρ with respect to σ is defined

[45] by

S(ρ||σ) := Tr[ρ(log ρ− log σ)] . (1.3)

Lindblad’s inequality [20] states that with Eτ being the tracial conditional expectation onto N ,

S(ρ||σ) ≥ S(Eτ (ρ)||Eτ (σ)) . (1.4)

Lindblad showed that the monotonicity (1.4) is equivalent to the joint convexity of the relative

entropy (ρ, σ) 7→ S(ρ||σ), and this in turn is an immediate consequence of Lieb’s Concavity

Theorem [17]. In the case that M = B(H1 ⊗ H2) and N = {1H1 ⊗ A, A ∈ B(H2)}, (1.4) was

proved by Lieb and Ruskai [19], who showed it to be equivalent to the Strong Subadditivity (SSA)

of the von Neumann entropy.

Using the fact that Stinesping’s Dilation Theorem [34] relates general CPTP maps to tracial

expectation, Lindblad [21] was able to prove, using (1.4) that for any CPTP map P,

S(ρ||σ) ≥ S(P(ρ)||P(σ)) . (1.5)

This is known as the Data Processing Inequality (DPI). Because of the simple relation between

(1.4) and (1.5) the problem of determining the cases of equality in the Data Processing Inequality

largely comes down the problem of determining the cases of equality in (1.4), which was solved by

Petz [28, 29]. His necessary and sufficient condition for equality in (1.4) is closely connected with

the problem of quantum coarse graining, and in particular a quantum coarse graining operation

introduced by Acardi and Cecchini [2], whose dual is now now known as the Petz recovery channel,

the CPTP map Rρ given by

Rρ(γ) = ρ1/2(ρ
−1/2
N γρ

−1/2
N )ρ1/2 . (1.6)

It is obvious that Rρ(ρN ) = ρ, so that Rρ “recovers” ρ from ρN . Petz proved [28, 29] that there

is equality in (1.4) if and only if

Rρ(σN ) = σ (1.7)

and that this is true if and only if

Rσ(ρN ) = ρ . (1.8)

There has been much recent work on stability for for the DPI: Suppose that ρ and σ are such

that there is approximate equality in (1.4). To what extent do ρ and σ provide approximate

solutions to Petz’s equation (1.7) and (1.8)? The papers : [14, 18, 33, 35, 36, 48] all address this

question.

1.2 Main results

In this paper we further develop an approach that we introduced in [9] for proving stability for

analogs of the DPI for Rényi relative entropies. The Rényi relative entropies include the Umegaki

relative entropy (1.3) as a limiting case, but taking advantage of the special structure on the

Umegaki relative entropy, we are able to sharpen the stability bounds obtained in [9] for this case.
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Our results in this direction are given in Theorem 1.5 and Corollary 1.7. These results are proved

in Section 2.

Many classical information theoretic inequalities have simple proofs that rely on the use of con-

ditional probabilities and conditional expectations, as we recall in the next subsection. An obstacle

to proving quantum analogs of such inequalities is that in the presence of non-commutativity, there

simply is no fully satisfactory analog of conditioning. For example, in the classical case, taking

any conditional expectation of any random variable on any probability space preserves the ex-

pectation – the original random variable and its conditional expectation have the same expected

value. A theorem of Takesaki [37] says that in the quantum setting, this is unfortunately only

rarely the case. Takesaki’s Theorem motivated Accardi and Cechini [2] to develop their expecta-

tion preserving quantum coarse graining operation, whose dual turns out to be the Petz recovery

map. For these reasons, it is of interest to understand the nature of the obstacle blocking the

general existence of expectation preserving conditional expectation. However, Takesaki’s paper

will only be accessible to readers who are well-versed in the rather subtle Tomita-Takesaki Theory.

In section 3 we give a simple proof, valid at least in our finite dimensional setting, of a result that

characterizes when expectation preserving conditional expectations will exist, and sheds new light,

at least in this setting, on why they often fail to exist. The full statement is given in Theorem 3.1.

Before giving precise statements we briefly review that corresponding classical problem.

1.3 The classical DPI

The classical analog of the DPI is relatively simple: Let Ω be a finite set. Let F be a non-trivial

partition of Ω. Let M denote the functions on Ω, and let N denote the functions on Ω that are

constant on each set of the partition F . ThenM and N are commutative von Neumann algebras,

and N is a subalgebra of M. Let X be a function on Ω such that X(ω) = X(ω′) if and only if ω

and ω′ belong to the same set in F . Then X generates F in the sense that the sets constituting

F are precisely the non-empty sets of the form {ω : X(ω) = x}.
Let ρ and σ be two strictly positive probability densities on the set Ω. Let τ denote the uniform

probability density on Ω; i.e., τ(ω) = |Ω|−1 for all ω, where |Ω| is the cardinality of Ω. As above,

let Eτ denote the orthogonal projection ofM onto N , which is nothing other than the conditional

expectation with respect the random variable X and the probability measure τ . As above, let

ρN = Eτρ and σN = Eτσ. Then ρN is a “coarse grained” version of ρ, obtained by averaging ρ on

the sets of the partition F , making it constant on these.

