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Abstract—This paper considers a leader-following problem for
a group of heterogeneous linear time invariant (LTI) followers
that are interacting over a directed acyclic graph. Only a subset
of the followers has access to the state of the leader in specific
sampling times. The dynamics of the leader that generates its
sampled states is unknown to the followers. For interaction
topologies in which the leader is a global sink in the graph,
we propose a distributed algorithm that allows the followers
to arrive at the sampled state of the leader by the time the
next sample arrives. Our algorithm is a practical solution for a
leader-following problem when there is no information available
about the state of the leader except its instantaneous value at
the sampling times. Our algorithm also allows the followers to
track the sampled state of the leader with a locally chosen offset
that can be time-varying. When the followers are mobile agents
whose state or part of their state is their position vector, the
offset mechanism can be used to enable the followers to form a
transnational invariant formation about the sampled state of the
leader. We prove that the control input of the followers to take
them from one sampled state to the next one is minimum energy.
We also show in case of the homogeneous followers, after the
first sampling epoch the states and inputs of all the followers are
synchronized with each other. Numerical examples demonstrate
our results.

Index Terms—multi-agent systems, leader-following, synchroniza-
tion, minimum energy control, specified time consensus

I. INTRODUCTION

Synchronization of multi-agent systems (MASs) is an impor-
tant component of many cooperative control problems, such
as rendezvous [1], formation control [2], flocking control [3],
containment control [4] and sensor networks [5]. Synchro-
nization problems can be roughly categorized into leaderless
and leader-following. In the leaderless synchronization, which
is closely related to the consensus problem, the agents aim
to reach to a static or dynamic agreement on a common
value [6], [7], [8]. On the other hand, in the leader-following
synchronization, agents aim to make the agreement on the
states generated by a leader. In this paper, we focus on the
design of a distributed leader-following algorithm when the
only information available about the leader is its sampled state,
which is only available to a subset of followers.

Literature review: The leader-following algorithms for single
integrator and double integrator dynamics are presented in [9],
and for homogeneous LTI systems are proposed in [10] and
[11]. For systems constituted of heterogeneous LTI followers,
[12] and [13] propose the algorithms to synchronize with
a passive zero-input LTI leader. [14] and [15] develop the
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controls for the single and double integral system, respectively,
to track an active leader (active leader is a leader that has a
control input). But their works assume the leader’s control
input is available to all the followers. [16] and [17] propose a
leader-following algorithm respectively for homogeneous LTI
and heterogeneous nonlinear MASs in which the unknown
input of the leader is bounded and is not available to any
follower. But the control inputs in [16] and [17] have the
sliding mode structure and suffer from the well-known un-
desirable chattering behavior. We recall that from a practical
perspective, chattering is undesirable and leads to excessive
control energy expenditure [18]. [19] is the recent result for the
leader-following problem, which is based on the result of [16]
and develops a distributed observer to estimate the leader’s
state for each follower. Then, the output synchronization of
heterogeneous leader-follower linear systems is achieved by
optimal local tracking of the output of the observer. We note
that in both [16] and [19], the active leader is restricted
to be linear and have limited input. The work reviewed so
far are all converge to leader following in an asymptotic
manner, i.e., the settling time to reach an agreement is infinity.
For fast convergence, [20],[21] and [22] propose the finite-
time synchronization algorithms for single and double integral
MASs, where the upper bound of the settling time explicitly
depends on the initial state of the MAS. Therefore, to use
these algorithms, the centralized knowledge of the initial state
of the MAS is essential to estimate the settling time. [23]
and [24] propose the fixed-time synchronization algorithms,
where the settling time is bounded and independent of the
initial state of the MAS. However, for both these finite and
fixed-time algorithms, the settling time is upper bounded by
a conservative estimation. [25] introduces the specified-time
synchronization control for the leaderless MASs in which one
can determine the settling time exactly in advance. Specified-
time synchronization can be useful to the applications that
require precise acting time, such as target attack at a specified
time.

