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Abstract: We consider the problem of persistent monitoring of a finite number of inter-
connected geographical nodes for event detection via a group of heterogeneous mobile agents.
We assume that the probability of the events occurring at the geographical points of interest
follow known Poisson processes. We tie a utility function to the probability of detecting an event
in each point of interest and use it to incentivize the agents to visit the geographical nodes with
higher probability of event occurrence. We show that the design of an optimal monitoring policy
that specifies the sequence of the geographical nodes and time of visit of those nodes for each
mobile agent so that the utility of event detection over a mission horizon is maximized is an
NP-hard problem. To reduce the time complexity of constructing the feasible set of the optimal
approach and also to induce robustness to changes in event occurrence and other operational
factors, we consider a receding horizon approach. We note that, with the number of agents
growing, the cost of finding the optimal path grows exponentially even with shortened horizon.
To overcome this issue, we introduce a sub-modular optimization approach that has a polynomial
time complexity and also comes with a known sub-optimality lower bound. We demonstrate our

results through simulations.
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1. INTRODUCTION

In extension of cities and technology there is always a
need for surveillance to monitor for incidences of interest.
Traditionally, the surveillance systems are stationary, and
are only able to cover limited areas. To achieve reliable
monitoring via stationary sensors in a large area, it is
necessary to deploy a huge number of sensors. Even in
cases where the cost is not a major prohibitive factor, with
the current technology, the communication bandwidth uti-
lization certainly is. Therefore, to solve the coverage within
the limits of the system, use of mobile sensors, which
the infrastructure can move within the urban area is of
interest (especially aerial sensors that have wide measure-
ment zones). The aim is to compensate for the lack of full
spatial coverage at all times by context-aware temporal
dynamic distribution of a set of mobile sensors. In this
paper, we consider the problem of designing a dispatch
policy for mobile agents that automatically orchestrates
the topological distribution of the mobile sensors such that
the ‘best’ service for the global monitoring task is provided
within the constraints of the network.

We consider a monitoring scenario in which the areas
of interest for monitoring via mobile agents are given
as a set of known finite geographical nodes that are
connected to each other with known and pre-specified
corridors, see Fig. 1. We assume that the probability
of the events occurring at the geographical points of
interest follow known Poisson processes whose rate is
extracted from historical data. This rate can also change
based on data that becomes available. We recall that
the Poisson process is a widely-used counting process for
scenarios where we are counting the occurrences of certain
events that happen at a certain rate, but completely at
random (without a certain structure) [1]. To provide a
context aware monitoring, we tie a utility function to the
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probability of detecting an event in each point of interest
and use it to incentivize the agents to visit the geographical
nodes with higher probability of event occurrence. We
assume that the mobile agents are heterogeneous in a sense
that their traveling time and also the time to detect an
event are different. We show that the optimal monitoring
policy that specifies the sequence of the geographical nodes
and time of visit of those nodes for each mobile agent so
that the utility of event detection over a mission horizon
is maximized is an NP-hard problem. Our ultimate goal in
this paper is to design a multi-agent persistent monitoring
solution that detects maximum number of events over a
given mission horizon with a polynomial cost.

Our work is related to the problem of persistent monitor-
ing/patrolling via mobile agents. A multi-agent persistent
monitoring is a scheme in which a set of mobile robots are
dispatched in a designated area to gather information. The
agents move among a set of defined points in the area and
gather information via interaction with the points, which
an interaction can range from capturing a photo of the
point to communicating with a local agent in that point. In
a persistent monitoring setup, the agents are anticipated
to have some level of intelligence such that they can be
able to maintain robustness in case of unwanted incidences.
This enables them to continue fulfilling their tasks without
requiring constant supervision. Persistent monitoring of
geographical areas for event detection is of prime interest
in many applications such as discovering forest fires [2] and
oil spillage in their early stages [3], locating endangered
animals in a large habitat [4]. Long term multi-agent pa-
trolling of an area offers a low cost and effective monitoring
solution for these applications. In a single agent patrolling
of a set of connected nodes in an area, the complexity
of finding the ‘best’ route is the same as the complexity
of traveling sales man problem and grows exponentially
with the number of the nodes [25]. The problem of
optimal multi-agent patrolling inherently is more complex
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Fig. 1. Examples of a set of geographical points of interest and the
edges between them. Finite number of points to monitor in a
city can be restricted to some particular scanning zones (the
picture on the left) or the cell partitioned map of the city (the
picture on the right).

