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ABSTRACT
The ability to execute complex signal processing and machine learn-
ing tasks in real-time is the core of autonomy. In airborne devices
such as Unmanned Aerial Vehicles (UAV), the hardware limitations
imposed by the weight constraint make the continuous execution of
these algorithms challenging. Edge and fog computing can mitigate
such limitations and boost the system and mission-level perfor-
mance of the UAVs. However, due to the UAVs motion characteris-
tics and complex dynamics of urban environments, the performance
of pipelines using interconnected, rather than onboard, resources
can quickly degrade. Motivated by the development of Hydra, an ar-
chitecture for the establishment of flexible sensing-analysis-control
pipelines over autonomous airborne systems, this paper reports a
preliminary measurement study on the performance of computing
task offloading on available network technologies in this class of
applications and systems.

CCS CONCEPTS
•Networks→Network experimentation; •Computingmethod-
ologies → Cooperation and coordination; • Computer systems
organization→ Real-time system architecture.
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Figure 1: Scenario considered in this paper: ground and air-
borne devices provide assistance to UAVs by taking over
compute-intense tasks.

1 INTRODUCTION
The ability to observe and analyze the surrounding environment to
inform decisionmaking is instrumental to achieve fully autonomous
operations. Possibly complex signal processing and machine learn-
ing algorithms transform sensor feeds into control in real-time.
For instance, recent contributions present Deep Neural Networks
(DNN) architectures used to control navigation based on a video
input. An example of such DNN is presented in [8], where the
model supports UAV navigation in urban environments. However,
the execution of sensing-processing-control pipelines supporting
the autonomous operations of Unmanned Aerial Vehicles (UAV)
faces technical challenges due to the inherent limitations of these
airborne platforms. Traditional UAV design principles, where the
whole pipeline is performed on-board an individual UAV may re-
sult in reduced functionalities and mission performance, a delayed
response to stimuli due to large capture-to-control time, and a
shortened mission time due to the additional energy consumption.
Moreover, the onboard execution of higher level functions, such as
online learning, and general state-of-the-art algorithms supporting
general mission objectives – e.g., object detection – is a technologi-
cal challenge to overcome.

Assistance from the infrastructure or other devices in the vicinity
can mitigate such limitations [2, 3, 9]. In line with the recent edge
and fog computing paradigms [1], UAVs could offload compute-
intense tasks to, more capable, interconnected devices, thus sav-
ing energy and possibly enhancing their ability to respond to
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Figure 2: Application considered in the experiments: an autonomous UAV captures images from an onboard camera. An object
detection algorithm is used to detect objects of interest. The bounding box is used to derive speed and direction and control
the rotors.

external stimuli. However, while executing the whole sensing-
analysis-control pipeline onboard results into a predictable capture-
to-output delay, offloading introduces a considerable degree of un-
certainty. In fact, as information is transferred over a wireless link
and processed at a remote device, the state of these two components
influences the total time from the acquisition of the information
to the availability of control at the UAV. Hardly predictable and
often unknown parameters such as channel gain, interference, net-
work load and server load all influence the statistics of total delay.
Even when all these parameters are fixed, complex protocol inter-
actions and environment features induce patterns that are difficult
to control or characterize.

Motivated by the development of Hydra, an architecture for
resilient collaborative computing within distributed airborne and
ground systems, this paper reports an empirical study on the per-
formance and characteristics of edge computing for this class of
applications. To perform the study, we developed amodular sensing-
analysis-control architecture supporting the offloading of general
computation tasks. The architecture allows the distribution of mod-
ules over wirelessly interconnected systems comprising airborne
and ground resources. A case-study centered on object tracking was
developed where the UAV’s navigation is based on the bounding
box outputted by the algorithm. Intuitively, the time between the
capture of a picture and the generation of the control (capture-to-
control time) determines the ability of the UAV to follow a target
object. The measurement study in this paper reports the spatio-
temporal characteristics of the capture-to-control time in a real-
world platform for two key communication technologies: Wi-Fi
and LTE. The latter is emulated using Software Defined Radios –
both at the UAV and edge server – and the srsLTE [4] software.