Statement of contributions: In this paper, we consider a leader-
following problem in which the only information available
about the leader is its instantaneous sampled state that is
known only to a subset of a group of heterogeneous LTI
followers at the sampling times. We make no assumptions
about the input of the leader or the structural form of its
dynamics. That is, the state of the leader is perceived by the
followers as an exogenous signal. The sampled states of the
leader can be the states of a physical system (e.g., in a pursuit-
evasion problem) or a set of desired reference states of a virtual
leader (e.g., in a waypoint tracking problem). Given the limited
information about the leader, we seek a practical solution that
enables the followers to arrive at the sampled state of the
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leader before the next sampling time. That is, we design a
distributed algorithm that steers a group of heterogeneous LTI
followers to be at the sampled states of the leader at finite
time just before the next sampled state is obtained. We note
that practical one step lagged tracking has also been used
in [26], [27], [28] for a set of dynamic average consensus
algorithms with asymptotic tracking behavior. Our solution
is inspired by the minimum energy controller design [29]
in the classical optimal control theory, and is proposed for
problems where the interaction topology of the followers plus
the leader is an acyclic digraph with the leader as the global
sink. Directed acyclic interaction topology can be interpreted
as the agents only obtaining information from those in front
of them (see, [30], [31] for algorithms designed over acyclic
graphs). Our algorithm also allows the followers to track
the sampled state of the leader with a locally chosen offset,
which can be time-varying. This offset, when the followers
are mobile agents and their whole state or part of it is the
position vector, can be used to enable the followers to form a
transnational invariant formation [32] about the sampled state
of the leader. For a special class of non-homogeneous LTI
MAS, we show that our results can be extended to solve a
leader-following problem where we want only an output of
the followers to follow the leader’s sampled state. Finally, we
show that if the followers are homogeneous, our algorithm not
only results in a leader following behavior, but also it makes
the states and inputs of the followers fully synchronized after
the first sampling epoch. We demonstrate our leader-following
results via three numerical examples. In the first example,
we show the application of our leader-following algorithm
in following a nonlinear mass-spring-damper leader under
a specific formation structure for a group of heterogeneous
linear mass-spring-damper systems. In the second example,
we demonstrate the use of our algorithm for reference state
tracking via a group of second order integrator followers with
bounded control. The result shows the synchronization of
the homogeneous followers is realized. Moreover, using the
intrinsic properties of our leader following algorithm, we show
that the arrival times at the reference states can be specified
in such a way that the inputs of the followers stay within the
saturation bounds. Our last example demonstrates an output-
tracking scenario for a group of aircraft.

Organization: The rest of this parer is organized as follows.
Section II gathers basic notation and graph-theoretic notions.
Section III gives our problem definition and objective state-
ment. Section IV proposes our distributed leader-following
algorithm. In Section V, three applications are demonstrated.
Section VI concludes the results of this paper. Appendix A
contains the proof of our main result, Theorem IV.1. Finally,
Appendix B presents an auxiliary result, which is invoke to
support the feasibility of the sampling time design in our
second numerical example.

II. NOTATIONS

Notation: We let R, Rs, R>¢, Z, and Z>( denote the set of
real, positive real, non-negative real, integer, and non-negative

integer numbers, respectively. The transpose of a matrix A €
R™™ js AT

Fig. 1. A leader-follower network. The interaction topology of the follower
agents, G, shown via the network with solid edges, is an acyclic digraph.
Agent 0 is the leader. The edges of G; is shown by the dashed arrow. Here,
the leader is the global sink of the G U G, therefore, its information reaches
all the agents in an explicit or implicit manner.

Graph theoretic notations and definitions: Here we review our
graph related notations and relevant definitions and concepts
from graph theory following [33]. A digraph, is a triplet G =
(V,E,A), where V = {1,...,N} is the node set and £ C
V x Vs the edge set, and A = [a;;] € RVN*¥ is the adjacency
matrix of the graph defined according to a;; = 1 if (i,j) € €
and a;; = 0, otherwise. An edge (¢, 7) from i to j means that
agent j can send information to agent i. Here, i is called an in-
neighbor of j and j is called an out-neighbor of i. A directed
path is a sequence of nodes connected by edges. A directed
path that starts and ends at the same node and all other nodes
on the path are distinct is called a cycle. A digraph without
cycles is called directed acyclic graph. The out-degree of a
node i is d,; = X7 a;;. The out-degree matrix of a graph
is Doy = Diag(dl,;,d2,, -+ ,dX,). We denote the set of in-
neighbors of an agent i by N;, and the out-neighbors of agent
i by Ni. A node i € V is called a global sink of G if it
outdegree d’ . = 0 and for every node j € V there is at least
a path from j to .

III. PROBLEM DEFINITION

We consider a group of N heterogeneous MAS whose dynam-
ics is described by

x(t) = A'x'(t) + B u'(t), (1)
where x* € R" is the state vector and u’ € R™" is the control
vector. Throughout the paper we assume that the agents’
dynamics (1) is controllable, i.e., (A", BY) fori € {1,...,N}
is controllable. These agents (referred hereafter as followers)
aim to follow a dynamic signal x°(t) : R>p — R"™ with
possibly a locally chosen offset. This signal can be a dynamic
reference signal of a virtual leader or the state of an active
physical leader with (possibly) a nonlinear dynamics, e.g.,
x°(t) = fOx°(t),u’(t),t). The dynamical model and the
input u’ € R™’ of the leader is not known to the followers.
The interaction topology between the followers is described by
a acyclic digraph, denoted by G. Only a subset of followers in
G, denoted by N2 # {}, has access to x°(¢) at the sampling
times t;, € R, k € Zx>¢. Throughout the paper we assume that
Ty = tgy1 — tx € Ryo for any k € Z>o with {p = 0. We
let G; be the digraph consisted of the leader and N and the
directed edges connecting N to the leader. In what follows,
we assume that the leader is the global sink of G=GuUg,
so that its information reaches all the agents in an explicit
or implicit manner (see Fig. 1 for an example). We let N/ ;m
be the set of the out-neighbors of agent i € {0,1,---, N} in

’L'E{l,"',N},



graph G; we note the AV’ 2m = {}. Finally, we call the followers

homogeneous if (A*,B") = (A,B), fori € {1,...,N}.
Give that we only have a limited information about the leader
(only the sampled states of the leader x°(t},) is available), we
seek a practical solution that enables the followers to arrive at
the sampled state of the leader before the next sampling time.
Therefore, our objective in this paper is to design a distributed
control rule for the input vector u’(¢) of each follower i €
{1,---, N} such that