than single agent patrolling since each agent’s patrolling
scheme depends on other agents’ policy. The problem of
multi-agent patrolling was formalized in [5, 6]. Because
finding an optimal long term patrolling scheme is not
tractable, posing limitations on the structure of nodes
and how agents can move between them makes it possible
to find the optimal solution. Optimally of scheduling on
line and cycle graphs were extensively studied in [7, §].
In a context where the location of nodes are determined
and the routes between then are undetermined, Rus et al.
proposed an optimal cyclic patrolling scheme [9, 10]. While
multi-agent patrolling was considered as a task scheduling
problem, Cassandras et al. pushed it to continuous domain
where the movement trajectory of the agents is subject of
design [11, 12]. Traditionally the time that nodes were not
visited by an agent has been the criterion to design the
monitoring algorithms (minimizing nodes’ idle time). [13]
added the flavor of uncertain condition in the nodes where
agents are subject to removal and added it to criterion on
designing the patrolling scheme.

Instead of using the customary criterion of minimizing the
idle time of the nodes, which comes with the underlying
assumption that the rate of events happening at all the
nodes is uniform, we design a dispatch policy that uses
a Poisson random variable as the model for arrival of
valuable information at the nodes. Hence, we base our total
reward on Poisson distribution. We show that maximizing
the proposed reward is an NP-hard problem. Next, we
show that the reward function is a monotone submodular
set function. Then, based on this result, we propose a
receding horizon sequential greedy algorithm to compute
a sub-optimal dispatch policy with a polynomial com-
putation cost and guaranteed bound on optimality. The
receding horizon nature of our solution induces robustness
to uncertainties of the environment. In recent years, sub-
modular optimization has been widely used in sensor and
actuator placement problems [15, 16, 17, 18, 19, 20]. In
comparison to the sensor/actuator placement, the chal-
lenge in our work is that the assigned policy per each
mobile agent over the receding horizon is a vector rather
than a point. To deal with this challenge, we use the so-
called matroid constraint [21] approach to design our sub-
optimal submodular-based policy. We demonstrate our
results through two simulation studies. Due to space limi-
tation, the proof of our results are not given in the paper
and will appear elsewhere.

2. PRELIMINARIES

Notation: We let R, R, R>¢, Z denote the set of real,
positive real, non-negative real, integer, respectively. Given

the sets A and B, B C A means that B is a subset of A.
Moreover, 24 is the set of all the subsets of A. And finally,
given an element a € A, for simplicity we represent BU{a}
by BUa. Given an event set V and e € V, P(e) : V — [0, 1]
denotes the probability of event e happening. Let discrete
random variable X take values in X = {z1,xo,...}, then
the function P(X = z;) : X — [0, 1] shows the probability
of X taking value x; € X and expected value of X is
defined as E[X] = 3 4 P(X = z;)v;. We denote a
sequence of m increasing real numbers (t1,...,¢y,) (i.e.,
tp < tpqq for k € {1,...,m}) by (¢£)7*. Given ()} and (v)]"
we denote by (¢)7 & (v)]* their concatenated increasing
sequence, i.e., for (u)]™ = ()} @ (v)7* we have that any
ug, k € {1,--- ,n+ m} is either in (¢)} or (v)i* or is in
both of (t)7 and (v)7*. We assume that (u)}™™ preserves
the relative labeling of (¢)} or (v)7*, i.e., if ¢ and tx41,
ke{l,--- ,n—1} (resp. vy and vgy1, k € {1,--- ,m—1})
correspond to u; and u; in (u)}™™, then i < j.

