
Optimal Computation Offloading in
Edge-Assisted UAV Systems

Davide Callegaro and Marco Levorato
The Donald Bren School of Information and Computer Sciences, UC Irvine, CA, US

e-mail: {dcallega, levorato}@uci.edu

Abstract—The ability of Unmanned Aerial Vehicles (UAV) to
autonomously operate is constrained by the severe limitations
of on-board resources. The limited processing speed and energy
storage of these devices inevitably makes the real-time analysis
of complex signals – the key to autonomy – challenging. In urban
environments, the UAV can leverage the communication and
computation resources of the surrounding city-wide Internet of
Things infrastructure to enhance their capabilities. For instance,
the UAVs can interconnect with edge computing resources and
offload computation task to improve response time to sensor
input and reduce energy consumption. However, the complexity
of the urban topology and the large number of devices and
data streams competing for the same network and computation
resources create an extremely dynamic environment, where poor
channel conditions and edge server congestion may penalize
the performance of task offloading. This paper develops a
framework enabling optimal offloading decisions as a function of
network and computation load parameters and current state. The
optimization is formulated as an optimal stopping time problem
over a Markov process.

Index Terms—Edge Computing, Urban Internet of Things,
Unmanned Aerial Vehicles, Autonomous Systems.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) is being
increasingly proposed for a wide spectrum of applications,
including surveillance and monitoring, disaster management,
agriculture, and network coverage extension [1]–[5]. Their
autonomous operations require the acquisition and real-time
analysis of information from the surrounding environment.
However, processing information-rich signals, such as video
and audio input, to inform navigation and, in general,
autonomous decision making, is an extremely demanding task
for these constrained platforms. In fact, due to the limited
on-board computation resources, the analysis process may
require a significant amount of time, thus decreasing the UAV
responsiveness to stimuli. Additionally, continuously running
heavy-duty analysis algorithms imposes a considerable energy
expense burden to these battery-powered devices. In summary,
the degree of autonomy of UAVs may be limited, and may
come at the price of a reduced operational lifetime.

In urban environments, the UAV can leverage the
resources of the surrounding urban Internet of Things (IoT)
infrastructure to overcome some of its limitations and
enhance its capabilities. For instance, the UAV can use the
communication infrastructure to connect to edge servers –
that is, compute-capable machines positioned at the network
edge – to offload data processing tasks [6]. By offloading the
computation task to a more powerful device, the UAV can

This work was partially supported by the NSF under grant IIS-1724331.

possibly reduce the capture-to-decision time, thus improving
its reaction time to sensor input. Additionally, offloading data
processing to an edge server can reduce the amount of energy
needed to complete the mission.

However, the urban IoT is a highly dynamic system, where
a myriad of devices, and data streams, compete for the
available communication and computation resources. As a
result, the network connecting the UAV and edge server may
be congested, and the transportation of the data to the edge
server may require a large time. Additionally, the topology of
urban areas may degrade the capacity of the channel due to
path loss and shadowing. Finally, the edge server may have a
queue of computation tasks from other devices and services
that need to be completed before processing the data from the
UAV. Therefore, in some conditions and locations, the time
needed to transport the data to the edge server and receive the
outcome of analysis may exceed that of local processing at
the UAV.

In this paper, we present an optimization process through
which the UAV decides whether to process locally or offload
the computation task to the edge server. The decision is based
on a series of interactions between the UAV and the IoT
system, where the UAV receives feedback on the state of the
network and edge server, which allows the estimation of the
residual time to task completion. Based on this information,
the UAV solves an optimization problem aiming at the
minimization of a weighted sum of delay and energy expense.

Numerical results, which are based on parameters extracted
from a real-world implementation of the system, demonstrate
that the proposed intelligent and sequential probing technique
effectively adapts the processing strategy to the instantaneous
state of the network-edge server system. The outcome is a
reduced processing delay and energy expense, two extremely
important metrics in the considered application.

