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Abstract—The combination of computation and communica-
tion constraints within the Internet of Things systems require
intelligent allocation of decision making and learning processes
across a network of sensing and computing devices. In this paper,
we present the problem of observation selection for reactive on-
sensor decision-making, where the most accurate decision rule
cannot be used unaided neither at the sensor (due to limited
computing power), nor in the cloud (due to high communication
latency). To make time-sensitive adaptation possible in these
conditions, we consider learning a decision rule that is computa-
tionally viable for on-sensor use and is continuously adjusted by
the cloud using the optimal decision rule for supervision. We pose
a constrained stochastic optimization problem for online learning
of such instrumental on-sensor classifier, propose an algorithm
for updating its parameters, and establish the conditions under
which convergence to a local extremum is guaranteed, at least
for samples of independent observations.

I. INTRODUCTION

The rise of the Internet of Things (IoT) and Machine-to-
Machine (M2M) communications [1] has been the leading
force for the introduction of distributed forms of intelligence in
interconnected devices. Rather than function just as collectors
of raw signals, sensing devices have been tasked with an
increasing amount of data processing. The advances in ma-
chine learning techniques of the recent years further boosted
this trend, making even simple devices capable of extracting
high-level information from both exogenous and endogenous
signals. Exemplar applications exist in a multitude of techno-
logical areas, including home automation systems [2], video
surveillance systems [3], smart cities infrastructure [4], and
transportation systems [5].

The main impediment in such systems originates from the
mobile nature of most IoT devices, limiting their computation
power, energy availability, and data storage capacity. In exist-
ing research, two main approaches are generally proposed to
address this issue: (i) reducing the complexity of models and
processing algorithms (e.g., classifiers or predictors) used at
the sensors [6], and (ii) offloading computations to remote
interconnected devices, such as cloud or edge servers [7],
[8]. The former approach preserves the locality of signal
processing, but typically results either in a decreased generality
of the models, which are trained for specific contexts or
under specific assumptions, or in a degraded accuracy of
the outcome. The latter approach preserves generality and
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accuracy of signal processing, but inevitably introduces a
delay, which often is stochastic in nature due to the inherent
variability of the state of the links connecting the mobile
devices to the data centers. The edge computing paradigm
mitigates this issue by placing compute-capable devices at the
network edge connected to the mobile devices through a one-
hop wireless link. However, the quality of wireless links can
suffer rapid and considerable fluctuations due to variables that
are not in full control of the system, such as interference,
distance between the transmitter and the receiver, existence of
a line-of-sight propagation path, etc.

The consequences of these two approaches are clear: we
either accept a reduced on-device analysis capability (via
local computing), or accept longer and/or uncertain capture-to-
classification outcome delays (via cloud or edge computing).
Recent contributions [9] propose to split the workload between
the sensors and the cloud to reduce the bandwidth usage
necessary to involve the cloud in the classification process.
However, this class of approaches still incurs the round-trip
delay induced by transferring data from a sensor to the cloud
server and the outcome back to the sensor on the reverse path.

The approach and results presented in this paper attempt to
bridge these two extremes in order to achieve local analysis
at the mobile devices that attains both high accuracy and low
complexity. The core idea is to establish an advanced form
of collaboration between the local low-complexity decision
rule and the classification function of higher complexity at
the cloud, where the latter is used to dynamically adjust
the former based on observation history. Importantly, our
framework realizes a continuous training process, where pa-
rameters are repeatedly tuned to match recent observations
whose distribution may be influenced by the local time-varying
context. Thus, the main question at the center of our work is:

Given a structure of an auxiliary low-complexity decision
rule to be run at a sensor, how can the system train
and update it under the supervision of a high-complexity
reference decision process run at the cloud?

In the rest of the paper, we construct an algorithm for
the cloud-assisted adaptation of the parameters governing the
local classifier based on a history of observations. Using a
stochastic Lyapunov function method and martingale theory,
we prove that the proposed stochastic optimization procedure
converges and allows for on-the-fly tuning of the local classi-
fier’s parameters. Although we envision promising application
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opportunities for the proposed framework in the areas of
mobile health care and autonomous systems, herein, we focus
on providing the technical foundations of the approach in
general, leaving specific use-cases to future work.