Poisson process: Here, we briefly review some properties of
the Poisson random process following [1]. Counting process
{C(t,to),t > to} is a stochastic process that keeps a record
of number of events happened during the time interval
(to,t]. C(t,to) is defined to be 0 with probability 1, which
means that we are considering only events happened at
strictly positive times. {C(t,t9),t > to} is non-negative,
integer valued (C(t,tp) € Z) and increasing. A counting
process {C(t,t9),t > to} is said to be a Poisson process
with a rate A € Rsq, denoted by C(¢,t9) ~ Poisson(A(t —
to)), if it has an exponential distribution function

(A(t — to))me*t=to)
n! '
For a Poisson counting process, C(t, tp) has stationary and
independent increments, and also E[C(t, tg)] = A(t — to).
The occurrence time (arrival time) of the i** Poisson event
is also a random variable, which we denote by W;(tg) €
R+ . Starting at g, the probability of no event taking place
in time interval (tg,t] is given by
P(Wi(to) > t) = P(C(t, tg) = 0) = e A7t
Therefore, the probability of at least one event taking place
in time interval (o, t] is given by
(Wl(to) < t) =1-

In general, for any @ € Z~o W; follows a Gamma distribu-
tion W; ~ Gamma(\, ). Let C(t,,to) = g, i.e., the number
of events occurred in (¢g,t,] is ¢. Then, due to stationary

and independent increment of the Poisson process for any
ty € (to,t) we have

P(C(t,to) = n+q|C(ty, o) = q)

P(C(t,to) = 1) =

(t to)

= P(C(t,t,) =n),
(1a)

P(Wyyi(to) > t|C(ty, to) = q) = P(Wi(t,) > t)

= e Mt (1b)
P(Wyii(to) < t{CO(ty, tg) = q) = 1 —e M= tv> (Lc)
When the rate is time-varying, A Rzo — Ry,

the distribution of the counting process is given by
Poisson(ftt0 A(7)dT).

Submodular function: Submodularity is a property of a set
functions that shows diminishing reward as new members
are being introduced to the system. Here, we provide a
brief review of the submodular functions, following [22].

Definition 1. A set function ¢ : 2¥ — R is monotone
decreasing if for all P;, P, C P the following is satisfied
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Algorithm 1 Sequential Greedy Algorithm

1: procedure SGOpt(P, M)
2 Init: P <0, i < 0

3: loop:
4
5

while i < M do B
maximize Agy(p|P).
pCP

6: if A,(p|P) <0 then
7 reak

8: end if

9: P+~ PUp.

10: for i=1:M do

11: if p € P* then
12: P« P\P'
13: Break

14: end if

15: end for

16: end while

17: Return P.
18: end procedure

Py C Py ifand only if g(P1) > g(P).

A set function A (P,p) = R, Ay(p|P) = g(PUp)—g(P)
for VP € 27 and Vp € P, shows the increase in value of
the submodular set function g going from set P to PUp .
Theorem 1. (See [22]). A set function g : 27 — R is

submodular if and only if for two sets P, Py satisfying
P1 C Py C P, and for p & Py we have

Ay(pIP1) = Ay (plP2). (2)
O

It is well-know that the optimization problem

max g(P), s.t., (3a)

PCP
[PNPI<1, ie{l,...,M}, (3b)
where P1, ... PM are collection of K disjoint sets that

satisfy Uf\il P* =P, is NP-hard [23]. When the objective
function g in (3) is submadular, however, it is shown in
the literature that a sequential greedy member selection
algorithm (see Algorithm 1) results in a sub-optimal
solution with a guaranteed bound on optimality.