Let f(ω|x) be the conditional density under ρ for ω given that X(ω) = x, and likewise let

g(ω|x) be the conditional density under σ for ω given that X(ω) = x. That is

f(ω|x) =
ρ(ω)

ρN (x)
and g(ω|x) =

σ(ω)

ρN (x)
, (1.9)

which, for each x in the range of X, are both probability densities on the set {ω : X(ω) = x}.
Then

ρ(ω) = ρN (X(ω))f(ω|X(ω)) and σ(ω) = σN (X(ω))g(ω|X(ω)) , (1.10)
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and hence

S(ρ||σ) =
∑
ω∈Ω

ρ(ω)(log ρ(ω)− log σ(ω))

=
∑
ω∈Ω

ρ(ω)([log ρN (ω)− log σN (ω)] + [log f(ω|X(ω))− log g(ω|X(ω))])

= S(ρN ||σN ) +
∑
ω∈Ω

ρN (X(ω))f(ω|X(ω)) [log f(ω|X(ω))− log g(ω|X(ω))] (1.11)

For each x in the range of X, it follows from Jensen’s inequality that∑
{ω : X(ω)=x}

f(ω|x) [log f(ω|x)− log g(ω|x)] ≥ 0 , (1.12)

and there is equality if and only if f(ω|x) = g(ω|x) everywhere on {ω : X(ω) = x}. It follows

that S(ρ||σ) ≥ S(ρN ||σN ) with equality if and only if for each x in the range of X, f(ω|x) = g(ω|x)

everywhere on {ω : X(ω) = x}.
In this case, X is called a sufficient statistic for the pair {ρ, σ}: Suppose we are given an

independent identically distributed sequence of points {ωj}, drawn according to one of the two

probability densities ρ or σ, and we want to determine which it is. Because of (1.10) and f = g, the

entire difference between ρ(ω) and σ(ω), lies in the difference between ρN (X(ω)) and σN (X(ω)).

Therefore, it suffices to observe the sequence {X(ωj)} in order to determine which of ρ or σ is

governing the sequence of samples.

We can define a classical recovery map as follows: For any probability density γ ∈ N , regarded

as a probability density on the range of X, define Rργ to be the probability density in M given

by

Rργ(ω) = γ(X(ω))f(ω|X(ω)) .

Therefore, we can express the condition for equality in the classical DPI as RρσN = σ, and

evidently this is true if and only if RσρN = ρ. This is the classical analog of Petz’s result.

Moreover, in this notation, we have that∑
ω∈Ω

ρN (X(ω))f(ω|X(ω)) [log f(ω|X(ω))− log g(ω|X(ω))] = S(ρ||RσρN ) ,

so that (1.11) becomes

S(ρ||σ)− S(ρN ||σN ) ≥ S(ρ||Rσρ) . (1.13)

Then by the classical Pinsker inequality,

S(ρ||σ)− S(ρN ||σN ) ≥ 1

2

(∑
ω∈Ω

|ρ(ω)−RσρN (ω)|

)2

. (1.14)

It remains an open problem to prove quantum analogs of (1.13) or (1.14), even with worse

constants on the right. In the case of (1.13), some modification such as worse constants is certainly
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required; the exact quantum analog is violated in some numerical examples; see [13]. Here we prove

a quantum analog of (1.14) with a worse constant, and with the power raised from 2 to 4 on the

right. The line of argument has to be entirely different from the one we have just employed

in the classical case because there is no effective quantum replacement for “conditioning on the

observable X”.

It is therefore useful to find a way of describing the classical recovery map that does not refer

explicitly to conditioning on the random variable X. Define Eσ to be the orthogonal projection

of M onto N in L2(σ). Then for any random variable Y (i.e., any function on Ω), EσY is the

conditional expectation of Y given N . The operation Y 7→ EσY yields a “coarse grained version”

of Y that is constant on the sets in F : With X and g as in (1.9),

EσY (ω) =
∑

ω′: X(ω′)=X(ω)}

g(ω′|X(ω)Y (ω′) .

It is clear from this formula that Eσ preserves positivity, and preserves expectations with respect

to σ, That is,

σ(Y ) = σ(EσY ) . (1.15)

Now let E †σ be the dual operation taking states on N (probability densities on the range of X) to

states onM (probability densities on Ω). It is easily seen that this is nothing other than Rσ. That

is, the classical recovery map Rσ is nothing other than the dual of the conditional expectation

Eσ, which is nothing other than the orthogonal projection of M onto N in L2(σ). This analytic

specification of Rσ, making no explicit mention of conditioning on X, provides a starting point

for the construction of a quantum recovery map.

1.4 Quantum conditional expectations and quantum coarse graining

The discussion of the classical DPI brings us to the question as to whether for any faithful state ρ

on M there exists a conditional expectation E from M onto N that preserves expectations with

respect to ρ, i.e. such that

ρ(X) = ρ(E (X)) for all X ∈M . (1.16)

The property (1.16) says that “the expectation of a conditional expectation of an observable equals

the expectation of the observable”. If such a conditional expectation exists, then it is unique: Any

such conditional expectation must be the orthogonal projection of M on N with respect to the

GNS inner product for the state ρ. To see this, note that for all X ∈ M and all A ∈ N , using

(1.1),

〈A,X〉GNS,ρ := ρ(A∗X) = ρ(E (A∗X)) = ρ(A∗E (X)) = 〈A,E (X)〉GNS,ρ . (1.17)

Suppose that E is a conditional expectation satisfying (1.16). Then since E is a unital com-

pletely positive map, E † is a CPTP map; i.e., a quantum channel. For any state γ on N , and any

A ∈M, we then have

E †(A) = γ(E (A)) .
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Then when (1.16) is satisfied, taking γ = ρN , we have

E †ρN (A) = ρN (E (A)) = ρ(A) ,

and this means that E † is a quantum channel that “recovers” ρ from ρN .

As we have already noted, Eτ is a conditional expectation with the property (1.16). However,

for non-tracial states ρ, a conditional expectation satisfying (1.16) need not exist.