II. CLOUD-ASSISTED DECISION-MAKING

Consider a sensor continuously acquiring a stream of ob-
servations z; € Z at some discretized schedule of time slots
t=1,2,.... Each observation z; is to be classified locally
to enable fast reaction of the sensor to the characteristics of
its signal. For instance, consider an autonomous unmanned
aerial vehicle (UAV) using an onboard classifier to detect and
classify objects to make navigation decisions. The maximum
capture-to-decision time needed to achieve highly responsive
flight dynamics may constrain the complexity of the local
classifier, whereas it is desirable to have the UAV be able
to function in any context and environment. The temporal
constraint on decision, together with the need for adaptability,
exclude the use of a simplified classifier or offloading to the
cloud. Similarly, in mobile healthcare applications, the sensor
may use the outcome of local classification to promptly tune
signal acquisition parameters, e.g., by increasing the sampling
rate, eschewing the need to wait for a response from the cloud.

Below, we concentrate on the binary classification problem
as the one governing decisions in many monitoring tasks,
where an observation z; is assigned to one of the two classes:
positives (z; € Z1) and negatives (z; € Zy). One such classifier
of a sufficiently high quality is assumed to be available to the
system at the cloud processor in the form of a decision rule
§: Z+—{0,1}, where §(z;) =1 implies z; € Z;. Unfortunately,
high accuracy typically implies high complexity, so this ref-
erence decision rule § cannot be implemented at the sensor
due to the limited computing power, while offloading it to the
cloud may incur too long of a delay due to the need to transport
the observation to the cloud and the outcome to the sensor.
Therefore, the sensor is in the need of a simplified auxiliary
decision rule §,: X — {0, 1} that it can use at every time slot ¢
to approximate the reference decision d(z;) with &, (z;), based
on the feature vector z; € X of the observation z; € Z. In order
to be practical, the function St has to be chosen from a class
of limited-complexity functions that can be computed by the
sensor for any observation in the span of a single time slot.

With the introduction of the auxiliary decision rule, the
sensor, then, faces the problem of learning the function St
that produces decisions to be on average as close as possible
to the decisions output by the reference decision rule § for
the same observations. Due to the difference in computational
complexity between the two decision functions, in general, we
have to accept that §; will always be a lossy representation
of §. Since this is a supervised learning problem, in order to
train St for its use at the sensor, the system has to have the
values of d(z;) available as a supervisory input for training.

We pose the problem of training an auxiliary decision rule
as an online learning problem, for the following reasons.
(1) The auxiliary rule &, commonly, cannot be pre-trained,
as it would implicate a period of low-quality classification
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Figure 1. Principal organization of the system implementing cloud-assisted
observation selection for on-sensor decision-making. The gear symbols in the
Sensor and Cloud Server blocks depict the post-processing induced by an
observation being attributed to the class of positives by the auxiliary decision
rule d¢, and the processing required from the cloud to update it, respectively.

output at the sensor for a significant period at the start of its
work. (ii) Although the same reference decision rule ¢ may
be used for supervising each sensor, different sensors may
have different auxiliary decision rules that are adapted to the
distribution of the data they specifically see. (iii) The auxiliary
decision rule &, may be able to adapt to a temporal drift of the
observational distribution seen by the sensor, if the change rate
is lower than the rate of convergence of the learning algorithm.

Because of the memory and computation constraints of the
sensor node, we will assume that it is undesirable for the sen-
sor to run the learning algorithm. Therefore, the information
necessary for each successive update of the sensor’s decision
rule, from & to 5t+1, either will be used right away at the
cloud, which will be already computing §(z¢+1), or will be
gathered at the edge, which will do the update instead. In any
case, afterwards, the newly updated decision rule 5t+1 will be
transmitted back to the sensor for deployment. Schematically,
the sensor-cloud information exchange is shown in Figure 1.