Theorem 2. (See [22]). Let g in the optimization prob-
lem (3) be a monotone submodular set function. Suppose
g(P*) is the global maximum of (3). Let P be the output
of Algorithm 1.Then, g(P) > 1g(P*). O

3. PROBLEM DEFINITION
3.1 Problem setting

We consider a group of M mobile sensors (each referred
henceforth as mobile agent or simply agent) are deployed
to monitor N geographical points (each referred hence-
forth as geographical node or simply node) on a R? or R3
space. We assume that every agent and every geographical
node has a unique identification belonging to, respectively,
the sets A = {1,--- ,M} and V = {1,--- ,N}. At each
geographical node ¢ € V there is an event that takes
place in random, whose probability of occurrence follows a
Poisson random process C;(t,t, ;) ~ Poisson(\;(t — ty;))
where t,; € R>¢ is the last time node ¢ is visited by a
mobile agent j € A. The rate of event occurrence \; € R+
can be specified based off of the historical data. This
rate can change based on data that has become available
from other sources. The rate also can be manipulated

to steer the agents in certain direction on the map. Fi-
nally, \; € Ry can be time varying. To simplify the
exposition, we demonstrate our results for fix occurrence
rate. The results generalizes to time-varying case by using

Ci(t,ty:) ~ Poisson(ftt “Ai(T)dr).

We assume that it takes 6 € Ry time for each mobile
agent j € A to process its sensor measurement collected
upon its arrival time at a geographical node. For example,
&7 can be the time a mobile agent needs to process and
detect an event from an image shot upon its arrival time.
To incentivize the agents to visit and scan a geographical
node i € V, we associate the reward function

Oa t= ts,i;
Ri(t) = {wi(t S i) >t @)
where
Yi(t —ts;) =P(Wy,41 < t|Cilts,into) = i) (5)

:1 _ ef}\i(tfts7i).

Here t;; is the latest scan time of node ¢ and g¢; is
the number of the events that has been observed at
geographical node ¢ in the interval (to,t; s]. We note that
R;(t) resets to 0 after an agent arrives and scans the node,
and monotonically increases at an exponential rate of \;
afterward. Moreover, we note here that ¢;(t — t5;) is a
measure of finding at least one event in node i. Upon
arrival of any agent j € A at time ¢, € R>¢ at node i € V,
the agent immediately scans for the events (e.g., takes a
picture) and the reward R;(¢,) is scored for the patrolling
team A and ¢, ; is set to t,.

Assumption 1. If more than one agent arrive at node ¢ € V
and scan it at the same time t,,, the reward collected for the
team is still R;(¢,) (note that after the first scan ¢, ; sets

to t,). Furthermore, every agent j € A should spend 47
amounts of time at the node to complete its measurement
processing and event detection task. During the processing
time the agent cannot scan for events.

The geographical nodes are connected via a set of pre-
specified known corridors (each referred henceforth as
an edge), and the mobile agents are confined to travel
through these edges in order to traverse from one node to
another (see Fig. 1). For example, in a smart city setting
regulations can restrict the admissible routes between
the geographical nodes. Also, depending on the vehicle
type, agents may have to take different paths going from
one node to another. We let & ; be the set of edges
between nodes i, j € V. We assume that each geographical
node is connected at least through one edge to another
geographical node. We also add a self-loop to each node
i €V, 1.e., |€;;| = 1. The self-loops are introduced to allow
our motion planning policy to let agents to stay put and
continue scanning at a node. For every node ¢ € V, we let
N; be the set of its neighboring nodes that are connected
to it via an edge. This neighbor set includes the node i
itself, as well. We assume that the travel time 7/%;(1) € Rxg
between every node i,j € V for agent [ € A along any
edge k € &, ; is known, and 7;; = 0 (travel time along a
self-loop edge is zero). We assume that the set of mobile
robots is heterogeneous, therefor the travel time differs for
different agents on the same edge. The travel time at each
edge also can change during the mission time. We assume
that the travel time along every edge and for each agent
is proportional to the length of the edge, and time to go
from a point along the edge to its end nodes is also known.
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3.2 Objective statement