A theorem of Takesaki [37] says, in our finite dimensional context, that for a faithful state ρ,

there exists a conditional expectation E fromM onto N if and only if ρAρ−1 ∈ N for all A ∈ N ,

and in general this is not the case. We give a short proof of this and somewhat more in Section 3:

In Theorem 3.1, we prove that Eρ, the orthogonal projection from M onto N in the GNS inner

product with respect to ρ, is real (that is, it preserves self-adjointness) if and only if ρAρ−1 ∈ N
for all A ∈ N . Since every order preserving linear transformation is real, this precludes the

general existence of conditional expectations satisfying (1.16) whenever N is not invariant under

X 7→ ρXρ−1, thus implying Takesaki’s Theorem (in this finite dimensional setting).

There is another inner product on M that is naturally induced by a faithful state ρ, namely

the Kubo-Martin-Schwinger (KMS) inner product. It is defined by

〈X, Y 〉KMS,ρ = Tr[ρ1/2X∗ρ1/2Y ] = Tr[(ρ1/4Xρ1/4)∗(ρ1/4Y ρ1/4)] . (1.18)

Evidently, for any X ∈M and Y ∈ N , by the Cauchy-Schwarz inequality,

|〈X, Y 〉KMS,ρ|2 = |Tr[ρ1/2X∗ρ1/2Y ]|2 ≤ Tr[X∗ρ1/2Xρ1/2]Tr[Y ∗ρ1/2Y ρ1/2] . (1.19)

If U is any unitary in N ′, the commutant of N ,

Tr[Y ∗ρ1/2Y ρ1/2] = Tr[U∗(Y ∗ρ1/2Y ρ1/2)U ] = Tr[Y ∗(U∗ρU)1/2Y (U∗ρU)1/2] .

Then since ρN can be written as an average of U∗ρU as U ranges over the unitaries in N ′, [39],

it follows from the Lieb Concavity Theorem that Tr[Y ∗ρ1/2Y ρ1/2] ≤ Tr[Y ∗ρ
1/2
N Y ρ

1/2
N ]. Combining

this with (1.19),

|〈X, Y 〉KMS,ρ| ≤ ‖X‖KMS,ρ‖Y ‖KMS,ρN (1.20)

Hence Y 7→ 〈X, Y 〉KMS,ρ is a bounded linear functional on (N , 〈· , ·〉KMS,ρN ), and then there is

a uniquely determined Aρ(X) ∈ N such that for all Y ∈ N ,

〈X, Y 〉KMS,ρ = 〈Aρ(X), Y 〉KMS,ρN . (1.21)

Evidently, X 7→ Aρ(X) is linear.

1.3 Definition. Let ρ be a faithful state on M. The Accardi-Cecchini coarse graining operator

Aρ from M to N is defined by (1.21).

The map Aρ was introduced by Accardi and Cecchini [2], building on previous work by Accardi

[1]. It is a “coarse graining” operation in that to each observable X in the larger algebra M, it
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associates an observable Aρ(X), in the smaller algebra N , and measurement of Aρ(X) will yield

coarser information than a measurement of X itself. The same, of course, is true for conditional

expectations,.

Since 1 ∈ N by definition, for all X ∈M, 〈1, X〉KMS,ρ = 〈1,Aρ(X)〉KMS,ρ, and for all X ∈M,

〈1, X〉KMS,ρ = Tr[σ1/21σ1/2X] = ρ(X). Therefore

ρ(Aρ(X)) = ρ(X) . (1.22)

Thus, unlike conditional expectations in general, the Accardi-Cecchini coarse-graining operator

always preserves expectations with respect to ρ.

In the matricial setting, it is a particularly simple matter to derive an explicit expression for

Aρ. By definition, for all X ∈M and all Y ∈ N ,

Tr[ρ
1/2
N Y ρ

1/2
N Aρ(X)] = Tr[ρ1/2Y ρ1/2X] . (1.23)

Make the change of variables Z = ρ
1/2
N Y ρ

1/2
N . Since ρ

1/2
N is invertible, as Y ranges over N , Z ranges

over N . Hence

Tr[ZAρ(X)] = Tr[(ρ1/2ρ
−1/2
N Zρ

−1/2
N ρ1/2)X] = Tr[Z(ρ

−1/2
N ρ1/2Xρ1/2ρ

−1/2
N )] . (1.24)

Since the above holds for all Z ∈ N , it follows that

Aρ(X) = ρ
−1/2
N Eτ (ρ

1/2Xρ1/2)ρ
−1/2
N . (1.25)

It is evident from this formula that Aρ is a completely positive unital map from M to N , and

therefore it is actually a contraction fromM to N . By Tomiyama’s Theorem, it cannot in general

be a projection of M onto N . That is, if X ∈ N , it is not necessarily the case that Aρ(X) = X.

1.4 Definition. The Petz recovery map Rρ is the Hilbert-Schmidt adjoint of Aρ [29]. That is,

Rρ = A †
ρ , or equivalently, for all density matrices γ ∈ N

Tr[γAρ(X)] = Tr[Rρ(γ)X] .