X (tpy1) = x0(tg) = FO(>ty), i€ {l,---,N}. (2

That is, the follower ¢ € {1,...,N} can steer itself to be
in F(t;) € R™ offset with respect to the state x°(t3) of
the leader in time before the next sampling time txi;. We
note that the set of offsets {F"(¢)}\,, when it is related to
the position offsets of the agents, defines the formation of the
followers around the leader. Here, the term formation refers
to transnational invariant formation [32, Section 6.1.1]. For
scenarios where the objective is to synchronize to the state
of the leader, F'°(t;) is set to zero for all i € {1,---,N}.
To form the offset, we assume that at each sampling time ¢y,
follower i € {1,---, N} knows F“ (t;) = F*(t;) — F/°(t;)
for j € N oy either the follower is given F™(¢;) with respect
to its out-neighbor j or constructs it locally after agent j sends
its F/°(t;,) to agent 7. We note that if the leader is a global
sink of G, given x(tx) and a set of F (t;), i € {1,..., N}
and j € N, ;m, we can show that the state offset F*(t;) for
follower ¢ with respect to the leader is unique.

IV. MAIN RESULT

In this section, we develop a novel distributed solution to solve
the leader-following problem stated in Section III. To present
this result, we recall that

t
G(t) = / A=) BBT A" (t=7) g7 3)
0

is the controllability Gramian of (A,B) for any finite time
t € Rso. Since (A, B) is controllable, G(¢) is full rank and
invertible at each time ¢ € R . We start by using a classical
optimal control result to make the following statement.

Lemma IV.1. Consider a leader-following with an offset
problem where each follower’s dynamics is given by (1)
with (A%, B") controllable. Suppose i is a follower in G that
has access to x"(t) of the leader at each sampling time ty,
k € Z>o, ie., i € NY. Also, FiO(tk) € R™ is the desired state
offset with respect to x°(#;). Starting at an initial condition
x'(ty) € R™ with u’(to) = 0, for any i € N2 let

. . T L ) i .

wi ()= B A 1= G (x0 (1)~ FO(t)— AT x (11,)),
4

for t € (tg,tr+1], where where Ty, = tr41 — tx, € Rso, and

T, v
¥ ANT—7) BB oA (Te=")gr. (5)

ci-em = [

Then, for every i € N we have x*(t,11) = x°(t,) — F™(t1,)
for all k& € Z>(. Moreover, at each time ¢ € [tk, trt1], the
control input u’(t) of i € N satisfies

_ bet1 .
u'(t) :argmin/ u'(7) "u’(r)dr, subjectto  (6a)
23
X'(t) = A'x'(t) + B'u'(t), (6b)

Xi(tk) = Xi(tk), Xi(thrl) = Xo(tk) — Fio(tk).
(6¢)

Proof. The proof follows from the classical finite time mini-
mum energy optimal control design [29, page 138]. O

Lemma IV.1 essentially states that any follower that samples
the leader, in the inter-sampling time interval can use the
classical minimum energy control to steer towards the latest
sampled state of the leader (with an offset if specified). Next,
we show that this idea can be extended to a distributed setting
in which only a subset of the followers have access to the
leader’s sampled state. To present our results we first introduce
some notations. We denote the adjacency matrix and out-
degree matrix of the followers’ interaction topology G, respec-

tively, by A = [a;;] and Doy = Diag(dl,;, d%, - ,d2,).
We let
. 1. 4 0
= 1€ )
0, otherwise,

be the indicator operator that defines the state of connectivity
of follower 7 to the leader. For i € {1,..., N}, we also define

Pi(r)= 1"
e o

—1

t i . i
G.(t) = /t AT BB oA T dr t e [t thra].
' (8b)

t:tka

te (t/m tk-l—l]u

where (8a)

We notice that G (t) = G'(t — t;) A" (1) | where G
is the controllability Gramian (3). Therefore at each finite time
t € (tg, tx11], by virtue of controllability of (A% BY), G (t)
is invertible. Moreover, note that using the classical control
results we can show that C; (t) can be computed numerically
from G, (t) = W' (t)®"(t) where W'(t) = G'(t — t;,) and
®'(t) = eA" (ts+170) for ¢ € [ty, t11] are obtained from

W' () = AWi(t) + WiH)AT + BB, Wi(ty) = Opxn,
. ) ) ) 3T
B'(t) = —A" ®(t), Bi(ty) = A T |

With the proper notations at hand, we present our distributed
solution to solve our leader-following problem of interest as
follows.

Theorem IV.1 (A leader-following algorithm for a group
of heterogeneous LTI followers). Consider a leader-following
problem where the followers’ dynamics are given by (1).
Suppose the leader’s time-varying state is x° : R>g — R™.
Let the network topology G = G U G; be an acyclic digraph
with leader, node 0, as the global sink. Suppose every follower
i € NQ has access to x"(t) at each sampling time tx, k € Z>o.