The rest of the paper is organized as follows. Section II
provides an overview of the system considered in this
paper. Section III describes in detail the parameters and
operations of the UAV-edge server system. Section IV
introduces a Markovian description of the system’s dynamics
and formulates and solves the problem for the optimization
of the offloading decisions. Section V presents numerical
results illustrating the performance of the proposed adaptive
offloading strategy. Section VI concludes the paper.

II. SYSTEM AND PROBLEM OVERVIEW

We consider a scenario where a UAV autonomously
navigate an urban environment. The UAV is assigned the

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

Figure 1: Illustration of the considered scenario and system: a
UAV interconnects with an edge server through a low latency
wireless link to offload computation tasks. Poor channel
conditions and high processing load at the edge server may
result in a larger delay and energy expense compared to local
on-board processing.

task to acquire and process complex data in predefined
locations within the city, where the outcome of processing
may influence sensing and navigation actions. A relevant
case-study application is city-monitoring, in which the UAV
captures a panoramic sequence of pictures at each location
and process them using a classification algorithm to detect
objects or situations of interest. In case of positive detection,
the UAV may stay at the location to capture more detailed or
higher-resolution pictures of a specific portion of its view.

Intuitively, processing information-rich signals using a
computation-intense algorithm is a challenging task for
inherently constrained platforms such as UAVs. In fact,
the limited processing power of the on-board computation
resources results in long capture-to-output time of the
algorithm, which decreases responsiveness to stimuli and
increases mission time. Additionally, on-board processing
consumes a significant amount of energy, even when compared
to motion and navigation, thus shortening the lifetime of these
battery-powered systems. Note that in the scenario described
above, the UAV is hovering while waiting for the classification
algorithm to complete, as the outcome will determine its
subsequent action. Thus, a large processing time incurs at
additional energy expense penalty associated with longer flight
time.

The UAV can leverage the resources of the surrounding
urban IoT infrastructure to improve its performance. In the
scenario at hand, edge servers placed at the network edge
can take over the task of processing the data acquired by the
UAV. Intuitively, the larger processing power of edge servers
compared to that of UAVs grants a much faster completion of
the processing task, thus allowing a faster decision making
and a smaller capture-to-decision time. Additionally, the
UAV would be relieved from the energy expense burden of
processing, at the price of energy expense associated with
data transmission. We remark that a shorter time to receive
the output of the classification algorithm also corresponds to

a smaller energy expense associated with hovering.
However, as noted in the introduction, the urban IoT is a

highly dynamic environment, where a myriad of data streams
and services coexist and compete for the same communication
resources. In the considered scenario, the wireless channel
connecting the UAV to a wireless access point may have
a low capacity due to the physical properties of signal
propagation, but also due to the existence of interfering
communications which use part of the time/frequency channel
resource. Additionally, the edge servers may be serving other
devices offloading their computation tasks, and the UAV task
may suffer queuing delay, or a reduced processing speed. As
a result, in certain conditions, offloading the computation task
to an overloaded edge server connected to the UAV through a
poor communication channel may lead to a longer capture-to-
decision time. Again, this corresponds to less efficient mission
operations, but also a possibly large energy expense due to
hovering while waiting for a response.

In order to fully harness the possible performance gain
granted by the available resources provided by the urban IoT
infrastructure, the UAV needs to make informed decisions
whether or not to offload computation. To this aim, we equip
the UAV with the ability to interact with the surrounding
network and edge devices and acquire information regarding
the status of the communication and processing pipeline. The
information is used to evaluate the progress of the task and
predict the future cost of the binary decision between local
and edge-assisted computing.

III. SYSTEM MODEL

In this section, we formalize and discuss an abstraction of
the system composed of the UAV, a network access point
and an edge server. We divide the description into modules
focusing on the communication, computation and energy
expense aspects of the system.