As the dual of a unital completely positive map, Rρ is a CPTP map. Moreover, it follows

immediately from the definition and (1.25) that for all density matrices γ ∈ N ,

Rρ(γ) = ρ1/2(ρ
−1/2
N γρ

−1/2
N )ρ1/2 . (1.26)

It is evident from this formula not only that Rρ is a CPTP map, but that Rρ(ρN ) = ρ; i.e., Rρ

recovers ρ from ρN . Now suppose that σ is another density matrix in M and that

Rρ(σN ) = σ . (1.27)

Then by (1.27) and then the DPI, S(ρ||σ) = S(Rρ(ρN )||Rρ(σN )) ≤ S(ρ||σ). Hence when

Rρ(σN ) = σ, there is equality in (1.4). The deeper result of Petz [28, 29] is that there is equality

in (1.4) only in this case.
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As noted above, Aρ is not a projection onto N . The fixed point set

C := {X ∈ N : Aρ(X) = X } (1.28)

turns out to be a von Neumann subalgebra of N , and is structure, already investigated in [2],

plays an important role in classifying the set of states σ such that Rρ(σN ) = σ; see [24]. This

classification gives a complete understanding of the cases of equality, and the remaining open

problems concern stability.

Here we prove a stability bound for Petz’s theorem on the cases of equality in (1.4). Our result

involves the relative modular operator ∆ρ,σ on M defined by

∆σ,ρ(X) = σXρ−1 (1.29)

for all X ∈ M. This is the matricial version of an operator introduced in a more general von

Neumann algebra context by Araki [3]. Our main result is:

1.5 Theorem. Let ρ and σ be two states on M Let Eτ be the tracial conditional expectation onto

a von Neumann subalgebra N , and let ρN = Eτρ and σN = Eτσ. Then, with ‖ · ‖2 denoting the

Hilbert-Schmidt norm,

S(ρ||σ)− S(ρN ||σN ) ≥
(π

4

)4

‖∆σ,ρ‖−2‖σ1/2
N ρ

−1/2
N ρ1/2 − σ1/2‖4

2 . (1.30)

The quantity on the right hand side may be estimated in terms of the Petz recovery map. In

Section 2 we prove:

1.6 Lemma. Let ρ, σ and σN be specified as in Theorem 1.5. Then, with ‖ · ‖1 denoting the trace

norm,

‖(σN )1/2(ρN )−1/2ρ1/2 − σ1/2‖2 ≥
1

2
‖Rρ(σN )− σ‖1 .

As an immediate Corollary of Theorem 1.5 and Lemma 1.6, we obtain

1.7 Corollary. Let ρ and σ be two states on M. Let Eτ be the tracial conditional expectation

onto a von Neumann subalgebra N , and let ρN = Eτρ and σN = Eτσ. Then, with ‖ · ‖1 denoting

the trace norm,

S(ρ||σ)− S(ρN ||σN ) ≥
(π

8

)4

‖∆σ,ρ‖−2‖Rρ(σN )− σ‖4
1 . (1.31)

Note how the right hand side of (1.31) differs from the right hand side of (1.14): Apart from

the constant and the power 4 in place of 2, the most striking difference is that the roles of ρ and

σ are reversed. The expected result, with a worse constant, is obtained in Corollary 1.8.

Recall that the modular operator is the right multiplication by ρ−1 and left multiplication by

σ, so ‖∆σ,ρ‖ ≤ ‖ρ−1‖, since ‖σ‖ ≤ 1. While ‖ρ−1‖ might be considerably larger than ‖∆σ,ρ‖, a

bound in terms of ‖ρ−1‖ has the merit that it is independent of σ:

S(ρ||σ)− S(ρN ||σN ) ≥
(π

8

)4

‖ρ−1‖−2‖Rρ(σN )− σ‖4
1 . (1.32)
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Corollary 1.7 yields a result of Petz: With M, N , ρ and σ as above, S(ρ||σ) = S(ρN ||σN ) if

and only if σ satisfies the Petz equation

σ = Rρ(σN ) . (1.33)

Theorem 1.5 gives what appears to be a stronger condition on relating ρ, σ, ρN and σN , namely

that

ρ
−1/2
N ρ1/2 = σ

−1/2
N σ1/2 . (1.34)

While validity of (1.34) immediately implies that σ satisfies the Petz equation (1.33), the converse

is also true: By what we have noted above, when (1.33) is satisfied, S(ρ||σ) = S(ρN ||σN ), and

then by Theorem 1.5, (1.34) is satisfied.

This may be made quantitative as follows: Letting LA denote the operator of left multiplication

by A,

L
ρ
1/2
N
L
σ
−1/2
N

(σ
1/2
N ρ

−1/2
N ρ1/2 − σ1/2) = (ρ1/2 − ρ1/2

N σ
−1/2
N σ1/2) ,

and hence

‖ρ1/2 − ρ1/2
N σ

−1/2
N σ1/2‖2 ≤ ‖Lρ1/2N ‖‖Lσ−1/2

N
‖‖σ1/2

N ρ
−1/2
N ρ1/2 − σ1/2‖2 . (1.35)

Since ‖L
ρ
1/2
N
‖ = ‖ρN‖1/2 and ‖L

σ
−1/2
N
‖ = ‖σ−1

N ‖1/2, we may combine (1.35) with (1.30) to obtain

S(ρ||σ)− S(ρN ||σN ) ≥
(π

4

)4

‖∆σ,ρ‖−2‖ρN‖−2‖σ−1
N ‖

−2‖ρ1/2
N σ

−1/2
N σ1/2 − ρ1/2‖4

2 , (1.36)

which is the analog of (1.30) with a somewhat worse constant on the right, but the roles of ρ and

σ interchanged there. Applying Lemma 1.6 once more, we obtain

1.8 Corollary. Let ρ and σ be two states on M. Let Eτ be the tracial conditional expectation

onto a von Neumann subalgebra N , and let ρN = Eτρ and σN = Eτσ. Then

S(ρ||σ)− S(ρN ||σN ) ≥
(π

8

)4

‖∆σ,ρ‖−2‖ρN‖−2‖σ−1
N ‖

−2‖Rσ(ρN )− ρ‖4
1 . (1.37)