To make the amount of data necessary for these updates con-
tained within the available bandwidth, the class of functions
considered for the auxiliary decision rule should be elided of
the functions that cannot be parameterized thriftily. However,
we assume that the bandwidth available for the sensor is
sufficient for reliably sending all of its observations to the
cloud. Importantly, variations in the available bandwidth, for
instance due to network congestion, will only affect the rate of
adaptation of the local classifier, without impairing the ability
of the sensor to make timely decisions.

III. DECISION-RULE LEARNING PROBLEM

According to the reference decision rule at the cloud, the
abstract set of all possible observations Z is partitioned into
subsets Z1 C Z and Zp = Z\ Z;. Locally, the sensor operates
by its own approximation of that partition within some feature
space X CRY, where the mapping x; = x(z;) from observa-
tions z; € Z to feature vectors x; € X is assumed to be fixed
by some deterministic feature-extraction procedure x.

The auxiliary decision rule 0;(z) is to be found in a
parametric form of a separating surface {x € X : f(z,0) = u}
deterministically dividing the two classes of observations in X:

x e )? 1
f(z,0) 2 p, (M)
z € Xo

g(x) :

vlhere, ideaﬂy, the boundaries describable by f allow for
XoNX;=X1NXg=9. In general, this goal is unfeasible,
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as it requires both (i) the features to be chosen so that the two
classes are fundamentally separable in X, i.e., XoN X1 =o;
and (ii) the sensor’s computational constraints to not rule out
functions f sufficiently complex to separate X, and X;.

Hence, it is only natural to fit the parameters 7 = vec[d, ]
of the decision rule (1) to minimize a loss defined via the
corresponding error probabilities, instead. From here on, we
focus on the following general risk function:

V(1) 2 B[le(z,7)ug — ], )
Is(z,7) 2 Io(2) 1) (uo) + 11 (2) I (ug), 3)

where ug 2 f(x,0), IV (w) 2 1[u> p), IOw) 21— I (w),
and I;(z)=1[z€ Z;] for i€{0,1}. The indicator Ig(z,7)
signals an event of misclassification, i.e., the mismatch be-
tween the supervisory decision I;(z) produced by ¢, and its
approximation 1, F(Ll)(uo) produced by 4. In other words, V (7) is
defined to be an average risk of classification error weighted
by the “distance” |up — p| to the separating surface whose
shape is given by the parameters § and threshold .

In addition to the loss function measuring misclassification,
we also consider a cost associated with positive classification,
which may be used, for instance, to limit the number of
positive samples a sensor can store in its memory bank,
or constrain the load imposed by local post-processing of
selected observations before they are presented to the user.
For simplicity, we assume this cost to be the same regardless
of the observation, with its expectation being the probability

o(r) 2 B[ (up)]. &)

Thus, to find the optimal on-sensor decision rule (1), we
need to solve the problem of minimizing the expected risk (2)
under the constrained cost (4):

V(1) — min, st (1) < @., (5)

where ¢, stands for some threshold following from the
sensor’s constraints, which, we assume, are such that potential
positive classificability holds in the sense that ¢, does not
prevent the sensor from the possibility of correctly classifying
all true positive cases from Z; in principle, i.e.,

0. >m 2Pz € Z4). (6)

IV. DECISION-RULE UPDATE STRATEGY

To implement online learning of the on-sensor decision rule,
we propose the stochastic optimization procedure given in
Algorithm 1. The necessary conditions for which it converges
to a solution of the problem (5) are established in Theorem 1.

Algorithm 1. Given the current parameters s = vec|0, ]
after t time slots, obtain a new observation z;y1 and compute:

Tt+1 = H(Tt - %CA?(th, Tt))7 (7

with learning rate v, > 0, where, for 7 = vec|, ),
Glz,m) & vec[J(2,7)Vo f(x(2),0), —=J(2,7)],  (8)
J(z,7) £ ID(f(x(2),0) — Ih(2), ©)

and H(T) is a risk-preserving transformation encapsulating
the a priori knowledge on parameter localization, if it is
available, or the identity transform H(7) = T, otherwise.