A. Communications

The UAV is connected to the network access point
through a wireless channel of finite capacity. The data to
be transferred for offloading have size L-bits. The UAV
transmits with fixed power P and rate R in the finite set of
K+1 transmission rates {R0, R1, R2, . . . , RK}, where R0=0
corresponds to disconnection from the network, and thus no
data transmission. The link between the UAV and the AP is
a wireless link affected by path loss, fading and noise. The
SNR at the receiver is

SNR =
gP

σ2
, (1)

where σ2 is the noise power and g is the channel attenuation
coefficient including path loss and fading. We assume
exponential path loss and Rayleigh flat fading. Thus, the
distribution of g is

Θg(x)=Pr(g ≤ x)=1−e−
x
γ , (2)

where γ is the path loss.

Assuming channel knowledge and a capacity achieving
scheme, the selected transmission rate of the UAV is equal
to Ri bits/s if g ∈ (gi, gi+1], where

gi = g : Ri = C(gSNR), i=1, . . . ,K, (3)

and
C(x)=log(1 + x). (4)

The resulting transmission time is L/Ri s.

B. Computation

The time to complete the computation task locally at
the UAV and at the edge server are captured using the
random variables X ′ and X , respectively. We assume that
X ′ and X follow an exponential distribution of rate µ′ and
µ tasks/s, respectively. The edge server accumulates incoming
computation tasks in a finite buffer of size B tasks. Excluding
the task generated by the UAV, tasks arrive according to a
Poisson process of rate λ tasks/s, with λ<µ.

C. Energy

As described in the previous section, at each predefined
location the UAV captures the data, and then completes the
computation task – either locally or at the edge server –
while hovering maintaining the position. We define a rate of
energy expense for the two fundamental operational blocks
that are influenced by the offloading decision: processing and
hovering. Specifically, we define PP and PH as the Watts
used to respectively process the data and hover. As mentioned
earlier, the transmission power is equal to P Watts.

IV. OPTIMAL OFFLOADING DECISIONS

In the considered scenario, the two most relevant
performance metrics are energy expense E and time T per
location. Herein, we assume the state of the system at each
location to be independent. Importantly, the costs E and T
are a function of the offloading decision, that is, whether the
computation task is completed at the UAV or at the edge
server.

Given the knowledge of the system parameters, the UAV
can compute the average cost E and time T corresponding
to each of the two options, where the average is over
realizations of the stochastic process associated with the
system dynamics. However, within that average there are
realizations in which offloading is advantageous (high channel
capacity and low processing congestion) or disadvantageous
(low channel capacity and high processing congestion). In
order to fully harness the performance gain edge computing
can provide while facing the dynamics of the IoT system, we
develop a sequential probing and decision making framework.
At each stage, the UAV observes the current realization,
estimates the residual cost to complete the operations, and
makes a decision about whether to initiate local processing
or not. This formulation corresponds to an optimal stopping
time problem on a semi-Markov process.

Under the assumptions listed in the previous section, the
temporal evolution of the system can be represented as a

semi-Markov process. Let’s define as t+j , j=0, 1, 2, . . . the
time instants right after the occurrence of an event, defined
as the establishment of the connection with the network, the
delivery of the data to the edge server, or the completion of
a computation task at the UAV or edge server. We denote the
state of the system at time t+j as the random variable S(t+j).
The state space S of S(t+j) consists of an initial state s0,
two termination states sUAV and sES, and a number of states
describing data transmission and task queueing process. The
termination states correspond to the computation task being
completed locally at the UAV (sUAV) and offloaded to the
edge server (sES). Specifically, we include (i) a set of K+1
states R0, R1, . . . , RK associated with a transmission rate,
that is, a channel state in the ranges defined in the previous
section; and (ii) a set of C+1 states B1, . . . , BC+1 associated
with the position of the UAV task in the task buffer at the
edge server. Note that BC+1 corresponds to a full buffer at
arrival, that is, the UAV task is rejected. It can be shown that
the process S=(S(t+j))j=0,1,... is a Markov process.