As above, bounding the norms of states by 1, we get a constant that depends only on the

smallest eigenvalues of ρ and σN

S(ρ||σ)− S(ρN ||σN ) ≥
(π

8

)4

‖ρ−1‖−2‖σ−1
N ‖

−2‖Rσ(ρN )− ρ‖4
1 . (1.38)

We noted above that σ solves the Petz equation if and only if (1.34) is satisfied, and then since

(1.34) is symmetric in ρ and σ, σ = RρσN if and only if ρ = RσρN , and hence

S(ρ||σ) = S(ρN ||σN ) ⇐⇒ S(σ||ρ) = S(σN ||ρN ) . (1.39)

In physical applications, instead of the trace distance, one often considers an alternative mea-

sure of the closeness between two quantum states, the fidelity [40] , which for two states ρ and σ

on B(H) is defined as

F (ρ, σ) = ‖√ρ
√
σ‖2

1. (1.40)
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By the Cauchy-Schwarz inequality, 0 ≤ F (ρ, σ) ≤ 1, and F (ρ, σ) = 1 if and only if ρ = σ,

and F (ρ, σ) = 0 if and only is the support of ρ is orthogonal to the support of σ. So in other

words, the fidelity is zero when states are perfectly distinguishable, and one when they cannot be

distinguished. Moreover, there is a relation between the trace distance ‖ρ− σ‖1 and fidelity

1−
√
F (ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ, σ) . (1.41)

From here and the Corollary 1.7 we obtain the quantitative version of the Petz’s Theorem involving

the fidelity between states

S(ρ||σ)− S(ρN ||σN ) ≥
(π

4

)4

‖∆σ,ρ‖−2

(
1−

√
F (σ,Rρ(σN ))

)4

. (1.42)

Recent results reported in [14, 18, 46, 48] provide stability results for the DPI, but the lower

bounds provided there involve quantities that are not so directly related to σ − Rρ(σN ) or to

ρ −Rσ(ρN )); e.g., “rotated” and “twirled” Petz recovery maps. For another fidelity type bound

not explicitly involving the recover map, see [8, Theorem 2.2]. The appeal of the bounds proved

in this paper is that they are expressed in terms of physically relevant distances between σ and

Rρ(σN ), or between ρ and Rσ(ρN )).

2 Stability for the Data Processing Inequality

We begin this section by recalling Petz’s proof of the monotonicity of the quasi relative entropies

Sf for operator convex f . Throughout this section, N is a von Neumann subalgebra of the finite

dimensional von Neumann algebraM, and ρ and σ are two density matrices inM. Eτ is the tracial

conditional expectation onto N , and ρN = Eτρ and σN = Eτσ. Finally H denotes (M, 〈·, ·〉HS),

where 〈·, ·〉HS is the Hilbert-Schmidt inner product.

Define the operator U mapping H to H by

U(X) = Eτ (X)ρ
−1/2
N ρ1/2 . (2.1)

Note that for all X ∈ N , U(X) = Xρ
−1/2
N ρ1/2. The adjoint operator on H is given by

U∗(Y ) = Eτ (Y ρ
1/2)ρ

−1/2
N (2.2)

for all Y ∈ H =M.

For X ∈ M, U∗U(X) = Eτ (ρ
−1/2
N Eτ (X)ρ

−1/2
N ρ) = Eτ (X). Hence U∗U = Eτ , the orthogonal

projection in H onto N . That is, U , restricted to N , is an isometric embedding of N into H =M,

but it is not the trivial isometric embedding by inclusion. Also, we see that on N the map U is

isometric.

Now observe that for all X ∈ N , ∆
1/2
σ,ρ (U(X)) = σ1/2Xρ

−1/2
N , and hence for all X ∈ N ,

〈∆1/2
σ,ρ (U(X)),∆1/2

σ,ρ (U(X))〉 = Tr((ρN )−1/2X∗σX(ρN )−1/2)

= Tr((ρN )−1/2X∗σNX(ρN )−1/2)

= 〈∆1/2
σN ,ρN

(X),∆1/2
σN ,ρN

(X)〉 .
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That is, on N ,

U∗∆σ,ρU = ∆σN ,ρN . (2.3)

By the operator Jensen inequality, as operators on (N , 〈·, ·〉HS),

U∗f(∆σ,ρ)U ≥ f (U∗∆σ,ρU) . (2.4)

Combining (2.3) and (2.4), and using the fact that U(ρN )1/2 = ρ1/2,

Sf (ρN ||σN ) = 〈(ρN )1/2, f(∆σN ,ρN )(ρN )1/2〉
≤

〈
U(ρN )1/2, f(∆σ,ρ)U(ρN )1/2

〉
=

〈
ρ1/2, f(∆σ,ρ)ρ

1/2
〉

= Sf (ρ||σ) .

This proves, following Petz, his monotonicity theorem for the quasi relative entropy Sf for the

operator convex function.