Let F°(t;) € R™ and F¥(t;) € R" be the desired state
offset (formation) with reference to x°(t;) and x/(tgi1),
respectively. Starting at an initial condition x*(¢y) € R™ with
u'(ty) =0, let for t € (tx, tyi1]

) ) 3T o
u'(t) =w (B €A 70 G x
(x0(ty) — FO(t),) — ATk xi(tk))) +

wp (B A 0 G
3" aiGIPI () (x () — A1) X (1)
j=1

. JT -
+ Bi' oA’ (trri—t) G 'ty
N

i (e Texd (1) — A Trx (1) — 9 (1)) ).
j=1
©)
where P (t) is given in (8a), w} = #;éut’ and w) = m
Then, the followings hold for ¢ € R>o and k € Z>¢:
(a) xl:(tkﬂ) = ;;O(tk) — Fio(tk), moreover, x/ (tpi1) —
Xz(tk+l) = Fl](tk) Zv.] € {15 < 7N} and ¢ 3& .]9
(b) the trajectory of every follower i € {1,..., N} is
x'(t) = A (t=tx) X' (tg,)+ (10)

GLt)GL (x(te) —FO(t) AT X (t4));

(c) the control input u’(t) of every agent i € {1,..., N} is
equal to (4). [l

The proof of Theorem IV.1 is given in the appendix. Several
observations and remarks are in order regarding the leader-
following algorithm of Theorem IV.1.

Remark IV.1 (Robustness to state perturbations). We observe
that the leader-following algorithm of Theorem IV.l1 has
robustness to state perturbations similar to the well-known
Model Predictive Control (MPC). Even though the controller
implemented in each epoch (¢, tx+1] is an open-loop control,
since every follower exerts its state at time ¢, as initial
condition to the controller, the algorithm can account for the
slight perturbations in the follower final state x’(t;11) at the
end of each epoch. (]

Remark IV.2 (Implementation of control law (9)). To imple-
ment (9), we note that the component of (9) that multiplies
w} is computed using the local variables of follower i and the
sampled state of the leader if w] is non-zero, i.e., i € V. The
component of (9) that multiplies w} is computed using the
local variables of follower ¢ and variables of its out-neighbors
if d , # 0. To compute this term, if the follower i knows
(A7, BY) of its out-neighbor j (which is the case e.g., when
the group is homogeneous), it can implement control (9) by
obtaining the state x’ of its out-neighbor j and computing P’
and e (*=%%) Jocally. Otherwise, each follower needs to obtain
20 (t) = G P (t)(x7 (t) — e =1) I (t;,)) and e’ Tr x7 (1)
of its each out-neighbor j. We note here that since the interval

(tk,tx+1] is open from the left and the dynamics of all the
followers is controllable, Pi(t) is well defined. However, for
t — t; from the right, P'(t) goes to infinity. But, since
(x7(t) — eA (=t xI(t),)) goes to zero as t — tf from
the right, the product P7(t)(x7(t) — eA"(*=t) xJ (1)) goes
to zero as t — t; from the right. The “high-gain-challenge”
observed here is often a common feature in any approach
that is geared towards regulation in prescribed finite time. For
example, finite-horizon optimal controls with a terminal con-
straint inevitably yield gains that go to infinity (see e.g., [34],
[35], [36]). In practice, the multiplication of very large and
very small values can create numerical problems. To address
the problem, one way proposed in the literature is equivalent to
employ a deadzone on P’ (#)(x7 (t) — e’ (=) x7(t,,)) at the
beginning of each time interval. Another approach is equiva-
lent to using a lager interval (¢ — 8, txt1], Where 6 € Ry is
small positive number, to compute P (t) such that P?(t) for
t € (tk, tr+1] is no longer goes unbounded when ¢ goes to t;’
from the right. These approaches of course result in somewhat
sacrifices in the accuracy at each arrival value at ;. at
the end of time interval (¢x,tr+1]. However, as discussed in
Remark 4.1, the errors will not accumulate. As interestingly
discussed in [34], the high-gain-challenge in the finite-time
control can be contrasted with non-smooth feedback in the
sliding mode control where the gain approaches infinity near
sliding surface x = 0 [37] (but the total control input is zero).
However, unlike the sliding mode control, where the practical
implementation of the high-gain leads to persistent chattering
on the sliding surface [37], in our case the concern arises only
at the start of each transition from one sampling time to the
other. The aforementioned practical measures to handle the
high-gain-challenge in our setting indeed can be compared to
the boundary layer approach [37] in the sliding mode control
to eliminate chattering. 0

Remark IV.3 (Time-varying MAS dynamics and network
topology). From the proof of Theorem IV.1, we can see that
the followers dynamics can be allowed to be time-varying
but piece-wise constant over each time interval (tg, tori]s
ie, A'(t) = A'(ty) and B'(t) = B'(ty), i € {1,...,N}
for ¢t € (tg,tr+1]. Similarly the network topology can be
allowed to be time-varying as long as between (¢, tx11] the
topology is fixed and satisfies the connectivity condition of
Theorem IV.1. O

Remark IV.4 (Minimum energy control in [tg,tx+1]). From
statement (c) of Theorem IV.1 it follows that at each time
interval [ty,tr+1], k¥ € Z>o, the control input u’ of each
follower ¢ € {1,...,N} is the minimum energy controller
that transfers the follower from its current state x*(t;) to their
desired state x*(ty11) = x°(tg) — Fi(tg). a