Theorem 1. Given
1) a sample of i.i.d. observations {z:};
2) a continuously differentiable decision function f(x,0),
such that, for all feature vectors x, there exist constants
Cy(x) and Cyy(z), so that for any ', 6,

|f(2,0") = f(z,0")] < Cy(x)]|0”= 0|, (10)

Vo f(z,0") = Vo f(z,0)| < Cor(2)]|0”— 0", (11)

where E[(Cf(z))”] < Ct, and E[Cyy(z)] < Cyy, for
some k > 1 and constants Cy, and Cyy;

3) a feature-extraction function x(z), such that the c.d.f.
F.., of the random variable ug = f(x(2),0) satisfies

|Fu9(u”) *Fue(u/” < CF|UN*UI|7 (12)

for all 0, v, v, where Cr is some constant;

4) a mapping H(T) in the parameter space, such that
V(H(1)) < V(7) for all parameter vectors T;

5) a sequence of learning rates v, > 0, such that

Yim=00, Y9t <oo,  (13)
where \ = 1 Jor k from condition 2) above;
it holds that Algorithm 1
1) exhibits the criterion convergence, i.e.,
lim V() 2 V., for EV, < oc; (14)
t—o00

2) achieves the necessary condition of extremum for V(1)
on a subsequence, i.e.,

a.s.

lim inf [|G(7)[| = 0, (15)

where
G(T) £ vec []E[J(@T)ng(x,e)}, —E[J(z,T)H. (16)

Proof. To establish the convergence of the algorithm, in the
following we employ the stochastic Lyapunov function method
and martingale theory [10]-[12]. For the Lyapunov function
we use the criterion (2) itself.

1. Consider the variation in the value of the criterion V'
between two arbitrarily fixed parameter vectors 7 = vec|d, u]
and 7' = vec[t, /'] = 7 + o7 for some o1 = vec[dd, du).

By the definitions (2) and (9),

V(") = V(1) = E[J(z,7") (ug — p')] = V()
Ulr, ') +Wi(r, 1),

a7)
where, for 61(7,7') £ A(})(ue/) - Il(bl)(ue) and du £ ug — ug,

Ur,7) = E[5f(7, ") (ug — i')],
W(r, ') 2 ]E[J(z, 7)(0u — (Su)}?

(18)
(19)

2. The expectation (18) also can be trivially split into two
by separating the contributions of 7 and §7:

U(r,7') = 8(r, )+ T(r,7), (20)
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S(r, ') & ]E[5f(7, ") (ug — u)]7
T(r,7") 2 B[5I(1,7')(6u — du)].

2n
(22)

Due to the concordance between the indicator difference

SI(m,7") = 1[ug > p'] — Lug > p]

=1 — du <upg < p] —Mpu <up < p'—du), (23)

and the term (ug — ) in (21), it is obvious that S(7,7") < 0.
As to the other expectation (22), its magnitude can be

tied to the variation in the parameters J7. Indeed, thanks to

condition 2), Holder’s inequality, and equation (23),

T (r,7')| < E[|51(r, 7')|(|u] + C(x)]56])]
< (E[(|du] + Cp(@)18611)"])" (P(7,7")) =
where P(7,7') £ P[i/'— du <ug < p] + Plp < ug < p'— Sul.
3. For the first factor in (24), we have an immediate bound:
E[(lou] + Cr(2)601))"] < 167" E[(max{1, Cy(a)})"]
<|lor*E[1+ Cp(a)"] < 67" (1+ Cpr). (29

(24)

For the other factor, we can use the property (10) once again:

P(r,7") <P[p' = Cp(2)]|60]| < up < ]
+Plp<wug < p'+ Cr(2)]|66]]
< P[lug — p'| < max{|dul, Cr(x)]|60]1}]

< P[lug — p/| < max{1,Cy(x)}o7]]].  (26)

In order to bound the probability in (26), let us introduce
the stochastic event A £ {|ug — /| < [|07||}} with A from
condition 5). By condition 3), the property (11) implies that