The rest of the paper is organized as follows. Section 2 describes
the application considered in this paper and makes some initial
considerations in the implications of edge or fog computing. In
Section 3, we present the experimental platform used to derive the
results discussed in Section 4. Section 5 makes some final remarks
on the experience reported in this paper.

2 APPLICATION AND PRELIMINARY
DISCUSSION

We make our discussion specific to a relatively simple, but repre-
sentative, case-study, where the task of the UAV is that of tracking
objects in a predetermined class e.g., pedestrians or vehicles. Fig-
ure 2 depicts the schematics of the application. The UAV acquires
images at a constant rate. Each image is analyzed using an object
detection algorithm to detect classes of objects of interest. The
bounding box of a selected object detected by the algorithm is used
to determine the motion of the UAV. Specifically, a control function
computes the vector from the center of the image to the center of
the corresponding bounding box. The vector is, then, converted
into speed and direction commands.

We define the time from image capture to the emission of the
control capture-to-control delay. Intuitively, minimizing the capture-
to-output delay is critical to achieve a fast response of the UAV to
movements of the target object and an effective tracking. The main
bottleneck of the sensing-analysis-control pipeline is the analysis
algorithm. State of the art object detection is realized via sophisti-
cate algorithms, such as Deep Neural Networks (DNN). An example
is RetinaNet [7], which features Pyramid Network backbone on top
of a feedforward ResNet architecture (50 to 100 layers depending
on the version). These DNNs provide a high accuracy both in terms
of classification and precision of the bounding box, thus enabling
accurate navigation in the considered application.

However, the execution of such complex algorithms on con-
strained embedded devices may be simply unfeasible, or result into
excessive capture-to-control delay and energy consumption. Sim-
plified versions of these DNNs reduce computational complexity
at the price of a degraded performance. Yolo [11] is an example
of this kind of approach, a highly optimized software which de-
grades the accuracy of the output, especially in terms of bounding
box precision. Simplified DNNs specifically tailored to mobile de-
vices are also available [5, 6] corresponding to various points in the
complexity-accuracy tradeoff.

Offloading these compute-intense tasks of the pipeline to inter-
connected compute-capable devices, such as edge servers, can sig-
nificantly reduce the capture-to-control delay and decrease energy
intake. However, offloading requires the wireless transfer of the
signal/s produced by the onboard sensors and the output remotely
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produced. In the considered application scenario, the captured im-
ages from the onboard sensor are transferred at regular intervals
to the server, which executes the DNN (analysis) and computes the
control commands (control) that are then sent to the UAV.

As mentioned earlier, offloading introduces a possibly consider-
able degree of uncertainty:

• Wireless link: The continuous flow of images and control
messages is transported over a wireless link, whose short-
term capacity is influenced by time-varying factors such
as channel gain, interference, network load, and fine-grain
protocol interactions.

• Server: The time frame of execution of the task at the server
is a function of time-varying load, as well as of resource
allocation strategies.

The objective of this paper is that of analyzing the capture-to-
control delay patterns over different communication technologies
in a real-world platform.

3 EXPERIMENTAL PLATFORM
The experimental platform we developed realizes the application
described in the previous section over a distributed wirelessly in-
terconnected system. In the following, we describe the hardware
and software components.

3.1 Hydra and Hardware
We briefly describe the overall system our development effort is
aiming at to provide some context to this study. HyDRA – Re-
silient computing for Heterogeneous Autonomous Devices – is a
middleware architecture enabling the dynamic migration within
interconnected systems of modules composing pipelines for auton-
omy. The objective is to maintain a capture-to-control delay as low
as possible, while minimizing the amount of channel and computa-
tion resources used. The system is hierarchical and composed of
three layers: UAV-users, UAV-servers and ground servers.

We aim to explore various processing and communication op-
tions. Therefore, we equip the UAVs and ground servers with an
embedded device and a Software Defined Radio (SDR).