Remark IV.5 (Tracking a priori known desired states at exact
sampling time and design of arrival times). We note that if
the leader is virtual and the sampled states are some desired
states that are known a priori to N2 with desired arrival time
in Ry, the agents can arrive at the desired state of the leader
at the desired arrival time. Furthermore, for the homogeneous
followers, in cases that the arrival times is not specified one of
the followers in N (we refer to it as super node that knows



the initial state of all the other followers) can design the arrival
times to meet other optimality conditions or to avoid violating
constraints such as input saturation. In case of input saturation,
the fact that by virtue of statement (c) of Theorem IV.1 the
form of input vector of the followers are known to be (4) can
be instrumental to the super node in design of arrival times.
Our second demonstrative example in Section V offers the
details. O

Remark IV.6 (Extension of results to output tracking for
a special class of MAS). The design methodology of the
state offset (formation) algorithm of Theorem IV.1 can be
used in output tracking for a special class of MAS. Let the
network topology be as described in Theorem IV.1 and the
system dynamics of the followers be (1) where x’ € R and
u’ € R™ (the state and input dimensions of the followers are
not necessarily the same). Let the objective be that the output
yt = Cix' € R"”, n < n?, of each follower should satisfy

yi(teer) =x(ty) = F°(ty), i€{l,---,N}. (1)

If_ TCZBTZ is_ fqll _gow_Trank, we can use the control u’ =
B' C' (C'B'B' C" )7 !.

(vi—C'A'x%), i€ {1,---, N}, to write the output dynamics
of each follower ¢ as y° = v*. Then the method of Theo-
rem IV.1 can be used to design v? € R”, which can then be
used to obtain the appropriate u’ that will make the followers
meet (11). [l

Finally, we note that if the followers are homogeneous, the
followers can achieve full synchronization in the sense stated
in the result below.

Corollary IV.1 (Full synchronization for homogeneous fol-
lowers). Let the state offset be constant i.e., F'(t;) = F* €
R™ for all 4 € {1,---, N} or (equivalently F* (¢;,) = F" €
R™ for i,5 € {1,---,N}), and assume that the followers are
homogeneous. Then, it follows from statements (b) and (c)
of Theorem IV.1 that the followers’ trajectories and inputs
satisfy x7(t) = x*(t) + F¥ for t € [t;,00) and u’(t) = u/ ()
for t € (t1,00), for every 4,5 € {1,...,N}. One can easily
verify this point by shifting the state coordinate with F.
Moreover, if the agents are initially in the specified offset i.e.,
x7(0) = x*(0) + F¥ for all 4,5 € {1,..., N}, then these
qualities also hold for ¢ € [0, #1].

Assume that there exists K!' € R™'*n W! ¢ Rm'xm'’
for i € {1,---,N} and a controllable pair (A,B) known
to all followers, such that using u = Kixt + Wivi,
i € {1,---,N}, makes the followers dynamic homoge-
neous, ie., x* = Ax' + Bvi, A = A’ + B'K' and
B = B'W', i € {l1,---,N}. Then, it is also possible
to achieve full state synchronization by implementing (9) to
v? for heterogeneous followers. One sufficient condition for
the existence of K* and W', i € {1,---,N}, is that B’
of each follower ¢ € {1,---,N} is full row rank. Then,
K — BiT(BiBiT)—l(A _ Ai)’ Wi — BiT(BiBiT)—lB
and (A, B) can be any controllable pair. O

V. DEMONSTRATIVE EXAMPLES

In this section, we demonstrate our results via numerical
examples.

A. A nonlinear-leader following problem for a group of het-
erogeneous followers

Consider a group of 7 mass-spring-damper system (followers)

) 0 1 . .
j(l_|:_ki _bi]xl—k[i}uz, 26{17,7} (12)

Al B!

where x = [z¢ '] € R? is the state vector with 2/ € R
and i € R representing the displacement and velocity of the
mass, k%, b’ and m’ are spring constant, damping constant
and mass, respectively, and u’ € R is the input force.
The system’s parameters (k¢,b%,m?) for i € {1,...,7} are
(1,0.5,5), (2,0.5,15), (2.5,1.5,10), (3,0.8,8), (3.5,1.5,5),
(1.2,1.8,12), and (0.5, 1, 10), respectively. The leader denoted
by 0 is a nonlinear mass-spring-damper system
=1, #

5 (u® — 03 — KO0 — 0.629") | (13)

where the input u° is unknown to the followers and the
system parameters (k°,b°, m®) = (1.2,2,5). The interaction
topology of the systems is shown in Fig. 1. Followers 1, 2
and 3 obtain the state of the leader with a sampling rate
of 1 per second, ie., T, = 1 second, k € Z>o. The
followers start at x'(0) = [0 0]", x2(0) = [-0.5 0]T,
x3(0)=[-1 0]T,x*0)=[-15 0]T,x°0)=[-2 0],
x%(0) = [-2.5 0]7, x7(0) = [-3 0]" in a formation
with uniform distance 0.5(m) to the previous number of the
follower. The objective is for the followers to track the sampled
state of the leader while preserving the initial formation of the
systems at every sampling time ¢;. The follower ¢ only knows
the local formation, i.e., F/(0) for j € N,. For example,
follower 3 knows F*°(0) = [1 0]T, F*(0) =[1 0], and
F32(0)=1[0.5 0.