At each time instant t+j , the UAV is notified of the state
S(t+j) from the network access point or the edge server,
and makes a binary decision u∈{0, 1}, where 0 and 1
correspond to local computing and continuing on the edge-
assisted pipeline – that is, further deferring local computing,
respectively.

A. Transition Probabilities

We now describe the transition probabilities governing the
dynamics of the stochastic process S. For the sake of notation
clearness, we denote the time t+j with its index j. We define,
then

P (s′|s, u)=Pr(S(j+1)=s′|S(j)=s, U(j)=u). (5)

If the decision is equal to 0, the transition probabilities from
any state s are

P (s′|s, 0)=

{
1 if s′=sUAV;

0 otherwise.
(6)

That is, if the decision is to compute locally, the process moves
to state sUAV deterministically from any state.

We, then, analyze the transition probabilities if the decision
is 1, that is, the UAV further defers the initiation of local
computation. In such case, from the initial state s0, the channel
distribution is sampled, and the state moves to one of the pre-
transmission states Ri with probability equal to that of the
associated interval. Thus,

P (s′|s0, 1)=

{
πi if s′=Ri, i=0, 1, . . . ,K;

0 otherwise,
(7)

where π(i)=Θg(gi+1)−Θg(gi).
In any state Ri, the UAV is reported the transmission

rate, that is, the index i, from the wireless access point.
If the decision is to defer local processing, the transition
probabilities from Ri, i=1,. . . ,K, are

P (s′|Ri, 1)=

{
σc−1 if s′=Bc

0 otherwise.
(8)

Figure 2: Representation of state transitions with non-zero probability in the Markov Chains associated with decision u = 0
(left) and u = 1 (right).

σc is the probability that the UAV task will find c tasks stored
in the edge server buffer at arrival. It is known that

σc=
(1− λ/µ)(λ/µ)c

1− (λ/µ)C+1
. (9)

The state R0, corresponding to disconnection from the
network, deterministically leads to sUAV.

At the beginning of any state Bc, the UAV is notified of the
index c. For states Bc, c=2, . . . , C, the transition probabilities
are

P (s′|Bc, 1)=

{
1 if s′=Bc−1

0 otherwise.
(10)

State BC+1 corresponds to a full task queue and, thus,
rejection of the UAV task. Therefore, from BC+1 the system
deterministically moves to sUAV. State B1 corresponds to the
UAV task being in the first position, and deterministically
leads to sES.

B. Cost Functions and Optimal Policy

With the transition probabilities conditioned on the state
and action, we can now build the optimization process. We
consider a formulation where the objective of the UAV is to
minimize E (V), with

V = ωE + (1−ω)T, (11)

where ω is a positive weight in [0, 1].
To this aim, define the time and energy spent in state s∈S as

Φ(s, u) and Ψ(s, u) conditioned on the action u, respectively.
Note that both the latter and the former are random
variables. We denote their average as ϕ(s, u)=E (Φ(s, u)) and
ψ(s, u)=E (Ψ(s, u)). We further define C(s, u)=ωΦ(s, u) +
(1−ω)Ψ(s, u), with average c(s, u).

The average time and energy cost associated with the initial
state are equal to 0. In the termination states sUAV and sES,
we have

ϕ(sUAV) = 1/µ′, (12)
ψ(sUAV) = (PP + PH)/µ

′, (13)

and

ϕ(sES) = 1/µ, (14)
ψ(sES) = PH/µ. (15)

Note that in the termination states the action is pre-determined
and does not need to be formally included in the cost.
From any transmission and queueing state R0, . . . , RK and
B1, . . . , BC+1, if the decision is to initiate local processing
at the UAV (u=0), the process immediately moves to sUAV

and the energy and time cost are both equal to 0. Note that
such decision is forced in states R0 and BC+1.