P[A] = P [u'—[|07]* Sug < '+ [|67(*] < 2Cr 67| 27)
Further, by Chebyshev’s inequality,
Q(1,7') 2 P[lug — '] < max{1,Cy ()} |67 [ A]
< IP[max{l,Cf(x)} > |67t |A]

< 67| PV B + (Cp(2))” | A]. (28)

Then, from (27) and (28) combined, we have the probability
P(r,7") < P[A]+P[A]Q(r, ")
< 2Cp 67| + |67 VTE[L + (Cp(2))"]

< (2CF + Cf, + 1) |67 (29)

Substituting the bounds (25) and (29) into (24) and then

(20), while dropping the nonpositive S(7,7"), we finally get:
U(r, ) <T(r,7)

< (Cpo+ 1) (205 + Cpp + 1) [or] A5

< (2CF + Cyp + 1) |67 (30)

4. Due to the property (11) from condition 2), for all x there
must exist C¢(z), such that E[C}(z)] < Cf < oo and

F(@,0') < f(x,0) + (30, Vo f(x,0)) + Cf(2)[|66]*. (31

Using the expansion (31) for du in the definition (19), and
recalling (30), (17), and (16), we obtain that, for a constant C,

V(') = V(r) = (o7, G(r)) < U(r,7) + BICf ()] 6]
< U(r,7') + C}l186]% < Cmax{[|67]*, [|o7]%}. (32)

In other words, since U(7,7’) > 0, the function G(7) serves
the role of a quasi-gradient of the Lyapunov function V(7).

5. Now, consider the parameters 7; = vec|fy, 1], obtained
after using some ¢ steps of Algorithm 1, and their successors
Tip1 = vec|fy+1, pe+1]- Applying condition 4) to the adjusted
Frp1 27 — G (2411, 7¢); using the upper bound (32) on the
variation of V' after a single step of the algorithm; taking
the conditional expectation for a fixed history of observations
21.4 2 (21,22, ...,2); taking advantage of condition 1); and,
finally, noticing that, by its definition (8), the estimator G (z, 7)
is a stochastic expectation of the quasi-gradient G(7); we end
up with the following bound:

E[V(7i41) | 21:¢] S E[V(Fei1) | 21:4]

< V(7)) = |G| + Cy* < V(m) + Cy>. (33)

Hence, up to the O(y?*) term, the sequence of V(7;) forms
a supermartingale. It is known that such sequences converge,
so there must exist a random variable V, that affords (14).
Appropriate results can be derived as corollaries from Doob’s
theorems on martingales, and are extensively present in the
stochastic optimization literature (e.g., see [10], [11]).

Applying the expectation operator to both sides of the
inequality (33) and summing it up for ¢ =1 through some 7',
we end up with the following telescoping sum:

S (BIV (141)] = E[V(7)]) = E[V (r741)] — E[V ()]
<=L E[IGE)IP +CX . (34

Passing to the limit 7"— oo, and taking into account that,
by condition 5), the series of v?* is convergent, we must
conclude that, with probability one, Y ;= :||G(7)||> < oo.
At the same time, the series of ~; alone is divergent, hence
necessitating the remaining conclusion (15). O

V. DISCUSSION
A. Feature Space and Decision Function

Within the proposed learning framework, the substantial
knowledge about the nature of the on-sensor observation
classification problem is localized within three functions: the
feature-extraction function x(z), the decision function f(x, ),
and the parameter transformation # (7).

The choice of the features x(z) and separator f(z,#) is to
be guided by the trade-off between their computational com-
plexity (bounded from above by the sensor’s constraints) and
the resulting separability potential (bounded from below by the
minimal necessary decision quality). The mapping H(7) com-
plements the decision functions f(z, ) that either: (i) exhibit
some parametric redundancy that may slow down learning,
in which case H is to eliminate that redundancy; or (ii) are
meaningfully defined only on a (convex) subset D reflecting
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the a priori knowledge about the solution, in which case H
projects parameters onto D when they escape it. (In the latter
case, existence of 7 € int(D) with ||G(7)|| =0 is assumed.)
Specific recommendations for these selections are necessar-
ily application-dependent and are out of scope of this paper.
Here we simply assume that for the problem at hand one
can choose x(z), f(z, ), and H(7) that satisfy computational
constraints, allow for weak separability in the sense of

Plug > u Az € Zy) < Plug > u Nz € Zq], (35)

and meet conditions 2), 3), and 4) of Theorem 1.