The result of implementing the algorithm of Theorem IV.1
is shown in Fig. 2. The ‘+’ represents the sampled leader’s
states and ‘X’ shows the followers track the sampled state
in the desired formation at the next sampled time. In this
example interestingly in the transition times similar to what is
expected from homogeneous followers the state and input of
all the followers are almost offset-synchronized. However, this
property is not necessarily true in general for heterogeneous
followers.

B. Reference state tracking for a group of second integrator
dynamics with bounded inputs

We consider a group of 6 followers with second order inte-
grator dynamics

x—[o O]X—I—L]u, -5 <u' <5, (14)
———
A B
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Fig. 2. The state and control trajectories of followers of the first numerical
example.

fori € {1,...,6}. The interaction topology of these followers
is shown in Fig. 3, where, agent O is the virtual leader that
is defined more precisely below. Starting at initial conditions
x'(0) = [0 0]T. x*(0) = [2 0]". x*(0) = [-2 0],
x*(0)=1[5 0]7,x*(0)=[10 0]T,x%0)=[-10 0]T, the
leader-following mission for this team is to traverse through

the sequence of desired states x¢ = {x{,x$ x$ x{} =

501 1501 204 10 hich for privacy reason are
ol 110110l 1ol ¢ ™ privacy

only known to follower 1. The objective is to meet the se-
quence of desired states without violating any of the followers’
control bounds. In this problem setting, follower 1 is the super
node that knows the initial starting state of all the followers
in the team and has computational power to compute the
arrival times as follows to meet the team’s objective. First,
we note that by virtue of statement (c) of Theorem IV.1 the
form of input vector of the followers are known to be (4).
Since follower 1 knows x‘(to) for i € {1,---,6}, follower 1
can evaluate u'(t) of all the followers. Starting with t3 = 0,
follower 1 computes the arrival time at desired state x§ from
the process below

d,i

. tl .
t$" = argmin / dr subjectto —5 < u'(t) <5, (15)
th
where u'(t) = BT e (7' -D Gy (xd — eAT0 xP(0)) with

Ty = t?’z — t{. Then, the arrival time so that the followers
input do not saturate over (£¢, t9"] is set to t¢ = max{t"'}. (II)
Due to Corollary IV.1, after first epoch, the followers inputs
are equal to each other. Then, the remaining arrival time 4,

I €{2,3,4} are computed from the optimization problem

d
tk+1

t4 41 =argmin / dr

d
tk

subject to — 5 < w(t) <5, (16)

where u(t) = B' oA (th—t) G,;l(x‘,’chl — ATk x4) with
Ty =t —t§, for k € {1,2,3}. The solution for this
set of sequential optimal control problem is ¢ = 6.7178,
td = 25.2061, t3 = 30.1592 and t§ = 40.4885 seconds. At
the end of process, follower 1 broadcasts the times to the

Fig. 3. An interaction topology with 6 followers. Agent 0 is the virtual leader.
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Fig. 4. The state and control trajectories of followers of the second numerical
example.

network. Broadcasting the reference states is not allowed due
to privacy reasons. We note that the desired arrival times can
be done offline by the system operator. To match the notation
in (9), at the implantation stage, we set x°(t;_1) = xi,
Th_1 = t% — t%_l, and t =t +Tx_1, k € {1,...,4},
where t$ = 0. Figures 4 shows that all the followers meet the
desired reference state of the virtual leader at the specified
arrival times without delay (the ‘4’ marks the reference
states). Figure 4 also shows the control history of the agents.
As seen, the control inputs respect the saturation bounds 5 or
—5. We can also observe that the followers’ states and inputs,
as predicted in Corollary IV.1, are all synchronized after the
first epoch. We should mention that by virtue of Lemma B.1 in
Appendix B, every Ty, k € {0, 1,2, 3}, designed as described
above is guaranteed to be a finite value.

C. Output tracking for a group of aircraft

We consider a group of 7 aircraft whose short-period dynamics
is given by (taken from [38, Example 10.1])

a] _ [-0.0115 1 a] , [-01601]
g| = |-0.0395 —2.9857| |¢q| T |-11.0437| J
~—~ ~ —— i

wt
x* A xt

where of, ¢ and §! are are respectively, angle of attack,
pitch rate and elevator angle of aircraft ¢ € {0,---,6}. The
interaction topology of these aircraft is shown in Fig. 3, where,
agent O is the leader. For this system CB = —11.0437,
therefore the condition of Remark IV.6 is satisfied and we can
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Fig. 5. The state and control trajectories of followers of the third numerical
example.

design a distributed algorithm to synchronize the pitch rate of
the follower aircraft {1,---,6} to the pitch rate of the leader
aircraft when only sampled pitch rate of the leader at every
0.1 seconds is available to the follower aircraft 1. Figure 5
demonstrates the results.