If the decision is to defer local processing (u=1), the costs
are

ϕ(Ri, 1) = L/Ri, (16)
ψ(Ri, 1) = (PH + P)L/Ri. (17)

with i=, 1, . . . ,K, and

ϕ(Bi, 1) = 1/µ, (18)
ψ(Bi, 1) = PH/µ. (19)

The problem of minimizing the expected total cost can be
rephrased as a Markov Decision Process over a finite temporal
horizon. We aim at finding, then, the (deterministic) optimal
policy u∗(s), where

u∗(s) = arg min
u={0,1}

E
(
Vres(s, u)

)
, (20)

Figure 3: Probability of offloading to the edge server (lighter
shades corresponds to higher probability) with ω = 0.

where E (Vres(s, u)) is the expected minimum cumulative
residual cost to a termination state s† from state s given that
decision u is selected, that is,

min
U1

j†
E

 j†∑
j=0

c(S(j), U(j)|U(0)=u, S(0)=s)

 , (21)

where
j† = min(j : S(j)∈{sUAV, sES}), (22)

and Uj†

1 = (U(0), . . . , U(j†)). The optimal policy can be
recursively found using well-known techniques.

V. NUMERICAL RESULTS

To make our observations meaningful, we derive the
optimal policies under different channel and load conditions
using parameters obtained from real-word experimentations.
Specifically, we used a 3DR Solo Drone mounting a Pixhawk
flight controller running ArduCopter connected to a Raspberry
Pi model 3B as companion computer. We use as edge server a
Laptop with 16GB RAM and Intel Core i7-6700HQ processor
with Nvidia GM204M GPU. We set the number of pictures
collected in each location to 20, where each picture has
resolution equal to 720 × 480. The average size of each
picture after encoding is 80 KB. The pictures are processed
implementing a face recognition algorithm using a multi scale
Haar Cascade, which takes on average 1/µ′=0.56s at the
UAV and 1/µ=0.046s at the edge server. We consider SNR
values in the range [−10, 20] dB and transmission rates in the
range from 1 Mbps to 11 Mbps (matching a system using
WiFi IEEE 802.11). Power consumption rates are based on
battery level readings in the same set up: in particular, we
set Ph = 0.1 levels/s, Pp = 10% · Ph levels/s. The optimal
deterministic policy Uj†

1 given the parameters is computed
using Equation (21).

Figure 4: Probability of offloading the computation to the edge
server as a function of the system load ρ.

In Figure 3, we show the probability of offloading to the
Edge Server as a function of the SNR, and the system load
ρ = λ/µ. This probability corresponds to the probability of
the process being absorbed in SES from S0 conditioned on
the control policy, defined as

P∞
S0
(Y) = lim

t→∞
P (S(t) = SY |S(0) = S0, U = Uj†

1) (23)

where Y ∈ {SUAV, SES}, and P∞
S0
(SUAV) + P∞

S0
(SES)=1.

In Figure 3, we plot P∞
S0
(SES), using lighter pixel color for

higher probabilities. As expected, for low values of ρ and
high values of the SNR, the offloading probability is almost
equal to 1, that is, the UAV offloads computation when system
conditions are favorable. When the SNR is sufficiently low,
the UAV will likely be disconnected, or the cost of offloading
might exceed that of local computation due to the large time
needed to transport the data to the edge server. Similarly,
if the load parameter ρ is large, that is, the ES buffer has
frequent arrivals or computation tasks take a large time to be
completed, the UAV choses to compute locally.

In Figure 4 we fix the SNR, and show P∞
S0
(SES) as

a function of ρ. As the SNR decreases, the probability of
offloading to the edge server decreases as well. Intuitively,
the SNR influences the shape of the probability curve.
Interestingly, high SNR values show a sharp transition from
offloading to local computing, whereas low SNR values have a
more progressive transition, most likely due to the distribution
of the communication time.