The ultimate goal in the persistent monitoring problem
over the setting described in previous subsection is to
detect maximum number of events over a given mission
horizon. By definition of the reward function (4), this
objective equivalently can be expressed as designing a
patrolling policy (what sequence of nodes to visit at
what times) for the group of mobile agents A so that
the group collects maximum possible reward over the
mission horizon. In all the policy designs (optimal and sub-
optimal) we consider the following assumption, as well.
Assumption 2. Each agent i € A can only move to neigh-
boring nodes of a previously visited node. Moreover, every
agent scans the node that it visits.

The optimal monitoring policy, under Assumptions 1

and 2, over a given mission time should assign a se-
quence of N% nodes to each agent i € A. Let n* =

) ) a7
[n’(O),nl(l), e ,nZ(N})} be the sequence of the nodes

visited by agent i € A, with n?(0) being the first node that
agent ¢ visits (starts from). Because of the Assumppion 2,
we have n’(j + 1) € Nyi(j), for all j € {1,2,.., N} — 1}.
]mtTi:[T%m;ﬁu%-n,T%Np}beﬂmvmumgmme
associated with visiting sequence n’ of agent i € A. Given
the starting location, let P* be the set of all the feasible
tuples p' = (n?, T",7) over the mission horizon for agent
i€ Aand let P = Uf‘il Pi. Then, for any P C P, the
collected reward R : 2P — R is
B [np]
RP) =D D Ba)(L()), (6)
VpeP j=1
with p = (nf17 Tp, ip). Then, given (6), the optimal policy to
et

maximize t eam collected reward over a given mission
horizon is given by

P* = argmaxR(P), s.t. (7a)
PCP
[PNP <1, ie{l,...,M}. (7b)

Here, we note that the constraint (7b) is the partition
matroid constraint, which ensures that the optimal policy
chooses only one member of P* for each agent i € A from
the collective feasible set P. The optimization problem is
in the standard form of (3), which is known to be NP-
hard [21]. The following result, whose proof is omitted
due to space limitation, gives the cost of constructing the
feasible set P and time complexity of solving optimization
problem (7).

Lemma 3. (Time complexity of solving problem (7)). The
cost of constructing the feasible set P for optimiza-
tion problem (7) is of order O(MDNf), where D =
max(|Ni|,- -+, [Nn]), Ny = max{|n’|}yicp'. Further-
more, the time complexity of solving optimization prob-
lem (7) is O(H?il D7) where Nj = max{|n’|}yicpy. O

Our objective in this paper is to construct a sub-optimal
policy to solve the persistent patrolling problem described
above with a time complexity that is ‘reasonable’ (will be
defined more preciously in the next section).

1 With a slight abuse of notation, here we use n* € P! in place of
(n*, T, %) € P".

4. A SUB-MODULAR RECEDING HORIZON
APPROACH TO PERSISTENT MONITORING

Lemma 3 indicates that the time complexity of finding an
optimal patrolling policy increases exponentially by the
horizon of the agents’ policy Ny and also the number of
agents M exploring the map. To reduce the computational
cost, we can trade in optimality and divide the policy
making horizon to multiple shorter horizon of length Ny
and design an optimal policy for each horizon. In other
words, in the policy making optimization problem (7),
the search space P of the optimal policy is limited to
sub-policies with the length of Ngy. Even though this
approach is able to cut down on the time complexity of
optimization problem (7), the time complexity of finding
an optimal policy still increases exponentially with the
number of agents. We note here that in our problem of
interest because of the changes that happen to various
operational aspect of the problem, periodical solutions
cannot be effective.

To provide a suboptimal policy making that is also robust
to the online changes that can occur during the mission
time, in what follows we propose a submodular receding
horizon policy making algorithm for our persistent pa-
trolling problem described in Section 3. To construct this
algorithm, we first show that the reward function (6) is
submodular over any given feasible policy set P. The proof
of the result below relies on several auxiliary results that
are given in Appendix. The detailed proof of Theorem 4
is omitted for brevity and will appear elsewhere.