Now consider the family of quasi relative entropies defined by functions ft(x) = (t+x)−1. Our

immediate goal is to prove the inequality

S(t)(ρ||σ) = 〈ρ1/2, (t+ ∆σ,ρ)
−1ρ1/2〉 ≥ 〈ρ1/2

N , (t+ ∆σN ,ρN )−1ρ
1/2
N 〉 = S(t)(ρN ||σN ) . (2.5)

2.1 Lemma. Let U be a partial isometry embedding a Hilbert space K into a Hilbert space H. Let

B be an invertible positive operator on K, A be an invertible positive operator on H, and suppose

that U∗AU = B. Then for all v ∈ K,

〈v, U∗A−1Uv〉 = 〈v,B−1v〉+ 〈w,Aw〉 , (2.6)

where

w := UB−1v − A−1Uv . (2.7)

Proof. We compute, using U∗U = 1K,

〈w,Aw〉 = 〈UB−1v − A−1Uv,AUB−1v − Uv)〉
= 〈v,B−1U∗AUB−1v〉 − 2〈v,B−1v〉+ 〈v, U∗A−1Uv〉
= −〈v,B−1v〉+ 〈v, U∗A−1Uv〉

Proof of Theorem 1.5. We apply Lemma 2.1 with A := (t + ∆σ,ρ), B = (t + ∆σN ,ρN ) and v :=

(ρN )1/2, and with U defined as above. The lemma’s condition, U∗AU = B, follows from (2.3) and

the fact that U∗U = 1K. Therefore, applying Lemma 2.1 with U(ρN )1/2 = ρ1/2,

S(t)(ρ||σ)− S(t)(ρN ||σN ) = 〈ρ1/2, (t+ ∆σ,ρ)
−1ρ1/2〉 − 〈ρ1/2

N , (t+ ∆σN ,ρN )−1ρ
1/2
N 〉

= 〈wt, (t+ ∆σ,ρ)wt〉 ≥ t‖wt‖2, (2.8)
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where, recalling that U(ρN )1/2 = ρ1/2,

wt := U(t+ ∆σN ,ρN )−1(ρN )1/2 − (t+ ∆σ,ρ)
−1ρ1/2 . (2.9)

Using the integral representation of the square root function,

X1/2 =
1

π

∫ ∞
0

t1/2
(

1

t
− 1

t+X

)
dt,

and U(ρN )1/2 = ρ1/2 once more, we conclude that

U(∆σN ,ρN )1/2(ρN )1/2 − (∆σ,ρ)
1/2ρ1/2 = − 1

π

∫ ∞
0

t1/2wtdt .

On the other hand,

U(∆σN ,ρN )1/2(ρN )1/2 − (∆σ,ρ)
1/2ρ1/2 = U(σN )1/2 − σ1/2

= (σN )1/2(ρN )−1/2ρ1/2 − σ1/2 .

Therefore, combining the last two equalities and taking the Hilbert space norm associated with

H, for any T > 0,

‖(σN )1/2(ρN )−1/2ρ1/2 − σ1/2‖2 =
1

π

∥∥∥∥∫ ∞
0

t1/2wtdt

∥∥∥∥
2

≤ 1

π

∫ T

0

t1/2‖wt‖2dt+
1

π

∥∥∥∥∫ ∞
T

t1/2wtdt

∥∥∥∥
2

. (2.10)

We estimate these two terms separately. For the first term, by the Cauchy-Schwarz inequality,(∫ T

0

t1/2‖wt‖2dt

)2

≤ T

∫ T

0

t‖wt‖2
2dt

≤ T

∫ ∞
0

(
S(t)(ρ||σ)− S(t)(ρN ||σN )

)
dt

= T (S(ρ||σ)− S(ρN ||σN )) . (2.11)

For the second term in (2.10), note that for any positive operator X

t1/2
(

1

t
− 1

t+X

)
≤ t1/2

(
1

t
− 1

t+ ‖X‖

)
1 =

‖X‖
t1/2(‖X‖+ t)

1,

and hence ∫ ∞
T

t1/2
(

1

t
− 1

t+X

)
dt ≤ ‖X‖1/2

(∫ ∞
T/‖X‖

1

t1/2(1 + t)
dt

)
1 ≤ 2‖X‖

T 1/2
1 .

The spectra of σN and ρN lie in the convex hulls of the spectra of σ and ρ respectively. It follows

that ‖∆σN ,ρN ‖ ≤ ‖∆σ,ρ‖. Therefore, recalling the definition of wt in (2.9), we obtain∥∥∥∥∫ ∞
T

t1/2wtdt

∥∥∥∥
2

≤ 4‖∆σ,ρ‖
T 1/2

. (2.12)
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Combining (2.10), (2.11) and (2.12) we obtain

‖(σN )1/2(ρN )−1/2ρ1/2 − σ1/2‖2 ≤
1

π
T 1/2(S(ρ||σ)− S(ρN ||σN ))1/2 +

4‖∆σ,ρ‖
πT 1/2

.

Optimizing in T ,

‖(σN )1/2(ρN )−1/2ρ1/2 − σ1/2‖2 ≤
4

π
‖∆σ,ρ‖1/2(S(ρ||σ)− S(ρN ||σN ))1/4

Rearranging terms

S(ρ||σ)− S(ρN ||σN ) ≥
(π

4

)4

‖∆σ,ρ‖−2‖(σN )1/2(ρN )−1/2ρ1/2 − σ1/2‖4
2 . (2.13)

We now prove the lemma leading from (1.30) to (1.31).

2.2 Lemma. For any operators X and Y with Tr[X∗X] = Tr[Y ∗Y ] = 1. Then

‖X∗X − Y ∗Y ‖1 ≤ 2‖X − Y ‖2 . (2.14)

Proof. Recall that for any operator A, ‖A‖1 = sup{|Tr[ZA] : ‖Z‖ ≤ 1} where ‖ · ‖ denotes the

operator norm. For any contraction Z, using cyclicity of the trace we have

|Tr[Z(X∗X − Y ∗Y )]| ≤ |Tr[Z(X∗ − Y ∗)X + ZY ∗(X − Y )]|
≤ |Tr[(X∗ − Y ∗)XZ|+ |Tr[ZY ∗(X − Y )]

≤ (Tr(X∗ − Y ∗)(X − Y )])1/2(Tr[X∗Z∗ZX])1/2

+ (Tr(X∗ − Y ∗)(X − Y )])1/2(Tr[Y ∗Z∗ZY ])1/2

≤ 2‖X − Y ‖2 .