• UAV-User: A lightweight 3DR Solo UAV is equipped with
a gimbal and a GoPro camera. A 3D printed structure is
added to support an Up Board board, an Ettus Research USRP
B200mini and a Lithium High Voltage (11.4V/5.2 Ah) battery.
The default on-board computer (IMX6) on the 3DR solo is
only used to expose the Telemetry2 ports of the Pixhawk
flight controller to be connected to UPboard via USB serial.
The UP Board runs Ubuntu 16.04 OS to support all the on-
board computing software and also the software suite for
radio communications.

• UAV-Server: Large UAV International X6SUAVs are equipped
with a Jetson NVIDIA TX2 and an Ettus Research USRP B210.
The Jetson TX2 board has an NVIDIA Pascal-family GPU for
high performance computation, and runs Ubuntu 16.04 with
Kernel 4.4.

• Ground Station - Server: Ground edge servers are realized
using a laptop with Intel Core i7-7700HQ CPU (8 cores, 2.8
GHz) and 16 GB RAM connected to the access point or base
station.

All the devices are also equipped with a Wi-Fi dongle to enable
Wi-Fi communication capabilities.

3.2 Software
Fig. 3 shows the modular pipeline developed to allow the distri-
bution of analysis and control functions over the interconnected
system. Each module encapsulates a function, and includes an
input and an output queue. The modules logically abstract the
functions composing the pipeline, isolating them from adjacent
operations. Modules are atomic and can be interchanged easily,
and even dynamically. The modularization is necessary to achieve
multi-threaded parallelization in-device. Naturally, modules that
interact with the environment do not have “data” input (e.g. Sensor)
or output (e.g., Actuation).

The input and output queues provide flexibility to the flow of
information throughout the pipeline. We remark that in our study
some input and output queues and interconnected through sockets
latched to the Wi-Fi or LTE stack. Queueing is critically necessary
due to uncertainty in the time needed to traverse modules. For
instance, as the capacity of the link connecting the UAV-user to a
server changes, the timing of image forwarding may increase, so
that queueing is necessary. Herein, we set the queue size to 1, and
implement an aggressive preemptive policy at all modules, where
new captured images, analysis output and control take the place
of older one stored in the queue. This allows the minimization of
the accumulation delay. Logging for the evaluation of performance
metrics, such as the capture-to-control delay, is performed at the
input and output queues. Specifically, the capture-to-control delay
is the time interval delimited by the insertion of the data point
into the Sensor’s output queue and the insertion of the control
message into the respective output queue. The complete HyDRA
architecture includes dynamic routing within multiple pipelines
and a logic controlling the routing paths based on system logs.

For LTE communications, the user UAVs are configured as User
Equipment (UE) using srsLTE version 18.03 compliant with 3GPP
release 8. We use srsLTE version 18.12 configured as eNodeB and
core network (EPC) at the airborne and ground servers.

4 EXPERIMENTAL RESULTS
4.1 Setup
Figure 4 shows the setup of the UAVwith the hardware components
used for communication, computation and control. The experiments
were conducted in a large outdoor environment. The UAV and
ground server were connected using Wi-Fi (through Wi-Fi dongles)
or LTE (through programmable radios implementing srsLTE).

The movements of the UAV are fully autonomous based on a
preprogrammed mission on the flight controller. In order to charac-
terize the application over capture-to-control delay over space and
time, we disabled the function allowing the UAV to follow an object
and, instead, programmed a predefined flight plan. Specifically, the
UAV moves autonomously in steps to reach a specific distance and
hovers for 1 minute at each distance.

We focus on a topology with a single UAV and ground server.
The ground server runs on the same laptop that is configured as
AP or base station, thus ensuring minimal delay between reception
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Figure 3: Modular architecture developed for the experiments. The modules wrap functions adding input/output functions
for routing and filtering.

and processing. The communication parameters used for WiFi and
LTE experiments are reported in the table 1.

In order to measure the impact of external traffic on the delay
patterns, we set a second stationary user in the vicinity of the
access point (AP) or the base station and generate periodic large
data frames at different frequencies – corresponding to different
data rates – over TCP. We remark that the area was not isolated
from external communications and interference.