Theorem 4. (submodularity of reward function). Consider
reward function defined in (4). Let P be a given set of
policies of the form p = (n,, Tp,4,). Then, the reward

function (6) is a monotone increasing and submadular set
function over P. ad

As we mentioned earlier, even though receding horizon
approach is able to cut down on the time complexity of op-
timization problem (7), the time complexity of finding an
optimal policy in each receding horizon Ny still increases
exponentially with the number of agents (see Lemma 3).
With the guarantee that Theorem 4 provides about the
submodularity of the cost function of the optimization
problem (7), we can now implement the submodular-based
sequential greedy optimization Algorithm 1 to solve (7)
in a polynomial time with the known lower bound of the
sub-optimality given by Theorem 2. When implementing
Algorithm 1, function g should be replaced by R. To im-
plement the sequential greedy algorithm, we first calculate
all the feasible policies P with length Npy for all the
mobile agents A. In each execution of the main loop of
Algorithm 1, function SGOpt(P, M) picks the sub-policy
p that is most rewarding with consideration of all sub-
policies chosen in previous execution of the loop (starting
from P = ) and adds it to P. Then it eliminates all
the sub-policies from the set P which are corresponding
to the agent where p is originated from. This approach
continues till there are no more sub-policies left in P. After
Algorithm 1 produces a solution, we implement the policy
until a pre-specified event such as first agent arriving and
completing the scan of its first designated geographical
node, a mobile agent being added to the system, a mobile
agent being removed from the system, a change in the
Poisson process rate of a geographical node, or a change
in topology including adding/deleting geographical nodes
or edges between nodes happen.

5. DEMONSTRATIVE EXAMPLES

In this section, we use two numerical examples to demon-
strate some of the properties of our algorithms. In these
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Fig. 2. The simulation scenario and results of example 1: three
agents are monitoring a 21 x 21 grid with non-uniform Poisson
rate.

examples, we assume that the geographical area of interest
is partitioned into uniform cells in which the center of
the cells are the geographical nodes constituting V. Each
node is connected to the neighboring nodes via vertical,
horizontal and diagonal edges. For simplicity, we assume
that the travel time and the scan time of all the mobile
agents are the same. We also assume that the travel time
along all the edges is the same.

In the first example, we consider a 21 x 21 grid shown
in Fig. 2(a). The heat map on the gird demonstrates the
event rate A; of each cell which ranges over [0.0025,0.01]
(the higher intensity of the cells indicates higher value of
Ai). We assume that there is a 5 x 5 mesh with a high
rate of 0.03 (shown by black region on the grid). We
change the location of this important region 10 times,
randomly over the full horizon of the simulation. This
scenario is designed to consider a case that the event rate
in the map changes with time. In this simulation, we use 3
agents to patrol over the area with the objective of scoring
maximum reward (6) for the team. Since the optimal
solution is NP-hard, we consider three alternative methods
of patrolling: a submadular receding horizon approach of
Section 4 with Ny = 4, the swiping method in which the
area is partitioned equally between the agents to sweep,
and finally the greedy method in which each agent chooses
the most rewarding neighboring cell and moves there.
Figure 2(b) shows the total reward scored by the agents
using these three different methods. As we can see, the
submadular receding horizon approach results in a better
policy that gathers more reward, i.e., detects more events.