Figure 5 compares the total delay incurred by fixed
strategies – local computing or edge offloading – with the
proposed adaptive approach as a function of the system load
ρ. Clearly, local computing at the UAV is not influenced by ρ.
For small system loads, offloading grants a reduced delay. As
ρ increases, the total delay associated with offloading increases
to exceed that of local computation. The adaptive strategy

Figure 5: Total delay as a function of the system load ρ for
the fixed strategies UAV-only and edge server-only, and the
proposed adaptive strategy.

opportunistically allocates the computation task to the UAV
or the edge server, avoiding specific realizations of the system
states associated with poor channel quality or congestion at the
edge server. As a consequence, the adaptive strategy achieves
a reduce delay except that in parameter regions where the
choice is deterministic, where the adaptive strategy falls back
to a fixed decision (corresponding to ρ approaching 1).

Finally we illustrate the value of probing compared to a
simple decision informed by the average delay pre-computed
based on a priori knowledge of the parameters. Figure 6
shows the probability that the decision of processing locally
is taken at the different stages or that offloading is selected.
Specifically, the decision stages are:

• Stage 0: the initial stage S0, where the UAV knows the
parameters, but not the channel or queue state;

• Stage 1: Ri, where the UAV has connected with the
network and is aware of the maximum transmission rate;

• Stage 2: Bj , where the UAV reached the edge server, that
is, upon transmission after transmission, and is reported
the position in the processing queue.

For small values of ρ, offloading is predominant, with a
small probability of local computing decision forced by
extremely poor channel conditions. As ρ increases, the set of
rates corresponding to local computing decisions increases.
In fact, the delay requirement for the data transportation
becomes more stringent as the average time spent in the
edge server buffer increases. In the transition phase between
offloading and local computation, we can observe a spike in
the probability that the UAV will select local computing after
the edge server is reached, as the probability finding a number
of tasks in the buffer sufficiently large to make offloading
disadvantageous increases before a region in which probing
is not even attempted.

Figure 6: Probability of selecting local computation in the
three main decision stages or offloading to the edge server.

Results not shown here due to the lack of space show
similar trends for cost functions accounting for the energy
consumption of the UAV.

VI. CONCLUSIONS

In this paper, we presented a framework to control
processing task offloading to edge servers in UAV systems.
The framework sequentially probes the state of the network
and of the edge server buffer to make optimal decisions
between local and edge-assisted computing. Numerical results
show the delay reduction granted by the proposed technique,
which is based on a Markov Decision Process formulation
solving an optimal stopping time problem, compared to non-
adaptive strategies.

REFERENCES

[1] Kapseong Ro, Jun-Seok Oh, and Liang Dong. Lessons learned:
Application of small uav for urban highway traffic monitoring. In 45th
AIAA aerospace sciences meeting and exhibit, pages 2007–596, 2007.

[2] Janosch Nikolic, Michael Burri, Joern Rehder, Stefan Leutenegger,
Christoph Huerzeler, and Roland Siegwart. A UAV system for inspection
of industrial facilities. In IEEE Aerospace Conference, pages 1–8, 2013.

[3] Chunhua Zhang and John M Kovacs. The application of small unmanned
aerial systems for precision agriculture: a review. Precision agriculture,
13(6):693–712, 2012.

[4] Milan Erdelj, Enrico Natalizio, Kaushik R Chowdhury, and Ian F
Akyildiz. Help from the sky: Leveraging uavs for disaster management.
IEEE Pervasive Computing, 16(1):24–32, 2017.

[5] Shams ur Rahman, Geon-Hwan Kim, You-Ze Cho, and Ajmal Khan.
Deployment of an SDN-based UAV network: Controller placement and
tradeoff between control overhead and delay. In International Conference
on Information and Communication Technology Convergence (ICTC),
pages 1290–1292. IEEE, 2017.

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