In the experiments, the sensor module acquires images (480×640
RGB pixels, compressed using JPEG to 26 KB). The analysis module
executes a lightweight DNN for object detection (SSD-lite mobilenet
v2 2018-09). Herein, we limit our study to pipelines originating from
UAV-users and positioning analysis at the ground station-servers.
The execution of the DNN model takes approximately 1 and 0.07 s
on the Up Board and ground server, respectively.

4.2 Results
Fig. 5 shows the temporal trace of the capture-to-control delay
(blue line) using IEEE 802.11n obtained as the UAV flies away from
the ground station. The orange line reports the distance from the
ground station based on the received telemetry. It can be seen
that when the distance is sufficiently small, the high throughput
of the IEEE 802.11n grants a total delay of approximately 0.1 s,
composed of approximately 0.07 s to execute object detection at the
ground station and 0.03 s to transport the image and the control
over wireless. As the distance increases both the average delay and
its variance grow until disconnection occurs at about 35 m.

Fig. 12 shows the same trace – this time with the UAV approach-
ing the ground station – when another node is active in the system

Figure 4: The UAV setup used for outdoor experiments.

Parameters Value
WiFi Standards IEEE 802.11b and 802.11n
WiFi Bandwidth 20 MHz
WiFi Band Channel 1 (2.412 GHz)
LTE Downlink EARFCN 3400
LTE Bandwidth 10 MHz
LTE Antenna Model SISO
LTE UE Tx antenna gain 110 dB
LTE eNodeB Rx antenna gain 40 dB
LTE RLC Mode Acknowledgement (RLC AM)
LTE MAC Scheduler Round Robin
TCP Congestion Control Cubic
Table 1: Experiment Parameters used for WiFi and LTE

producing traffic at 15 Mbps. We observe a generally increased de-
lay floor (approximately 0.15 s average) and a much higher overall
delay variance. High peaks of delay may correspond to TCP time-
outs due to the interference load. Interestingly, sharp spikes are also
present in correspondence with UAV acceleration from a stationary
position. Similar, but less prominent, spikes could be noted in the
previously shown trace, with a possibly faster “absorption” from
the system due to the typically smaller delay. Although we do not
have an explanation supported by conclusive evidence, the spikes
could be generated by antenna misalignment when the UAV tilts to
accelerate, or temporary large channel estimation error.

Fig. 7 shows the Cumulative Density Function (CDF) of the delay
for different traffic rates of the external node. The CDF is calculated
by taking the average over each second, and then computing the
CDF over the obtained delay. This to have a more fair weight in the
CDF. As expected, a general degradation of the delay as contention
increases is present. Interestingly, the contention scenarios in the
0−10 Mbps range share a step-like shape of the CDF, where the key
difference is the probability of high-delay spikes. Higher volumes
of the contending data stream reduce the steepness of the step,
introducing mid-range delays.

Fig. 8 compares the CDF achieved when using IEEE 801.11n and
IEEE 801.11b. The lower maximum throughput offered by the latter
is apparent. With no external traffic, the IEEE 801.11b suffers a
small degradation in the minimum delay compared to IEEE 801.11n,
due to the fact that the communication time is a small part of the
total delay. However, 1 Mbps of external traffic are sufficient to
dramatically increase the delay, shifting a substantial portion of
delays to the 1 − 2s range.

We show in Fig. 9, which depics mean and variance of capture-to-
control delay for IEEE 802.11n as a function of the external traffic,
that not only the mean of the delay increases, but also its variance.
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Figure 5: Capture-to-control delay overWiFi 802.11n. In this
flight, the UAV-User moves away from the ground base sta-
tion in free space.
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Figure 6: Capture-to-control delay overWiFi 802.11n. In this
flight, the UAV-User moves toward the ground base station
in free space. An external node produces traffic at 15Mbps.
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Figure 7: Cumulative density function of the capture-to-
control delay for different volumes of external traffic.