Applying this with X = (σN )1/2(ρN )−1/2ρ1/2 and Y = σ1/2, we get

‖(σN )1/2(ρN )−1/2ρ1/2 − σ1/2‖2 ≥
1

2
‖Rρ(σN )− σ‖1 .

3 Conditional expectations and the Petz Recovery Map

Recall from the introduction that classically, for any integrable random variable X on any prob-

ability space, if E (X) is its conditional expectation with respect to any other random variable,

then both X and E (X) have the same expected value. Conditional expectations in the quantum

setting need not have this property; in fact, they usually do not, as is shown by a theorem of

Takesaki [37]. Also as explained in the introduction, taking a classical conditional expectation

is essentially a “coarse graining” operation. Coarse graining is important in quantum statistical
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mechanics, and one wants observables and their coarse grained versions to have the same expected

values; see Accardi and Cechinni [2], who took Takesaki’s Theorem as their starting point in the

work leading to their coarse graining operator, which, as we have explained, has the Petz recovery

map as its dual.

In short, the quantum obstacle to the existence of expectation preserving conditional expec-

tations is the raison d’ete for the Petz recovery map. Takesaki’s deep paper makes use of the

subtle Tomita-Takesaki Theory which limits its accessibility. It is therefore desirable to give an

elementary elucidation of this quantum obstacle in our present finite dimensional setting. Wolf

[47] gives a clear account of a number of aspects of quantum conditional expectations in the finite

dimensional setting. He takes advantage of the fact that any finite dimensional von Neumann al-

gebra is isometrically isomorphic to the direct sum of a finite number of complete matrix algebras.

He then proves what may be viewed as a finite dimensional version of Tomiyama’s Theorem [38]

characterizing conditional expectations as norm one projections. He does not discuss Takesaki’s

Theorem, and we are unaware of any elementary exposition of it. Perhaps it would be possible to

give an elementary proof of it by using the structure theory for finite dimensional von Neumann

algebras, as in [47]. Here we take an approach that is elementary and yields a result that is

not implied by Takesaki’s Theorem, and uses methods that are not strictly limited to the finite

dimensional case.

Our starting point is a fact explained in the Introduction: If ρ is a faithful state on M, and

N is a von Neumann subalgebra of M, then there exists a conditional expectation E from M to

N such that for all X ∈ M, ρ(X) = ρ(E (X)) if and only if the orthogonal projection onto N in

the GNS inner product induced by ρ is a conditional expectation.

Thus we can rephrase our question about the obstacle to the existence of expectation preserving

conditional expectations as: For which faithful states ρ is the orthogonal projection onto N in

the GNS inner product induced by ρ, Pρ, is actually a conditional expectation? Conditional

expectations, as defined in the Introduction, are always real; i.e., they send Hermitan operators

to Hermitian operators. Therefore, the first part of the next theorem says that Pρ can be a

conditional expectation only if N is invariant under ∆ρ.

3.1 Theorem. LetM be a finite dimensional von Neumann algebra, and let N be a von Neumann

subalgebra ofM. Let ρ be a faithful state onM, and let ∆ρ be the modular operator onM defined

by ∆ρ(X) = ρXρ−1. Let Pρ be the orthogonal projection fromM onto N in the GNS inner product

induced by ρ. Then:

(1) Pρ is real; i.e., it preserves self-adjointness, if and only if N is invariant under ∆ρ.

(2) N is invariant under ∆ρ if and only if for all A ∈ N ,

∆ρ(A) = ∆ρN (A) , (3.1)

in which case ∆t
ρ(A) = ∆t

ρN
(A) for all t ∈ R. Furthermore, (3.1) is valid for all A ∈ N if and

only if Aρ(A) = A for all A ∈ N .

3.2 Remark. Part (2) of Theorem 3.1 is due to Accardi and Cecchini [2, Theorem 5.1]. In our

finite dimensional context, we give a very simple proof; most of the proof below is devoted to (1).
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Proof of Theorem 3.1. Suppose that Pρ is real. Then for all X ∈ Null(Pρ), 0 = (Pρ(X))∗ =

Pρ(X
∗), so that Null(Pρ) is a self adjoint subspace of M. Let m denote the dimension of

Null(Pρ). Then, applying the Gram-Schmidt Algorithm, one can produce an orthonormal basis

{H1, . . . , Hm} of Null(Pρ) consisting of self-adjoint elements of M.

The map X 7→ Xρ1/2 is unitary from (M, 〈·, ·〉GNS,ρ) to (M, 〈·, ·〉HS). Therefore for all A ∈ N ,

and each j = 1, . . . ,m, 〈Aρ1/2, Hjρ
1/2〉HS = 0. Then since the map X 7→ X∗ is an (antilinear)

isometry on (M, 〈·, ·〉HS,ρ),

0 = 〈(Hjρ
1/2)∗, (Aρ1/2)∗, 〉HS = Tr[HjρA

∗] = Tr[Hj∆ρ(A
∗)ρ] = 〈Hj,∆ρ(A

∗), 〉GNS,ρ .