A simple yet practical choice for the separating surface is a
hyperplane, with f(z,0) = (6, ) /0], H(r) = vec[0/0]], ],
and Algorithm 1 being specialized into Algorithm 2 below.

Algorithm 2. In the notation of Algorithm I,

01 = 0r — 1 (2e11, 7)) (L — 0072441, (36)
pir1 = i+ Yed (2041, 7)), (37)
Orr1 = i1 /[|0psal, (38)

where J(z,T) = f,S”(<97 x(2))) — I(2) for T = vec[f), ).

B. Decision Rule and Criterion Structure

From the very beginning, we fix the step-wise nature of
the decision rule (1). It might seem interesting to consider a
generalization of that rule with an explicit uncertainty zone
where the classification decisions are made randomly accord-
ing to some smooth accepting probability function 7, 7%?771’ such
that: (i) 755, (u) =0 for u < no; (i) I{), (u) =1 for u>n;
and (iii) fg(l)?,,l(u) < f,g},?m(u’) for all u < v’ However, it can
be shown that such an extension is entirely redundant.

Theorem 2. If the error probabilities for the decision rule (1)
are continuous functions of p, there exists € [1o,n1] so that

V(0,1) < V(0,m0,m) and o(0,1) < 3(0,m0,m), (39)

where V, ¢ denote the original criterion (2) and constrained
probability (4), while V, ¢ stand for their counterparts with
the indicators fﬁl)(ue) and I, ﬁo)(ue) changed to the probabil-
ities f,g(l)?m(ue) and f,(,‘j?m(ug) 21— fy(,é?m(ug), respectively.

The criterion (2) has an important structural property follow-
ing from the concordance of the two factors that are involved
in it. Indeed, it is easy to notice (as we do in (17)) that
ug—p > 0 when Ig(z,7) = 1, and up — o < 0 otherwise. This
composition of the expected risk becomes significant for the
key element in construction of Algorithm 1, as it allows for a
stochastic quasi-gradient (8) that can be efficiently computed
on iterations, making efficient online update of the on-sensor
decision rule possible.

C. Convergence Conditions and Implications

For a conventional choice of learning rate v, = Ct~% with
C, a > 0, from condition 5) in Theorem 1 it follows that, for
the requirements (13) to hold, the exponent a must satisfy

% = "2—? <a<1 for k£ from condition 2). If all moments of

the random variable C(x) defined in that condition 2) are
known to be finite, so that Kk =00, then A\=1, % <a<1, and
(13) turns into a rather standard combination of requirements
on the series of v, and 2.

The conclusion 2) of Theorem 1 guarantees convergence
to parameters satisfying the necessary part of the condition
of extremum, which is rather standard for multi-extremal
optimization problems. Since the last component of the quasi-
gradient G(7) has the magnitude of |p(7) — 1|, the limit (14)
implies that, at least on a subsequence, the probability ¢(7¢)
converges to the true positive probability (6), thus implicitly
satisfying the constraint imposed in problem (5), i.e.,

(40)

lim inf ¢(7) o< Dx-
t—oo

When further a priori knowledge is available for the specifics
of the application in question, the kind of convergence in (40)
may be strengthened. For instance, the following holds.

Theorem 3. In the context of Theorem 1, if condition 2) holds
Jor k=00, and H(T) is such that (i) |H(7)|]| <C< oo Vr,
and (ii) E||7,11—7¢|| < C17:||G(72)|| + C217 for some Cy, Cs,
where Ty 1 is defined by the iteration step (7) of Algorithm 1,
then o(14) converges to w1 in mean square and w.p. 1.

Unlike the implication (40) from Theorem 1, Theorem 3
guarantees that, w.p. 1, the sequence {7:} will indeed have
©(7¢) < @«, starting with some time slot ¢, as desired.
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