Fig. 10 shows the average number of frames per second pro-
cessed by the system. The markers correspond to different traffic
rates and IEEE 802.11 versions (n in red and b in green). We remark
that while the emission rate of frames from the sensor is fixed, the
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Figure 8: Cumulative density function of the capture-to-
control delay for different volumes of external traffic and
IEEE 801.11 versions .
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Figure 9: Average and standard deviation of capture to con-
trol delay, taken over a sequence of flying experiments, each
with a constant external traffic rate. Distance from Access
Point between 0-35 m.

preemptive queueing policy may eliminate frames from any queue,
thus subsampling the generated sequence as it is transformed. The
high sensitivity of IEEE 802.11b to external traffic is apparent, mak-
ing this protocol unsuitable to establish stable pipelines. Due to its
high throughput, the IEEE 802.11n provides stable 8−10 frames per
second until degradation occurs at around 20 Mbps. We observe
that the on-board processing pipeline would sustain about 1 frame
per second.

Fig. 11 shows the mean and variance of delay achieved when
using LTE over SDRs as a function of the distance. The blue and
red lines correspond to stationary measurements on the ground
and actual flight. Interestingly, it can be observed a substantial
difference between ground measurements and flight. This may
be caused by several factors including antenna emission patterns,
UAVmotion, and a larger interference from active LTE base stations
perceived at a higher altitude. We observe that the SDRs have power
constraints which degrade the system performance compared to
actual cellular systems, this limits the range to tens of meters – vs
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Figure 11: Mean and standard deviation of capture-to-
control delay using Software Defined Radios emulating an
LTE network. The blue and red lines correspond to station-
ary measurements on the ground and actual flight.

hundreds of meters in commercial LTE systems. The trace reported
in Fig. 12 shows a rapidly increasing number of delay spikes as
the distance between the UAV and the ground server increases.
We note that the delay floor is at about 0.15 s, and disconnection
occurs at 20 m. We remark that experiments are not performed
in an isolated environment, and some high-delay sections may be
caused by other active LTE emitters. Future investigations will use
other radios to measure the incoming energy in the used frequency
band and correlate it with delay.

4.3 Discussion
The results showed in this section emphasized one critical aspect of
offloading in this class of applications: wireless links from airborne
devices are extremely unstable. Sensitivity to distance, physical
orientation and exogeneous environmental conditions – such as
other active data streams – was observed in the experiments. In
Wi-Fi-based communications, interactions betweenMediumAccess
Control (MAC) and transport layer protocols of different devices
increase delay and delay variance at the small and large scale of
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Figure 12: Capture to control time of the distributed
pipeline, over LTE with Software Defined Radios.

spatio-temporal trajectories. LTE offers a more stable multiplexing
strategy. However, at least in the SDR-based setup used in our
testbed, the delay patterns show a high variance, possibly motivated
by physical layer factors such as uncontrolled inter-cell interference,
antenna alignment and limited power.

Clearly, relying on one communication-computation loop to per-
form critical tasks can greatly harm the overall ability to reliably
control the UAV. This further motivates our effort to develop a
system capable of moving sensing-processing-control pipelines dy-
namically across resources in response to perceived changes in the
environment. Importantly, the step-like behavior of most delay’s
CDFs corresponds to clustered delay regions, and temporal traces
make apparent that higher delays often appear in the form of short-
term spikes. The general intuition, then, is that most coarse-grain
environmental parameters are poor predictors of instantaneous
delays, and that building strategies capable of overcoming the tem-
poral variability of wireless channels in this class of systems is a
relevant technical challenge.

5 CONCLUSIONS
Motivated by the development of Hydra, an architecture for re-
silient collaborative processing over hierarchical UAV systems, we
presented a measurement study on the performance achieved mi-
grating computing tasks from an autonomous UAV to an inter-
connected server. We specifically focused on capture-to-control
delay in a class of applications focused on object detection-based
navigation. Our setup includes various communication options:
IEEE 801.11b and n and LTE emulated on SDRs using the srsLTE
open-source software. The collected measurements emphasize the
instability of the links during flight, and the need for a further layer
of intelligence to dynamically select the best available option.
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