In the second example, we consider an 8 x 8 grid shown
in Fig. 3(a). As shown on the figure, we assume that
the Poisson rate of event detection in all the cells except
the two in the up-right and bottom-left corners have
uniform value 0.01 and the corners have values of 4 and 2
respectively. The initial location of the three mobile agents
used in this simulation is shown in Fig. 3(a). Figures 3(b)-
(d) show the trajectories of the agents as they follow the
dispatch commands of the submodular receding horizon
approach of Section 4 with Ny = 5 over 50 planning
events. As these figures show, our proposed approach is
spreading the agents in an efficient manner of two of the
agents each patrolling the areas near the cells with high
rate of event occurring and the third agent exploring over
the remaining area. This behavior is aligned with intuitive
expectation from an optimal patrolling policy.

6. CONCLUSION AND FUTURE WORK

We proposed a solution for a persistent monitoring of a
finite number of inter-connected geographical nodes in
an urban environment with the purpose of maximizing
the expected value of event detection. We modeled the

[

(a) Grid map of example 2

(b) The trajectory of the red agent

(¢) The trajectory of the blue (d) The trajectory of the brown
agent agent

Fig. 3. Grid map of example 2 and the trajectories of the three
mobile agents: the submodular receding horizon approach of
Section 4 is used to dispatch the agents over 50 planning steps.
The arrows show the directions that the agents traveled.

probability of discovering at least one event in each geo-
graphical node as a Poisson distribution and tied this with
trajectory scheduling of the agents via a utility function.
We showed that maximizing the utility function is NP-
hard. We also argued that for our problem of interest, a
one-shot optimization is not robust to online changes of
the system. Hence, we proposed a submodular receding
horizon scheme to induce robustness and also decrease
the computational cost of dispatch policy design. Our pro-
posed method is a suboptimal solution with a known lower
bound of optimality gap. Our future work is to consider
decentralized implementation of our proposed algorithm
and also to address the shortsightedness of the receding
horizon approach.
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Appendix A.

Definition A.5. The non increasing sequence (0t)7 ma-
jorizes the non increasing sequence (dv)7, if
[ ] (;tl Z §t2 Z Z 5tn and 6’[)1 Z 5U2 Z Z 5’Un,
e 0t1 +...+6t; > 0vy + ...+ v; for Vi e {1,...,n —
® 0ty + ...+ 0t, =d0vy + ... + 0v,.

1},

Theorem A.6. (Karamata’s inequality [24]). Given a real
function f : R — R, and sequences (t)} and (dv)} where
(0t)} majorizes (dv)7, we have
f(6t1) + ... + f(6tn) < f(dv1) + ... + f(dvy).
O

We develop the following results to use in the proof
Theorem 4. Due to space limitation, the proofs these
results are not include here.

Corollary A.7. Given f : R — R with f(0) = 0, and
sequences (0t)7 and (6v)7* with n < m, where for (6t)}
and (dv)7* we have

5t1 + ...+ 5tl Z (S’Ul + ...+ 51}1'7

0ty + ... + 0t,, = 0vq + ... + OV,
Then

f(6t1) + ... + f(tn) < f(6v1) + ... + f(dvpm).

Vie{l,..,n—1}

(A1)
Od

Corollary A.8. Given a monotone increasing and concave
function f : R>g =& R>p,and 0 < a <cand 0 < b < d
then B B

fle)+ f(d) = fle+d) = f(a) + f(b) — fla+Db). (A.2)
O
Lemma A.9. For any (q)}, let

-1
9((@) = f(Ag), (A.3)

i=1
where Ag; = ¢+1 — ¢; and f € K is a concave and
semi positive and increasing function with f(0) = 0.

Now, consider two increasing sequences (¢)7 and (u)} and
concatenation (a)"™ = (t)} @ (u)!, then

g((@7™") —g(()7) = 0.

O
Lemma A.10. For any (q)}, let
1

(@) =3 F(Ag), (A1)
i=1

where Ag; = g;+1 —¢q; and f € K is a concave and positive
and increasing function with f(0) = 0. Now, consider

three increasing sequences (¢)} and (v)7* and (u)} and
concatenations (a)?™ = ()7 @ (u)} and (b)) = (v)7* @
(u)} where (v)7* is a sub-sequence of (t)7, then

) =0
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