VI. CONCLUSION

In this paper, we have proposed a distributed leader-following
algorithm for heterogeneous multi-agent systems with an
active leader with unknown input. We have proved that our
distributed leader-following algorithm for the linear followers
steers the group to be at the sampled states of the leader at
the specified arrival times. We showed that the control input of
each follower agent between the sampling times is a minimum
energy control. We also showed that after the first sampling
epoch, the states of all the homogeneous follower agents are
synchronized with each other. We demonstrated our results
via leader-following problems of mass-spring-damper systems,
mobile agents with second order integrator dynamics, and a
group of aircraft. Future work will focus on extending our
results to output following problem.
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APPENDIX A

Proof of Theorem IV.1. For G U G; an acyclic digraph with 0 as the global sink, the agents can be sorted into a series of
hierarchical subsets. Without loss of generality, we sort the agents as follows. Recall that V = {1,--- N} is the set of
the followers. We let Vy = {0}. Next, we let V; to be the subset of agents in G that are connected to the leader but
they have no out-neighbor in G, ie., Vi = {i € V| 1 = 1 and N, = {}}. We sequentially define the lower subset as
Vi ={i € V\ U?;ll V| Né, € U?;&VJ—}, where k € {2, ,m}, such that U2, V; = V. In short, in this hierarchy, the agents

in the lower subset only receive information from the agents in the higher subsets.

We use mathematical induction over time intervals [to,tx+1], kK € Zsqo for our proof. That is we show that the theorem
statements hold for k£ = 0. Then assuming that the theorem statements hold for k, we show the validity of the statement over
k + 1. The proof of the case for k = 0 is very similar to the case of k 4+ 1 and omitted here of brevity. Now let the theorem
statements be valid over [tg, ;] and we show the validity of the statements at (¢x,tr+1] and as a result the validity of the
statement over [to, tx+1]. For our proof we use as the mathematical induction over V; where [ € {1,--- ,m}.

Consider first the dynamics of the followers in V. For [ = 1, the control (9) reduces to (4), since wli =1 and Zjvzl a;; = 0.
Hence statement (c) holds. The trajectory of x*(t) after substituting for the control input u® is

i . t i .
xi(t) = A 1) X (1) +/ AT Biul (1) dr
23
i . t i LT iv
_ oA (t—tk)xz(tk)+/ QA7) BB oA (

tr
C(xO(ts) — FO(t),) — A Tk X (t),))dr
— eAi(t_t") Xi(tk) —+ EZ(t)Ggl (Xo(tk) — Fio(tk) — e‘MT’c Xi(tk)).

tht1—T) Ggl

Then given (8b), the trajectories of agents 7 € V; is given by (10) for ¢ € R>(, confirming Statement (b). Moreover, when
t = tx41, the final state of the end of this period is

X (1) = A Tox (1) + G L (tr1)GE (x°(t) — FO(ty) — AT xi (1))
= Xo(tk) — Fio(tk).

Also, the relative state with respect to follower j € N is X7 (tra1) — X (tpn) = xO(t) — FO(t,) — xO(ty) + FO(ty,) =
F*(t},). Therefore, statement (a) holds.
Next, let statements (a), (b) and (c) be true for i € Vs, s € {1,---,1 — 1}. Then, for the follower i € V; we have:

. _ 6 o
x'(t) = oA (t=tn) x' (tx) —|—/ A (t=7) B'u'(7)dr

ty

i . 1t ¢ i o il P
_ eA (t—tx) Xl(tk) + FET / eA (t—7) BZBF eA (th+1—7) G’/Lc 1
vout tr
C(x0(tr) — FOty) — AT X (1)) dr
t )
+— 1 _ / QA (t=T) BiBiT eAlT(tk+1_T) G};l
’Zl + d;L)ut tr

N
2GR () (7) — N T (1) dr
j=1

t .
’Zl + d;L)ut tr

N
Y i (AT xI () T x (1) — FY () )dr
j=1

%

= eAi(t_t") Xi(tk) + G};(t)G};l (Xo(tk) — Fio(tk) — eAwLT’c Xi(tk))

1i+déut
1 AT i T AT (s ) (i~
+ﬁ/e -1 BB A (thi=7) GI
11+d0ut tr

N
D2y GIP () (7) = N T (1) dr
j=1
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N

1 i it J j i i ij
. GG ;au(e‘* Texd () — e e x (1) = FY (1)
Since j € Vs, where s < [, the trajectory x7(7) of agent j is assume to follow (10). Therefore, we can put (10) into x7 (7).

/(1) = M () S GROGE () — N T (1) ~ (1)
out

1 Lt o 0T X P j i

+ FEp / Al (t—T) BszTeA (tkt1—7) Gi IZ aijG‘]]cPJ (T)(eA (T—tk) yJ (te)
out j=1

+ GG () = F0 () — AT (1) — 71 5 (80) dr

N

! G it i ; i i

g CROG Y au (e T (b)) — e T x! (t) — FY (1))
out =1

i i 17 — _ ] ; _
— A (t—tx) xl(tk) 7(}2(15)(};C I(Xo(tk) _ FlO(tk) ATk Xz(tk))
I +dout
1 l [ b .
BT +dou GG Za” — F7O(ty) — e T xI (1))
1 . 1 ; . . . B
T T dr, oGk Zaw-(e‘“ T () — AT x (1) — B (1)
out =1
= AW i) ¢ GG (1) — FO(t) - AT (1)
1t +dout
d ek, i1 i i i
+ 2 GL(t)G, (xX°(tk) — FO(ty,) — e Tk x' (1))

17 +d0ut
_ eA (t—tr) (tk) + G ( )szl(xo(tk) — Flo(tk) _ eAlTk Xz(tk))

X (trp1) = AT xi () + G L (tr1) Gl (0 (8r) — FO(t) — oA X (1))
ZXO(tk) — Fio(tk).