Therefore, ∆ρ(A
∗) is orthogonal to Null(Pρ) in (M, 〈·, ·〉GNS,ρ), and hence ∆ρ(A

∗) ∈ N . Since A

is arbitrary in N , it follows that N is invariant under ∆ρ.

For the converse, suppose that N is invariant under ∆ρ. Then N is invariant under ∆s
ρ for all

s ∈ R, and in particular, N is invariant under ∆
1/2
ρ . Consequently, ρ1/2N = Nρ1/2 as subspaces

of M; let K denote this subspace, which is evidently self-adjoint. Let K⊥ demote its Hilbert-

Schmidt orthogonal complement in M. Let H = H∗ ∈ M. Then there is a unique A ∈ N such

that Hρ1/2 − Aρ1/2 ∈ K⊥. Thus,

Hρ1/2 = (Hρ1/2 − Aρ1/2) + Aρ1/2 (3.2)

is the orthogonal decomposition of Hρ1/2 with respect to K. Again since X 7→ Xρ1/2 is unitary

from (M, 〈·, ·〉GNS,ρ) to (M, 〈·, ·〉HS), Pρ(H) = A. We must show that A = A∗.

Since X 7→ X∗ is an isometry for the Hilbert-Schmidt inner product, and since K and K⊥ are

self adjoint,

ρ1/2H = (ρ1/2H − ρ1/2A∗) + ρ1/2A∗ (3.3)

is the orthogonal decomposition of ρ1/2H with respect to K. In particular, (ρ1/2H−ρ1/2A∗) ∈ K⊥.

Hence for any Z ∈ N ,

0 = 〈Zρ1/2, (ρ1/2H − ρ1/2A∗)〉HS = Tr[Z∗(ρ1/2H − ρ1/2A∗)ρ1/2] = 〈ρ1/2Z,Hρ1/2 − A∗ρ1/2〉HS ,

and hence Hρ1/2 − A∗ρ1/2 ∈ K⊥. Now apply ∆
−1/2
ρ to both sides of (3.3) to obtain

Hρ1/2 = (Hρ1/2 − A∗ρ1/2) + A∗ρ1/2 .

By what we have just shown, this is the orthogonal decomposition of Hρ1/2, and must coincide

with (3.2). Hence A∗ = A. This proves (1).

To prove (2), note first of all that when (3.1) is valid for all A ∈ N , then ∆ρ preserves N since

the right side evidently belongs to N .

Now suppose the ∆ρ preserves N . Let A,B ∈ N . Then A∗∆ρN (∆ρ(B)) ∈ N , and then by the

definition of Eτ and cyclicity of the trace,

Tr[ρ(A∗ρNρ
−1Bρρ−1

N )] = Tr[ρN (A∗ρNρ
−1Bρρ−1

N )] = Tr[A∗ρNρ
−1Bρ] = Tr[ρN (ρ−1BρA∗)] .
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In the same way, using the fact that (ρ−1BρA) ∈ N and cyclicity of the trace,

Tr[ρN (ρ−1BρA∗)] = Tr[BρA∗] = Tr[ρA∗B] .

Altogether, 〈A,∆ρN (∆−1
ρ (B))〉GNS,ρ = 〈A,B〉GNS,ρ. Since ∆ρN (∆−1

ρ (B)) ∈ N , and A is arbitrary

in N , ∆ρN (∆−1
ρ (B)) = B, and hence ∆−1

ρ (B) = ∆−1
ρN

(B). Then ∆−nρ (B) = ∆−nρN (B) for all n ∈ N,

and then it follows that ∆t
ρ(B) = ∆t

ρN
(B) for all t ∈ R.

Finally, we show that (3.1) is valid for all A ∈ N , then Aρ(A) = A for all A ∈ N :

Eτ (ρ
1/2Aρ1/2) = Eτ (∆

1/2
ρ (A)ρ) = ∆1/2

ρN
(A)Eτ (ρ) = ρ

1/2
N Aρ

1/2
N .

Therefore,

Aρ(A) = ρ
−1/2
N Eτ (ρ

1/2Aρ1/2)ρ
−1/2
N = A .

On the other hand, when A = Aρ(A) for all A ∈ N , Aρ is a norm one projection onto N , and

by Tomiyama’s Theorem [38], it is a conditional expectation, and it satisfies ρ(Aρ(X)) = ρ(X) for

all X ∈ M. Therefore, it must coincide with Pρ, the orthogonal projection form M onto N in

the GNS inner product induced by ρ. Hence Pρ is a conditional expectation. By what we proved

earlier, this means that N is invariant under ∆ρ, and then that (3.1) is valid for all A ∈ N .

3.3 Theorem. Let Pρ denote the orthogonal projection of M onto N in the GNS inner product

induced by ρ. Then

(1) Pρ is a conditional expectation if and only if N is invariant under ∆ρ.

(2) Pρ is a conditional expectation if and only if Pρ is real.

Proof. Theorem 3.1 says that when ∆ρ does not leave N invariant, Pρ is not even real, and hence

is not a conditional expectation. On the other hand, when ∆ρ leaves N invariant, by part (2) of

Theorem 3.1, Aρ is a norm-one projection onto N . By Tomiyama’s Theorem, Aρ is a conditional

expectation that preserves expectation with respect to ρ. By remarks made in the introduction,

this means that Aρ = Pρ, and hence that Pρ is a conditional expectation. This proves (1).

It is evident that if Pρ is a conditional expectation, this Pρ is real. On the other hand, if Pρ

is real, then by Theorem 3.1, N is invariant under ∆ρ, and now (2) follows from (1).
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