Similarly, the relative state with respect to agent j € N %, is x7 (tj11) — %' (tpy1) = x°(t) — FO(tx) — x°(t) + FO(ty) =
F (tr). Thereby, statement (a) and (b) also hold for the case I = [. Then we show that control (9) is equivalent to (4) as

follows

. 1t T iT _ i1 i i i
u'(t) = g B e TG (O (f) — F(t) — e X (1))
out
1 0T AT (b a—t) vi ! al ipi ; AT (t—ty) o)
+ g B e TG Y ag G () (1) — e T (1)
out ;

N
. i T . i . i . .
+ BT A (ri) it Y i (e X () — TR X () — FY (1))
j=1

17 T il _ i1 p i i
= g g B et TG () — FO(t) — e T X (1)
out
1 T AT (b —t) vi! ZN T (AT (—tr) <]
+ 711+d [B [§] k41 Gk aiijP (t)(e k) x (tk)
out ;

— i—1 i i ; J(p— ;
+GLOG] (X (tk) = B0 (ty) — AT x (1)) — &A1) 53 (1))
N
. T . i . i . ..
+ B A GGl D ay (T xd (1) — e T x () — F (1))
j=1

17 T il _ i1 i i i
= g BT et TG (x(t) — B — e X ()]
out

dl T 3T _ -1 ; 5 ;
+ = _:udt B A (tey1—1) GL ((x°(ty) - F O(tk) _ ATy (t)]
out
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T

il — . i )
=B' & G (x0(t) — FO(ty) — A T xi (1),

Therefore, statement (c) holds. Since both the base case | = 1 and the inductive step have been proved, by mathematical
induction statement (a), (b) and (c) hold for all [ € {1,--- ,m}. O

APPENDIX B
The result below ensures the feasibility of the sampling time design of the second numerical example of Section V.

Lemma B.1. Consider a second order integrator system initialized at x(tg) = x(tp) € R? at time ¢ty € R>. This system
implements the minimum energy controller

u(t) = BTeAT(tk+17t) G(Tk)il(x(tk_;,_l)— AT X(tk)), te (tk, tk-‘rl]u (B.17)

and u(to) = 0 to traverse sequentially through a set of m + 1 points {x(¢x)}7, C R?, where ¢, € R is the arrival time at
point X (tx), Tk = tx+1 — tx € R0, A and B are given in (14), and G is defined in (3). For this system, there always exists
a set of finite arrival times {tx}{* such that |u(t)| < |umaqz| for any ¢ € [to, ¢ ], Where Umq,y € R>o is the known bound on
the control input.

Proof. To establish the proof, similar to the proof of Theorem IV.1, we relay on the mathematical induction over time intervals

[to, tk+1], k € {0,--- ,m — 1}. The proof of the case for k = 0 is similar to the case of k + 1 and omitted here for brevity.
Now let the statements be valid over [tg,t;]. Next, we show the validity of the statements at (tg,tx+1], and as a result the
validity of the statement over [to, tx41]. Let x(tx) = x4, XW]T € R?% k € {0,---,m}. Also, given t € (t,tpi1], let

t' =t —tx € (0,T]. Disregarding the control bounds, (B.17) results in x(¢;) = x(tx) for k € {0,--- ,m — 1}. Therefore,
control (B.17) can also be expressed as

- T
ut) = [BT—1)— f (T t)+ 3] ["’M X k’ﬂ
k k k Xk+1,2 — Xk,2
Since wu(t’) is an affine function of ¢, the maximum value of |u(t')| is at either ¢ — 0% or ¢ = T}. That is,
[u@)| < |u — 0| or |u(t)] < |u(Tk)| where w(t’ — 0%) = limy_,o+ u(¢'). Next, we show that there always
exists a T}, that makes |u(t’ — 07)| < |umaz| and |u(T)| < |Umaz|, which means that |[u(t')] < |umaz|, t' € (0, Tx].
Note that |u(t’" — 07)| = Tig(Xk.H,l - Xk,l) - T%(Xk.yl,z - 2X1g,2) < T%(Xkﬂ,l - Xk,l)‘ + T%(Xkﬂ,g - 2X1g,2) , and

lu(Ty)| = ‘ - %(X}wrl_; - Xk,1)+ le(szJrLz - Xkyz)‘ < ‘q%(karLl - Xk,1)‘ + ‘%(2Xk+172 - Xk,z)‘- Since the upper
bounds established for |u(t" — 07)| and |u(T})| monotonically decrease when T}, increases, there always exists finite value of
T}, such that these upper bounds become equal to w,,,q,. Therefore, there always exists a finite value of T} for which control
law (B.17) does not violate the controller saturation bound. O
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